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Abstract

Segregation in schools is prevalent in many cities around the world. In this paper, we analyze the

impact on segregation and efficiency of affirmative action policies in school choice programs. In a large

market model, we show that minority reserves–that guarantee a number of seats to minority students–are

an effective tool to reduce segregation in schools. More subtle, minority reserves increase the number of

students assigned to their first preferences and improve efficiency. The main cost of increasing minority

reserves is leaving more students unassigned. Each of these predictions from the stylized model is

confirmed by field evidence from school choice programs in the largest urban centers in Chile. In our

data, minority reserves can reduce the Duncan segregation index in more than 20% and improve the

efficiency of the system.

1 Introduction

Recent school choice programs around the world use centralized procedures to assign students to schools

(Boston, NYC, Amsterdam, Chile, Paris). Based on the celebrated Gale-Shapley deferred acceptance

algorithm (Gale and Shapley 1962), these programs result in assignment processes that are considered

successful by both scholars and policy makers. Yet, our understanding of the impact of alternative design

decisions on segregation and other market outcomes is rather limited. The main goal of this paper is

to uncover some of the tradeoffs that market designers and policy makers face when trying to reduce

segregation in schools by using affirmative action policies.

We provide theoretical results and field evidence from several Chilean cities on the impact of affirma-

tive action policies on segregation and efficiency in school choice programs. Our theoretical results are
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derived in a large market model (Abdulkadiroglu, Che, and Yasuda 2015, Azevedo and Leshno 2016).

In the model, a continuum of students apply to a finite number of schools. A student is either a regular

or a minority student. Schools are in two tiers, 1 and 2. Each school ranks students randomly. In any

given school, a minority student is weakly more likely than a regular student to have a low ranking in

a given school. We thus allow schools to rank all students uniformly. Tier 1 schools are popular and

over-demanded, while tier 2 schools are unpopular and under-demanded. Importantly, we assume that

regular students apply more intensely to tier 1 schools than minority students. In the absence of reserves,

regular students are over-represented in tier 1 schools while minority students get mostly assigned to

the low popularity tier 2 schools.

A key assumption in our model is that minority students are less likely to apply to high demand

schools than regular students. This assumption is motivated by evidence from several cities. Laverde

(2020) shows that Black and Hispanic families are less likely than other groups to rank popular, high-

achievement schools in the Boston Public Schools program. We also provide evidence that socially

disadvantaged minority students are much less likely to list popular schools than regular students ap-

plying in the main Chilean cities. Our assumption implies that even when school choice programs may

treat all students equally by using uniform random lotteries to rank applicants, that may not be enough

to integrate schools due to differences in application patterns.

We explore the impact of minority reserves on several outcomes. Minority reserves guarantee a

given number of seats to minority students whenever minority students demand a school, but otherwise

respect each school ranking (Hafalir, Yenmez, and Yildirim 2013, Ehlers, Hafalir, Yenmez, and Yildirim

2014, Echenique and Yenmez 2015). Our theoretical results describe the impact of minority reserves on

segregation, the rank distributions of the assignment, and efficiency.

Increasing minority reserves reduces segregation, unless too many seats are reserved for minority

students. Minority reserves also impact the rank distribution of assignments for both groups. Minority

students are favored by the introduction of reserves as they face less competition for some seats. Thus,

minority reserves favor minority students and decrease segregation in schools.

Increasing minority reserves may both leave more students assigned to their top schools and reduce

the inefficiencies of the assignment. Two observations are useful to understand these results. First,

increasing minority reserves replaces regular students by minorities in popular tier 1 schools. Second, a

minority student applying to a tier 1 school is more likely than a regular student to list the school as her

top choice. Increasing minority reserves also reduces the number of seats available to regular students

and triggers system-wide effects that need to be taken care of. We thus show that, unless the number

of seats in popular schools is relatively large, the assignment under a higher minority reserve has more

students that obtain their top choices.1 We measure the inefficiency of the assignment by the Pareto

improving pairs, which is the number of applicants that are better off by exchanging seats. Our results

show that increasing minority reserves improves the efficiency of the system by reducing the number of

1The system-wide effects of an increase in minority reserves explain why we need an upper bound on the number of seats
to derive this comparative statics results. We discuss all these effects in detail right after Proposition 2.
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Pareto improving pairs.

The analysis also exposes the costs of reducing segregation in schools. We show that increasing

minority reserves leaves more students assigned to less attractive schools. Formally, we prove that as

minority reserves increase, the cumulative rank distributions cross once and, as a result, cannot be

compared in the first order stochastic dominance sense. In particular, increasing the total number of

students assigned to unattractive schools is an important consequence of a rise in minority reserves.

Our results uncover the impact that changes to minority reserves have on several market outcomes.

While our matching model is stylized and abstracts away from several features, each of our main theo-

retical findings is confirmed by field data from the assignment processes in Chilean cities.

We use applications to pre-Kinder from the three largest urban centers in Chile. The Ministry

of Education in Chile uses a version of the Gale-Shapley deferred acceptance algorithm with multiple

lotteries (Abdulkadiroğlu, Pathak, and Roth 2009). By law, 15% of the seats in each school are reserved

for socially disadvantaged minority students. We show that minority students in Chilean cities are

much less likely to apply to high demand schools and simulate the assignment for different values of the

minority reserves.

The simulations show that minority reserves impact several market outcomes. Segregation is U-

shaped and an increase in minority reserves reduces the Duncan segregation index in more than 20%

in each of the three cities (Duncan and Duncan 1955). Raising minority reserves reduces the number

of students in Pareto improving pairs, and also increases the number of students assigned to their top

schools and the students assigned to unattractive schools (or unassigned). The simulations thus show

that, as a policy decision, minority reserves are quantitatively important. We also explore the role of

alternative design decisions, including double and set aside reserves (Echenique and Yenmez 2015, Dur,

Kominers, Pathak, and Sönmez 2018). These exercises illustrate that minority reserves are a key design

decision in our application.

Segregation in schools is pervasive in cities around the world. How segregated schools are impacts

both learning outcomes and social attitudes (Karsten 2010, Rao 2019). Centralized school choice pro-

grams are often seen as providing equal access to schools.2 Yet, recent research shows that systematic

differences in the application patterns of different groups may limit the efficacy of school choice programs

at reducing social, ethnic, or racial segregation in schools. Laverde (2020) shows that in some dimen-

sions the outcome of the school choice program in Boston is similar to the outcome generated by an

assignment based on proximity between residences and schools. Kutscher, Nath, and Urzua (2020) show

that the introduction of school choice in Chile has had an extremely limited impact on segregation in

schools. We build from the main premise of these papers –that school choice alone may not be enough to

integrate schools– and explore how affirmative action policies in school choice programs impact several

market outcomes, including segregation in schools.

2For example, the law that introduced the school choice program in Chile in 2016 is named the Inclusion Law (or Ley de
Inclusión Escolar). As Laverde (2020) notes, the Boston Public Schools’ superintendent wrote “My overall goal is to create a
student assignment plan that provides all Boston students with high-quality desegregated education”.
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Our results are relevant for policy discussion. The number of students assigned to their top schools is

an important quantity usually considered by policy makers. Abdulkadiroğlu, Pathak, and Roth (2009)

discuss how the greater number of students assigned to their top choices was key to favor single over

multiple-tie breaking in the New York city school match.3 When discussing the Boston school choice

experience, Abdulkadiroglu, Pathak, Roth, and Sönmez (2006) argue that “the ability to tell the public

that a high proportion of students receive their top choices may be a reason for the widespread popularity

of the Boston mechanism.” The number of Pareto improving pairs in the assignment is an (in-)efficiency

measure authorities look at. In Amsterdam, in order to reduce the number of Pareto improving pairs, the

deferred acceptance algorithm with single-tie breaking replaced the deferred acceptance algorithm with

multiple-tie breaking in 2016 (Ashlagi and Nikzad 2016, De Haan, Gautier, Oosterbeek, and Van der

Klaauw 2015).4 Thus our results are of interest to policy makers, who at the same time may combat

segregation in schools, increase the number families obtaining their top choices, reduce the number of

applicants in Pareto improving pairs, but incur the costs of leaving more students unassigned.

Abdulkadiroğlu and Sönmez (2003) apply matching theory to school choice problems. Recent work

has explored several design issues, such as how different tie-breaking rules impact efficiency (Erdil and

Ergin 2008, Abdulkadiroğlu, Pathak, and Roth 2009, Ashlagi and Nikzad 2016). Our work explores how

another policy decision–minority reserves–impacts both segregation and efficiency. More broadly, the

school choice literature has shown that the design of matching mechanisms involves complex tradeoffs.

For example, the deferred acceptance algorithm results in a stable but inefficient matching while the

top trading cycle algorithm yields an efficient but unstable matching (Gale and Shapley 1962, Roth and

Sotomayor 1990, Che and Tercieux 2019). Reducing segregation in schools is another important desider-

atum and we believe that our results expose new forces that are important to practical implementations

of school choice programs.

An important and extensive literature studies matching problems with affirmative action considera-

tions.5 Throughout the paper, we adapt several definitions and concepts from these works, particularly

from Hafalir, Yenmez, and Yildirim (2013), Echenique and Yenmez (2015), and Dur, Kominers, Pathak,

and Sönmez (2018). We contribute to this literature by deriving new theoretical results on the impact of

affirmative action policies on important but unexplored market outcomes, such as segregation, the rank

distributions of assignment, and the number of applicants in Pareto improving pairs. We also provide

field evidence that confirms our theoretical predictions.

Finally, the present paper is related to the growing literature using large market models to shed light

3As Abdulkadiroğlu, Pathak, and Roth (2009) observe: “The greater number of students obtaining one of their top choices
in a similar simulation and in the first year of submitted preference data convinced New York City to employ a single tiebreaker
in their assignment system.”

