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Abstract

Learning is crucial to organizational decision making but often needs

be delegated. We examine a dynamic delegation problem where a prin-

cipal decides on a project with uncertain pro�tability. A biased agent,

who is initially as uninformed as the principal, privately learns the prof-

itability over time and communicates to the principal. We formulate

learning delegation as a dynamic mechanism design problem and char-

acterize the optimal delegation scheme. We show that private learning

gives rise to the tradeo� between how much information to acquire and

how promptly it is re�ected in the decision. We discuss implications on

learning delegation for distinct organizations.
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1 Introduction

Suppose that two people need to decide whether to invest in a project. If they

invest, they could receive a gain or su�er a loss. If they do not invest, they

wait, obtain new information, and may invest after a delay. Now suppose that

one of them, the principal, prefers to learn, while the other, the agent, prefers

to invest. If learning has to be delegated to the agent and the principal cannot

observe the learning outcome, can the agent convey it truthfully? If so, what

should be the optimal delegation scheme? How does it change over time given

what the agent has learned so far? How long should learning take place?

Learning delegation is a common occurrence. For example, suppose the

board of directors of a company is deliberating whether to acquire another

company. Apart from the �nancial value of the acquisition, its strategic

value�e.g., its impact on the price and competition, the current employees,

the bargaining power with suppliers�is also relevant. Since much of this in-

formation is hard to observe directly, the board needs to rely on learning by

the manager, who has direct access to the parties involved. However, learning

takes time, and a career-driven manager may not share the board's vision.

Even if they may agree on an acquisition with a certain value, when its value

is uncertain, the manager may prefer to move forward with it immediately

rather than to devote time learning its value.

For another example, the Food and Drug Administration (FDA) relies on

pharmaceutical companies to develop drugs and test their e�cacy. Although

the companies are required to submit clinical trial results, the trials them-

selves cannot be fully monitored, and therefore the results can be manipu-

lated.1 While the FDA's mission is to promote public health, the pharmaceu-

tical companies' main motive is to pro�t. So even though the pharmaceutical

companies may not want to introduce a drug known to be harmful, they may

have less incentive than the FDA to spend time learning about the value of

1Several authors have documented frauds in clinical trials (George and Buyse, 2015).
Seife (2015) shows that the FDA has found substantive evidence of fraudulent data in
biomedical research on humans. See also Seife, �Are your medications safe,� Slate, February
9, 2015.
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an unknown drug.

We study how a principal should delegate an investment decision to an

agent who privately learns about the investment over time. Our analysis ex-

tends the traditional static delegation approach (Holmstrom (1984); Melumad

and Shibano (1991); Alonso and Matouschek (2008); Amador and Bagwell

(2013); Grenadier, Malenko, and Malenko (2016); Guo (2016)) to allow for

evolving private information. We formulate delegation as a dynamic mech-

anism design problem and characterize its solution. Our results shed light

on how organizations could incentivize learning and informative communica-

tion with an evolving delegation scheme and why distinct organizations should

implement distinct learning delegation procedures.

In our model, a principal and an agent face a project that never expires.

The project's quality, which can be good or bad, is initially uncertain. Players

share the same belief about the project's quality. The principal needs to decide

when, if ever, to invest in the project. The project generates a signal whose

arrival time is random. As long as no investment has happened, the agent

privately observes the signal, or the absence thereof, without cost. Hence,

investing and learning are two sides of the same coin in that as long as invest-

ment has not happened, learning continues. A good project generates a good

signal while a bad project generates a bad signal; therefore, the arrival of a

signal reveals project quality. Depending on which type of signal arrives more

frequently, the agent's belief about project quality evolves when no signal has

arrived. At each point in time before investment happens, the agent sends a

cheap talk message about the information learned so far to the principal. The

principal commits to a delegation rule that speci�es, for each point in time

and each possible message history at that time, whether to invest or not. Once

the investment happens, the game ends.

No one receives a payo� if no investment has happened. Once the invest-

ment happens, each player receives a time-discounted payo� determined by

project quality and the player's identity. A good investment brings gains to

both players, while a bad investment brings losses to both players. Conse-

quently, each player will want to invest if they are optimistic enough about
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project quality and will want to wait for more information otherwise. However,

the players' gain-loss ratios are di�erent, which leads to di�erent attitudes to-

wards learning. For the agent, the gain-loss ratio is su�ciently high that the

common initial belief is also su�ciently high, so he prefers to invest immedi-

ately. On the contrary, the gain-loss ratio for the principal is not su�ciently

high, so she initially wants to learn and invest only when a good signal arrives.

The challenge for the principal is then to incentivize the agent to tell the truth

when he has not received any signal, while trying to invest as soon as possible

after a good signal arrives.

First, we note that if a good signal triggers immediate investment, the

agent would like to pretend to be informed when in fact no signal has arrived,

and no learning would take place. Therefore, investment must follow a good

signal with delay. To see how the delay should evolve over time to incentivize

learning, we need to understand the driving forces behind learning. Learning

bene�ts the agent because if a bad signal arrives, he would then learn that the

project is bad and avoid the loss from investing. On the other hand, learning

costs the agent in that it takes time. Suppose that no signal has arrived and

the agent is still optimistic enough to prefer to invest right away. At this point,

the cost of learning outweighs the bene�t. To encourage learning, the principal

needs to decrease the cost by making investment respond faster to the good

signal throughout time. Suppose that the principal wants to encourage the

agent to learn for one more day. If a claim of good signal leads the principal

to invest immediately, then the cost of learning is one day's delay. However, if

a good signal that arrives today leads to investment 5 days later while a good

signal that arrives tomorrow leads to investment 4.5 days after tomorrow, the

cost of learning is only a half-day's delay. Delays in investment that decrease

in the arrival times of the good signal allow the principal to balance the cost

and bene�t of learning for the agent, hence his truthful revelation.

It is natural to think that if no good signal has arrived, investment should

not happen. This is not always the case. First, note that the longer learning

takes, the more delay the principal needs to incentivize it. Suppose that at

some time T , even if no signal has arrived, learning stops and investment
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happens. Since no incentives for learning is required from T on, the delay

decreases gradually to 0 at T . If instead the principal decides to incentivize

learning after T , the delay at T must be positive. Accordingly, delays of

investment for claims of the good signal at each time before T must also be

increased. Therefore, the longer learning takes place, the better information

the principal receives, the more accurate but less prompt her decision to invest

is. If no investment happens unless a good signal arrives, learning could take

place for an arbitrarily long period of time. Consequently, the decision to

invest is 100% accurate because the principal only invests if she is completely

sure that the project is good. However the downside is that she has to provide

incentives for learning for a long time. The resulting long delays in investment

when a good signal arrives can therefore be a prohibitive cost for the principal.

Therefore, due to the tradeo� between the amount of information acquired

and how e�ectively it is used, the principal may �nd it optimal to commit to

investing with a deadline even if no good signal has been claimed.

The optimal duration of learning that balances the tradeo� depends on

the players' preferences for learning. Given that the principal prefers to wait

while the agent prefers to invest initially, if the players' gain-loss ratios are

su�ciently high, maintaining incentives for learning becomes very costly for

the principal, and therefore the duration of learning is short. On the other

hand, when the players' gain-loss ratios are su�ciently low, it is in the prin-

cipal's interest to maintain a longer learning phase. Our results speak to how

distinct organizations should use distinct protocols to delegate learning. In the

FDA example, losses from approving a damaging drug are substantial. This

maps to our model when the principal has a low gain-loss ratio and therefore

is strongly inclined to learn. The optimal course of action for the FDA is

then to be prudent by establishing long revision processes. Not only do they

ensure that a damaging drug will never get approved, the ensuing long delays

in approval also guarantee truthful revelation from pharmaceutical companies.

If a manager's career concern is strong and he has a high gain-loss ratio, the

optimal action for the board when it comes to acquisition decisions is to set

short learning phases and then acquire as long as no negative news has arrived.
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We show the robustness of our results to natural variations of the environ-

ment. First, we explore a situation in which the agent incurs an unveri�able

cost when he learns. The unveri�able learning cost makes the incentive prob-

lem more severe. We show how a contract with delays and deadlines can

motivate the agent to dynamically acquire information and to report his sig-

nal truthfully. Moreover, apart from the baseline model where the frequency

of the good signal is higher than that of the bad signal, we also discuss an

alternative model where the opposite is true. That is, no news is either no

news or good news. We show that even when the agent becomes more eager

to invest as time transpires, it is still optimal for the principal to set a de-

creasing delay and a deadline. Finally, we complement our results by showing

how transfers can completely solve the problem of private learning. Indeed, by

using transfers, the principal can motivate the agent to learn as well as extract

the whole surplus.

Our paper contributes to the delegation literature initiated by Holmstrom

(1984) and extended by Melumad and Shibano (1991), Alonso and Matouschek

(2008), Armstrong and Vickers (2010), Amador and Bagwell (2013), and Am-

brus and Egorov (2017), among others. As in all these papers, in our model the

principal may grant �exibility to the agent so that he can use his information,

but granting too much �exibility may open up room for opportunistic behav-

ior. However, these papers study static models and do not address the issue

of how to provide incentives to an agent with evolving private information.2

In particular, our work emphasizes how the dynamic provision of incentives

determines how information is used and for how long learning takes place.

Grenadier, Malenko, and Malenko (2016) and Guo (2016) explore dele-

gation models in a dynamic context. In Grenadier, Malenko, and Malenko

(2016), a timing decision needs to be made and an agent who is informed at

time 0 communicates with the principal throughout time. Whereas Grenadier,

2While in our model the principal dynamically screens the agent's information, we de-
part from the growing dynamic mechanism design literature (Pavan, Segal, and Toikka,
2014; Bergemann and Valimaki, forthcoming; Madsen, 2018) by assuming transfers are in-
feasible. Our model features symmetric information at time 0 and therefore transfers allow
the principal to achieve the �rst best. See Section 5.3 for details.
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Malenko, and Malenko (2016) explore how the value of commitment for the

principal depends on the sign of the agent's bias, we take commitment for

granted but explore how to delegate with evolving private information. As

Grenadier, Malenko, and Malenko (2016) point out, their full commitment

case is similar to standard static delegation problems and, as a result, inter-

val delegation is optimal. In Guo (2016), the principal delegates the decision

to experiment over time to an agent who has private information about its

pro�tability at time 0.3 Once experimentation starts, however, all signals are

public. A comparison between our paper and Guo (2016) highlights the di�er-

ences between private and public learning, which have important implications

for the design of incentive schemes. In her model, since signals are public, once

a good signal arrives, the risky project is publicly known to be optimal and

is fully implemented. In our model, however, investment decisions commonly

known to be optimal are nonetheless delayed. This is the principal's response

to the problem of providing incentives to an agent with evolving private infor-

mation.

