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Abstract

A common method to allocate scarce resources is to apply the deferred acceptance algorithm

proposed by Gale and Shapley (1962) and obtain a stable matching. However, a stable matching

need not be Pareto efficient and may assign many students to their worst or second-worst schools.

We provide tight upper and lower bounds for the fraction of students assigned to their top schools

and the fraction of students that can be Pareto-improved in a stable matching of a large market.

Our results can be used to characterize the inefficiencies of different priority rules used in school

choice applications, including distance-based and random priorities.

1 Introduction

The allocation of resources—such as school seats, college admissions, and residency programs—often oc-

curs without monetary transfers. In practice, a common method for making these allocations is through

the deferred acceptance (DA) algorithm proposed by Gale and Shapley (1962). This method yields a

stable matching and provides a clear way to explain potentially uneven assignments to participants. As

the literature has noted, there are fundamental tensions between efficiency and stability in matching
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models. In particular, a stable matching need not be Pareto-efficient. Moreover, as Kesten (2010) shows

in the school choice context, for any fixed supply of school seats, it is possible to construct the demand so

that the stable matching assigns each student to her worst or second-worst school. The inefficiency of a

stable matching is not just a theoretical possibility but also a key consideration in practical applications

of matching theory (Abdulkadiroğlu et al., 2009).

This paper provides new performance estimates for stable matchings. We explore a large market

model in which a continuum of students applies to a finite number of schools (Azevedo and Leshno,

2016; Abdulkadiroğlu et al., 2015). Students have preferences over schools, while schools have priorities

over students. To capture the interplay between students’ preferences and schools’ priorities, each

student has a type. These types govern students’ preferences and also determine their scores within

each school, subsequently influencing the schools’ priorities over students. Introducing types into our

matching model is a flexible way to allow for correlation between students’ preferences and scores. Our

model encompasses a variety of priority criteria used in applied school choice, including multiple and

single tie breaking (Abdulkadiroğlu et al., 2009).1 It also accommodates models in which students are

geographically differentiated, and a student’s preference is partly determined by the distances between

the student and schools.

Our first main result, Theorem 1, provides tight upper and lower bounds for the fraction of students

assigned to their top schools. Behind these bounds is the idea that the performance of a stable matching

depends on how students can congest and get admission to schools they do not consider top choices.

Notably, our bounds apply to a general school choice model that allows for asymmetries and arbitrary

correlations between preferences and scores. The bounds provide a convenient solution for tackling

examples and models that would otherwise pose significant challenges in analysis.

To establish our bounds, we write down market clearing conditions that characterize stable matchings

(Azevedo and Leshno, 2016; Abdulkadiroğlu et al., 2015). The solutions to these equations are hard to

solve in closed-form. We thus explore relaxed market clearing conditions that are used to obtain lower

and upper bounds for the solutions to the original market clearing conditions. These bounds are then

used to estimate the fraction of students assigned to their top schools.

We apply our methods to the problem of priority design in school choice. In districts employing

1In some school choice applications, priorities are randomly determined. Under single tie breaking, each student obtains
a unique random score that determines her priorities in all schools. Under multiple tie breaking, each student obtains a
different random number for each school.
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the deferred acceptance algorithm, oftentimes authorities design the priority criteria used by schools to

increase students’ satisfaction (Abdulkadiroğlu et al., 2009). Consequently, an important literature has

explored the role of different random tie breaking rules on the effectiveness of the deferred acceptance

algorithm (Abdulkadiroğlu et al., 2009; Ashlagi and Nikzad, 2020; Arnosti, 2022; Allman et al., 2022).

While several cities in Europe and the US employ proximity to schools to determine priorities (Dur

et al., 2018; Çelebi and Flynn, 2021; Burgess et al., 2023), not much is known about how this policy

choice impacts the performance of the deferred accepted algorithm.

We evaluate distance-based priorities in a general spatial model of school choice. Stable matchings

under distance-based priorities are determined by how students value proximity, and also by the capacity

and geographical distribution of schools. Under distance-based scores, when students significantly value

proximity, students’ preferences and schools’ priorities are compatible: a student that likes a school

also has a high score in the school. Naturally, in this case the resulting stable matching will be Pareto

efficient and place many students into their top schools.

In contrast, when students’ preferences for proximity are not strong, distance-based priorities may

result in important efficiency losses. Indeed, Theorem 2 shows that multiple tie breaking may result

in more students assigned to their top schools and fewer students that can be Pareto improved than

distance-based priorities. This happens even when students value proximity and, as a result, there is

positive correlation between preferences and priorities.

Theorem 2 may appear counter-intuitive. After all, several papers have shown that, compared

to single tie breaking, multiple tie breaking results in a relatively low number of students assigned to

their top schools and a high number of Pareto improving pairs (Abdulkadiroğlu et al., 2009; Ashlagi and

Nikzad, 2020; Arnosti, 2022; Allman et al., 2022). Moreover, distance-based priorities create consistency

between preferences and priorities which –as we show in the text– is a force towards efficient stable

matchings. We observe that in markets in which students care not only about proximity to schools

but also about other aspects –such as scores in standardized tests, extracurricular activities, etc– the

consistency between preferences and priorities is positive but weak. In these markets, under distance-

based priorities a student may be stuck at a school that is not her top but just happens to live nearby.

This force leaves relatively few students assigned to top schools.

Our theoretical results show that introducing proximity as a priority criterion has ambiguous effects

on some important performance measures. We confirm our findings by simulating a market with a finite
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number of students and seats.

The school choice literature has shown that even the student optimal stable matching need not be

Pareto efficient (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). Several papers derive

conditions under which a stable matching is Pareto efficient.2 Notably, Ergin (2002) introduces a class of

school priorities such that, regardless of students’ preferences, the stable matching is efficient.3 See also

Ehlers and Erdil (2010), Salonen and Salonen (2018), Reny (2021), Pakzad-Hurson (2023). In contrast,

our main goal is to provide performance estimates for stable matchings. In many practical applications

of the deferred accepted algorithm, efficiency will not be achieved and therefore understanding the

magnitude of inefficiencies may be a useful step in the design of matching markets.

The idea that school priorities can be designed to impact the performance of the deferred acceptance

algorithm is not new. Abdulkadiroğlu et al. (2009), Ashlagi and Nikzad (2020), Arnosti (2022), Shi

(2022), Allman et al. (2022) notice that when schools solve indifferences by using random lotteries,

the correlation between the scores of a student in different schools is important for efficiency. As the

literatue shows –and we confirm in Subsection 4.2– single tie breaking (under which the correlation

between scores is perfect) results in a more efficient matching than multiple tie breaking (under which

the correlation between scores is 0). We make two contributions to this literature. First, we notice that

priority criteria such that a high score in a school implies low scores in other schools make efficiency

hard to achieve; see the discussion of distance-based priorities following Theorem 2 part b. In this

sense, priority criteria that result in no correlation between scores (such as multiple tie breaking) may

produce a more efficient matching than criteria resulting in a negative correlation (such as distance-

based priorities). Second, we observe that the correlation between students’ preferences and scores is

also important to evaluate the efficiency of a stable matching.