4See also the discussion in Alvin Roth’s blog at https://marketdesigner.blogspot.com/2015/12/amsterdam-school-choice-
next-year-will.html

5The list of papers exploring affirmative action in school choice includes Abdulkadiroğlu (2005), Kojima (2012), Hafalir,
Yenmez, and Yildirim (2013), Ehlers, Hafalir, Yenmez, and Yildirim (2014), Echenique and Yenmez (2015), Kominers and
Sönmez (2016), Fragiadakis and Troyan (2017), Dur, Kominers, Pathak, and Sönmez (2018), Nguyen and Vohra (2019), Aygun
and Bó (Forthcoming).
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on market design issues (Abdulkadiroglu, Che, and Yasuda 2015, Azevedo and Leshno 2016, Ashlagi and

Nikzad 2016, Che and Tercieux 2019). The large market assumption in our model allows us to derive

clean comparative statics results on the impact of reserves on various market outcomes. To the best of

our knowledge, this paper is the first one exploring the impact of affirmative action policies in a large

market model.

The rest of the paper is organized as follows. Section 2 presents our model. Section 3 introduces

minority reserves and provides our main comparative statics results. Section 3 also discusses variations

of our model. Section 4 confirms and quantifies our theoretical results using application data from

Chilean cities. Section 5 concludes.

2 Model

2.1 Environment

We consider a school choice problem with a continuum of students and a finite number of schools

(Abdulkadiroglu, Che, and Yasuda 2015, Azevedo and Leshno 2016). There is a measure 1 of regular

students (r), and a measure β ∈]0, 1] of minority students (m). So, a student is characterized by

s = (t, x) ∈ ({m} × [0, β]) ∪ ({r} × [0, 1]). The set of all students is denoted S.

The set of schools is C = {1, . . . , n, n+ 1, . . . , n+N}. Schools c ∈ C1 = {1, . . . , n} are tier 1 , while

schools c ∈ C2 = {n+ 1, . . . , n+N} are tier 2. Tier i schools have capacity ki.

For l ≤ n, we define the set Z(l) of complete and transitive preferences over schools such that the

l-most prefered schools are all tier 1 schools, but the school ranked l+ 1 is tier 2.6 Thus, Z(n) is the set

of all preferences � such that for all c1 ∈ C1 and all c2 ∈ C2, c1 � c2. We also denote by Z̄ the set of

all preferences � such that for some c2 ∈ C2, c2 � c for all c ∈ C \ {c2}.
For t ∈ {r,m}, a fraction αt ∈ [0, 1] of group t students have preferences uniformly distributed over

Z(lt), with 1 ≤ lt ≤ n, while the remaining 1 − αt have preferences uniformly distributed over Z̄. For

both types, the preference profile of a student (t, x) is entirely determined by (t, x).7

We assume that αr > αm and lr > lm. The restriction αr > αm captures the fact that minority

students are less likely to rank first a popular school. The restriction lr > lm models the idea that

even restricting attention to students that rank first a popular school, minority students are less likely

to apply to other popular schools than regular students. These assumptions are motivated by evidence

from cities in Chile and the US. For example, Laverde (2020) shows that white families are more likely

than Black and Hispanic families to rank high-achievement schools in Boston Public Schools choice

system.8 In Section 4.2, we also provide evidence from the main Chilean cities (Valparáıso, Concepción

6In particular, for a preference that belongs to Z(l), with l ≤ n− 1, the school ranked l + 2 could be tier 1 or tier 2.
7For example, let η = |Z(lr)| and divide the interval [0, αr] of regular students into η subsets such that each subset is

assigned a unique preference in Z(lr). Analogously, let η̄ = Z̄ and divide [αr, 1] into η̄ intervals such that each interval maps
to a unique preference in Z̄.

8Laverde (2020) additionally shows that travel costs are a key driver of these differences in Boston. Consistent with these
results, in Appendix C.2 we show that minority students tend to live farther away from popular schools than regular students
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and Santiago) that minority students are less likely to apply to high-demand schools.

Tier 1 schools are overdemanded, but the total capacity of the market exceeds total demand. We

thus assume that nk1 ≤ αr + βαm and nk1 +mk2 > 1 + β.

In many school choice systems, schools rank students independently and uniformly. We allow some

more generality and assume that schools ranks are not necessarily uniform. A student s = (t, x) at each

school c draws ωsc ∈ [0, 1] independently from the cumulative distribution Gt on [0, 1]. The number ωsc

represents the priority that student s has in school c. A higher number ωsc implies that the student has

higher priority in school c. We will refer to ωsc as the score that student s has in school c. We assume

that regular students tend to have higher scores than minority students so that Gr dominates Gm in

the first order stochastic sense: Gr(ω) ≤ Gm(ω) for all ω ∈ [0, 1]. This assumption is natural in college

admission in which socially disadvantaged students are likely to perform worse in entrance exams. The

assumption that Gr(ω) ≤ Gm(ω) is also appropriate in school choice programs in which schools rank

students according to academic performance, or in school systems in which siblings or children whose

parents work in the school have higher priority. Under all these criteria, a minority student is less

likely to be highly ranked in a school than a non-minority student. When Gr = Gm equals the uniform

distribution on [0, 1], schools rank all students uniformly as in many school choice programs.

Our two-tier model is natural in school choice applications in which parents tend to value similar

attributes of schools. In our model, a tier 1 school tends to be more attractive than a tier 2 school for

all students. However, a given minority student is less likely than a regular student to apply to a tier 1

school. When β = 0, αr = 1, and lr = n, our model has only one group and all students in the group

prefer a tier 1 school over a tier 2 school. In this case, our model is analogous to the limit model in Che

and Tercieux (2019).

2.2 Matchings and cutoffs

A matching is a function µ : S ∪ C → C ∪ 2S such

i. For all s ∈ S, µ(s) ∈ C;

ii. For all c ∈ Ci, µ(c) ⊆ S with |{s | µ(s) = c}| ≤ ki;

iii. For all c ∈ C and all s ∈ S, µ(s) = c iff s ∈ µ(c).

The first condition says that each student is assigned to a school, the second condition says that each

school is assigned to a measure of students that does not exceed its capacity, the third condition says

that a student is assigned to a school iff the school is assigned to that student.

A matching µ is stable if for all c ∈ Ci and all s = (t, x) ∈ S with c �s µ(s), the following two

conditions hold: (i) |{s | µ(s) = c}| = ki; and (ii) ωsc < ωs
′

c for all s′ = (t′, x′) with µ(s′) = c. Intuitively,

a matching is stable if there is no pair (s, c) that can block the matching (Gale and Shapley 1962).

Following Abdulkadiroglu, Che, and Yasuda (2015) and Azevedo and Leshno (2016), we can char-

acterize a stable matching by means of cutoffs pc ∈ [0, 1], for all c ∈ C. A cutoff pc determines the

in Chilean cities. Yet, for our analysis all what matters is that minority students tend to apply less to popular schools.
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lowest lottery number ωc that a student can have to be admitted to school c. The highest the cutoff

pc, the harder it is to get to school c. Two observations simplify the characterization of cutoffs. First,

schools within the same tier are symmetric and therefore pc = pc′ for all c, c′ ∈ Ci. Second, in any

stable matching a tier two school will have excess capacity and therefore its cutoff will equal 0. We can

therefore characterize a stable matching by means of a single cutoff p that clears the market for tier 1

schools:

αr

lr∑
q=1

1

n
Gr(p)

q−1(1−Gr(p)) + αmβ

lm∑
q=1

1

n
Gm(p)q−1(1−Gm(p)) = k1. (2.1)

The left hand side in equation (2.1) is the demand for a school c ∈ C1 when the admission cutoff in all

schools is p. The first term on the left hand side of (2.1) is the demand for school c of regular students.

For each school c ∈ C1, αr/n regular students will rank the school in the q-th position. A student

that ranks school c in the q-th position will demand school c if her scores in schools ranked above c

are below the cutoffs (which happens with probability Gr(p)
q−1) but her score in school c is above the

cutoff (which happens with probability 1−Gr(p)). The second term on the left of (2.1) is the demand

for school c of minority students. The measure of minority students that demand some tier 1 school is

αrβ. Those students have preferences uniformly distributed over Z(lr). Therefore for each tier 1 school

c and each q ∈ {1, . . . , lr}, a fraction 1/n of minority students that demand some tier 1 schools will rank

school c in the q-th position.

The unique solution p̄ ∈ [0, 1] to equation (2.1) is characterized by

αr
n

(
1− (Gr(p̄))

lr
)

+
αmβ

n

(
1− (Gm(p̄))lm

)
= k1. (2.2)

Naturally, p̄ increases when the supply of tier 1 schools, nk1, decreases or when the demand for tier 1

schools, αt, β, and lt, increases, for t = r,m.

In the unique stable matching, minority students are underrepresented in tier 1 schools. Indeed, the

ratio of minority to regular students in the whole population equals β, while the ratio of minority to

regular students assigned to a tier 1 school is

αmβ
(
1−Gm(p̄)lm

)
αr
(
1−Gr(p̄)lr

) < β.

Minority students are less likely than regular students to list any tier 1 school (as αm < αr). Compared

to a regular student, when a minority student does include a tier 1 school in her application, she is less

likely to apply to other tier 1 schools (as lm < lr), her scores are likely to be lower (Gm(p̄) ≥ Gr(p̄)),

and therefore 1−Gm(p̄)lm

1−Gr(p̄)lr
< 1. These forces combine to result in school segregation.
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3 Minority reserves, segregation and efficiency

We now introduce minority reserves and explore their impact on several market outcomes. We also

discuss variations of our main model.

3.1 Stable matching under minority reserves

A minority reserve ensures that whenever the number of minority students in a school c is below the

reserve, all other minority students must be assigned to schools that they strictly prefer to c. We adapt

Hafalir, Yenmez, and Yildirim (2013) to model minority reserves as follows. Let ρ = (ρ1, ρ2) be a vector

of minority reserves in tier 1 and tier 2 schools. A matching µ is stable under reserves if for all c ∈ Ci
and all s = (t, x) ∈ S with c �s µ(s), the following three conditions hold:

i. |{s | µ(s) = c}| = ki;

ii. if |{s′ = (t′, x′) | µ(s′) = c, t′ = m}| ≥ ρi, then ωsc < ωs
′

c for all s′ = (t′, x′) with µ(s′) = c; and

iii. if |{s′ = (t′, x′) | µ(s′) = c, t′ = m}| < ρi, then t = r and ωsc < ωs
′′

c for all s′′ = (r, x′′) ∈ µ(c).