Our paper is also related to the study of optimal delegation decisions when

information acquisition is endogenous. In Aghion and Tirole (1997), delega-

tion makes the returns to learning higher for the agent, but it can be costly

to the principal when she has also become informed herself. In Deimen and

Szalay (forthcoming), the precision of the information acquired by the agent

is public and can be used to signal the credibility of his advice. Consequently,

less information is acquired for the agent's sake, but his advice becomes more

in�uential in the decision. Szalay (2005) also studies the optimal delegation

set when information acquisition is endogenous and the principal can commit.

He shows that to incentivize the agent, compromise actions may need to be re-

moved from the delegation set. In all these models, information acquisition is

a one-time decision, therefore the tradeo� between extracting information and

using information e�ciently is di�erent from ours. In contrast, Lewis and Ot-

taviani (2008) study a setting where the agent searches for the best alternative

3Guo (2016) focuses on the full commitment case, but she also shows that the sign of
the agent's bias determines the value of commitment.
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over time, and �nd the optimal contract for the principal, who cannot observe

the search e�ort. In the monitored search case, the principal can observe the

outcome of search. In the delegation case, the principal cannot observe the

search outcome and has to rely on the agent's report over time. They study

when it is possible to replicate monitored search through delegation. In both

cases, monetary transfers are used, which we rule out.

Frankel (2016), Li, Matouschek, and Powell (2017), Lipnowski and Ramos

(2017), Guo and Hörner (2018), and Chen (2018) study repeated delegation

models in which parties face a stream of decisions. In these models, incen-

tives can be provided by linking the di�erent decisions. In contrast, we study

situations in which a single, irreversible decision is to be made and therefore

linking decisions is infeasible.4

Finally, our work is related to dynamic persuasion models, particularly,

McClellan (2017), Henry and Ottaviani (forthcoming), and Orlov, Skrzypacz,

and Zryumov (forthcoming). These papers explore how to design approval

rules when learning is costly, signals are public, and incentives are misaligned

ex-post. In contrast, we mainly focus on the case where learning is costless,

signals are private, and incentives are misaligned ex-ante. In Section 5.1, we

allow costly learning.5

The rest of the paper is organized as follows. Section 2 presents the model.

Section 3 formalizes the dynamic delegation problem. Section 4 presents our

main results. Section 5 discusses some extensions. Section 6 concludes.

2 The Model

We consider an in�nite-horizon continuous-time game played by a principal

and an agent. There is an initially unknown state θ ∈ {0, 1}. We call θ = 1

the good state and θ = 0 the bad state. At time 0, the agent and the principal

are symmetrically uninformed about the state θ, with P[θ = 1] = p0 being the

4Another di�erence is that, with the exception of Guo and Hörner (2018), the repeated
delegation literature has focused on serially uncorrelated incomplete information.

5It is not possible to extract and use any information in a model with private learning
in which incentives are misaligned ex-post (and not just ex-ante as in our baseline model).
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initial prior.

The agent privately learns about the state without cost.6 A signal is gen-

erated according to an exponential distribution with arrival rate λθ, which

depends on θ. Speci�cally, conditional on θ, over an interval [t, t+dt], a signal

st = θ is realized with probability λθdt. The arrival of the signal is privately

observed by the agent. Thus, the arrival of a signal perfectly reveals the state

to the agent. We say that the agent is uninformed if he has not observed a

signal. The agent's private history up to period t is denoted ht. We use ∅ to

denote the history with no signal.

The private belief process pt = P[θ = 1 | ht] is formed according to the

initial prior p0 and the agent's private history ht up to period t. The law of

motion for the agent's private belief pt can be derived as follows. If a signal

st = 1 arrives during the interval [t, t + dt), the belief jumps to 1; if a signal

st = 0 arrives during the interval, the belief jumps to 0. If no signal arrives,

Bayes's rule can be used to deduce that the posterior at the end of t+ dt is

pt + dpt =
pt(1− λ1dt)

(1− pt)(1− λ0dt) + pt(1− λ1dt)
.

That is, when no signal arrives, the evolution of the belief is governed by the

di�erential equation7

dpt
dt

= −(λ1 − λ0)pt(1− pt).

We assume that λ0 < λ1 and thus no news is bad news. In other words, the

belief decreases in the absence of a signal. We show that our results extend to

the case λ0 ≥ λ1 in Section 5.2.

The principal chooses yt ∈ {0, 1} at each t ≥ 0. yt = 1 means to invest and

yt = 0 means not to invest. The decision to invest is irreversible: if yt = 1 for

some t, then yτ = 1 for all τ > t and the interaction ends.

Players' preferences over investment coincide conditional on θ. During each

6In Section 5, we extend our model and results to incorporate costly learning.
7See Liptser and Shiryaev (2013) for details.
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interval [t, t+dt) for which yt = 0, both players receive zero payo�. Conditional

on θ, if the principal invests at time t, she gets total discounted payo�s equal

to

e−rtV if θ = 1 and e−rt(−ν) if θ = 0,

whereas the agent gets total discounted payo�s equal to

e−rtW if θ = 1 and e−rt(−ω) if θ = 0,

where r > 0 is the common discount rate, and V , ν, W , and ω are strictly

positive.

To state our assumption on the con�ict of interest, it is useful to describe

the one-person benchmark. Suppose that the agent not only perfectly observes

the arrival of the signal but also has the right to invest. The optimal policy

for the agent is characterized by a cuto� p∗ := (λ1+r)ω
rW+(λ1+r)ω

(Keller, Rady, and

Cripps, 2005). The agent �nds it optimal to invest given the current belief p if

and only if he is optimistic enough about the state; that is, p ≥ p∗. Intuitively,

the optimal policy must be a cuto� policy because if the uninformed agent

does not �nd it attractive to invest at t, then neither does the uninformed

agent at t+dt who is more pessimistic about the value of the investment than

at t. Similarly, suppose that the principal not only controls decisions but also

observes the signal. Given the current belief p, the principal would �nd it

optimal to invest i� p ≥ q∗ = (λ1+r)ω
rW+(λ1+r)ω

.

We can now state the assumption on the con�ict of interest, which is main-

tained throughout the paper.

Assumption 1 p∗ < p0 < q∗.

This assumption implies that at t = 0, the agent wants to invest immedi-

ately whereas the principal wants to invest only after observing a good signal.

An equivalent formulation for Assumption 1 is

W

ω

r

λ1 + r

p0
1− p0

> 1 >
V

ν

r

λ1 + r

p0
1− p0

.

In other words, the gain-loss ratio for the agent, W/ω, is high enough that he
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would like to invest at time 0, but the gain-loss ratio for the principal, V/ν, is

su�ciently low that she would like to invest only after observing a good signal.

Note that when Assumption 1 does not hold, the principal can easily align the

agent's incentives.8

Since λ1 > λ0, as time goes on and no signal is received, the agent gets

more pessimistic. At some point, the agent would prefer to wait and invest

only after observing the good signal. Let t∗ be the time at which the agent

becomes indi�erent between investing and waiting for a good signal. Formally,

for λ1 > λ0,

t∗ =
1

λ1 − λ0
ln
( p0

1− p0
W

ω

r

(λ1 + r)

)
.

Figure 1 illustrates (pt)t≥0 and t
∗. For t < t∗, the principal's and the agent's

interests are not aligned when no signal has arrived. For t > t∗, the principal's

and the agent's interests coincide for all private histories. We can thus interpret

t∗ as a measure of how long it takes for the incentives to be aligned. t∗ increases

as the agent becomes more willing to invest without any information (i.e. when

W/ω becomes larger) and as the absence of signal becomes less informative

(i.e. when λ1 − λ0 becomes smaller so that learning becomes slower).

3 The Dynamic Delegation Problem

We set up the principal's problem of eliciting the agent's evolving private infor-

mation to maximize her expected pro�ts. Following the delegation literature

(Holmstrom, 1984), we focus on incentive provision through the design of con-

trol rights in the absence of transfers. To do this when learning is private, we

formulate a dynamic mechanism design problem with commitment. At each

t ∈ [0,∞) the agent sends a costless message mt ∈ {0, 1, ∅} given the private

history ht. The principal commits to an action yt ∈ {0, 1} as a function of the

8To see this, note that if q∗ < p0, then the principal would like to invest at t = 0 and
would not need the agent. If p0 < p∗ and p0 < q∗, both the principal and the agent would
like to invest only after observing a good signal. In this case, both parties' preferences
are perfectly aligned throughout the game and the �rst best can be achieved even without
commitment.
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Figure 1: Evolution of pt when no signal arrives. Preferences are aligned after
time t∗. Parameter values: λ1 = 5, λ0 = 4.8, r = 0.03, p0 = 0.8, w = 10,
W = 1800, t∗ = 7.28.

message history up to t, mt ≡ {mτ}0≤τ<t.
A contract is a tuple 〈T, τ〉, with T ∈ <+ ∪ {∞} and τ : [0, T ] → <+ if

T <∞ while τ :<+ → <+ if T =∞. We use dom(τ) to denote the domain of

τ . If the agent has reported mt = ∅ for all t ∈ dom(τ), the principal invests at

time T . The function τ is the time at which the investment is made when the

agent reports that he has received the good signal at t (mt = 1). The principal

never invests after the agent reports a bad signal. In Appendix A, we de�ne

the general class of contracts and show that our restriction to contracts of the

form 〈T, τ〉 is without loss of generality.
We now describe the feasibility and incentive constraints. Since time is

irreversible, τ(t) ≥ t for all t ∈ dom(τ). To ensure the agent truthfully reveals

when he is informed that the state is good at t instead of delaying the report, it

must be that τ(t) is non-decreasing. Otherwise, take τ(t1) > τ(t2) with t1 < t2

and note that the agent who receives the good signal at t1 could wait and report

the good signal at t2 > t1. The principal also needs to ensure that the informed

agent at t reveals truthfully instead of pretending to be uninformed during the
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rest of the game. Formally, τ(t) ≤ T for all t ∈ dom(τ).