Our paper also connects to research about distance-based priorities in school choice. Dur et al.

(2018) explore how different precedence orders implementing walk-zone reserves impact the fraction of

reserve-group students assigned to each school. More closely related, Çelebi and Flynn (2021) show

that in a large market model, the optimal coarsening of scores is attained by splitting agents into at

most three indifference classes. They also explore a model in which scores are determined by distance

and show that the the optimal number of zones depends on the diversity goals of the planner. Our

2There is also an important set of papers proposing alternative algorithms and solutions, including Shapley and Scarf
(1974), Kesten (2010), Che and Tercieux (2018), Ehlers and Morrill (2020), Cantillon et al. (2022), and Reny (2022).

3Ergin (2002) introduces acyclical priorities. In school choice applications, priorities derived under single tie breaking
are acyclical.
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focus is different in that we explore alternative performance measures and our insights highlight how

the correlation between preferences and priorities determine the effectiveness of the deferred acceptance

algorithm. We thus see our analysis as complementary to Çelebi and Flynn’s (2021).

Finally, our work connects to the literature employing large market models to analyze market design

problems (Azevedo and Leshno, 2016; Abdulkadiroğlu et al., 2015; Ashlagi and Nikzad, 2020). We

provide a method to bound cutoffs in large market models to derive new insights for the design of

matching markets.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents

our estimates for the fraction of students assigned to their top schools. Section 4 applies our bounds

to random priorities and distance-based priorities. Section 5 shows simulations for discrete economies.

Section 6 presents concluding remarks. All proofs are in the Appendix.

2 Model

2.1 Environment

There is a finite set of schools C = {1, . . . , N}. There is a continuum S of students to be matched to

schools. Each student s has a strict preference ordering ≻s over C ∪ {∅}, where ∅ is the outcome if s is

unassigned. A student s has a score vector es = (esc)
N
c=1. School c has capacity kc. A school c prefers

student s to student s′ iff esc > es
′
c . We simplify exposition and assume that all schools and all students

are acceptable.

Students have types i ∈ I. We endow I ⊆ RL with a measure ν so that
∫
ν(di) = 1 and assume that

ν is absolutely continuous. Preferences and scores are determined by types. Concretely, for each i there

is a distribution Fi over the finite set of preferences over schools, with
∑

≻ Fi(≻) = 1 and Fi(≻) ≥ 0,

so Fi(≻) is the fraction of type i students having preference ≻. Additionally, a type i student has a

score esc = ec(i) ∈ [0, 1]. We assume that the probability of a tie in a school is 0 so that for all c and all

x ∈ [0, 1], ν({i ∈ I | ec(i) = x}) = 0. Conditional on a type i, the realizations of students’ preferences

and scores are independent. We thus assume that any correlation between the preferences of a student

s and her score in schools is determined by the type i of the student s ∈ S. Since a student’s type

determines scores, a student s can be characterized by her type i and preferences ≻. We denote by ν̄
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the measure induced by ν and (Fi)i∈I over the set of students.4

Let F
(k)
i (c) be the fraction of type i students that put school c in the k-th position:

F
(k)
i (c) =

∑
≻ such that c1≻...ck−1≻c

Fi(≻)

and F̄i(c) be the fraction of type i students listing school c:

F̄i(c) =
N∑
k=1

F
(k)
i (c).

Denote the set of schools listed by type i students by supp(i) = {c | F̄i(c) > 0}. We also abuse notation

and for c ∈ C we denote

supp(c) =
{
ĉ ∈ C \ {c} | ∃i ∈ I : c ∈ supp(i), ĉ ∈ supp(i)

}
the set of schools that are listed by types that also list c. We assume that the all schools are popular in

the sense that for all c,

F (1)(c) :=

∫
F

(1)
i (c)ν(di) > kc.

Our analysis can be extended to the case in which this inequality holds for some but not all schools, but

we simplify exposition by imposing the inequality in all schools. We also assume that F̄ (c) > F (1)(c) for

all c so that each school has a nontrivial mass of students that demand it but not in the top position.

2.2 Examples

We now discuss how prominent school choice models can be cast as special cases of our model.

Example 1 (Horizontal differentiation and distance-based priorities). I ⊂ R2
+ models a city and a

student’s type is her location i ∈ I in the city. Schools are located and spread across the city. Let

d(i, c) ∈ [0, 1] be a distance between a student located in i and school c.5 Similar to Abdulkadiroğlu et al.

(2017), the utility that a student located in i derives from attending school c is in part determined by

4Given any subset of students S′ ⊆ S, ν̄(S′) =
∫ ∑

≻ such that (i,≻)∈S′ Fi(≻)ν(di).
5The distance function can be arbitrary. The only relevant property is that is satisfies the triangle inequality.
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d(i, c). For example, one can generate the utility that a type i student derives from school c as

us,c = −d(i, c) + ϵi,c

where ϵi = (ϵi,c)
N
c=1 is a shock vector and has a distribution Hi.

6 In this case, we can construct the

distribution over the finite set of preferences as:

Fi(≻) = Prob[us,c1 ≥ us,c2 ≥ · · · ≥ us,cN ]

where c1 ≻ · · · ≻ cN .

Schools can rank students using a variety of criteria (including random tie breaking, discussed below).

Under distance-based priorities, the score that a student type i has in school c is given by esc = 1−d(i, c).

Several papers compare single to multiple tie breaking in school choice problems (Abdulkadiroğlu

et al., 2009; Ashlagi and Nikzad, 2020; Arnosti, 2022; Allman et al., 2022). Our model also accommo-

dates these priorities.

Example 2 (Random tie breakings). Take a school choice model in which students have no types and

students’ preferences are given by a distribution F (≻). Given the set of schools, scores at each school are

randomly determined in [0, 1]. Our general model can accommodate these random priorities as follows.

Let I = [0, 1]N be the set of types and ν be N independent uniform distributions over [0, 1]. The

c-component of a student type i ∈ [0, 1]N determines the score that student i has in school c, that

is, ec(i) = ic. In this case, our model becomes a school choice problem in which students are ranked

according to multiple tie breaking (MTB) (Abdulkadiroğlu et al., 2009).

The model can also accommodate the case of single tie breaking (STB). When I = [0, 1], and ν is the

uniform distribution on [0, 1]. A type i student has score i at each school. Our model becomes a school

choice problem in which students are ranked according to a single lottery (Abdulkadiroğlu et al., 2009).

2.3 Stable matchings

A matching is a function µ : S ∪ C → (C ∪ {∅}) ∪ 2S such that:

6Using this formulation, we can model fixed effects and also interaction effects other than distance (Abdulkadiroğlu
et al., 2017).
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i. For all s ∈ S, µ(s) ∈ C ∪ {∅};

ii. For all c ∈ C, µ(c) ⊆ S with ν̄
(
{s|µ(s) = c}

)
≤ kc;

iii. For all c ∈ C and all s ∈ S, µ(s) = c iff s ∈ µ(c).

iv. For all c, {s ∈ S | c ≻s µ(s)} is open.