A matching is stable under reserves ρ if whenever a student s would like to move to another school c,

that school is filling its seats, it is admitting students having higher priority and exceeding the minority

reserves, and if it is not exceeding the minority reserves then s is a regular student having a score below

the lowest score of regular students assigned to c. Note that when ρ ≡ 0, a matching is stable under

reserves ρ iff it is stable.

A matching µ that is stable under reserves always exists. It can be computed by the deferred accep-

tance algorithm by either properly defining a choice function or by making a copy of each school that

targets minority students (Hafalir, Yenmez, and Yildirim 2013). Note that since our model has a con-

tinumm of students, the deferred acceptance algorithm need not converge in finite time (Abdulkadiroglu,

Che, and Yasuda 2015).

We now characterize the unique stable matching under reserves ρ. First note that if ρ1 <
αmβ
n (1 −

(Gm(p̄))lm), then the stable matching characterized by cutoffs p̄ is stable under reserves ρ. This simply

follows from the observation that the minority reserve ρ1 is already filled in tier 1 schools and therefore

Conditions ii. and iii. in the definition of stability under reserves are equivalent to Condition ii in the

definition of stability. Second, note that when ρ1 > min{αmβ/n, k1}, the reserve either is above the

number of minority students that demand the school, or exceeds the capacity of the school. We thus

define R = [αmβn (1−Gm(p̄)lm),min{αmβ/n, k1}].
Take a reserve ρ1 ∈ R. We can characterize stability under reserves by means of cutoffs ptc that

depend on the school c and the types t ∈ {r,m} of the applying students. Similar to the analysis in

Subsection 2.2, we can restrict attention to cutoffs such that ptc = ptc′ for all c, c′ ∈ C1 and ptc ≡ 0 for

all c ∈ C2 and all t. It is therefore enough to characterize the cutoffs pm and pr, with pm ≤ pr, that

minority and regular students face in tier 1 schools. First, the market clearing condition can be written
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as:
αr
n

(
1− (Gr(pr))

lr
)

+
αmβ

n

(
1− (Gm(pm))lm

)
= k1. (3.1)

This is similar to equation (2.1), but in this market clearing condition different groups face different

cutoffs. Second, the minority reserve condition must hold. Since ρ1 ≥ αmβ
n (1 − Gm(p)lm), the reserve

must bind and therefore the number of minority students in a tier 1 school equals the reserve:

αmβ

lm∑
q=1

1

n
Gm(pm)q−1

(
1−Gm(pm)

)
= ρ1. (3.2)

Equivalently, the minority reserve condition can be written as

αmβ
(

1−Gm(pm)lm
)

= ρ1. (3.3)

We can solve for pm and pr to deduce

Gr(pr) =
(

1− n(k1 − ρ1)

αr

)1/lr
Gm(pm) =

(
1− nρ1

αmβ

)1/lm

Figure 1 illustrates how cutoffs are determined. Note that increasing ρ1 moves the minority reserve

condition (3.3) to the left in Figure 1. So, after an increase in minority reserves, pm decreases and pr

increases. Increasing ρ1 makes the access to tier 1 schools easier for minority students and harder for

regular students. We denote by µρ the stable matching under reserves ρ.

pm

Market clearing (3.1)

Minority reserve (3.3)

pr

(pm, pr)

(p̄, p̄)

Figure 1: The market clearing condition and the minority reserve condition determine cutoffs pr and pm.
The cutoff p̄ is in the intersection of the market clearing condition and the 45 degree line.

The main focus of the paper is the impact of reserves ρ on several market outcomes. In many systems,
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minority reserves are defined as a constant fraction f ∈ [0, 1] of seats in each school. Thus, naturally,

ρi = fki (our field data exercise will be parameterized in this manner). Note that since tier 2 schools

have excess capacity, ρ2 is irrelevant for the allocation. We explore the role of reserves by stating several

comparative statics results with respect to ρ1.

3.2 Segregation

There are several ways to measure segregation in schools, but one of the the most common ones is the

Duncan index (Duncan and Duncan 1955). Given a matching µ, the Duncan index Dµ is defined by

Dµ =
1

2

n+N∑
c=1

∣∣∣∣ηrµ(c)−
ηmµ (c)

β

∣∣∣∣ ∈ [0, 1]

where ηtµ(c) is the mass of students of type t assigned to school c in the matching µ. The index equals

0 under perfect integration, where each school is filled by exactly the same number of students of each

type. More generally, the Duncan index can be interpreted as the mass of regular students that would

need to be moved to different schools so that every school had the same proportions of students of each

group.

Given a reserve ρ1, we denote D(ρ1) = Dµρ .

Proposition 1. D(ρ1) is nonincreasing over ρ1 <
β

1+βk1 and is non-decreasing over ρ1 >
β

1+βk1.

This result shows that reserves have an impact on segregation in schools. The Duncan segregation

index is minimized when the fraction of seats reserved to minority students, ρ1/k1, equals the share of

minority students in the population, β/(1+β). Actually, in the proof we show a slightly stronger result:

Segregation in each school c,
∣∣∣ηρµr (c)− ηmµρ (c)

β

∣∣∣, is non-increasing over ρ1 < k1
β

1+β and non-decreasing

over ρ1 > k1
β

1+β . Intuitively, when ρ1 < k1
β

1+β , minority students are underrepresented in tier 1 schools

and overrepresented in tier 2 schools, and increasing ρ1 moves minority students from tier 2 to tier 1

schools. This stronger property also implies that the index we actually use to measure segregation in

our model is rather irrelevant for the Proposition.9

3.3 Rank distribution and efficiency

We now explore how ρ1 impacts the efficiency of the assignment. Changing ρ1 does not Pareto improve

the assignment for students. We thus evaluate the assignment using two measures. The first measure is

the rank distribution of students, which is a function that for each q ∈ {1, . . . , lr + 1} yields the fraction

of students assigned to one of their q most preferred schools. Our second measure is the number of

students that belong to a Pareto improvement pair. The main results in this Subsection show how ρ1

can change both measures.

9Proposition 1 and our field evidence also apply to alternative segregation indexes, such as the ones discussed by Hutchens
(2004) or Frankel and Volij (2011). See Appendix B.
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Since a type t student ranks at most lt tier 1 shools and tier 2 schools always have free slots, type

t students are assigned to one of their (lt + 1)-most preferred schools. The share of type t students

assigned to their q-th preference is

ft(q) =


αt(1−Gt(pt)) + (1− αt) if q = 1

αtGt(pt)
q−1(1−Gt(pt)) if 2 ≤ q ≤ lt

αtGt(pt)
lt if q = lt + 1.

The cumulative rank distribution for type t students is thus

Ft(q) =
∑
q′≤q

ft(q
′) =

αt
(
1−Gt(pt)q

)
+ (1− αt) if q ≤ lt,

1 if q = lt + 1.
.

We will sometimes emphasize the dependance of these distributions on ρ1 by writing Ft(q, ρ1).

Lemma 1. Take ρ1 ∈ R. Then, ∂
∂ρ1

Fm(q, ρ1) > 0 for all q ≤ lm and ∂
∂ρ1

Fr(q, ρ1) < 0 for all q ≤ lr.

This lemma says that increasing ρ1 reduces (in the first order stochastic dominance sense) the cu-

mulative rank distribution for minority students and increases the rank distribution of regular students.

In other words, reserves favor the assignment for minority students but hurt regular students.10 Figure

3 illustrates Lemma 1.

Our main focus is the impact of reserves on the overall efficiency of the assignment. We thus define

the total cumulative rank distribution as

F (q) =
1

1 + β

(
βFm(q) + Fr(q)

)
which measures the fraction of students assigned to a school ranked q or below. The following is the

first main result in this Subsection.

Proposition 2. Take ρ1 ∈ R and suppose that αr

(
1 −

(
lm
lr

) lr
lr−1

)
> nk1. Then, there exists q̄ ∈

{1, . . . , lm} such that

∂F

∂ρ1
(q, ρ1) > 0 for q ≤ q̄ and

∂F

∂ρ1
(q, ρ1) ≤ 0 for q > q̄.

Proposition 2 shows conditions under which raising ρ1 increases the mass of students assigned to

their first preferences. Moreover, increasing the reserve ρ1 leaves more students assigned to one of their

q̄-most preferred schools. But there is no free lunch: Increasing ρ1 also increases the mass of students

assigned to schools that are not highly ranked. The condition under which this result applies says that

10This is related to Hafalir, Yenmez, and Yildirim (2013). Their Theorem 2 shows, in a general matching model, that the
introduction of minority reserves favor at least one minority student. They also provide restrictions on preferences such that
all minority students are better off when reserves are introduced. Lemma 1 thus complements these results.
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q
lm lm + 1 lr lr + 1

Fm(·, ρ1)

Fm(·, ρ′1)
1

Fr(·, ρ′1)

Fr(·, ρ1)

Figure 2: Cumulative rank distributions for minority and regular students as the reserve changes. Solid
lines represent the distributions for ρ1 ∈ R. Dashed lines represent the distributions for ρ′1 > ρ1.

the market should be relatively tight in the sense that the total capacity of the popular tier 1 schools,

nk1, is below a threshold. This bound is more likely to hold when minority students apply to fewer

tier 1 schools (lm decreases), or when regular students apply more intensely to tier 1 schools (αr and lr

increase). Figure 3 illustrates Proposition 2. Proposition 5 and Example 2 show that the tightness of

the market is important for these results.