A key incentive constraint is to ensure the uninformed agent at t does not

want to claim that he is informed and has received a good signal. To ensure

truthful revelation of the uninformed agent at t, 〈T, τ〉 must satisfy∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
≥ max

{
e−rτ(t)(− ω + pt(W + ω)), 0

}
for all t ∈ dom(τ). Note that the agent can always claim that the state is bad

and ensure a payo� equal to 0. The right-hand side is the maximum between

0 and the expected payo� of an uninformed agent at t (who has belief pt) if he

claims the state is good and induces investment at τ(t). The left-hand side is

the agent's expected payo� if he claims to be uninformed and his continuation

policy is to report truthfully. In this case, he could receive the good signal at

s < T and get the payo� e−rτ(s)W with conditional probability ptλ
1e−λ

1(s−t)ds,

or receive no signal before T and induce an uninformed investment decision at

T .9

The dynamic delegation problem can be formulated as:

max
T∈<+∪{∞},τ(·)

∫ T

0

p0λ
1e−λ

1se−rτ(s)V ds+
(
p0e
−λ1T e−rTV+(1−p0)e−λ

0T e−rT (−ν)
)

(1)

subject to

τ(t) ≥ t ∀t ∈ dom(τ) (2)

τ is non-decreasing (3)

τ(t) ≤ T ∀t ∈ dom(τ) (4)

9This incentive constraint could be considered insu�cient as the agent could �nd it
optimal to be truthful in some interval [t, t+ ε] and lie after t+ ε. As we show in Appendix
A, this is not the case.
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∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
t ∈ dom(τ). (5)

This problem maximizes the principal's expected payo�s (1) over all contracts

subject to the feasibility constraint (2) and the dynamic incentive constraints

(3)-(5). The dynamic incentive constraints ensure that at any private history,

the agent has incentives to truthfully reveal his information. Since private in-

formation changes over time, our dynamic delegation problem contrasts with

most related problems in the literature that study either static models (Holm-

strom, 1984; Melumad and Shibano, 1991; Alonso and Matouschek, 2008;

Amador and Bagwell, 2013) or dynamic models in which information asym-

metry is present at the beginning of the relationship (Guo, 2016; Grenadier,

Malenko, and Malenko, 2016).

4 Analysis

In this section, we characterize the solution to the dynamic delegation problem.

4.1 Delays

This subsection characterizes the delay with which an investment commonly

known to be pro�table is implemented. The proofs are relegated to Appendix

B. Our �rst result shows that optimal investments are delayed in any contract

that satis�es the dynamic incentive constraints.

Lemma 1 Let 〈T, τ〉 satisfy (2) and (5). Then, τ(t) > t, for all t <

min{t∗, T}.

Conditional on the project being revealed pro�table at t < min{t∗, T}, the
implementation time is ine�cient (from both the principal's and the agent's

perspectives). This distortion arises precisely due to the fact that learning is

14



private: if the implementation time were not distorted and τ(t) = t for some

t < min{t∗, T}, the uninformed agent at t would claim he learned that the

state is good in order to induce immediate investment.

In order to solve our dynamic delegation problem, it will be useful to �nd

a solution τ to (1) keeping T ∈ <+ ∪ {∞} �xed. Solving the dynamic delega-
tion problem for a �xed T is analytically useful and allows us to illustrate the

tradeo�s involved when delegating to an agent who privately learns over time.

The dynamic delegation problem keeping T �xed can be analyzed by �nding

solutions to the following relaxed problem (6). It is obtained by ignoring con-

straints (3)-(4) and by imposing the feasibility constraint (2) and the dynamic

incentive constraint (5) over subsets of dom(τ).

max
τ(·)

∫ T

0

p0λ
1e−λ

1se−rτ(s)V ds+
(
p0e
−λ1T e−rTV + (1− p0)e−λ

0T e−rT (−ν)
)
(6)

subject to

τ(t) ≥ t ∀t ≥ min{t∗, T}, (7)∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
∀t ≤ min{t∗, T}. (8)

The following result establishes a necessary and su�cient optimality con-

dition for the relaxed problem (6).

Lemma 2 Let τ satisfy (7) and (8).

(a) Suppose T ≤ t∗. Then, τ solves the relaxed problem i� (8) binds for

almost every t ∈ [0, T ].

(b) Suppose T > t∗. Then, τ solves the relaxed problem (6) i� (7) binds for

almost every t ≥ t∗ and (8) binds for almost every t ≤ t∗.
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In the optimal solution to the relaxed problem, the uninformed agent is

indi�erent between truthful revelation and claiming to know that the state is

good for almost all t ≤ min{t∗, T}. To see this, suppose that τ is optimal and
there is a set A ⊆ [0,min{t∗, T}] of positive measure such that for any t′ ∈ A,
the uninformed agent strictly prefers to reveal the truth. The principal could

construct a new function τ ′ that coincides with τ outside of A but is slightly

smaller than τ inside A. τ ′ results in higher expected payo�s for the principal

than τ , and it satis�es (7) and (8). Thus, τ cannot be optimal. Moreover,

Lemma 2 also shows that for t > min{t∗, T}, there is no need to distort

investment. Since after t∗ the incentives are aligned, delaying investments

only makes it harder to provide incentives before t∗.

We now further explore an important consequence of the binding incentive

constraint (8) over [0,min{t∗, T}).

Lemma 3 Fix T and τ(·) such that (8) binds for all t < min{t∗, T}. Then,

the derivative of τ with respect to t is given by

τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

for all t < min{t∗, T}. In particular, over t < min{t∗, T}, τ is strictly increas-

ing and convex, and its slope is strictly less than 1.

This lemma characterizes the slope of a timing policy τ when (8) is binding.

It can be intuitively derived as follows. Since (8) is binding everywhere in

[0,min{t∗, T}), the uninformed agent at t is indi�erent between claiming he

has received the good signal and truth-telling for all t′ ≥ t. The expected

payo� the agent gets from truth-telling for t′ ≥ t can be decomposed into

the current and continuation payo�s. Current payo�s are 0 as by declaring

truthfully no investment is made at t. For continuation payo�s, note that since

the incentive constraint (8) is also binding at t+ dt, the uninformed agent at

t + dt gets the same expected payo� from truth-telling for all t′ ≥ t + dt and

from pretending to have observed the good signal at t+ dt. Combining these

two remarks, the payo� the uninformed agent gets at t from being truthful for
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all t′ ≥ t is the same as what he gets from truth-telling at t and lying at t+dt.

As a result, the uninformed agent at t is indi�erent between (i) claiming to

have observed the good signal at t (Lie at t), and (ii) being truthful at t but

lying at t+dt if he is still uninformed (Lie at t+dt). Table 1 shows the agent's

payo�s from both policies for all possible outcomes.

Outcomes st = 1 st = 0 st = ∅, θ = 1 st = ∅, θ = 0

Lie at t e−rτ(t)W e−rτ(t)(−ω) e−rτ(t)W e−rτ(t)(−ω)
Lie at t+ dt e−rτ(t+dt)W 0 e−rτ(t+dt)W e−rτ(t+dt)(−ω)
Probabilities ptλ

1dt (1− pt)λ0dt pt(1− λ1dt) (1− pt)(1− λ0dt)

Table 1: Payo�s from two di�erent policies. Under the �rst policy (Lie at t),
the uninformed agent claims that the state is good at t. Under the second
policy (Lie at t + dt), the uninformed agent claim to be uninformed at t but
lies at t+ dt if he remains uninformed.

Since the expected payo�s from both policies coincide,

e−rτ(t)
(
ptW + (1− pt)(−ω)

)
= e−rτ(t+dt)

(
ptW + (1− pt)(1− λ0dt)(−ω)

+ 0 · (1− pt)λ0dt
)
.

Equivalently,

(1− pt)λ0dtωe−rτ(t) = (e−rτ(t) − e−r(τ(t+dt)))
(
ptW + (1− pt)(1− λ0dt)(−ω)

)
.

Rearranging terms, dividing by dt and taking dt→ 0, we deduce that

(1− pt)λ0ω = rτ̇(t)
(
ptW + (1− pt)(−ω)

)
, (9)

which provides the characterization in Lemma 3.

Equation (9) illustrates how τ balances the costs and bene�ts of learning

for the agent. The left hand side in (9) is the bene�t from learning as the agent

could avoid investment when the project is bad. The right hand side in (9) is

the cost of learning as when no signal arrives the investment is just delayed.

An important implication from this characterization is that τ̇(t) < 1 and thus
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the delay with which investment decisions are made, τ(t) − t, is decreasing

in t. Intuitively, to motivate the agent to learn, the agent's cost of learning

has to be lower than that in the single-player benchmark for the agent and

therefore the principal sets τ̇(t) < 1. In Section 5.2, we show that this feature

of decreasing delays is robust when λ0 > λ1.

4.2 Optimal Dynamic Delegation

This subsection characterizes the solutions to the optimal delegation problem

and establishes the tradeo� between the amount of information acquired and

how e�ectively it is used.

We �rst �nd a solution τT to the relaxed problem when T ≤ t∗. We impose

(8) binding everywhere in [0, T ]. By Lemma 3, (8) binding in [0, T ) gives

τ̇T (t) = (
λ0

r
)

ω

W pt
1−pt − ω

, t < T. (10)

(8) binding at T gives

τT (T ) = T. (11)

These two together give us

τT (t) = T − λ0

r

∫ T

t

1
W
ω

ps
1−ps − 1

ds, t ≤ T. (12)

Figure 2 illustrates the solution.