The first condition says that each student is assigned to a school, the second condition says that each

school is assigned to a measure of students that does not exceed its capacity, the third condition says

that a student is assigned to a school iff the school is assigned to that student. The fourth condition

is technical and eliminates redundant matchings that differ in a measure 0 of students (Azevedo and

Leshno, 2016).

A matching µ is stable if for all s ∈ S, µ(s) ≻s ∅, and for all c ∈ C such that c ≻s µ(s), the following

conditions hold: (i) |{s|µ(s) = c}| = kc; and (ii) esc < es
′
c for all s′ with µ(s′) = c. Intuitively, a matching

is stable if there is no pair (s, c) that can block the matching (Gale and Shapley, 1962). Stability is an

important desideratum in matching theory and its may applications (Roth, 1982; Abdulkadiroğlu et al.,

2009).

To characterize stability, we follow Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016)

and find stable matchings as solutions to a supply and demand system of equations. Given cutoffs

p = (pc)
N
c=1, a student s can get admission to c if ec(i) ≥ pc. A student’s demand is given by her favorite

school among those she can get admission given p. We thus define Dc(p) as the measure of students that

demand school c as a function of cutoffs p. A stable matching can be found by means of market-clearing

cutoffs p = (pc)
N
c=1 that solve

Dc(p) = kc ∀c (2.1)

Given market-clearing cutoffs, a stable matching is built by assigning each student to her most preferred

school among those where her score exceeds the cutoff.

While the system of equations (2.1) is neat and simple to interpret, it can be solved in closed-form

solutions only for special cases. When we can find a closed-form solution to (2.1), it is simple to calculate

statistics for the resulting stable matching. However, solving the model in closed-form is unfeasible even

for relative simple models.7

7The system of equations (2.1) is non-linear in p. Under multiple tie breaking, each equation in (2.1) is polynomial of
degree N .
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3 Students assigned to their top schools

This Section states and discusses our bounds for the measure of students assigned to their top schools.

We then provide some examples and sketch some of the arguments in the proof.

For a given matching, let R(1)(c) be the mass of students assigned to school c that put c as their

top school. Obviously, 0 ≤ R(1)(c) ≤ kc. R(1)(c) is an important metric usually employed by policy

makers to evaluate the effectiveness of a matching (Abdulkadiroğlu et al., 2009). In the next Section,

we discuss other performance measures.

For each school c, we compute the demands

Λ1
c(x) =

∫
ec(i)≥x

F
(1)
i (c)ν(di) and Λ̄c(x) =

∫
ec(i)≥x

F̄i(c)ν(di)

for all x ∈ [0, 1]. Let ϕc ∈ [0, 1] and Φc ∈ [0, 1] be defined by the equations

ϕc = max
{
x ∈ [0, 1] | Λ1

c(x) = kc
}

(3.1)

Φc = min
{
x ∈ [0, 1] | Λ̄c(x) = kc

}
. (3.2)

In contrast to the cutoff pc that clears the market for school c in a stable matching, cutoffs ϕc and Φc

are entirely determined by the local demand for school c: while ϕc is determined by the mass of students

that demand c first (F 1
i (c))i, Φc is determined by the mass of students that list c in any position (F̄i(c))i.

The following result provides estimates for R(1)(c) in a stable matching.

Theorem 1. For any stable matching and all c = 1, . . . , N :

R(1)(c) ≥ kc − η̄c

∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di) (3.3)

and

R(1)(c) ≤
∫
ec(i)≥Φc

F 1
i (c)ν(di) + ηc

(∫
ec(i)≥ϕc,eĉ(i)≥ϕĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)

)
(3.4)
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where

η̄c = min
{
1,

infx∈[ϕc,Φc]
d
dx
Λ1

c(x)

supx∈[ϕc,Φc]
d
dx

(
Λ1

c(x) +
∫
ec(i)≥x,eĉ(i)<Φĉ some ĉ∈supp(c)(F̄i(c)− F

(1)
i (c))ν(di)

)}

and

ηc =
infx∈[ϕc,Φc]

d
dx
Λ1

c(x)

supx∈[ϕc,Φc]
d
dx
Λ̄c(x)

.

Theorem 1 provides estimates for the measure of students assigned to their top schools. To apply

the bounds, one computes cutoffs ϕc and Φc that are entirely determined by each school c supply and

demand. The real numbers ηc and η̄c adjust for the fact that we do not employ stable matching cuttofs

p but relaxed cutoffs ϕc and Φc. As we show below and in Section 4, Theorem 1 can be easily applied

to several examples and models.

The idea behind bounds (3.3) and (3.4) is that the measure of students assigned to their top schools

depends on how students can congest schools they do not rank top. A student that does not rank a

school c at the top may still congest it depending on her scores in c and other schools ĉ ̸= c. Thus, the

measure of students assigned to their top schools critically depends on how types determine preferences

for each school and scores across schools.

The first bound in the Theorem, inequality (3.3), provides a condition under which a high fraction of

students assigned to school c will rank it as their top school. Most students will be assigned to their top

school in c when (i) students that rank c apply to c first (F̄i(c) ≈ F
(1)
i (c)), or (ii) students that rank c

second, third, etc have a low score in c (that is,
∫
ec(i)≥ϕc

F̄i(c)−F
(1)
i (c)ν(di) ≈ 0), or, more generally, (iii)

most students that rank c second, third, etc and have a high score in c are also likely to get admission in

some other school (that is,
∫
ec(i)≥ϕc

F̄i(c)−F
(1)
i (c)ν(di) ≈

∫
ec(i)≥ϕc,eĉ(i)≥Φĉ all ĉ∈supp(c) F̄i(c)−F

(1)
i (c)ν(di)).

More generally, to evaluate inequality (4.7), we compute the measure of the set of students that rank c

second, third, etc, and have a high score in c and a low score in some other school ĉ. When this measure

is low, most students that get admission to c will naturally rank c top.

The second bound in the Theorem, inequality (3.4), provides a condition under which a low fraction

of students assigned to school c will rank it as their top school. The Theorem shows that in a stable

matching, few students assigned to school c will rank it as their top school when (i) most students that

rank c top are unlikely to have sufficiently high scores (that is, sup{F (1)
i (c)/F̄i(c) | ec(i) ≥ Φc} ≈ 0), and

(ii) most students that rank c second, third, etc and have a high score in c are unlikely to get admission
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in some other school (that is,
∫
ec(i)≥ϕc

F̄i(c) − F
(1)
i (c)ν(di) ≈

∫
ec(i)≥ϕc,eĉ(i)≤ϕĉ all ĉ

F̄i(c) − F
(1)
i (c)ν(di)).

If (i) were not satisfied, then we could secure a non-negligible mass of students for whom c is the top

choice and are sure to be assigned. Condition (ii) ensures that students for whom c is listed but is not

top are admitted to c in a stable matching.

We now illustrate the bounds. The following example shows a stable matching that results in all

students assigned to their top schools. This happens even when the preferences of both sides of the

market do not conform: in our example, some students rank a school top, but that school does not

rank those students highly. The example thus shows that system-wide effects may favor the efficiency of

stable matchings even when preferences and priorities do not conform.8 The example below also shows

that the lower bound (3.3) is tight.