There are two main forces behind the result that more students are assigned to their most preferred

schools when ρ1 increases. First, by increasing ρ1, some regular students are replaced by minority

students in tier 1 schools. But minority students apply to tier 1 schools with lower intensity: they are

more likely to rank first a tier 2 schools and, when they do rank first a tier 1 school, they are likely to

include more tier 2 schools in the rest of the application. For students that rank first a tier 2 school,

the reserve ρ1 does not make any difference. For minority students that actually apply to tier 1 schools,

the reserve does make a difference. An increase in the reserve will bring some of those students into a

tier 1 school, and those students will replace regular students. Thus, the increase in the reserve ρ1 will

replace regular students by minority students for whom the tier 1 school is likely to be very attractive.

The second important force is more subtle and explains why the market should be tight for reserves

to increase the total number of students assigned to top choices. Reserves create competition among

regular students applying to popular schools. There are two reasons for this competition. The first

reason is that when more seats are reserved for minority students in a tier 1 school c, some regular

students are displaced and compete for seats in other schools. This stronger competition for seats in

other schools displaces regular students, who in turn may demand seats in school c. The second reason is

12



q
lm lm + 1 lr lr + 1

F (·, ρ1) F (·, ρ′1)

1

Figure 3: Total cumulative rank distributions as the reserve changes. The solid lines represents the
distribution for ρ1 ∈ R. The dashed line represents the distributions for ρ′1 > ρ1.

that when more seats are reserved for minority students in tier 1 schools other than c, displaced regular

students also compete for seats in school c. As a result, pr will be increasing in ρ1 and decreasing in k1.

When k1 is relatively large, there is little competition in tier 1 schools and most regular students

are assigned to their top school. But increasing the reserves ρ1 activates the two competitive forces

mentioned above and, to balance supply and demand in each tier 1 school, pr increases substantially.

This increase in pr translates into a substantive reduction in the mass of regular students that are

assigned to their top school, αr(1 − Gr(pr)) + (1 − αr). Thus, increasing the reserve ρ1 reduces the

total number of students assigned to their top choice even when most (even all) minority students that

are now accepted in a tier 1 school c rank the school as their top choice. On the other hand, when

slots are scarce and k1 is relatively small, competition is already intense among regular students and

increasing the reserves ρ1 increases competition moderately. This means that the overall number of

students assigned to their most preferred schools increases with the reserve.

To see why increasing ρ1 decreases F (q) for q large enough, note that all minority students are

assigned to one of their top lm + 1 schools. As Lemma 1 shows, the cumulative rank distribution for

regular students is increasing in ρ1. As a result, for q > lm, as ρ1 raises, fewer students are assigned to

schools they rank below q.11

Given a matching µ, students s = (t, x) and s′ = (t′, x′) are a Pareto improving pair if c′ = µ(s′) �s
c = µ(s) and c �s′ c′. In this case, we say that s is in a Pareto improving pair. Let P (ρ1) be the total

measure of students s that are in a Pareto improving pair. Arguably, P (ρ1) measures the inefficiency

of the matching. The following proposition shows that minority reserves have an unambiguous effect on

P (ρ1).

Proposition 3 (Pareto improvements). Under the conditions of Proposition 2, P (ρ1) is decreasing in

11In the proof of Proposition 1, we characterize q̄. We show that q̄ ≤ lm, but the equality may or may not hold.
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ρ1

When ρ1 increases, fewer students are in a Pareto improving pair. Thus, a higher reserve increases the

efficiency of the matching. In the proof, we show that a student s can Pareto improve by switching school

iff s is assigned to a tier 1 school that is not her top choice. Thus, Proposition 3 follows immediately

from Proposition 2.

3.4 Discussion

We now discuss variations of our model and results. We explore the role our assumption on preferences

on our main results. We also show how our results apply when the affirmative action policy is a set

aside reserve (Dur, Kominers, Pathak, and Sönmez 2018). We finally refine Proposition 2 and provide

a result for slack markets.

3.4.1 Preferences

In our main model, regular students concentrate their applications on high demand schools, while mi-

nority students apply with lower intensity to overdemanded schools. In theory (but not in our field

data), segregation could arise because minority and regular students concentrate their applications on

different sets of schools. The following example shows that under this type of preferences, the number

of students assigned to their top school need not increase with reserves.

Example 1. We restrict our main model to n = 2, β = 1, k1 ≤ 1, k2 = 2, but now we assume

preferences are given by

r : c1 � c2 � c3 m : c2 � c1 � c3.

Schools rank students uniformly and independently. In this setup, while all students prefer tier 1 schools

over the tier 2 school (school c3), minority students prefer c2 to c1 while regular students prefer c1 to c2.

When no reserve is imposed, it is relatively simple to find the cutoff p̄ =
√

1− k1 for each tier 1

school. As a result, in the stable matching without reserves, minority students are underrepresented in

c1, and a fraction F (1) = 1−
√

1− k1 of all students are assigned to their top school.

Now, we impose a reserve ρ1 ∈ [
√

1− k1

(
1−
√

1− k1

)
, k1]. We can characterize the stable matching

by solving the market clearing conditions:

k1 − ρ1 = 1− pr1 ρ1 = p2(1− pm1 ) k1 = 1− p2 + pr1(1− p2)

where pr1 (resp. pm1 ) is the cutoff faced by non-disadvantaged (resp. disadvantaged) students in school

c1. Solving the system of equations, we deduce that the fraction of students assigned to their top school

is

F (1, ρ1) =
k1 − ρ1

2
+

1

2

k1

2− k1 + ρ1
.

The function F (1, ρ1) is decreasing in ρ1.
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The example shows that when both groups of students concentrate their applications in different

schools, imposing a reserve reduces the number of students assigned to their top schools.12 There are

two forces behind this result. First, after the reserve is imposed in c1, regular students are replaced by

minority students for whom c1 is not their most preferred school. Second, displaced regular students

demand school c2 and thus 1− p2 decreases. As a result, fewer minority students are assigned to school

c2.

3.4.2 Set aside reserves

We have interpreted the affirmative action policy as a minimum guarantee for minority students. As

noted by Dur, Kominers, Pathak, and Sönmez (2018), an alternative interpretation of an affirmative

action policy is to set aside seats for minority students. Under a set aside policy, a school first assigns

the k1− ρ1 open seats and reserves the remaining ρ1 seats for minority students. In this Subsection, we

extend our results to this alternative interpretation.

To characterize a stable matching under set aside reserves, we again consider cutoffs pSAr and pSAm

that apply to regular and minority students in tier 1 schools under the set aside policy. The market

clearing and reserve conditions for a set aside policy are

αr
n

(
1−Gr(pSAr )lr

)
+
βαm
n

(
1−Gm(pSAm )lm

)
= k1

and
βαm
n

(
Gm(pSAr )lm −Gm(pSAm )lm

)
= ρ1. (3.4)

Equation (3.4) is the set aside condition. Motivated by Dur, Kominers, Pathak, and Sönmez (2018), the

set aside condition says that the number of minority students with scores below the regular cutoff pr

and that get admitted to a school should equal the reserve ρ1. In contrast to minority reserves, under

this interpretation of the affirmative action policy, the number of minority students effectively admitted

to a tier 1 school exceeds the reserve ρ1.

We define by FSA(q, ρ1) as the fraction of students assigned to a school ranked q or below under a

set aside affirmative action policy ρ1. Analogously, we define PAS(ρ1) as the total measure of students

than can Pareto improve in the matching with set aside reserves ρ1. The following result shows that the

main insights from Propositions 2 and 3 extend to the set aside policy.

Lemma 2. There exists k̄ = k̄(lr, lm, Gr, Gm, αr, αm, β, n) such that for all k1 < k̄ and all ρ1 < k̄,

∂FSA(1, ρ1)

∂ρ1
> 0 and

∂PSA(ρ1)

∂ρ1
< 0.

The main intuition behind this result is similar to the ones in Subsection 3.3 and therefore omitted.

12Note that this holds for all k1 ≤ 1. In particular, it holds even if the market is slack.
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As Dur, Kominers, Pathak, and Sönmez (2018) show, the precedence order with which reserves are

processed has an impact similar to adjusting reserve sizes. We derive a similar result in our framework.

Proposition 4. Take ρ1 ∈ R and suppose that αr

(
1−

(
lm
lr

) lr
lr−1

)
> nk1. Then,

FSA(1, ρ1) > F (1, ρ1) and PSA(ρ1) < P (ρ1).

Fewer minority students are assigned to tier 1 schools under minority reserves than under set aside.

Changing the interpretation of the affirmative action policy from minority reserves to set asides

increases the number of students assigned to their top schools and reduces the number of students who

can Pareto improve by switching schools. Obviously, compared to the minority reserve policy, the set

aside policy may or may not reduce segregation by placing more minority students in tier 1 schools.

Proposition 4 can be understood graphically. As shown in Figure 4, the cutoffs pSAm and pSAr are

entirely determined by the intersection of the market clearing (3.1) and set aside (3.4) conditions. The

set aside condition is to the left of the minority reserve condition (see also Figure 1) and therefore

pSAr > pr and pSAm < pm. By increasing ρ1, the minority reserve condition (3.3) moves to the left. As a

result, we can find ρ′1 > ρ1 such that the cutoffs p′m and p′r under minority reserves ρ′1 satisfy pSAm = p′m

and pSAr = p′r. Since αr

(
1 −

(
lm
lr

) lr
lr−1

)
> nk1, Proposition 2 implies that for a fixed ρ1 more students

are assigned to their top school under set asides than under minority reserves.

pm

Market clearing (3.1)

Minority reserve (3.3)

Set aside (3.4)

pr

(pm, pr)

(p̄, p̄)

(pSAm , pSAr )

Figure 4: The market clearing condition and the set aside condition determine cutoffs pSAr and pSAm . For
a given ρ1, the set aside condition is to the left of the minority reserve condition.
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3.4.3 Slack markets

Propositions 2 and 3 apply under the assumption that the market is tight. We now show that the

tightness of the market is important for these results.