Since τT (·) satis�es the conditions in Lemma 2, it solves the relaxed

problem. We now verify that it actually solves the original dynamic del-

egation problem (1) for a given T . First note that τT satis�es (2). In-

deed, τT (t) = τT (T ) −
∫ T
t
τ̇T (s)ds and, since τT (T ) = T and τ̇T (t) < 1,

τT (t) ≥ τT (T )− (T − t) = t for all t ∈ [0, T ]. Second, τT satis�es (5) because

it holds with equality over t ∈ [0, T ]. Finally, since τT (t) is increasing over

[0, T ] and τT (T ) = T , τT also satis�es the incentive constraints (3)-(4). As a

result, τT indeed solves the dynamic delegation problem (1) for a given T . As

can be seen, the incentive constraint for the uninformed agent is the key to
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pinning down the optimal contract when T ≤ t∗.

The following result provides a key insight for solving for the optimal T <

t∗.

Proposition 1 Let t < T < T̂ < t∗. Then, τT (t) < τ T̂ (t).

Figure 3 illustrates Proposition 1. Increasing the deadline is bene�cial for

the principal in that more information is acquired and thus investment in the

bad state is less likely to happen. Proposition 1 shows that more learning

imposes a nontrivial incentive cost on the principal because when T increases,

τT (t) must increase too. This means that when T increases, investments are

delayed more when the good signal is received.

Formally, Proposition 1 follows immediately from Equation (12). To better

understand Proposition 1, take t < T < T̂ and assume for the moment that t

is close to T . When the uninformed agent at t faces the contract 〈T, τT 〉, he
knows that by declaring truthfully, the investment will be made at T (unless

a bad signal is received in the meanwhile). Now, when the uninformed agent

at t faces the contract 〈T̂ , τ T̂ 〉, the earliest time at which the investment could

be made is τ T̂ (T ) > T . As a result, the expected continuation payo� that the

uninformed agent gets at t by being truthful is lower when he faces 〈T̂ , τ T̂ 〉 than
when he faces 〈T, τT 〉. Therefore, to provide incentives for truthful revelation
at t, contract 〈T̂ , τ T̂ 〉 must punish the agent even more when he claims a good

signal. In other words, τ T̂ (t) > τT (t). This intuition can be iteratively applied

backwards to render this property for all t < T .

We solve the relaxed problem given T > t∗ by imposing (8) binding every-

where in [0, t∗) and (7) binding everywhere in [t∗, T ]. By Lemma 3, (8) binding

in [0, t∗) implies

τ̇T (t) = (
λ0

r
)

ω

W pt
1−pt − ω

t ∈ [0, t∗).

Combined with (7) binding for t ≥ t∗, we have

τT (t) =

t
∗ − λ0

r

∫ t∗
t

1
W
ω

ps
1−ps

−1ds t ≤ t∗,

t t > t∗.
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Figure 2: The dark line shows the time at which the investment is made as
a function of the time at which the good signal is received. For t < T , the
investment decision is delayed and the delay, τT (t)−t, is decreasing. Parameter
values: λ1 = 5, λ0 = 4.8, r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480,
W = 1800, T = 2.4.

Lastly, to make sure that τT satis�es (8) at t∗ and therefore solves the

relaxed problem, we need T to be in�nity. To see this, notice that at t∗,

by being truthful that he has not received a signal, the agent receives the

payo� from the policy �invest as soon as a good signal arrives before T and

invest at T if no signal arrives before T ,� which is weakly less preferred to the

policy �invest as soon as a good signal arrives and do not invest if no signal

arrives.� Since at t∗ the agent is indi�erent between the latter policy and the

policy �invest right away,� we need T = ∞ to ensure incentive compatibility.

Therefore a solution to the relaxed problem is

τ∞(t) =

t
∗ − λ0

r

∫ t∗
t

1
W
ω

ps
1−ps

−1ds t ≤ t∗,

t t > t∗.

Since τ∞ is increasing and (5) is satis�ed everywhere in [0,∞), it solves the
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original dynamic delegation problem (1) given that T > t∗.

Figure 3: For t ≤ T < T̂ , τT (t) < τ T̂ (t). Parameter values: λ1 = 5, λ0 = 4.8,
r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480, W = 1800, T = 2.4, T̂ = 4.3.

The following theorem summarizes our characterization.

Theorem 1 The optimal contract takes one of the following two forms:

(a) There is a deadline T < t∗. If a good signal arrives before T , investment

happens with a delay. If no signal arrives before T , investment happens

at T .

(b) If a good signal arrives before t∗, investment happens with a delay. If a

good signal arrives after t∗, investment happens with no delay.

To �nd the optimal contract 〈T ∗, τT ∗〉, it su�ces to compare the optimal

solution when T ∈ [0, t∗] to the case in which T = ∞. It is thus enough

to compare the expected payo� for the principal from the optimal τT when

T ≤ t∗ to that from τ∞.

The optimal contract can be implemented by setting time-dependent del-

egation sets illustrated in Figure 4. At any t < min{t∗, T ∗}, the agent is
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allowed to commit to invest in [τT
∗
(t),∞) or just wait and commit later. For

t ≥ min{t∗, T ∗}, the agent is granted full freedom.

Figure 4: For t < min{t∗, T ∗}, the agent can choose to invest at any t′ ∈
[τ(t),∞). For t ≥ min{t∗, T ∗}, the agent can invest at any t′ > t. Parameter
values: λ1 = 5, λ0 = 4.8, r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480,
W = 1800, T = 4.3, t∗ = 7.2.

4.3 Comparative Statics

We now derive some comparative statics results. These results assume that

parameters satisfy Assumption 1, that is, W
ω

r
λ1+r

p0
1−p0 > 1 > V

ν
r

λ1+r
p0

1−p0 .

Proposition 2

(a) Fix all parameters except W and ω. There exist cuto�s 0 < κ < κ̄ such

that for all W/ω < κ, the optimal contract sets no deadline, whereas for

W/ω > κ̄ the optimal contract sets a deadline T ∗ < t∗.

(b) Fix all parameters except V and ν. There exist cuto�s 0 < η < η̄ such

that for all V/ν < η, the optimal contract sets no deadline, whereas for

V/ν > η̄ the optimal contract sets a deadline T ∗ < t∗.
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The proof is relegated to Appendix C. Part (a) shows that when W/ω is

su�ciently small, it is optimal to invest only after the principal has perfectly

learned that θ = 1. In this case, t∗ is small, so the incentives will become

aligned rapidly, and there is no need to signi�cantly delay investments for

t < t∗. In contrast, when W/ω is large, t∗ is large, and the con�ict of interest

is severe. So decisions to invest need to be signi�cantly distorted for t <

min{T ∗, t∗}. To economize on distortions early in the game, the principal

commits to invest at a deadline T ∗ < t∗ even when this means learning stops

early.

Part (b) characterizes the solutions as we vary the principal's payo�s V

and ν. When V/ν is small, V is small compared to ν and it is relatively

costly for the principal to invest when the state is bad. To avoid the costs

of a failure, the principal prefers to perfectly learn the state even when this

entails signi�cant delays for t < t∗. In contrast, when V/ν is large, the cost of

a failure is small, and the principal �xes a deadline T ∗ < t∗ that stops learning

and reduces distortions for t < T ∗.

Proposition 2 sheds light on how di�erent organizations should provide

incentives for learning. For example, the FDA incurs signi�cant costs when

approving bad drugs (so that ν is large). Our results suggest that the FDA

should set lengthy revision processes to ensure pharmaceutical companies learn

the value of the drugs even if this entails substantial delays between the drugs'

discovery and the FDA's �nal approval. In contrast, the board of a company

that is contemplating a partially reversible acquisition (so ν is small) or that

cannot align the manager's career incentives (so W/ω is large) should set a

deadline T ∗ < t∗ that facilitates truthful communication even at the possible

cost of an incorrect decision.
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5 Extensions

5.1 Costly Learning E�ort

We extend the model to incorporate learning with a costly e�ort. To generate

the signal whose arrival time follows an exponential distribution at any time

t, the agent needs to incur a cost cdt per unit of time. The agent could also

decide not to incur the cost, in which case he receives no information. In the

baseline model in Section 2, we assume that c = 0. We now assume that c > 0.

From the principal's perspective, the agent may lie not only about the signal

he has observed, but also about his learning e�ort. This subsection shows how

delays and deadlines can induce both truthful revelation and costly learning

when c > 0.

We maintain Assumption 1. This means that the agent has even stronger

incentives to invest at time t = 0 due to the fact that now in order to obtain

information he needs to delay the investment as well as make a costly e�ort.

Thus, there is a con�ict of interest in that at t = 0, the principal would like

to wait for information, but the agent would like to invest immediately.10 To

simplify the exposition, we restrict attention to contracts with T su�ciently

short that the optimal decision for the uninformed agent at T is to invest

immediately.

A contract is a tuple 〈T, τ〉 that suggests an e�ort of learning at any t < T .

If the agent reports mt = ∅ for all t ∈ dom(τ), the principal invests at T so

yT = 1. Similar to the baseline model, if the agent reports that he has received

a good signal at t, then the principal invests at τ(t) ≥ t.

Fix a contract 〈T, τ〉 and de�ne u〈T,τ〉(t, S) as the total expected utility for

the agent who is uninformed at t, learns in [0, S], and reports truthfully at any

10Using standard arguments, the optimization problem faced by the agent when he has
decision rights can be formulated as a dynamic programming problem. This formulation
results in the following optimal policy for the agent: there exists cuto�s p̄ > p such that the
agent invests if pt ≥ p̄, does not invest but incurs the learning cost if p̄ > pt ≥ p, and does
not invest or learn if pt < p.
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given t′ ∈ [0, S]:

u〈T,τ〉(t, S) =

∫ S

t

ptλ
1 e
−λ1s

e−λ1t

(
e−rτ(s)W − c1− e−rs

r

)
ds

+

∫ S

t

(1− pt)λ0
e−λ

0s

e−λ0t
(−c)1− e−rs

r
ds+ pt

e−λ
1S

e−λ1t
e−rTW

+ (1− pt)
e−λ

0S

e−λ0t
e−rT (−ω)− c1− e−rS

r

(
pt
e−λ

1S

e−λ1t
+ (1− pt)

e−λ
0S

e−λ0t

)
.