Example 3. Suppose that N = 2 and I = [0, 1]. Each school has capacity k = 1
4
. Students i ≤ 1/4

are elite students, with outstanding academic performance. For i ≤ 1/4, scores are given by ec1(i) =

ec2(i) = 1− i. School c1 (resp. c2) is located in 0 (resp. 1) and students i > 1/4 are ranked according to

distance. Concretely, for i > 1/4 ec1(i) = 1− i while ec2(i) = i− 1/4. For each i, a fraction α(i) (resp.

1 − α(i)) of students rank school c1 first (resp. school c2 first). Assume that α(i) = 1 for i ≤ 1/2 and

α(i) = 0 for i > 1/2.

It is simple to see that ϕc1 = 3/4, Φc1 = 3/4, ϕc2 = 1/2, Φc2 = 3/4. We can then compute∫
ec(i)≥ϕc,eĉ(i)<Φĉsome ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)

and note that for each c = c1, c2:∫
ec1 (i)≥3/4,ec2 (i)<3/4

(1− α(i))di = 0 and

∫
ec2 (i)≥1/2,ec1 (i)<3/4

α(i)di = 0

Using Theorem 1, R(1)(c1) = R(1)(c2) = k. Note that the matching is also Pareto-efficient as all students

are assigned to their top schools.9

The next example shows that the upper bound (3.4) is tight.

8Erdil and Ergin (2008) show simulations in which the preferences of both sides of the market conform and, as a result,
the stable matching is efficient. In those simulations, priorities are given by multiple tie breaking and walk zones. As
distance becomes more important for students (in their model, that is captured by β → 1), the efficiency loss in the stable
matching goes to 0 since in the limit both sides of the market have perfectly conforming preferences. See also Salonen
and Salonen (2018) for theoretical results. See also our Theorem 2 part a.

9We will provide results about the measure of students that can be Pareto-improved in Section 4.
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Example 4. Suppose that N = 2 and I = [0, 1]. Each school has capacity k = 1
4
. Students i live in

position i with preferences given by F
(1)
i (c) = 1/2 and F̄

(1)
i (c) = 1 for each c. Schools c1 and c2 are

located at the extremes of the interval. Priorities are distance-based so the scores of agent i are given

by ec1(i) = 1− i and ec2(i) = i. It is simple to see that ϕc = 1/2 and Φc = 3/4. Thus

R(1)(c) ≤
∫
1−i≥1−k

1

2
di+

1

2

∫
1−i≥1/2,i≥1/2

1

2
di =

k

2
.

Thus bound is tight since in the unique stable matching, the cutoff equals pc = 3/4, and thus in each

school only half of the students assigned to the school rank the school first.

We close this Section by discussing the main ideas behind the proof of Theorem 1. Since ϕc solves a

market-clearing condition for a demand Λ1
c that is below the total demand Dc, we deduce that ϕc ≤ pc

for any cutoff vector p from a stable matching. Analogously, pc ≤ Φc. See Lemma 1 in the Appendix

for details.

Cutoffs ϕc and Φc are important in that they provide bounds for cutoffs p characterizing stable

matchings. More subtly, ϕc and Φc are informative about the measure of students assigned to their top

schools. Indeed, when pc = ϕc, then the number of students assigned to their top schools in c equals

kc:
10

R(1)(c) =

∫
ec(i)≥pc

F
(1)
i (c)ν(di) =

∫
ec(i)≥ϕc

F
(1)
i (c) = kc.

Similarly, we note that

R(1)(c) =

∫
ec(i)≥pc

F
(1)
i (c)ν(di) =

∫
ec(i)≥Φc

F
(1)
i (c)ν(di) +

∫
pc≤ec(i)≤Φc

F
(1)
i (c)ν(di).

It follows that R(1)(c) = 0 when Φc = pc and F
(1)
i (c) = 0 for all ec(i) ≥ Φc. In general, however,

ϕc < pc < Φc. The key technical observation is that we can bound pc − ϕc and Φc − pc by using

several market-clearing conditions. The proof (which is presented in the Appendix) thus bounds the

distance between the solutions to different non-linear market clearing equations to derive estimates for

the measure of students assigned to their top schools.

10Moreover, R(1)(c) = kc iff ϕc = pc.
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4 Priorities in school choice

In districts employing the deferred acceptance algorithm, oftentimes authorities design the priority

criteria employed by schools. For example, in cities such as Boston and Copenhagen, students get

priority based on how close they live to a school. In New Haven, students get higher priority in schools

in which they have siblings. In many cities, schools use random priorities. While in New York City a

student gets a random score that applies to all schools, in Chile each students gets a different random

score for each school. All these priority decisions impact the final assignment and performance measures.

This Section applies our bounds to distance-based priorities and random tie breaking.

Given any matching µ, a positive measure set of students S ′ ⊆ S can be Pareto-improved if there

exists a matching µ̄ such that for almost all s ∈ S, µ̄(s) ⪰s µ(s) with strict preferences for s ∈ S ′. When

the matching µ̄ is such that µ̄(c) = µ(c) for all c ∈ C \ {c′, c′′}, with c′ ̸= c′′, we say that S ′ is part of

Pareto-improving pairs. Define

P = ν̄
( ⋃

S′ can be Pareto-improved

S ′
)

and P 2 = ν̄
( ⋃

S′ is part of Pareto-improving pairs

S ′
)

When P = 0, the measure of students that can be Pareto-improved is 0 and thus the matching is

Pareto-efficient. More generally, P provides the measure of all students who could envision a Pareto-

improvement of the proposed matching µ and thus P is a metric of the efficiency of the matching.11

The set-up for this Section is the model of horizontal differentiation presented in Example 1. We fix

the demand and the capacity of each school and compute the bounds from Theorem 1 for distance-based

priorities and random priorities. While we explore random priorities within the context of the model of

horizontal differentiation, some of our bounds apply to the general random tie breaking model presented

in Example 2.

4.1 Distance-based priorities

Under distance-based priorities, school c ranks students according to esc = 1−d(i, c). In this Subsection,

we argue that the fraction of students assigned to their top schools depends on several factors, including

how much students value proximity, and the capacity and geographical dispersion of schools.

11If S′ and S′′ can be Pareto-improved, it does not follows that S′ ∪ S′′ can be Pareto-improved.
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To derive a lower bound for R
(1)
DB(c), it is useful to consider the set of all students that can get

admission to c given cutoff ϕDB
c but are rejected by some school ĉ given ΦDB

ĉ :

H(c) =
{
i | d(i, c) ≤ 1− ϕDB

c and d(i, ĉ) > 1− ΦDB
ĉ some ĉ ∈ supp(c)

}
.

H(c) estimates the set of all the students that could get admission to c but would be rejected by some

school ĉ. Theorem 1 can be used to deduce:

R
(1)
DB(c) ≥ kc − ν

(
H(c)

)
sup

d(i,c)≤1−ϕDB
c

(F̄i(c)− F
(1)
i (c)) (4.1)

This bound shows two forces that make R
(1)
DB(c) close to kc.