The following result fully characterizes the environments in which minority reserves reduce the num-

ber of students assigned to their first preference and increase the number of students that can Pareto

improve by switching schools.

Proposition 5. Let ρ1 ∈ R. Then,

∂F (1, ρ1)

∂ρ1
< 0 iff

∂P (ρ1)

∂ρ1
> 0 iff ln(

lr
lm

) +
lr − 1

lr
ln
(

1− n(k1 − ρ1)

αr

)
<
lm − 1

lm
ln
(

1− nρ1

αmβ

)
.

One implication of this result is that when the market is slack and k1 is relatively big, then increasing

the minority reserve both reduces the number assigned to their first preferences and increases the number

of students that can Pareto improve by switching schools. The next example shows that the set of

parameters under which this happens is nonempty.

Example 2. We take our model with β = 1, n = 2, N = 1, k2 = 2, k1 = 8/9 αr = 1, lr = 2,

αm = 1, lm = 1. In this model, all regular students apply to tier 1 schools, while minority students

apply first to a tier 1 school and second to the tier 2 school. In the model without reserves, p̄ =

(−1/2) +
√

1/4 + 2(1− 8/9) ≈ 0.18. Now, R ≈ [0.4, 0.5] and it is relatively simple to show that for

any reserve ρ1 ∈ R, the number of students assigned to their top choice decreases iff 8/9 − 3/8 > ρ1.

Thus, for any ρ1 < 8/9− 3/8 ≈ 0.51 with ρ1 ∈ R, increasing the reserve reduces the number of students

assigned to their top choice and increases the number of students that can Pareto improve by switching

schools.

4 Field evidence

4.1 School choice in Chilean cities

Chile initiated its school choice system gradually in 2016. The current system runs nationwide and

througout all school levels. All students in the country that enter the system or want to switch school

access to a platform and fill a rank order list. A centralized algorithm ran by the Ministry of Education

assigns students to schools, using as inputs the students’ preferences and the schools seats. Schools rank

students using a variety of criteria, but many of them are relevant for a small fraction of the applicants.

Many students cannot be ranked by schools simply using any of the priority criteria.13 For those cases,

each school runs a lottery over its whole set of applicants.

The Law regulating the admission process to schools also reserves 15% of seats in each school to

minority students. A student is considered a minority student if her social background impairs her

13For details on the Chilean system, see Correa, Epstein, Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo,
and Cristi (2019).
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education process and outcomes. The Ministry of Education carries out an objetive evaluation of the

socioeconomic environment of each student using health, housing, and income information to determine

whether a student is socially disadvantaged.14 This reserve policy is an explicit attempt to promote

social inclusion in schools, but as our simulations show it has a modest effect on outcomes.

Students are assigned to schools by running a Gale-Shapley deferred acceptance algorithm (Gale

and Shapley 1962). The assignment process is a multiple lottery deferred acceptance algorithm with

minority reserves (Abdulkadiroğlu, Pathak, and Roth 2009, Hafalir, Yenmez, and Yildirim 2013) that

runs as follows:

Step 1: Each student proposes to her first choice. Each school tentatively assigns seats to its proposers,

following the priority and lottery orders and respecting the minority reserves.

Any remaining proposers are rejected.

Step k: Each student rejected in the previous step proposes to her next best choice. Each school considers

the students it has been holding together with its new proposers and tentatively assigns its seats

to these students following the priority and lottery orders and the minority reserves.

Any remaining proposers are rejected. Go to Step k + 1.

The algorithm terminates either when there are no new proposals or when all rejected students have

exhausted their preference lists. Note that while some students may end up unassigned, the Chilean

system allows families to submit rank order lists of arbitrary length.

We focus on the admission process for Pre-Kinder in 2019. The data we use is publicly available

from the Ministry of Education.15 Pre-Kinder is the first level for which the system applies. As a result,

to get admission to this level, all students need to apply through the centralized platform.16 Pre-Kinder

is therefore a natural grade to test our theoretical results.

While the system runs nationwide and a student could apply to any school in the country, virtually

all students apply exclusively within their province or district. The system is thus composed of several

isolated markets. We concentrate on the markets from the three main urban centers in Chile: Santiago,

Valparaiso, and Concepcion. Each of these markets is indeed isolated and virtually independent from

the rest of the markets in the country. 17 The following table presents a brief summary for each market:

14See https://sep.mineduc.cl/alumnos-prioritarios-preferente/ for details.
15See http://datos.mineduc.cl/dashboards/20514/descarga-bases-de-datos-sistema-de-admision-escolar/.
16While the system runs throughout all levels, the majority of students in levels other than Pre-Kinder do not attempt to

switch school and thus do not participate in the platform.
17See Appendix C.1 for details. We have also ran simulations for smaller Chilean cities and obtained results that are similar

to the ones reported in this paper.
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Table 1: Valparaiso, Concepcion and Santiago markets

Valparáıso Concepción Santiago

Number of schools 275 250 1,214

Total capacity (seats) 8,754 9,199 56,331

Number of students 6,819 7,523 49,108

Minority students 2,994 (43.91%) 3,233 (42.97%) 18,399 (37.47%)

Mean number of submitted preferences 2.99 3.15 3.36

Note that in each of the cities, the percentage of minority students far exceeds the current minority

reserve of 15%. While families are allowed to submit lists of arbitrary length, applications are relatively

short.18

4.2 Popular schools and application patterns

Schools face different demand levels. Following Ashlagi and Nikzad (2016), we can measure the popu-

larity of a school c as the the ratio between the number of students for whom school c is their top choice

and the capacity of school c. More formally, let p1(c) be the number of students that list school c as

their top choice and let qc be the number of seats that school c has. The popularity of school c is given

by

pop(c) =
p1(c)

qc
.

A school c such that pop(c) ≥ 1 will fill its seats under different variations of the deferred acceptance

algorithm.19

Table 2 shows the popularity of schools across markets. For example, close to a quarter of schools in

Valparáıso and Santiago have popularity above 1.

Valparáıso Concepción Santiago

First quartile 0.32 0.23 0.33

Median 0.53 0.44 0.60

Mean 0.74 0.67 0.80

Third quartile 0.96 0.86 1.03

Table 2: Popularity of schools

18Each of our markets include some rural areas in which the supply of schools is limited and therefore naturally families
apply to few schools.

19The characteristics or attributes of popular schools is not central for our analysis. In Appendix C.1, we show that students
attending popular schools tend to have higher scores in standardized tests.
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Minority students tend to apply less to popular schools. For each group of students, we compute

the cumulative distribution function for the popularity of the schools ranked first.20 The cumulative

distribution function for the popularity of the school ranked first of regular students dominates (in the

first order stochastic sense) the distribution for minority students in all three markets.21 Figure 5 shows

the distributions.

Valparaíso Concepción Santiago

0 2 4 0 1 2 3 0.0 2.5 5.0 7.5

0.00

0.25

0.50

0.75

1.00

Popularity

Group Minority Regular

Figure 5: Cumulative distributions of the popularity of schools listed first.

Minority students that apply first to a popular school are also less likely to list other popular schools.

Restricting attention to students whose first school has popularity above 1, we compute the cumulative

distributions for the popularity of the school ranked second. Under this restriction, the popularity of

the school listed second by minority students is below than that for regular students. Figure 6 shows

the distributions.

20We also considered the distributions of the sum of the popularities in the rank order list, and the sum of the popularities
of the first three schools in the list. We obtained similar results.

21In Concepción, the distributions cross at popularity close to 2. In the Appendix C.2, we show the results of a Kolmogorov-
Smirnov showing the stochastic dominance of the distributions.
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Valparaíso Concepción Santiago
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Figure 6: Cumulative distributions of the popularity of schools listed second, conditional on listing first a
school with popularity above 1.

In sum, some schools face a lot of demand while others are barely demanded. Regular students are

more likely to apply to schools that are popular than minority students.

4.3 Main simulation results

We now present the simulation results for Valparáıso, Concepción and Santiago. For each market, we

run the algorithm used by the Ministry of Education for different minority reserves.22 Concretely, for

each market and for each f ∈ {0, . . . , 100}, we run 50 simulations of the algorithm where minority

reserves in each school equals f% of its seats.23 We assume that variations in the algorithm do not

change students applications. This assumption is justified since the deferred acceptance algorithm with

minority reserves is strategy-proof (Hafalir, Yenmez, and Yildirim 2013).24 For each simulation, we

compute the Duncan index, the empirical rank distributions of the assignments, and the number of

students in Pareto improving pairs.25

For each market, Table 3 reports outcomes with no reserves, reserves equal to 15%, 75%, 100% and

22In particular, our simulation considers all the criteria used by the Ministry of Education to rank students in each school,
including sibling priority (Correa, Epstein, Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo, and Cristi 2019).

23For each simulation, we draw a new independent realization of the lotteries ranking students.
24See Correa, Epstein, Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo, and Cristi (2019) for further discus-

sion in the Chilean context.
25In our field data, some students are not assigned. To compute the empirical distributions of the assignments, if a student

is unassigned and her rank order list has length l, we consider that student was assigned to her (l + 1)-th school.
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equal to the fraction of minority students in the market. The simulations confirm each of our theoretical

results.