We now introduce the incentive constraints. The �rst incentive constraint

ensures that the agent �nds it optimal to make the costly e�ort at all times

t ∈ dom(τ). In other words,

T ∈ arg max
S∈dom(τ)

u〈T,τ〉(t, S) (13)

for all t ∈ dom(τ). The second incentive constraint ensures that the agent

�nds it optimal to report truthfully that he is uninformed. Formally,

u〈T,τ〉(t, T ) ≥ pte
−rτ(t)W + (1− pt)e−rτ(t)(−ω)− c1− e−rt

r
(14)

for all t ∈ dom(τ). The dynamic delegation problem is therefore formulated

by maximizing (1) over all contracts 〈T, τ〉 subject to (2)-(3)-(4)-(13)-(14).
The following result simpli�es the analysis.

Lemma 4 There exists c̄ > 0 such that for all c < c̄, ∂
∂S
u〈T,τ〉(t, S) > 0.

When investment occurs only at time T or when a good signal has been re-

ceived, the agent �nds it optimal to learn at a cost if the cost is below a

threshold. While the agent would �nd it attractive to invest immediately, the

fact that he has no incentives to pretend to be informed when he is not implies

that he strictly values learning in order to rule out a type II error.

An important implication from this observation is that for c < c̄, we can

solve the delegation problem by ignoring (13). Indeed, u〈T,τ〉(t, S) is increasing

in S and thus, at any t, the best choice for the agent is to set S = T . Now,

similar to Lemma 1 and Lemma 2, equation (14) implies that τ(t) > t and,

25



�xing T , (14) binds for t < T for any optimal solution. Given T , the solution

τT to the dynamic delegation problem satis�es

τ(T ) = T, τ̇(t) =
(1− pt)λ0ω − cer(τ(t)−t)

ptW + (1− pt)(−ω)
∀t ≤ T. (15)

From Peano's theorem (Coddington and Levinson, 1955), the ordinary di�er-

ential equation (15) has a unique solution τT . Finding a close form solution for

τT does not seem feasible. The following result shows that a key comparative

statics result from our baseline model extends to the current setup.

Lemma 5 Let t < T < T̂ . Then, τT (t) < τ T̂ (t).

This result states that if the principal wants to incentivize a longer learn-

ing phase, then she must distort investment decisions more. Thus, the main

features of the optimal contract in our baseline model extend to the case of

costly learning.

5.2 No News Is No News and No News Is Good News

In the absence of a signal, the evolution of the agent's belief (pt)t≥0 satis�es

dpt
dt

= −(λ1 − λ0)pt(1− pt).

We �rst consider the case when λ0 = λ1; that is, dpt
dt

= 0. In this case, the

agent's belief remains constant if no signal has arrived, and jumps to 0 or 1 at

the �rst signal. Therefore the uninformed agent is never indi�erent between

investing and waiting to invest after a good signal and we de�ne t∗ =∞.

The single-player problem is solved identically as that in Section 2. The

dynamic delegation problem and the relaxed problem are set up in the same

way. When solving the relaxed problem, since t∗ =∞, we only need to consider

the T ≤ t∗ case. Since it is infeasible to set T = ∞ for any combination of

parameters that satisfy Assumption 1, the optimal contract always features a

deadline T and the corresponding contract τT is solved for in the same way as

in Section 4.2.
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When λ0 > λ1, the agent's belief drifts up as times goes on. Suppose that

the agent observes the signal and decides whether to invest at each point in

time. Following arguments similar to those in Section 2, it is relatively simple

to show that there exists p∗ such that the agent invests i� pt ≥ p∗. Analogously,

there exists q∗ such that the principal would make the decision i� pt ≥ q∗.11

We assume that p∗ < p0 < q∗. This means that at time 0, the agent would like

to invest whereas the principal would like to wait for information. In contrast

to Section 2, the assumption λ0 > λ1 now implies that there exists t∗ such

that if no signal has been received, the principal would like to invest at any

t > t∗. In particular, for t > t∗, the principal's and the agent's preferences

surely coincide as both would like to invest. This implies that there will always

be a deadline T ≤ t∗.

We �nd the contract 〈T, τ〉 that solves (1) under constraints (2)-(3)-(4)-(5).
All these constraints remain relevant in this setup as they capture feasibility

and truth-telling incentives that need to be provided regardless of the direction

followed by the belief path.

The solution method is similar to Section 4. We now sketch and discuss

the main steps.

Lemma 6 Let 〈T, τ〉 satisfy (2) and (5). Then, τ(t) > t, for all t ≤ T .

This result is similar to Lemma 1. The main di�erence is that now the

uninformed agent prefers to invest for all t ∈ dom(τ) and, as a result, all the

investment times need to be distorted.

We also solve the dynamic delegation problem for �xed T and, as in Section

4, it will be convenient to formulate the following relaxed problem:

max
τ(·)

∫ T

0

p0λ
1e−λ

1se−rτ(s)V ds+
(
p0e
−λ1T e−rTV +(1−p0)e−λ

0T e−rT (−ν)
)
(16)

subject to

τ(T ) ≥ T (17)

11Note that the thresholds p∗ and q∗ in this subsection do not coincide with the thresholds
derived in Section 2.
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∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
∀t ≤ T. (18)

Lemma 7 Let τ ∗ satisfy (17)-(18). Then, τ ∗ solves the relaxed problem (16)

i� (18) binds for almost every t ∈ [0, T ].

This lemma is similar to Lemma 2. Intuitively, if the constraint were

slack, the principal could slightly reduce the investment time and improve her

expected payo�s.

A solution to the relaxed problem is then found by imposing (18) binding

over [0, T ]. Since −ω + pt(W + ω) > 0 for all t ≥ 0, (18) binding at T implies

τ(T ) = T . Using Lemma 3, we can solve for the binding constraint (18) by

simply solving the system

τ(T ) = T, τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

t < T.

The solution τT to this system is given by (12). This function is concave

and its slope is less than 1. As it satis�es all the constraints of the dynamic

delegation problem, τT actually solves the dynamic delegation problem for

�xed T . As T increases, so does τT (t) and thus the principal needs to distort

more investment decisions. The optimal T is chosen as follows. Over T ≥ t∗

the principal should optimally set T = t∗ since for all t > t∗, the principal

is optimistic enough to invest without any news. Over T < t∗, the solution

solves the tradeo� characterized in Proposition 2.

5.3 Transfers

In this subsection, we show that transfers can align the agent's incentives. A

contract with transfers is a tuple 〈T, τ, F, q〉 where T ∈ <+ ∪ {∞} and τ(·)
are as in Section 3, while F ∈ < is a �xed amount paid from the agent to

the principal at t = 0 and q ∈ < is a transfer from the agent to the principal
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whenever a decision is made. A contract with transfers allows for payments at

the beginning of the relationship and whenever a decision is made and it rules

out schemes in which transfers depend on time.

Consider the problem of maximizing the sum of the principal's and agent's

payo�s. This problem is also a stopping time problem in which the investment

is made at t = 0 i� V+W
ν+ω

r
λ1+r

p0
1−p0 > 1. Assume that in the policy that

maximizes the sum of payo�s, investment occurs only after a good signal is

observed. This policy results in total payo�s equal to p0(V +W ) λ1

λ1+r
. We claim

that the principal can achieve this �rst-best payo� by designing a contract with

transfers.

To see this, set q > 0 such that W−q
ω+q

r
λ1+r

p0
1−p0 = 1. This means that

the principal charges a tax q to the investment decision such that the agent

is indi�erent between investing at t = 0 and investing after a good signal.

The principal also sets T = ∞ and τ(t) = t. The agent facing this contract

with transfers has incentives to truthfully reveal his information. Finally, the

principal charges F = p0(W − q) λ1

λ1+r
at the beginning of the relationship. By

o�ering 〈T, τ, F, q〉, the principal gets expected payo�s equal to

F + p0(V + q)
λ1

λ1 + r
= p0(V +W )

λ1

λ1 + r
.

We have therefore proven the following result.

Proposition 3 The principal can achieve �rst best payo�s by using a contract

with tranfers.

This result is similar to others in contract theory showing that a princi-

pal can implement an e�cient allocation and extract the whole surplus using

unrestricted transfers (Bolton and Dewatripont, 2005). The key driver be-

hind all these results is the fact that the contract is signed under symmetric

information and that payments allow for arbitrary utility transfers.
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6 Concluding Remarks

This paper studies a dynamic delegation model in which learning is private.

Evolving private information shapes the optimal contract in distinctive ways.

Indeed, we show that to ensure truthful revelation from the agent, the principal

needs to delay investments commonly known to be optimal. As time goes on,

the principal grants more �exibility to the agent and, eventually, the agent

is free to make any decision. Our analysis uncovers a new tradeo� between

how much information is acquired in the relationship and how e�ciently new

information is used. In sum, our analysis brings out a number of new economic

features arising in delegation models with evolving private information.

Our model is stylized. The learning process is assumed to be Poisson,

investment is irreversible, and the agent has little freedom to decide how to

learn.12 The model could also be extended to allow for money burning.13 In

that model, the principal may induce truthful reporting by asking the agent to

burn money instead of delaying decisions. Future work should address these

extensions.

12At the other extreme, the agent could decide any experiment that reveals information
about the state.

13This means that the agent can spend resources that have no value for the principal.
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Appendix (For Online Publication)

A Formulation of Mechanism Design Problem

First we de�ne a contract. To do this, we �rst need some terminology. A

public history at t is hρt := {(mτ , yτ )}0≤τ<t ∈ Hρ
t . It contains the sequence

of messages and investment decisions strictly before t. A private history at

t is hαt :=
{

(mτ , yτ )}0≤τ<t, {hτ}0≤τ≤t
}
∈ Hα

t . It contains the sequence of

signal, messages and investment decisions strictly before t as well as the signal

observation at t. The message space at time t, Mt : Hρ
t → 2{0,1,∅}, is de�ned

as follows: ∀t,

Mt(h
ρ
t ) =

{mτ}, if ∃τ < t s.t. mτ 6= ∅ or yτ = 1

{0, 1, ∅}, otherwise.