A. Consistent preferences and priorities. When all students living within distance 1 − ϕDB
c of

school c list c at the top,12 then R
(1)
DB(c) = kc. In this case, preferences and priorities are consistent

in the sense that students that have a high score in c (in other words, that live close to c) also rank

school c at the top. When preferences and priorities are consistent, all students will be assigned to their

top school and the matching will be efficient. The observation that consistent preferences and priorities

favor efficiency is not new and is discussed by Salonen and Salonen (2018), Echenique et al. (2020),

Cantillon et al. (2022).

B. Clustered schools. When the measure ν(H(c)) is small, then R
(1)
DB(c) is close to kc. When

ν(H(c)) is close to 0, then most students that have a score high enough for school c also have score high

enough in other schools ĉ. In this case, schools are clustered and distance-based priorities result in a

subset of students who are close to all schools and can get admission anywhere. As a result, many of

those students get accepted to the school they like the most.13

The following example shows that under distance-based priorities, all students can be assigned to

their top schools because, even when preferences and priorities are not consistent, because there is a set

of students that live close to all schools and thus each of those students get accepted to her top school.

12That is, when for all i such that d(i, c) ≤ 1− ϕDB
c , F̄i(c) = F

(1)
i (c).

13This intuition is similar to the idea that under single-tie breaking, many students are assigned to their top schools
(Allman et al., 2022).
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Example 5 (Clustered schools). Suppose that N = 2 and I = [0, 1]. Each school has capacity k < 1/2.

A fraction α(i) (resp. 1 − α(i)) of students rank school c1 first (resp. school c2 first) and we assume

that α(i) = 1− α(1− i) for all i < 1/2. Both schools are located at 1/2. In the unique stable matching,

pc1 = pc2 = k. Students in Ĩ = [1
2
− p, 1

2
+ p] could get accepted to both schools and thus

R
(1)
DB(c1) = R(1)(c2) = k.

C. Strong competition and weak preferences for location. We now derive an upper bound

for R
(1)
DB(c) and show how competition places upper bounds on the number of students assigned to their

top schools. Consider the set of all students that could get admission to c and ĉ given cutoffs ϕDB
c and

ϕDB
ĉ :

A(c, ĉ) =
{
i | d(i, c) ≤ 1− ϕDB

c

}
∩
{
i | d(i, ĉ) ≤ 1− ϕDB

ĉ

}
. (4.2)

Note that if d(i, c) ≤ 1− ϕDB
c , by the triangle inequality, d(i, ĉ) ≥ d(c, ĉ)− d(i, c) ≥ d(c, ĉ)− 1+ ϕc. So,

the set in equation (4.2) is empty whenever

2 ≤ d(c, ĉ) + ϕDB
c + ϕDB

ĉ (4.3)

for all c ̸= ĉ. The triangle inequality used to derive this condition captures an important intuition

about congestion under distance-based priorities: When cutoffs in schools are high, having a score high

enough for some schools implies that the scores in other schools are below the cutoffs. This means that

under distance-based priorities, students located near a school will have limited chances to attend other

schools which, as shown below, makes efficiency much harder.

Condition (4.3) holds for all schools provided that for all c

1. The function x ∈ [0, 1] 7→
∫
d(i,c)<x

F
(1)
i (c)ν(di) has strictly positive derivative at x = 0;

2. d(c, ĉ) > 0 for all ĉ ̸= c; and

3. kc is small enough;

The first condition says that each school has demand arbitrarily close to it. It is relatively simple to

show that under the first condition, ϕDB
c → 1 as kc → 0. Since d(c, ĉ) > 0, it follows that (4.3) holds

when all capacities (kc)
N
c=1 are small enough.
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Under (4.3), it is simple to apply Theorem 1 to obtain:

R
(1)
DB(c) ≤ kc sup

d(i,c)≤1−ΦDB
c

F
(1)
i (c)

F̄i(c)
(4.4)

When capacities are low, under distance-based priorities some students get assigned to a nearby school

that is not their top choice. This puts an upper bound on the fraction of students assigned to their

most preferred schools.14 Under distance-based priorities, each student may get admission to only one

school, which may or may not be her top school.

The next example shows that under (4.3), it is entirely possible that an arbitrarily small fraction of

students are assigned to their top schools.

Example 6. Suppose that N = 2 and I = [0, 1]. Each school has capacity k < 1/2. A fraction α(i) (resp.

1−α(i)) of students rank school c1 first (resp. school c2 first) and we assume that α(i) = 1−α(1− i) for

all i < 1/2. Assume that α(i) is increasing in i with α(i) > 0 for all i ∈ [0, 1]. This means that students

tend to value schools that are farther away. Schools rank using distance-based priorities. Under∫
i≤1/2

α(i) > k. (4.5)

it follows that ϕDB(c) > 1/2 and (4.3) holds. Since Λ̄(x) = 1 − x, it is simple to see that Φ = 1 − k.

Clearly,

R
(1)
DB(c) ≤ k sup

i≤k
α(i) = kα(k)

It follows that for any ϵ > 0, there exists an increasing function α and k < 1/2 such that (4.5) holds

and R
(1)
DB(x) < ϵ for all c.15

4.2 Random priorities

This Subsection applies our bounds to the widely studied model of school choice with random priorities

(Abdulkadiroğlu et al., 2009; Ashlagi and Nikzad, 2020; Arnosti, 2022; Allman et al., 2022).

14Clearly, the bound is non-trivial only when some of the students living close to c list the school not in the top.
15Take α(i) ≥ ϵi for all i ∈ [0, 1/2] and k < ϵ/2. Then, R(1) ≤ kα(k) < ϵ/2 < ϵ.
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It is simple to see that under single or multiple tie breaking, cutoffs are identical and given by

ϕRP
c = 1− kc

F (1)(c)
and ΦRP

c = 1− kc
F̄ (c)

(4.6)

Using Theorem 1, we deduce that under multiple tie breaking, for each school c16

kc

(
F (1)(c)

F (1)(c) + (F̄ (c)− F (1)(c))
(
1−

∏
ĉ∈supp(c)

kĉ
F̄ (ĉ)

))

≤ R
(1)
MTB(c) ≤ kc

1− F̄ (c)− F (1)(c)

F̄ (c)

∏
ĉ∈supp(c)

(
1− kĉ

F (1)(ĉ)

) (4.7)

Since F̄ (c) > F (1)(c), both the upper and the lower bound for R
(1)
MTB(c) are informative. Under multiple

tie breaking, some students will be assigned to school c even when c is not their top school, but there

will always be some students assigned to their top schools.

Our results can also be used to obtain bounds when priorities are derived using single tie breaking.

It is immediate to see that

R
(1)
STB(c) ≥ R

(1)
MTB(c)

whenever
kc

F (1)(c)
≤

min{ kĉ
F̄ (ĉ)

| ĉ ̸= c}
1−

∏
ĉ ̸=c(1−

kĉ
F (1)(ĉ)

)
.