Valparáıso f = 0% f = 15% f = 44% f = 75% f = 100%

Duncan index (Proposition 1) 0.316 (0.005) 0.312 (0.005) 0.247 (0.003) 0.311 (0.003) 0.317 (0.002)

Minority students assigned to their top choice (Lemma 1) 71.73 (0.52) 72.05 (0.4) 78.89 (0.38) 88.69 (0.29) 89.54 (0.25)

Regular students assigned to their top choice (Lemma 1) 63.67 (0.37) 63.45 (0.48) 59.88 (0.35) 56.25 (0.35) 55.96 (0.27)

Students assigned to their top choice (Proposition 2) 67.21 (0.23) 67.23 (0.33) 68.23 (0.25) 70.49 (0.22) 70.7 (0.21)

Students assigned to their fourth choice or worst (Proposition 2) 7.32 (0.21) 7.29 (0.17) 7.6 (0.17) 8.24 (0.16) 8.31 (0.16)

Students unassigned (Proposition 2) 9.46 (0.16) 9.48 (0.19) 9.81 (0.14) 10.56 (0.13) 10.63 (0.13)

Students in Pareto improving pairs (3) 7.81 (0.53) 7.9 (0.51) 6.68 (0.57) 3.66 (0.26) 3.3 (0.33)

Concepción f = 0% f = 15% f = 43% f = 75% f = 100%

Duncan index (Proposition 1) 0.353 (0.004) 0.342 (0.005) 0.264 (0.003) 0.355 (0.003) 0.358 (0.003)

Minority students assigned to their top choice (Lemma 1) 67.77 (0.43) 68.57 (0.44) 76.74 (0.37) 88.01 (0.2) 88.46 (0.22)

Regular students assigned to their top choice (Lemma 1) 58.06 (0.47) 57.4 (0.46) 54.11 (0.39) 50.68 (0.33) 50.5 (0.27)

Students assigned to their top choice (Proposition 2) 62.23 (0.29) 62.2 (0.33) 63.84 (0.26) 66.73 (0.24) 66.81 (0.17)

Students assigned to their fourth choice or worst (Proposition 2) 11.42 (0.21) 11.41 (0.25) 11.46 (0.21) 11.95 (0.15) 11.97 (0.16)

Students unassigned (Proposition 2) 12.65 (0.16) 12.75 (0.13) 13.08 (0.15) 13.61 (0.1) 13.63 (0.1)

Students in Pareto improving pairs (Proposition 3) 12.31 (0.41) 12.34 (0.54) 10.25 (0.44) 5.64 (0.37) 5.35 (0.3)

Santiago f = 0% f = 15% f = 37% f = 75% f = 100%

Duncan index (Proposition 1) 0.312 (0.002) 0.303 (0.002) 0.246 (0.001) 0.328 (0.001) 0.331 (0.001)

Minority students assigned to their top choice (Lemma 1) 70.86 (0.19) 71.58 (0.17) 77.81 (0.16) 90.79 (0.08) 91.35 (0.07)

Regular students assigned to their top choice (Lemma 1) 56.48 (0.17) 56.15 (0.19) 54.05 (0.12) 50.29 (0.11) 50.1 (0.1)

Students assigned to their top choice (Proposition 2) 61.87 (0.12) 61.93 (0.13) 62.95 (0.09) 65.46 (0.08) 65.55 (0.07)

Students assigned to their fourth choice or worst (Proposition 2) 12.3 (0.09) 12.32 (0.1) 12.49 (0.09) 13.14 (0.07) 13.19 (0.06)

Students unassigned (Proposition 2) 12.49 (0.06) 12.49 (0.05) 12.67 (0.06) 13.1 (0.05) 13.13 (0.04)

Students in Pareto improving pairs (Proposition 3) 9.5 (0.2) 9.43 (0.19) 8.06 (0.16) 4.52 (0.13) 4.39 (0.12)

Table 3: Impact of minority reserves on market outcomes

Note: Excluding the Duncan index, all values are percentages. Standard deviations inside parenthesis.

As Proposition 1 shows, the Duncan index is U-shaped. In each of the markets the Duncan is above

0.3 with no reserves and with a reserve equals to 15% (as currently written in the Inclusion Law). The

Duncan index can be reduced in close to 20% when the reserve is close to the fraction of minority students

in the market. A reserve above the fraction of minority students in the market worsens segregation. All

of this is consistent with Proposition 1. Figure 7 shows the Duncan index for each minority reserve.26

Table 3 also confirms the prediction from Lemma 1 that after the reserve increases, a higher (resp.

lower) fraction of minority students (resp. regular students) get their top schools. Moreover, the rank

distributions of the assignments for each group at each market move precisely as shown in Lemma 1.

Indeed, Figure 8 shows how the empirical rank distributions for minority and regular students change

26In Appendix C.3, we show how the popularity of each school determines how the minority reserve changes the composition
of students.
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Figure 7: Duncan index.

with the reserves.
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Figure 8: Cummulative rank distributions of assignments for each group.

Proposition 2 is perhaps the most subtle prediction from our model. This result is also consistent

with our simulations. Table 3 shows that the total number of student assigned to their top school and

the total number of students assigned to schools that are not very attractive (ranked fourth or below)

move precisely as predicted by Proposition 2. Figure 9 plots the percentage of students assigned to their

top choices and students not assigned, as a function of the reserve.27

27Even though in our theoretical framework all the students are assigned, in the simulations we have computed the fraction
of unassigned students as a measure of students whose assignment is unattractive. The fact that more students are unassigned
as we increase the reserve is related to the result in Proposition 2 that the fraction of students assigned to schools that are
not highly ranked increases with the reserve.
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Figure 9: Students assigned to their top choices and unassigned students.

Proposition 2 also shows that the rank distributions cross as minority once reserves increase. Figure

10 illustrates this result in our simulations. Consistent with Proposition 3, Table 3 also shows that in

our simulations the percentage of students in Pareto improving pairs falls as minority reserves increases.
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Figure 10: Cummulative rank distribution of assignment. As minority reserves increase, the rank distri-
butions cross.

4.4 Minority reserves and other policy decisions

To put the design of the minority reserve policy in perspective, we now discuss the impact of other

policies on market outcomes.
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4.4.1 Set asides

We also simulated each of the markets using the set aside affirmative action policy. Consistent with

Lemma 2, increasing the magnitude of the affirmative action policy has similar impacts under minority

reserves and set asides. Tables 3 and 4 also confirm the prediction of Proposition 4 that fixing r,

changing the interpretation of the affirmative action policy from minority reserves to set asides increases

the number of students assigned to top schools and reduces the number of Pareto improving pairs.

Under set asides, segregation is minimized for a reserve below the proportion of minority students in the

population.

Valparáıso f = 0% f = 15% f = 44% f = 75% f = 100%

Duncan index 0.315 (0.004) 0.285 (0.004) 0.303 (0.003) 0.317 (0.003) 0.317 (0.002)

Minority students assigned to their top choice 71.88 (0.51) 80.01 (0.49) 87.71 (0.26) 89.52 (0.23) 89.41 (0.26)

Regular students assigned to their top choice 63.64 (0.56) 59.28 (0.48) 56.67 (0.26) 55.94 (0.31) 55.95 (0.31)

Students assigned to their top choice 67.26 (0.32) 68.38 (0.29) 70.3 (0.16) 70.69 (0.2) 70.64 (0.21)

Students assigned to their fourth choice or worst 7.28 (0.19) 7.7 (0.19) 8.24 (0.18) 8.29 (0.17) 8.28 (0.18)

Students unassigned 9.44 (0.16) 9.95 (0.13) 10.49 (0.15) 10.6 (0.12) 10.59 (0.14)

Students in Pareto improving pairs 7.78 (0.54) 6.6 (0.48) 3.99 (0.32) 3.36 (0.3) 3.4 (0.31)

Concepción f = 0% f = 15% f = 43% f = 75% f = 100%

Duncan index 0.351 (0.005) 0.309 (0.004) 0.347 (0.003) 0.359 (0.003) 0.358 (0.003)

Minority students assigned to their top choice 67.78 (0.48) 75.91 (0.42) 87.52 (0.27) 88.49 (0.2) 88.48 (0.22)

Regular students assigned to their top choice 58.03 (0.46) 53.96 (0.38) 50.85 (0.32) 50.47 (0.32) 50.45 (0.29)

Students assigned to their top choice 62.22 (0.29) 63.39 (0.27) 66.61 (0.22) 66.81 (0.2) 66.79 (0.21)

Students assigned to their fourth choice or worst 11.39 (0.2) 11.53 (0.2) 11.91 (0.15) 11.96 (0.14) 11.96 (0.18)

Students unassigned 12.71 (0.14) 12.98 (0.14) 13.58 (0.12) 13.65 (0.1) 13.61 (0.11)

Students in Pareto improving pairs 12.29 (0.52) 10.68 (0.43) 5.77 (0.35) 5.31 (0.36) 5.32 (0.31)

Santiago f = 0% f = 15% f = 37% f = 75% f = 100%

Duncan index 0.312 (0.002) 0.279 (0.001) 0.308 (0.001) 0.331 (0.001) 0.331 (0.001)

Minority students assigned to their top choice 70.91 (0.19) 80.22 (0.18) 88.35 (0.12) 91.33 (0.08) 91.34 (0.06)

Regular students assigned to their top choice 56.5 (0.16) 52.75 (0.14) 50.78 (0.12) 50.12 (0.12) 50.13 (0.1)

Students assigned to their top choice 61.9 (0.11) 63.05 (0.1) 64.85 (0.09) 65.56 (0.08) 65.57 (0.07)

Students assigned to their fourth choice or worst 12.3 (0.08) 12.7 (0.08) 13.04 (0.07) 13.2 (0.08) 13.19 (0.06)

Students unassigned 12.49 (0.05) 12.71 (0.05) 13.01 (0.05) 13.13 (0.04) 13.13 (0.05)

Students in Pareto improving pairs 9.46 (0.2) 8.09 (0.18) 5.53 (0.15) 4.38 (0.13) 4.35 (0.14)

Table 4: Impact of set asides on market outcomes
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4.4.2 Double reserves

Another measure that can be used to promote integration in schools is to reserve seats for both types

of students. This policy results in an ideal point choice rule, for which Echenique and Yenmez (2015)

provide an axiomatic justification. We compare the single reserve policy to a double reserve policy,

where reserved seats are guaranteed to both groups. Under double reserve, for each group we reserve a

fraction of seat equals to the proportion of the group in the market.