We use mt to denote the message sequence up to and including t: mt =

{mτ}0≤τ≤t. Through abusing of notation, we say that mt = ∅ if mτ = ∅ for all
0 ≤ τ ≤ t.

A contract Γ is a function mapping
{
{mτ}0≤τ≤t, {yτ}0≤τ<t

}
to yt ∈ {0, 1}

with the following irreversibility property: for any t, if yτ = 1 for some 0 ≤
τ < t, then yt = 1. From now on, we keep in mind this property and omit the

dependence of yt on {yτ}0≤τ<t and simply write yt = y(mt).

Our next goal is to simplify the principal's problem. To do this, we �rst

show that any contract can be represented by three components: a �deadline�

T ∈ <+ ∪ {∞}, a function τ0(·) which maps the arriving time of the �rst

0-message to an investment time <+ ∪ {∞}, and a function τ1(·) which maps

the arriving time of the �rst 1-message to an investment time <+ ∪ {∞}.
Let us de�ne T := inf{t : mt = ∅, y(mt) = 1}. It follows that for any t

such that mt = ∅, if t < T , then y(mt) = 0; otherwise y(mt) = 1. In other

words, T pins down the principal's action for an empty message history of any

length. Now let us consider mt 6= ∅. We de�ne γ(mt) := min{τ : mτ 6= ∅},
the time that a non-empty message history jumps from ∅ to 0 or 1. Then
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by the de�nition of Mt, any mt 6= ∅ is completely characterized by γ(mt),

the value of mt ∈ {0, 1} and the value of t. For each x ≥ 0, let us de�ne

τ0(x) = inf{t : y(mt) = 1,mt = 0, γ(mt) = x}. Therefore, for each mt

for which mt = 0 and t < τ0(γ(mt)), we have y(mt) = 0; for each mt for

which mt = 0 and t ≥ τ0(γ(mt)), y(mt) = 1. Similarly, τ1(·) := inf{t :

y(mt) = 1,mt = 1, γ(mt) = x} pins down y(mt) for all mt 6= ∅ and mt = 1.

Therefore τ0(·) and τ1(·) pin down the principal's action at any non-empty

message history. Note that since the in�mum of an empty set is +∞, we allow

the case that T =∞, or τi(x) =∞ for i = 0, 1 for some x.

Right now the domains of τ0(·) and τ1(·) are both [0,∞). We argue that

it su�ces to restrict them to [0, T ] whenever T < ∞. In other words, it

is redundant to de�ne the investment time for a history mt 6= ∅ for which
γ(mt) > T . The argument is simple: if for some mt we have γ(mt) > T , then

it must be the case that mT = ∅ and y(mT ) = y(mt) = 1. We sum up our

discussion in the following proposition:

Proposition 4 A contract belongs to one of the two following groups:

1. T <∞, τ0, τ1 : [0, T ]→ [0,∞],

2. T =∞, τ0, τ1 : [0, T )→ [0,∞].

Now we have demonstrated that a contract consists of three components

T , τ0(·) and τ1(·). We are now ready to state the principal's objective function:

∫ T

0

[
p0λ

1e−λ
1se−rτ1(s)V + (1− p0)λ0e−λ

0se−rτ0(s)(−ν)
]
ds

+
[
p0e
−λ1T + (1− p0)e−λ

0T
]
e−rT

[
− ν + pT (V + ν)

]
For the constraints faced by the principal, �rst note that the principal's

actions must be feasible, therefore τi(x) ≥ x for all x. For the incentive

compatibility constraints of the agent, we require that at any on- or o�-path

history, the agent prefers to tell the truth from then on. Hence we discuss the

possible histories hαt faced by the agent at which Mt is not a singleton:
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1. Suppose that ht contains signal 1. Then choosing mt = 1 is preferred by

the agent to:

(a) choosing mt = 0: e−rτ1(t)W ≥ e−rτ0(t)W ;

(b) choosing mt = ∅ and ms = 1 for some s > t: e−rτ1(t)W ≥ e−rτ1(s)W ,

∀s > t;

(c) choosing mt = ∅ and ms = 0 for some s > t: e−rτ1(t)W ≥ e−rτ0(s)W ,

∀s > t;

(d) choosing ms = ∅ for all s ≥ t.

That is,

(a) τ1(t) ≤ τ0(t), ∀t;

(b) τ1(t) ≤ τ1(s), ∀s > t;

(c) τ1(t) ≤ τ0(s), ∀s > t;

(d) τ1(t) ≤ T , ∀t.

2. Suppose that ht contains signal 0. Then choosing mt = 0 is preferred by

the agent to:

(a) choosing mt = 1: e−rτ0(t)(−ω) ≥ e−rτ1(t)(−ω);

(b) choosing mt = ∅ and ms = 0 for some s > t: e−rτ0(t)(−ω) ≥
e−rτ0(s)(−ω), ∀s > t;

(c) choosing mt = ∅ and ms = 1 for some s > t: e−rτ0(t)(−ω) ≥
e−rτ1(s)(−ω), ∀s > t;

(d) choosing ms = ∅ for all s ≥ t.

That is,

(a) τ0(t) ≥ τ1(t), ∀t;

(b) τ0(t) ≥ τ0(s), ∀s > t;

(c) τ0(t) ≥ τ1(s), ∀s > t;
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(d) τ0(t) ≥ T , ∀t.

3. Suppose that ht = ∅. Then truth-telling forever from now on maximizes

the agent's expected payo�. That is, the agents expected payo� from

using the truth-telling strategy given that ht = ∅

V (t) =
(∫ T

t

e−λ
1s−rτ1(s)ds

)
ptλ

1e(r+λ
1)tW (19)

+
(∫ T

t

e−λ
0s−rτ0(s)ds

)
(1− pt)λ0e(r+λ

0)t(−ω) (20)

+ pte
(r+λ1)(t−T )W + (1− pt)e(r+λ

0)(t−T )(−ω) (21)

satis�es

U(t) = max

{
e−r[τ1(t)−t]

[
− ω + pt(W + ω)

]
, e−r[τ0(t)−t]

[
− ω + pt(W + ω)

]
,

e−rdtptλ
1dte−r[τ1(t+dt)−t−dt]W + e−rdt(1− pt)λ0dte−r[τ0(t+dt)−t−dt](−ω)

+ e−rdt
[
1− ptλ1dt− (1− pt)λ0dt

]
U(t+ dt)

}
.

The �rst and second term denote the agent's expected payo� if he chooses

mt = 1 and mt = 0, respectively. Both actions essentially end the game

and there is no need to specify future actions. The last term denotes

the agent's expected payo� if he chooses mt = ∅ and the optimal action

at t + dt. The �rst component is the agent's payo� if he gets a 1-signal

during (t, t+dt). The IC conditions in 1 ensures that the optimal action

is to choose mt+dt = 1 in this case, which leads to an investment time

τ1(t + dt). The second component is the agent's payo� if he gets a 0-

signal during (t, t+ dt). The third component is the agent's payo� if he

receives no signal during (t, t+ dt).
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The next lemma simpli�es the incentive condition at ht = ∅.

Lemma 8 Suppose that a contract < T, τ0, τ1 > satis�es IC at any history hαt
for which ht 6= ∅. Moreover, suppose that at hαt for which ht = ∅, the following
holds:

e−rtV (t) ≥ max

{
e−rτ0(t)

[
ptW + (1−pt)(−ω)

]
, e−rτ1(t)

[
ptW + (1−pt)(−ω)

]}
.

Then, the strategy of truth-telling at every history also maximizes the agent's

expected payo� at any hαt for which ht = ∅.

Proof. Fix an arbitrary hαt for which Mt(h
ρ
t ) = {0, 1, ∅} and ht = ∅. Let

σ∗ denote the strategy of truth-telling at every history, whenever doing so is

possible. Let σ denote an alternative strategy such that either σ(hαt ) 6= σ∗(hαt ),

or there exists a concatenation history of hαt , h
α
s , such that s > t and σ(hαs ) 6=

σ∗(hαs ).

If σ(hαt ) 6= ∅, then by inequality 8, σ∗ renders higher payo� than σ.

If σ(hαt ) = ∅, then take a concatenation history of hαt for which σ∗(hαs ) 6=
σ(hαs ). Note that at hαs , mτ = ∅ for all τ < s; otherwise Ms(h

ρ
s) is a singleton.

Moreover, yτ = 0 for all τ < s; otherwise a decision is already made at T and

Ms(h
ρ
s) is again a singleton. Therefore the agent's cumulative payo� during

[0, s) equals 0 for both σ∗ and σ. Now, if hs 6= ∅, σ∗ renders higher payo�
since the contract is incentive compatible at such a history. If hs = ∅, then
σ∗(hαs ) = ∅ while σ(hαs ) ∈ {0, 1}. By inequality 8, σ∗ still renders higher

payo�. We have thus shown that σ∗ renders higher payo� at any future (on-

or o�-path) history hαs for which σ∗ and σ di�er. Therefore σ∗ renders higher

expected payo� than σ at the information set hαt .

Now we will characterize the optimal contract. First we notice that any

incentive compatible optimal contract < T
∗
, τ ∗0 , τ

∗
1 >must have τ ∗0 =∞ almost

surely.

Proposition 5 Given an incentive compatible optimal contract

< T
∗
, τ ∗0 , τ

∗
1 >, let us de�ne A := {t : τ ∗0 (t) < ∞}. Then A has mea-

sure 0.

35



Proof. First we notice that if T
∗

= ∞, then IC requires that τ ∗0 (t) = ∞
for all t. So for the rest of the proof let us assume that T

∗
< ∞. By way

of contradiction, suppose that A has positive measure. Then, the part of the

principal's payo� involving τ ∗0 (·) can be rewritten as:

∫ T
∗

0

e−rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

=

∫
A

e−rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds+

∫
[0,T

∗
]\A

e−rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

=

∫
A

e−rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

< 0

Let t be such that ptW + (1− pt)(−ω) = 0. We will propose an alternative

contract depending on whether T
∗
is greater or smaller than t.