This bound says that when school c is sufficiently popular (that is, kc
F (1)(c)

is small enough), more students

are assigned to c in the top position under single tie breaking than under multiple tie breaking. See

Abdulkadiroğlu et al. (2009), Allman et al. (2022), Ashlagi and Nikzad (2020), and Arnosti (2022) for

similar results.17

16For multiple tie breaking, is is possible to derive bounds that do not use Theorem 1. By definition,

R(1)(c) = F (1)(c)(1− pc) ∈ [kc(1− Φc), kc(1− pc)] = [kc
F (1)(c)

F̄ (s)
, kc].

The bounds given in (4.7) are strictly sharper than these simple bounds.
17Our bound restricts the popularity of the school c but puts no restriction on the demand for schools, in contrast to

previous results.
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4.3 Comparing priorities

We now compare distance-based priorities and multiple tie breaking. We evaluate these priority criteria

using the fraction of students assigned to their top schools and the fraction of students that can be

Pareto-improved.

Theorem 2. a. Suppose that for all c and all d(i, c) ≤ 1− ϕDB
c , F̄i(c) = F

(1)
i (c). Then, for all c

R
(1)
DB(c) = kc and and P 2

DB = PDB = 0.

In particular, no alternative priority criterion can result in more students assigned to top schools

than distance-based priorities.

b. Assume condition (4.3) and that for all c,

sup
d(i,c)≤1−ΦDB

c

(F (1)
i (c)

F̄i(c)
− F (1)(c)

F̄ (c)

)
≤

(
1− F (1)(c)

F̄ (c)

)(∏
ĉ∈supp(c)

kĉ
F̄ (ĉ)

)
1 + ( F̄ (c)

F (1)(c)
− 1)

(
1−

∏
ĉ∈supp(c)

kĉ
F̄ (ĉ)

) (4.8)

Then, for all c

R
(1)
DB(c) < R

(1)
MTB(c).

If we additionally assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I, then

P 2
MTB = PMTB < PDB = P 2

DB.

The first part shows that when students value distance strongly, then all students are assigned to their

top schools under distance-based priorities. To see how the sufficient conditions can be satisfied, fix I, ν,

the set of schools C, the distance function d(i, c), the distribution F̄i(c), and the capacities kc. For c ∈ C,

compute ΦDB
c and assume that capacities are low enough so that {i | ec(i) ≥ Φc} ∩ {i | eĉ(i) ≥ Φĉ} = ∅

for all c ̸= ĉ. Now, construct Fi such that for all i ∈ Ic, type i students rank c first. This implies that

F̄i(c) = F
(1)
i (c) for all i ∈ Ic and therefore ϕDB

c = ΦDB
c and

sup
d(i,c)≤1−ϕDB

c

F̄i(c)− F
(1)
i (c) = 0.

The second part of the result provides conditions under which multiple tie breaking assigns more
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students to their top schools than distance-based priorities. Note that when types do not determine

preferences, that is Fi(≻) = F (≻) for all i ∈ I, then the left-hand side of (4.8) equals 0 and thus

condition (4.8) holds. More generally, condition (4.8) captures the idea that types have only a mild

impact on preferences so that the ratio
F

(1)
i (c)

F̄i(c)
stays relatively flat as a function of i and close to F (1)(c)

F̄ (c)
.18

Behind this result is the idea that when preferences for nearby schools are weak and competition is

strong, distance-based priorities assign some students to schools just because they live nearby even

when those schools are not ranked top by them, while under multiple tie breaking those students still

have a chance to get accepted in their top schools.

Theorem 2 also compares the fractions of students that can be Pareto improved. It is relatively

simple to prove that for any matching µ, P2 ≤ P and

N∑
c=1

R(1)(c) + P ≤
N∑
c=1

kc. (4.9)

We then prove that, under the conditions of the Theorem, these inequalities bind and therefore the

fraction of students assigned to top schools and the fraction of students that can be Pareto-improved

add up to the total capacity of schools. See Appendix B.1.

Inequality (4.9) can be strict in some important cases. For example, under single tie breaking the

matching is Pareto-efficient, but it is possible that not all students are assigned to their top schools.

Example 7 in Appendix B.1 shows that under distance-based priorities, inequality (4.9) can be strict

when condition (4.3) does not hold.

5 Simulations

We now verify our results in a simulated economy with a finite number of students and a finite number

of schools. We construct an economy with 10, 000 students and 100 schools with 50 seats each. Schools

are located at the integer points of a 10× 10 grid and students are randomly located within this grid.

18Note that both conditions (4.8) and (4.3) restrict F and k. They simultaneously hold when types have a limited
impact on preferences so that for all c

sup
i

F
(1)
i (c)

F̄i(c)
≤ F (1)(c)

F (1)(c) + (F̄ (c)− F (1)(c))
(
1−

∏
ĉ∈supp(c)

kĉ

F (1)(ĉ)

)
and, given preferences, kc is small enough so that (4.3).
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Each student is surrounded by four schools, and those are the only schools a student applies to. The

utility that a student s gets if she is assigned to one of the schools c that surround her is

u(s, c) = α(1− d(s, c)) + (1− α)ϵs,c

where d(s, c) is the Euclidean distance between student s and school c, ϵs,c ∼ U [0, 1] are i.i.d idiosyncratic

noise terms. Parameter α captures the relevance of school proximity in students’ preferences. When α

is close to 1, proximity to schools fully determines a student’s preferences. Conversely, when α is close

to 0, students’ preferences are random and proximity to schools plays no role.

We compare three priority criteria (MTB, STB, DB) in terms of the fraction of students assigned

to their top schools. As suggested by Theorem 2, these comparisons will crucially depend on α. When

proximity is important (α close to 1), Theorem 2 (a) shows that DB results in more students assigned

to their top schools than SB. More subtly, when proximity is moderately important (α small), Theorem

2 (b) shows that MTB assigns more students to their top schools than DB. Figure 1 shows the expected

fraction of students assigned to top schools for MTB, STB, and DB for different values of α ∈ [0, 1].

This exercise confirms our theoretical predictions in the finite economy model.19

19Figure 1 also shows that STB results in more students assigned to top schools than MTB priorities, as in Abdulka-
diroğlu et al. (2009).
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Figure 1: Comparison of priority criteria for different preferences.

6 Concluding remarks

This paper provides performance estimates for stable matchings. Stable matchings are hard to analyze

because comparative statics results and closed-form formulas are typically unfeasible. Quantifying the

performance of stable matching is a useful step to understand some tradeoffs in the design of matching

markets and inform policy decisions.

Our paper makes two main contributions. First, we provide tight lower and upper bounds for the

measure of students assigned to top schools. These bounds apply to a general matching model and can

be easily used in applications. Second, we examine the impact of distance-based priorities in school

choice. While several school districts employ proximity as a priority criterion, little is known about

how this policy decision affects the outputs of the deferred acceptance algorithm. We show that when

students highly value proximity, efficient outcomes are achievable. However, under weaker proximity

preferences, even multiple tie breaking may assign more students to their top choices than distance-
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based priorities. Future research could sharpen our bounds. It would also be interesting to estimate

other performance measures, including different diversity metrics.
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Appendix

A Proof of Theorem 1

Define Pk,c as the set of all orderings ≻ such that school c lies in position k. Given cutoffs p ∈ [0, 1]N ,

the demand for school c can be written as

Dc(p) =

∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di)

The demand is built in the following way. Fix a student type i that has school c as its k-th preference.