Single minority reserve Double reserve

Valparáıso

Duncan index 0.247 (0.003) 0.231 (0.002)

Minority students assigned to their top choice 78.89 (0.38) 76.75 (0.37)

Regular students assigned to their top choice 59.88 (0.35) 61.35 (0.35)

Students assigned to their top choice 68.23 (0.25) 68.11 (0.23)

Students assigned to their fourth choice or worst 7.6 (0.17) 7.41 (0.2)

Students unassigned 9.81 (0.14) 9.71 (0.16)

Students in Pareto improving pairs 6.68 (0.57) 6.64 (0.48)

Concepción

Duncan index 0.264 (0.003) 0.245 (0.003)

Minority students assigned to their top choice 76.74 (0.37) 74.57 (0.42)

Regular students assigned to their top choice 54.11 (0.39) 55.71 (0.34)

Students assigned to their top choice 63.84 (0.26) 63.81 (0.25)

Students assigned to their fourth choice or worst 11.46 (0.21) 11.38 (0.2)

Students unassigned 13.08 (0.15) 13.08 (0.16)

Students in Pareto improving pairs 10.25 (0.44) 10.23 (0.47)

Santiago

Duncan index 0.246 (0.001) 0.232 (0.001)

Minority students assigned to their top choice 77.81 (0.16) 74.79 (0.14)

Regular students assigned to their top choice 54.05 (0.12) 55.77 (0.16)

Students assigned to their top choice 62.95 (0.09) 62.89 (0.12)

Students assigned to their fourth choice or worst 12.49 (0.09) 12.37 (0.08)

Students unassigned 12.67 (0.06) 12.66 (0.05)

Students in Pareto improving pairs 8.06 (0.16) 8.06 (0.17)

Table 5: Single and double reserve

As Table 5, moving from single to double reserves has smaller impact than moving from no reserve
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to minority reserve. Intuitively, reserving seats to regular students does not change the outcomes sig-

nificantly as the schools where they are under-represented (tier 2 schools in our model) are unpopular

and reserves make no difference in those schools. In the data (and in contrast to our model), we observe

few popular schools where minority students are over-represented and, thus, introducing double reserve

reduces segregation in less than 10% and marginally changes the rank distribution and efficiency.28

5 Conclusions

This paper provides theoretical results and field evidence about the impact of minority reserves on

segregation and efficiency in school choice programs. We show that minority reserves are an important

tool to reduce segregation in schools. Minority reserves increase the number of students assigned to their

first preferences and improve efficiency, but more students are unassigned or assigned to unattractive

schools. This paper contributes to the market design literature by making explicit the impact that

minority reserves have on several market outcomes.

The fact that low income groups apply less to high demand institutions is key for our results. These

patterns have been documented in other contexts, such as the school match in Boston (Laverde 2020)

and college admission in the US (Hoxby and Avery 2013). We thus hope that our findings are deemed

relevant when discussing tools to reduce segregation in different markets.

Information and busing policies may also impact segregation in schools by changing the application

patterns of minority students. These policies may determine the effectiveness of minority reserves.

Reserves will remain a relevant policy instrument inasmuch as minority students apply less intensely

to high demand schools. Our focus has been on the short run impacts of changes to minority reserves.

Other impacts, including migration of regular students to private schools or changes in the application

patterns as a result of differences in school compositions, could be relevant in the long run but are absent

in our analysis. These are important questions that are left for future research.

References
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Abdulkadiroğlu, A., and T. Sönmez (2003): “School Choice: A Mechanism Design Approach,”

American Economic Review, 93(3), 729–747.

Arnosti, N. (2015): “Lottery Design for School Choice,” .

Ashlagi, I., and A. Nikzad (2016): “What Matters in School Choice Tie Breakings? How Compe-

tition Guides Design,” in Proceedings of the 2016 ACM Conference on Economics and Computation,

pp. 767–768.
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Appendix

This Appendix has three parts. Appendix A contains proofs. Appendix B provides a version of Propo-

sition 1 for alternative segregation indexes. Appendix C provides details about our field data.

A Proofs

Proof of Proposition 1. Note that for ρ1 ∈ [αmβn (1−Gm(p̄m))lm),min{αmβn , k1}], each tier 1 school has

k1 − ρ1 regular students and ρ1 minority students, while a tier 2 school has (1− n(k1 − ρ1))/N regular

students and (β − nρ1)/N minority students.29 Therefore,

D(ρ) =
1

2

{
n|k1 − ρ1

1
− ρ1

β
|+N | (1− (k1 − ρ1)n)/N

1
− (β − nρ1)/N

β
|
}
.

The first (resp. second) term inside the bracket captures the summation defining D(ρ) over tier 1 schools

(resp. tier 2 schools). Thus, for ρ1 ∈ [αmβn (1−Gm(p̄m))lm),min{αmβn , k1}],

D(ρ) =
1

2

{
n|k1 − ρ1(1 +

1

β
)|+ n|k1 − ρ1(1 +

1

β
)|
}
.

Note that when ρ1 ≤ αmβ
n (1 − Gm(p̄m))lm), or when ρ1 ≥ min{αmβn , k1}, D(ρ) is flat. The result

follows.

Proof of Proposition 2. We first note that for q ≤ lt,

Ft(q) = αt

(
1−Gt(pt)q

)
+ (1− αt).

Thus,

(1 + β)
∂F

∂ρ1
(q) =

∂

∂ρ1

{
− αr

(
1− nk1 − ρ1

αr

)q/lr
+ (−αmβ)

(
1− nρ1

αmβ

)q/lm}
=
−nq
lr

(
Gr(pr)

q−lr
)

+
qn

lm

(
Gm(pm)q−lm

)
.

We deduce that for q ≤ lm

∂F

∂ρ1
(q) < 0 (resp. > 0) iff ln

( lr
lm

)
+ (lr − q) ln(Gr(pr)) < (lm − q) ln(Gm(pm)) (resp. >). (A.1)

Now, note that

∂F

∂ρ1
(1) > 0 iff ln

( lr
lm

)
+ (lr − 1) ln(Gr(pr)) > (lm − 1) ln(Gm(pm)).

29To see the distribution of students in tier 2 schools, note that 1 − n(k1 − ρ1) regular students are not assigned to tier 1
schools. Regular students that are not assigned to tier 1 schools demand tier 2 schools uniformly.
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Since Gr(pr) =
(
1− n(k1−ρ1)

αr

)1/lr
is increasing in ρ1 and Gm(pm) =

(
1− nρ1

αmβ

)1/lm
is decreasing in ρ1,

it follows that

ln
( lr
lm

)
+

(lr − 1)

lr
ln
(
1− nk1

αr

)
>
lm − 1

lm
ln
(
1
)
⇒ ∂F

∂ρ1
(1) > 0.

Rewritting the condition on the right hand side, we deduce that ∂F
∂ρ1

(1) > 0 when αr

(
1−

(
lm
lr

) lr
lr−1

)
>

nk1.

Now, when Gr(pr) ≥ Gm(pm), (A.1) implies that for all q ≤ q′ ≤ lm,

∂F

∂ρ1
(q) < 0⇒ ∂F

∂ρ1
(q′) < 0

As a result, if Gr(pr) ≥ Gm(pm), there exists q̄ ≤ lm such that for all q ∈ {1, . . . , lm}

∂F

∂ρ1
(q) > 0 iff q ≤ q̄.

From Lemma 1, for q ∈ {lm + 1, . . . , lr},

∂F

∂ρ1
(q) =

∂

∂ρ1

(β + Fr(q)

1 + β

)
< 0.

It thus follows that when Gr(pr) ≥ Gm(pm), we can find q̄ ≤ lm such that Proposition 2 holds.

To see the case Gm(pm) > Gr(pr), note that (A.1) and ∂F
∂ρ1

(1) > 0 imply that ∂F
∂ρ1

(q) > 0 for all

q ≤ lm.30 Again, using Lemma 1, we can set q̄ = lm to deduce Proposition 2.

Proof of Proposition 3. Consider any student s who is assigned to a tier 1 school c = µρ(s) that is not

her top choice . Let c̄ be the top choice of student s. Consider the (positive measure) set S̄ ⊂ S of

all students such that they rank school c first, and school c̄ second. Define Ŝ ⊆ S̄ by Ŝ = {s′ ∈ S̄,

ωs
′

c < pρ < ωs
′

c̄ }. By construction, Ŝ has positive measure. For any s′ ∈ Ŝ, c �s′ µρ(s′) = c̄. As a result,

s can Pareto improve by switching school with s′ ∈ Ŝ.

If s is assigned to a tier 1 school that is her top choice, then it is clear that s cannot Pareto improve

by switching school.

If s is assigned to a tier 2 school, then s is either assigned to her top choice or s would prefer a tier

1 school. If s is assigned to her top choice, then s cannot Pareo improve by switching school. If s would

like to move to some tier 1 school, then all students assigned to that tier 1 school prefer their current

school to the tier 2 school s is assigned to. So, s cannot Pareto improve by switching school.

It thus follows that

P (ρ1) = 1− F (1, ρ1)− αrGr(pr)
lr + αmβGm(pm)lm

1 + β
= 1− F (1, ρ1)− αr + αmβ − nk1

1 + β
(A.2)

30Note that pm < pr, but it is possible that Gm(pm) > Gr(pr). For example, when Gm(x) > Gr(x) for all x < 1 and ρ1
is close but above αmβ

n
(1−Gm(p̄)lm), pm and pr are both close to p̄ and, thus, Gm(pm) > Gr(pr). Now, when Gm ≡ Gr, it

follows that pm = Gm(pm) < Gr(pr) = pr.
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which is decreasing in ρ1 under the conditions of Proposition 2.

Proof of Proposition 5. The proof of this result follows from the proofs of Propositions 2 and 3. To see

this, note that the first equivalence follows from equation (A.2), while the second equivalence follows

from (A.1).

Proof of Lemma 2. Write the conditions defining the cutoffs as

G(gr)
lm − glmm =

ρ1n

βαm
(A.3)

and
αr
n

(1− glrr ) +
βαm
n

(1− glmr ) = k1 − ρ1 (A.4)

with gr = Gr(p
AS
r ), gm = Gm(pASm ) and G = Gm ◦G−1

r . The number of students assigned to their top

school is
1

1 + β

(
αr(1− gr) + (1− αr) + βαm(1− gm) + β(1− αm)

)
.