Case 1. T
∗ ≤ t

Consider an alternative contract < T
∗
, τ̃0, τ

∗
1 >, where

τ̃0(s) =∞,∀s

Since the principal's payo� involving τ̃0 is 0, this contract strictly increases

the principal's payo�. Now we will show that < T
∗
, τ̃0, τ

∗
1 > is incentive

compatible, contradicting to < T
∗
, τ ∗0 , τ

∗
1 > being a solution.

It is obvious that the IC conditions when ht 6= ∅ (i.e. cases 1 and 2) are still
satis�ed for the new contract. For the case when ht = ∅, notice that under the
new contract, the agent's payo� from truth-telling forever from time t on is[
pte
−λ1(T ∗−t) + (1− pt)e−λ

0(T
∗−t)
]
e−rT

∗
[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s) · 0 ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≥
[
pte
−λ1(T ∗−t) + (1− pt)e−λ

0(T
∗−t)
]
e−rT

∗
[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s)(−ω) ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds
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≥
[
ptW + (1− pt)(−ω)

]
e−rτ

∗
1 (t)

≥ 0

The second inequality follows from the the fact that the old contract

satis�es IC. Therefore truth-telling forever from t on is preferred to lying

that mt = 1. The last inequality follows because for any t ≤ T
∗ ≤ t,

ptW + (1 − pt)(−ω) ≥ 0. Therefore truth-telling forever from t on is pre-

ferred to lying that mt = 0. We have just established that under the new

contract, truth-telling forever from t on is preferred to lying at t. By Lemma

8, this ensures that the new contract is incentive compatible.

Case 2. T
∗
> t.

Since pt decreases in t, pT ∗W + (1−pT ∗)(−ω) < 0. Consider an alternative

contract < T̃ , τ̃0, τ̃1 >, where

T̃ =∞, τ̃0(s) =∞,∀s

and

τ̃1(t) =

τ ∗1 (t) if t ≤ T
∗

t otherwise.

The principal's payo� under this contract equals∫ T
∗

0

(1− p0)λ0e−λ
0s · 0 ds+

∫ T
∗

0

p0λ
1e−λ

1se−rτ
∗
1 (s)W ds

+
[
p0e
−λ1T ∗ + (1− p0)e−λ

0T
∗]
·
∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds

>

∫ T
∗

0

(1− p0)λ0e−λ
0se−rτ

∗
0 (s) · (−ω) ds+

∫ T
∗

0

p0λ
1e−λ

1se−rτ
∗
1 (s)W ds

+
[
p0e
−λ1T ∗ + (1− p0)e−λ

0T
∗]
· e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
.

The inequality follows because∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds > 0 > e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
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and A has positive measure by assumption. Now we show the new contract

is incentive compatible. First, it is easy to see that at ht 6= ∅ and t ≤ T
∗
, IC

are satis�ed. Second, at any t > T
∗
> t∗, the interests of the principal and

the agent are aligned. Therefore the �rst-best action is incentive compatible.

Lastly, at any ht = ∅ and t ≤ T
∗
, the agent's payo� if he is truth-telling since

then on equals

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds+

∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds ≥ 0.

Therefore the payo� of truth-telling is greater than the payo� of lying that

mt = 0.

On the other hand, the payo� of lying that mt = 1 is[
ptW+(1− pt)(−ω)

]
e−rτ

∗
1 (t)

≤
[
pte
−λ1(T ∗−t) + (1− pt)e−λ

0(T
∗−t)
]
e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s)(−ω) ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≤
∫ T

∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≤
∫ T

∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds+

∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−t)e−rsW ds,

which is the agent's payo� of truth-telling. The �rst inequality follows because

the contract < T
∗
, τ ∗0 , τ

∗
1 > is incentive compatible. The second inequality

follows because pT ∗W + (1 − pT ∗)(−ω) < 0. Applying Lemma 8 again, we

know that the new contract is incentive compatible.

It is easy to argue then that

Proposition 6 Given an incentive compatible optimal contract < T
∗
, τ ∗0 , τ

∗
1 >

for which T
∗
<∞,

τ ∗0 (t) =∞, ∀t < T
∗
.

Proof. Suppose that τ ∗0 (t) < ∞ for some t < T
∗
. Then hαt which includes a
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0-signal, the agent could deviate to mτ = ∅ for all t ≤ τ < s and ms = 0 for

some s > t. By Proposition 5, such s must exist.

We have shown that τ ∗0 (t) = ∞ for all t with the possible exception of

τ ∗0 (T
∗
) when T

∗
< ∞. We set τ0(T

∗
) = T

∗
automatically whenever T

∗
< ∞.

This makes sure that for any T
∗
<∞, truth-telling is incentive-compatible at

T
∗
and at t < T

∗
and ht 6= ∅.

Now we are ready to rewrite the principal's constrained maximization prob-

lem as follows:

max
T∈<+∪{∞},τ(·)

∫ T

0

pλ1e−λ
1se−rτ(s)V ds+

[
pe−λ

1T+(1−p)e−λ0T
]
e−rT

[
−ν+pT (V+ν)

]
(22)

subject to

τ(t) ≥ t ∀t ∈ [0, T ]; (23)

τ(s) ≥ τ(t) ∀s ≥ t; (24)

τ(t) ≤ T ∀t ∈ [0, T ]; (25)

∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

[
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

]
≥ max

{
e−rτ(t)

[
− ω + pt(W + ω)

]
, 0

}
,∀t ∈ [0, T ).

B Proofs for Section 4.1

Proof of Lemma 1. We prove that τ(t) > t for t < min{t∗, T}. For

simplicity, take t = 0. By contradiction, assume that τ(0) = 0. The left hand
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side of (5) can be written as∫ T

0

(
p0λ

1 exp(−λ1s) exp(−rτ(s))W
)
ds+

(
p0 exp(−λ1T )e−rTW

+ (1− p0) exp(−λ0T )e−rT (−ω)
)
≤
∫ T

0

(
λ1 exp(−λ1s) exp(−rs)p0W

)
ds

+
(
p0 exp(−λ1T )e−rTW + (1− p0) exp(−λ0T )e−rT (−ω)

)
The inequality follows since τ(s) ≥ s. The term on the right hand side of the

inequality above is the expected payo� that the agent would get following the

policy of investing if any good signal is revealed before T and investing at T if

no signal is revealed before T . Since p0 > p∗, this policy must result in strictly

lower payo�s than the expected payo� from investing at t = 0. So,∫ T

0

(
λ1 exp(−λ1s) exp(−rs)p0W

)
ds+

(
p0 exp(−λ1T )e−rTW

+ (1− p0) exp(−λ0T )e−rT (−ω)
)
< p0W + (1− p0)(−ω).

Combining these inequalities we deduce that (5) is violated at t = 0 when

τ(0) = 0. It follows that τ(0) > 0.

Proof of Lemma 2. Let τ ∗ solve the relaxed problem. By way of con-

tradiction, assume that for some A ⊆ [0,min{t∗, T}) with positive Lebesgue

measure, and for all t ∈ A, the constraint (8) is slack. For t ∈ dom(τ), de�ne

ϕt =

∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

∗(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
Now, de�ne τ ′ as follows. For t /∈ A, τ ′(t) = τ ∗(t), while for t ∈ A,

e−rτ
′(t)(− ω + pt(W + ω)) = ϕt.

For t ∈ A, e−rτ ′(t) > e−rτ
∗(t). Therefore, τ ′(t) ≤ τ ∗(t) for all t ∈ [0,min{t∗, T}],

with strict inequality for t ∈ A. We claim that τ ′ is feasible. To see this, note

40



that for all t ∈ [0,min{t∗, T}]∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

′(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
≥
∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

∗(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
= ϕt

≥ e−rτ
′(t)(−ω + pt(W + ω))

≥ max{0, e−rτ ′(t)(−ω + pt(W + ω))}.

The �rst inequality follows since τ ′ is below τ ∗ and the equality is by de�nition

of ϕt. The second inequality follows with equality when t ∈ A (by de�nition of

τ ′) and for t /∈ A follows since τ ′ and τ ∗ coincide and τ ∗ satis�es 8. The third

inequality follows since t < t∗. It follows that τ ′ satis�es (7)-(8) and results in

higher expected payo�s than τ ∗. This contradicts the optimality of τ ∗ for the

relaxed problem.

We now argue that when T > t∗ (case b in the statement of the Proposi-

tion), τ ∗(t) = t for almost every t ∈ [t∗, T ]. Otherwise, there is a set A ⊆ [t∗, T ]

of positive measure such that for all t ∈ A, τ ∗(t) > t. Construct τ ′ that co-

incides with τ ∗ outside A, but τ ′(t) = t for t ∈ A. It is clear that τ ′ satis�es
(8) since for t < t∗, τ ′ does not change the payo� from lying but increased the

payo� from truth-telling. It follows that τ ′ is feasible for the relaxed problem

and results in higher expected payo�s for the principal than τ ∗. This is a

contradiction.

Now, to prove the converse, we assume that T > t∗. The proof of the

converse when T ≤ t∗ is analogous. Take τ ∗ such that (7)-(8) bind almost

everywhere. Take τ ′ that solves the relaxed problem (6). From the �rst part

of this proof, τ ′ and τ ∗ coincide for almost every t ∈ [t∗, T ]. The previous step

also shows that τ ′ is such that (8) binds for almost every t ∈ [0,min{t∗, T}].
De�ne

u(t) =

∫ T

t

e−λ
1s(e−rτ

∗(s) − e−rτ ′(s))ds

for t ∈ [0,min{t∗, T}]. Note that u(t) is absolutely continuous and its deriva-
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tive is de�ned almost everywhere and equals −e−λ1t(e−rτ∗(t) − e−rτ ′(t)). Now,
using the fact that the constraint binds almost everywhere for both τ ′ and τ ∗,

we deduce that for almost every t ∈ [0,min{t∗, T}],

−ptλ1Wu(t) = u′(t)
(
− ω + pt(W + ω)

)
and u(min{t∗, T}) = 0. It follows that for almost every t ∈ [0,min{t∗, T}],
d
dt

(
u(t)e

∫ t
0 H(s)ds

)
= 0 whereH is a continuous function. Since u(min{t∗, T}) =

0, u(t) = 0 for all t ∈ [0,min{t∗, T}]. In particular, 0 = u′(t) =

−e−λ1t(e−rτ∗(t) − e−rτ ′(t)) almost everywhere and therefore τ ′ and τ ∗ coincide

for almost every t ∈ [0,min{t∗, T}]. Since τ ∗ satis�es (7)-(8), τ ∗ solves the

relaxed problem.