For each one of these student types, a mass Fi(≻) reveals preference ordering ≻∈ Pk,c. However, only a

fraction of Fi(≻) effectively demands school c. These are students rejected at all k− 1 schools preferred

over c according to ≻ (eĉ(i) < pĉ∀ĉ ≻ c) and accepted at school c (ec(i) ≥ pc). Then, adding up over all

possible ranking positions k, all preference orderings ≻∈ Pk,c with positive measure (Fi(≻) > 0), and

aggregating over all student types i ∈ I, we get the total demand for school c.

The following result is useful to derive our efficiency bounds.

Lemma 1. Let p be a market-clearing cutoff vector characterizing a stable matching. Then, for all c,

ϕc ≤ pc ≤ Φc.

Proof. For any x ∈ [0, 1]N , Λ1
c(xc) ≤ Dc(x) ≤ Λ̄(xc) which are all decreasing in xc. Then, fix any p−c

and let ϕc, pc,Φc be solutions to Λ1
c(ϕc) = kc, Dc(pc, p−c) = kc and Λ̄c(Φc) = kc respectively, it is true

that ϕc ≤ pc ≤ Φc.
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A.1 Upper Bound

Let p be a cutoff vector for a stable matching. Then

kc = Dc(p)

=

∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di)

≥
∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

Fi(≻)ν(di)

=

∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

N∑
k=2

∑
≻∈Pk,c

Fi(≻)ν(di)

=

∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

N∑
k=2

F
(k)
i (c)ν(di)

=

∫
ec(i)≥pc

F
(1)
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F

(1)
i (c)

)
ν(di)

:= Λ(pc).

To see the inequality above, note that for any k = 2, . . . , N , ≻∈ Pk,c, and ĉ ≻ c, it follows that

ĉ ∈ supp(i) \ {c}. Thus, for any k = 2, . . . , N and ≻∈ Pk,c{
i ∈ I | ec(i) ≥ pc, eĉ(i) < pĉ∀ĉ ≻ c

}
⊇
{
i ∈ I | ec(i) ≥ pc, eĉ(i) < pĉ∀ĉ ∈ supp(i) \ {c}

}
and therefore ∫

ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di) ≥
∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

Fi(≻)ν(di)

Since Λ̄(Φc) = kc ≥ Λ(pc)

0 ≤ Λ̄(Φc)− Λ(pc) = Λ̄(pc) +

∫ Φc

pc

Λ̄′(s)ds− Λ(pc) ≤ (Φc − pc) sup
x∈[ϕc,Φc]

Λ̄′ + Λ̄(pc)− Λ(pc)
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therefore

(Φc − pc)
(
− sup Λ̄′

)
≤ Λ̄(pc)− Λ(pc)

=

∫
ec(i)≥pc

(F̄i(c)− F
(1)
i (c))ν(di)−

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F

(1)
i (c)

)
ν(di)

=

∫
ec(i)≥pc,eĉ(i)≥pĉ for some ĉ∈supp(i)\{c}

(F̄i(c)− F
(1)
i (c))ν(di)

≤
∫
ec(i)≥ϕc,eĉ(i)≥ϕĉ for some ĉ∈supp(i)\{c}

(F̄i(c)− F
(1)
i (c))ν(di)

=

∫
ec(i)≥ϕc

(F̄i(c)− F
(1)
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)<ϕĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F

(1)
i (c)

)
ν(di).

Since sup Λ̄′ < 0, it follows that

(Φc − pc)

≤ 1(
− sup Λ̄′

)( ∫
ec(i)≥ϕc

(F̄i(c)− F
(1)
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)<ϕĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F

(1)
i (c)

)
ν(di)

)
Finally,

R(1)(c) =

∫
ec(i)≥pc

F
(1)
i (c)ν(di)

=

∫
ec(i)≥Φc

F
(1)
i (c)ν(di) +

∫
pc≤ec(i)≤Φc

F
(1)
i (c)ν(di)

≤
∫
ec(i)≥Φc

F
(1)
i (c)ν(di)

+
supx∈[ϕc,Φc]

d
dx
(−
∫
ec(i)≥x

F
(1)
i (c)ν(di))(

− sup Λ̄′
) ( ∫

ec(i)≥ϕc

(F̄i(c)− F
(1)
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)<ϕĉ,∀ĉ∈supp(i)\{c}

(
F̄i(c)− F

(1)
i (c)

)
ν(di)

)
where the inequality follows since∫

pc≤ec(i)≤Φc

F
(1)
i (c)ν(di) = Λ1(pc)− Λ1(Φc) ≤ (Φc − pc) sup

x∈[ϕc,Φc]

d

dx
(−Λ1(x)).
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It follows that

R(1)(c) ≤
∫
ec(i)≥Φc

F
(1)
i (c)ν(di) + ηc

∫
ec(i)≥ϕc,eĉ(i)>ϕĉ some ĉ∈supp(i)\{c}

(F̄i(c)− F
(1)
i (c))ν(di)

≤
∫
ec(i)≥Φc

F
(1)
i (c)ν(di) + ηc

∫
ec(i)≥ϕc,eĉ(i)>ϕĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)

A.2 Lower Bound

Let p be the cutoff vector for a stable matching. Define

Λ̂c(x) = Λ1
c(x) +

∫
ec(i)≥x,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)

and note that

Λ̂c(pc) ≥ Dc(p) = kc

Since Λ1
c(ϕc) = kc,

Λ1
c(ϕc) ≤ Λ̂c(pc) ≤ Λ̂c(ϕc) + (pc − ϕc) sup

x∈[ϕc,Φc]

d

dx
Λ̂c(x)

Rearranging terms,

pc − ϕc ≤
−1

supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)

Now,

R1(c) =

∫
ec(i)≥pc

F
(1)
i (c)ν(di)

=

∫
ec(i)≥ϕc

F
(1)
i (c)ν(di)−

∫
ϕc≤ec(i)≤pc

F
(1)
i (c)ν(di)

≥ kc − (pc − ϕc) sup
x∈[ϕc,Φc]

− d

dx
Λ1

c(x)

≥ kc −
supx∈[ϕc,Φc] −

d
dx
Λ1

c(x)

− supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F
(1)
i (c))ν(di)
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Note that

R1(c) ≥ kc −
N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥ϕc,eĉ(i)<Φc ∀ĉ≻c

Fi(≻)ν(di)

≥ kc −
N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ≻c

Fi(≻)ν(di)

= kc −
∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ≻c

(F̄i(c)− F 1
i (c))ν(di),

Setting

η̄c = min
{
1,

supx∈[ϕc,Φc] −
d
dx
Λ1

c(x)

− supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

}
it follows that

R1(c) ≥ kc − η̄c

∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

B Proof of Theorem 2

We apply Theorem 1 for each priority scheme.