Thus, ∂F (1,ρ1)
∂ρ1

> 0 iff

− αr
∂gr
∂ρ1
− βαm

∂gm
∂ρ1

> 0. (A.5)

Taking derivatives with respect to ρ1 in (A.3), we deduce that

lmG(gr)
lm−1G′(gr)

∂gr
∂ρ1
− lmglm−1

m

∂gm
∂ρ1

=
n

βαm
.

We can thus solve for ∂gm
∂ρ1

and plug it into (A.5) to deduce that ∂F (1,ρ1)
∂ρ1

> 0 iff

−αr
∂gr
∂ρ1
− βαm

lmG(gr)
lm−1G′(gr)

∂gr
∂ρ1
− n

βαm

lmg
lm−1
m

> 0.

Taking derivative with respect to ρ1 in (A.4)

(−αr
n

)lrg
lr−1
r

∂gr
∂ρ1

+ (−βαm
n

)lmG(gr)
lm−1G′(gr)

∂gr
∂ρ1

= −1.

We can solve for ∂gr
∂ρ1

to deduce that ∂F (1,ρ1)
∂ρ1

> 0 iff

lmg
lm−1
m < lrg

lr−1
r . (A.6)

Now, note that gm can be solved from equation (A.3) so

glmm = G(gr)
lm − ρ1n

βαm
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and therefore to deduce (A.6) it is enough to show

lmG(gr)
lm−1 < lrg

lr−1
r .

Take ḡ = ḡ(lm, lr, Gm, Gr) < 1 such that the condition above holds provided gr > ḡ. From (A.4), it

follows that gr is decreasing in k1 − ρ1 and gr → 1 as k1 − ρ1 → 0. In particular, there exists k̄ such

that for all k1 and all ρ1 < k1, gr > ḡ. The result follows.

B Other segregation indexes

We adapt Proposition 1 for the Hutchens index (Hutchens 2004):

Hµ = 1−
∑
c∈C

√
ηrµ(c) ·

ηmµ (c)

β

Note first that Hµ does not depend on ρ1 when ρ1 /∈ [αmβn (1−Gm(p̄m))lm,min{αmβn , k1}].
Recall that for ρ1 ∈ [αmβn (1 − Gm(p̄m))lm,min{αmβn , k1}], each tier 1 school has k1 − ρ1 regular

students and ρ1 minority ones. Each tier 2 school has 1−n(k1−r1)
m regular students and β−nr1

m minority

ones. Thus, for ρ1 in this range, the H-index is computed as:

Hµ = 1− n

√
ρ1(k1 − ρ1)

β︸ ︷︷ ︸
H1

−m

√
(1− n(k1 − ρ1))(β − nρ1)

m2β︸ ︷︷ ︸
H2

where the terms H1 and H2 correspond to the sum across tier 1 and tier 2 schools respectively.

Taking derivatives we get that:

∂Hµ

∂ρ1
= − n

2
√
β

(
k1 − 2ρ1√
ρ1(k1 − ρ1)

+
β − 1 + n(k1 − 2ρ1)√

(1− n(k1 − ρ1))(β − nρ1)

)

And also that:

∂2Hµ

∂ρ2
1

=
n

4
√
β

(
k2

1

[ρ1(k1 − ρ1)]3/2
+

n(β + 1− nk1)2

[(1− n(k1 − ρ1))(β − nρ1)]3/2

)
> 0

So we deduce that Hµ is a strictly convex function. Since
∂Hµ
∂ρ1

= 0 when ρ1 = β
1+βk1, the result

follows.

The Atkinson index (Frankel and Volij 2011) can be defined in our setup as:

Aµ = 1−

[∑
c∈C

ηrµ(c)δ ·
(
ηmµ (c)

β

)1−δ] 1
1−δ
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Where δ ∈ (0, 1) is a fixed weight. In the symmetric case in which both types are treated equally in the

segregation index, δ = 1
2 and thus the Atkinson index is obtained by an increasing transformation of the

Hutchens index. The result follows.

C Field data

C.1 Markets, popularity and standardized tests

The Valparaiso market includes each school located in the provincial department of Valparaiso. The

Concepcion market includes each school located in the provincial department of Concepcion. The

Santiago market includes each school located in the Metropolitan Region of Santiago. As Santiago is

the capital city of the country, the provincial department of Santiago excludes several towns close to

Santiago whose students apply to schools in the city. So, the boundary of each of our markets follows

administrative definitions.

For each market, we consider all students that apply exclusively within the market. Thus a student

with a rank order list including some schools in Valparaiso and others outside Valparaiso is excluded

from our exercise. This set of students is small as big urban centers heavily concentrate applications.

In our database, 99.76% of all nationwide applications listing some school in the Santiago market list

exclusively schools in Santiago. The numbers for Valparaiso and Concepcion are 98.85% and 99.66%,

respectively. The following table shows the characterization for each market:

Table 6: Valparaiso, Concepcion and Santiago markets

Valparáıso Concepción Santiago

Number of provincial departments 1 1 7

Number of counties 10 12 52

Number of schools 275 250 1,214

Applicants to the market 98.85% 99.66% 99.76%

applying exclusively inside the market

Thus, in practical terms, each of our markets is isolated and independent from all other markets in

the country.

As discussed in the text, popular schools tend to perform better in standardized tests. For each

market, we restrict our set of schools to those such that: (1) took part in SIMCE 2015 test31 (2)

reported valid SIMCE scores . We only use data from the Language test of second degree students in

2015. Popular schools are those such that pop(c) > 1.

31SIMCE is a standardized test taken to all students in the country
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Table 7: SIMCE scores

Valparáıso Concepción Santiago

Not popular Popular Not popular Popular Not popular Popular

Sample (number of schools) 200 61 185 53 884 302

First quartile 222 244 224 259 223.75 248.00

Median 239 259 239 269 236 260

Mean 234.84 254.21 239.21 267.47 236.87 259.10

Third quartile 250 269 252 277 251 271

Figure 11: Popular schools tend to have higher SIMCE scores
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These results show that popular schools have better performance in standardized tests. Obviously,

this is just illustrative and we are not claiming any causality.

C.2 Application patterns and distance

Denote by F the distribution of the popularity of schools ranked first by minority students, and G the

distribution of the popularity of the schools ranked first by regular students. Let Fn(w), Gn(w) be the

corresponding empirical distributions. Following McFadden (1989), we use a Kolmogorov-Smirnov-type

statistic for testing if F first order stochastically dominates G. Thus, for each market, we conduct a

one-sided two-sample Kolmogorov-Smirnov test for the null hypothesis H0 : F (w) ≤ G(w) for some

w ∈ [0, 1] against the alternative H1 : F (w) > G(w) for each w ∈ [0, 1] using the statistic:

D+ = max
w
{F (w)−G(w)}

Using the ks.test function of the stat package from the R Statistical Software (Core Team 2020) we

obtain the following results:

Valparáıso Concepción Santiago

Obs. (M - R): 2,994 3,825 3,233 4,290 18,378 30,545

Statistic D+: 0.18501 0.20398 0.16423

P-Value: < 2 · 10−16 < 2 · 10−16 < 2 · 10−16

Table 8: Two Sample KS Tests - Popularity of first choices

Similarly, we run the Kolmogorov-Smirnov test using the popularity of the schools listed second,

restricting attention to students applying first to a school having popularity at least 1. We obtain the

following results:

Valparáıso Concepción Santiago

Obs. (M - R) 1,463 2,439 1,759 3,187 9,030 19,934
Statistic D+: 0.1621 0.1591 0.1255
P-Value: < 2 · 10−16 < 2 · 10−16 < 2 · 10−16

Table 9: KS Test - Popularity of second choices conditional on applying first to a popular school

Understanding why minority students apply less to popular schools is beyond the scope of this paper.

We observe that distance may be playing a role because minority students tend to live farther away from

popular schools. To see this, in each market, we restrict our set of students to those that are market as

properly georeferenced by the Chilean Ministry of Education32. For these set of students, we compute

32Students that shared their location when applying on the platform or those whose location held a unique response and

38



the distance to the closest popular school (pop(c) > 1) using the Vincenty (ellipsoid) method provided

by the geosphere package from the R Statistical Software. The resulting distributions are presented

below:

Valparáıso Concepción Santiago

Regular Minority Regular Minority Regular Minority

Sample (number of students) 2494 1833 2907 2029 22508 13089

First quartile 0.47 0.52 0.42 0.48 0.38 0.42

Median 0.81 0.92 0.70 0.82 0.63 0.69

Mean 2.86 1.37 1.13 1.27 0.97 1.19

Third quartile 1.36 1.59 1.16 1.38 1.02 1.07

Table 10: Distance (Km.) to the closest popular school
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Figure 12: Distance to closest popular school. Minority students live farther away from popular schools
than regular students.

was marked as “rooftop” or “range interpolated” in the “location type” variable of Google’s Geocoding API.
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C.3 Segregation in schools

In the main body of the paper, we have explored how an aggregate segregation index (the Duncan index)

changes as minority reserves increase. Figure 13 shows how segregation in each school is determined

by its popularity and by the minority reserve. Each school is an observation. As can be seen popular

schools tend to have a lower fraction of minority students. The upper graphs are derived without any

minority reserve. The lower graphs are derived with minority reserves equal to the fraction of minority

students in the population.
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Figure 13: Schools composition. Minority students are under-represented in popular schools.

The following table also shows the number of schools that become less segregated after reserves are

introduced. We say that a school becomes less segregated if, after introducing the reserve, the distance

between the share of minority students in the school get closer to the proportion of minority schools in

the population.
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Table 11: School that reduce segregation after introducing reserves

Market Total number of schools Improving in segregation

Valparáıso 272 163 (59.93)

Concepción 245 153 (62.45)

Santiago 1206 795 (65.92)
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