Proof of Lemma 3. Since (5) is binding for all t ∈ [0,min{t∗, T}),∫ T

t

λ1e−λ
1se−rτ(s)Wds+

(
e−λ

1T e−rTW +
1− pt
pt

e(λ
0−λ1)te−λ

0T e−rT (−ω)
)

= e−λ
1te−rτ(t)(W +

1− pt
pt

(−ω))

where we use the fact that t ≤ t∗. Since the right hand side of this equation

and pt are di�erentiable, so is τ . Taking derivatives and using the fact that
d
dt

(
1−pt
pt

)
= (λ1 − λ0)1−pt

pt
, we deduce that

−λ1e−λ1te−rτ(t)W = −(λ1 + rτ̇(t))e−λ
1t−rτ(t)

(
W +

1− pt
pt

(−ω)
)

+ e−λ
1t−rτ(t)(λ1 − λ0)1− pt

pt
(−ω).

Solving for τ̇(t), we deduce that

τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

.

The slope of τ is nonnegative. To see that τ is convex, note that pt/(1− pt) is
non-increasing and thus τ̇ is non-decreasing. To see that τ̇ is less than 1, note
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that

τ̇ < 1 i� 1 <
W

ω

r

λ0 + r

pt
1− pt

.

To verify this last property, note that investing at t results in higher expected

payo�s for the agent than learning at t and investing at t+ dt unless the bad

state is revealed. That is,

ptW + (1− pt)(−ω) ≥ (1− pt)(1− λ0dt)e−rdt(−ω) + pte
−rdtW.

Reordering terms and taking dt→ 0, we deduce that 1 < W
ω

r
λ0+r

pt
1−pt .

C Proofs for Section 4.3

Proof of Proposition 2. We �rst prove part (a). Note that the principal's

expected payo� from setting T =∞ equals

ϕ(
W

ω
) =

∫ t∗

0

p0λ
1e−λ

1se
−rτ t∗W

ω

(s)
V ds+

∫ ∞
t∗

p0λ
1e−λ

1se−rsV ds

where τXW
ω

(t) = X − (λ
0

r
)
∫ X
t

1
W
ω

ps
1−ps

−1ds for all X ≥ t. We claim that for all

ε > 0, there exists L such that for all W
ω
> L, ϕ(W

ω
) < ε.

First, notice that since t∗ → ∞ as W
ω
→ ∞, there exists L1 such that for

all W
ω
> L1, ∫ ∞

t∗
p0λ

1e−λ
1se−rsV ds < ε/2.

Now we show that there exists L2 such that for all W
ω
> L2,∫ t∗

0

p0λ
1e−λ

1se
−rτ t∗W

ω

(s)
V ds <

ε

2
.

To show this, we �rst show that for any δ, there exists L3 such that for all
W
ω
> L3,

1
W
ω

ps
1−ps − 1

< δ,∀s ∈ [0, t∗].

43



Since ps
1−ps decreases in s, su�ces to show

1
W
ω

p0
1−p0 − 1

< δ.

This is done by letting L3 = δ+1
δ

2(1−p0)
p0

.

Given this, we now show that for any η, there exists L4 such that W
ω
> L4

implies

e−rτ(s) < η,∀s ∈ [0, t∗].

To show this, �rst we notice that τ(s) increases in s, so it su�ces to show that

there exists L4 such that W
ω
> L4 implies

e

−r

t∗−λ0r ∫ t∗
0

1
W
ω

ps
1−ps − 1

ds


< η.

In other words,

t∗ − λ0

r

∫ t∗

0

1
W
ω

ps
1−ps − 1

ds >
ln η

−r
.

Given what we showed in the previous step, we can �nd L3 such that

1
W
ω

ps
1−ps − 1

<
r

2λ0
, ∀s ∈ [0, t∗].

Therefore

t∗ − λ0

r

∫ t∗

0

1
W
ω

ps
1−ps − 1

ds > t∗ − λ0

r

∫ t∗

0

r

2λ0
ds

= t∗ − λ0

r

r

2λ0
t∗

=
t∗

2
→∞

as W
ω
→ ∞. We have therefore shown that there exists L4 such that W

ω
> L4

implies

e−rτ(s) < η,∀s ∈ [0, t∗].
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Now �nd L4 such that

e−rτ(s) <
ε

4V p0
,∀s ∈ [0, t∗].

Therefore ∫ t∗

0

p0λ
1e−λ

1se−rτ(s)V ds <

∫ t∗

0

p0λ
1e−λ

1s ε

4V p0
V ds

= p0λ
1 ε

4V p0
V

∫ t∗

0

e−λ
1s ds

= p0λ
1 ε

4V p0
V · 1

λ1
(1− e−λ1t∗)

= p0
ε

4V p0
V (1− e−λ1t∗)

=
ε

4
(1− e−λ1t∗)

<
ε

2
.

Therefore, for W
ω
> L2 := max{L3, L4}, we have∫ t∗

0

p0λ
1e−λ

1se
−rτ t∗W

ω

(s)
V ds <

ε

2
.

Lastly, letting L := max{L1, L2}, we then have

ϕ(
W

ω
) < ε

for W
ω
> L.

Now, note that by setting an optimal deadline T ∈ [0, t∗], the principal's

payo� equals

Φ(
W

ω
) = max

T∈[0,t∗]
Φ(
W

ω
, T )

where

Φ(
W

ω
, T ) =

∫ T

0

p0λ
1e−λ

1se
−rτTW

ω

(s)
V ds+

(
p0e
−λ1T e−rTV+(1−p0)e−λ

0T e−rT (−ν)
)
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Note that

Φ(
W

ω
, T ) > p0e

−rT
(

1− e−λ1T
)
V +

(
p0e
−λ1T e−rTV + (1− p0)e−λ

0T e−rT (−ν)
)

= e−rT
(
p0V + (1− p0)e−λ

0T (−ν)
)

Fix any T such that the expression above is strictly positive and equals η > 0.

Let ε = η/2 and take W/ω > L such that ϕ(W/ω) < ε = η/2 and T < t∗. In

particular,

Φ(
W

ω
) ≥ η > η/2 ≥ ϕ(

W

ω
)

which proves that there exists some κ̄ such that for all W
ω
> κ̄, T ∈ [0, t∗]

results in higher payo�s than T =∞.

To complete the proof of part (a), note that as W/ω goes to x where

x r
λ1+r

p0
1−p0 = 1, t∗ → 0. In particular,

ϕ(
W

ω
)→

∫ ∞
0

p0λ
1e−λ

1se−rsV ds = p0V
λ1

λ1 + r

whereas

Φ(
W

ω
)→ p0V + (1− p0)(−ν).

Since p0V
λ1

λ1+r
> p0V +(1−p0)(−ν), there exists κ such that for all W/ω < κ,

ϕ(W/ω) > Φ(W/ω).

To prove part (b), we normalize the principal's expected payo�s by ν and

write

ϕ(
V

ν
) =

∫ t∗

0

p0λ
1e−λ

1se
−rτ t∗W

ω

(s)V

ν
ds+

∫ ∞
t∗

p0λ
1e−λ

1se−rs
V

ν
ds

for the principal's payo� when T =∞ and

Φ(
V

ν
, T ) =

∫ T

0

p0λ
1e−λ

1se
−rτTW

ω

(s)V

ν
ds+

(
p0e
−λ1T e−rT

V

ν
+(1−p0)e−λ

0T e−rT (−1)
)
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for the principal payo� when setting T < t∗. Note that as V/ν → 0,

ϕ(
V

ν
)→ 0, Φ(

V

ν
, T )→ −(1− p0)e−λ

0T e−rT

Since Φ is continuous in (V
ν
, T ), there exists η > 0 such that for all V/ν < η,

ϕ(
V

ν
) > max

T∈[0,t∗]
Φ(
V

ν
, T )

and thus it is optimal for the principal to set T =∞.

To complete part (b), de�ne y such that 1 = y r
λ1+r

p0
1−p0 . By de�nition,

ϕ(y) < max
T∈[0,t∗]

Φ(y, T )

where the maximum on the right is attained at T = 0. By continuity, there

exists η̄ < y such that for all V/ν > η̄,

ϕ(
V

ν
) < max

T∈[0,t∗]
Φ(
V

ν
, T )

and the principal sets a deadline T < t∗.

D Proofs for Section 5

Proof of Lemma 4. Note that

∂

∂S

(
u〈T,τ〉(t, S)

)
= (1− pt)eλ

0t
{ pt

1− pt
e(λ

1−λ0)tλ1e−λ
1S(e−rτ(S) − e−rT )

+ λ0ωe−λ
0S−rT −

( pt
1− pt

e(λ
1−λ0)te−λ

1S + e−λ
0S
)
e−rSc

}
≥ (1− pt)eλ

0t
{
λ0ωe−λ

0T e−rT − (
pt

1− pt
e(λ

1−λ0)t + 1)c
}

where the inequality follows since τ(S) ≤ T for all S ≤ T . The result follows

by taking

c̄ = min
t≤T

λ0ωe−λ
0T e−rT

pt
1−pt e

(λ1−λ0)t + 1
.
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Proof of Lemma 5. Since the slope of τ T̂ is less than 1, τT (T ) = T , and

τ T̂ (T̂ ) = T̂ , it follows that τT (T ) < τ T̂ (T ). Moreover, from (15), τ̇T (T ) >

τ̇ T̂ (T ) and thus there exists an interval [a1, T ] such that τT (t) < τ T̂ (t) for all

t ∈ [a, T ]. In particular, τT (a1) < τ T̂ (a1) and, applying the same argument,

there exists an interval [a2, a1] such that τT (t) < τ T̂ (t) for all t ∈ [a2, a1]. All

times t ∈]0, T ] will be covered by this procedure and thus τT (t) < τ T̂ (t). The

argument for t = 0 follows by continuity.
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