Multiple tie breaking: Recall that in this setting I = [0, 1]N and ν are N independent uniform

distributions. First, we can specify Λ1
c(x) and Λ̄c(x):

Λ1
c(x) =

∫
ec(i)≥x

F 1
i (c)ν(di) =

∫ [∫ 1

x

F 1
i (c)du

]
ν(di) =

∫
F 1
i (c)ν(di)

∫ 1

x

du = F 1(c)(1− x)

Λ̄c(x) =

∫
ec(i)≥x

F̄i(c)ν(di) =

∫ [∫ 1

x

F̄i(c)du

]
ν(di) =

∫
F̄i(c)ν(di)

∫ 1

x

du = F̄i(c)(1− x)

where the first equality obviates the N − 1 integrals of measure 1. Therefore

ϕc = 1− kc
F 1(c)

Φc = 1− kc
F̄ (c)
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Similarly,

Λc(x) = Λ1
c(x) +

∫
ec(i)≥x,eĉ(i)<Φĉ for some ĉ ∈ supp(c)

(F̄i(c)− F 1
i (c))ν(di)

= F 1(c)(1− x) +

∫
ec(i)≥x

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥x,eĉ(i)≥Φĉ∀ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

= F 1(c)(1− x) +

∫ [∫ 1

x

(F̄i(c)− F 1
i (c))du

]
ν(di)−

∫ [∫ 1

x

∫ 1

Φĉ,∀ĉ̸=c

(F̄i(c)− F 1
i (c))du

]
ν(di)

= F 1(c)(1− x) + (F̄ (c)− F 1(c))(1− x)− (F̄ (c)− F 1(c))(1− x)
∏
ĉ ̸=c

(1− Φĉ)

= F 1(c)(1− x) + (F̄ (c)− F 1(c))(1− x)

[
1−

∏
ĉ̸=c

kĉ
F̄ (ĉ)

]

Having calculated, Λ1
c(x), Λ̄c(x),Λc(x), we have that

η̄c = min

{
1,

infx∈[ϕc,Φc]
d
dx
(Λ1

c(x))

supx∈[ϕc,Φc]
d
dx
(Λc(x))

}

= min

1,
infx∈[ϕc,Φc] −F 1(c)

supx∈[ϕc,Φc] −F 1(c)− (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]


=
F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
and

ηc = min
infx∈[ϕc,Φc]

d
dx
(Λ1

c(x))

supx∈[ϕc,Φc]
d
dx
(Λ̄c(x))

=
infx∈[ϕc,Φc] −F 1(c)

supx∈[ϕc,Φc] −F̄ (c)

=
F 1(c)

F̄ (c)

Using the same logic to measure sets correctly, we can now calculate our bounds

R(1)(c) ≥ kc −
F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

] kc
F 1(c)

(F̄ (c)− F 1(c))

[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]

= kc

 F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]

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and

R(1)(c) ≤ F 1(c)
kc

F̄ (c)
+

F 1(c)

F̄ (c)
(F̄ (c)− F 1(c))

kc
F 1(c)

[
1−

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

)]

=
kc

F̄ (c)

[
F 1(c) +

F̄ (c)− F 1(c)

F̄ (c)

[
1−

∏
ĉ̸=c

(
1− kĉ

F 1(ĉ)

)]]

= kc

[
1− F̄ (c)− F 1(c)

F̄ (c)

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

)]

Distance-based: In this setting we compute ϕDB
c . Then, we take our bounds from Theorem 1 and

continue to bound

R(1)(c) ≥ kc − η̄c

∫
ec(i)≥ϕDB

c ,eĉ(i)<Φĉ for some ĉ ∈ supp(c)

(F̄i(c)− F 1
i (c))ν(di)

≥ kc − 1

[∫
ec(i)≥ϕDB

c

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥ϕDB

c ,eĉ(i)>Φĉ∀ĉ∈supp(c)
(F̄i(c)− F 1

i (c))ν(di)

]
≥ kc −

∫
ec(i)≥ϕDB

c

(F̄i(c)− F 1
i (c))ν(di)

= kc −
∫
ec(i)≥ϕDB

c

F̄i(c)− F 1
i (c)

F 1(c)
F 1(c)ν(di)

≥ kc − kc sup
i:ec(i)≥ϕDB

c

F̄i(c)− F 1
i (c)

F 1(c)

= kc

(
1− sup

i:d(i,c)≤1−ϕDB
c

F̄i(c)− F 1
i (c)

F 1(c)

)

and

R(1)(c) ≤
∫
ec(i)≥ΦDB

c

F 1
i (c)ν(di) + 0

=

∫
ec(i)≥ΦDB

c

F 1
i (c)

F̄i(c)
F̄i(c)ν(di)

≤ kc sup
i:ec(i)≥ΦDB

c

F 1
i (c)

F̄i(c)

= kc sup
i:d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
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Now that we have our bounds, we need to construct a condition such that the lower bound for

multiple tie breaking is larger than the upper bound for distance-based priorities:

sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
≤ kc

 F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]


sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤ F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

] − F 1(c)

F̄ (c)

sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤

F 1(c)F̄ (c)− F 1(c)F 1(c)− F 1(c)(F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
F̄ (c)F 1(c) + F̄ (c)(F̄ (c)− F 1(c))

[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
sup

d(i,c)≤1−ΦDB
c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤

(
1− F 1(c)

F̄ (c)

)∏
ĉ ̸=c

kĉ
F̄ (ĉ)

1 +
(

F̄ (c)
F 1(c)

− 1
) [

1−
∏

ĉ ̸=c
kĉ

F̄ (ĉ)

]
which proves the result.

B.1 Students assigned to top schools and Pareto efficiency

Lemma 2. a. For any matching µ, P2 ≤ P and

N∑
c=1

R(1)(c) + P ≤
N∑
c=1

kc. (B.1)

b. Assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I. When priorities are built from multiple

tie breaking and µ is stable, then P2 = P and (B.1) holds with equality.

c. Assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I. Assume priorities are distance-based,

and that conditions (4.8) and (4.3) hold. Then P2 = P and (B.1) holds with equality.

Proof of Lemma 2. Let µ be any matching and take S1 as the set of all students assigned to their top

schools. Clearly, no subset of S1 can be Pareto improved. Let

SP =
⋃

S′′ can be Pareto improved

S ′′
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and note that SP ⊆ {s | s is assigned by µ}. It follows that

S1 ∪ SP ⊆ {s | s is assigned} and S1 ∩ SP = ∅.

As a result,

ν̄(S1) + ν̄(SP ) ≤ ν̄({s is assigned}).

Since ν̄(S1) =
∑

c R
(1)(c), ν̄(SP ) = P and ν̄({s is assigned }) ≤

∑
c kc, we deduce that

∑
c

R(1)(c) + P ≤
∑
c

kc.

Take now a stable matching under multiple tie breaking. Consider any student s who is assigned to

a school that is not her top choice. We will argue that there is a positive measure set S ′, that contains

s, such that S ′ is part of Pareto-improving pairs. Let c = µ(s) and consider a school ĉ and a set of

students Ŝ assigned to c such that Ŝ has positive measure and contains s, and all students in Ŝ prefer

ĉ over c. Consider the set of all students who prefer c over ŝ but only have scores to get admission to ĉ:

S̄ = {s ∈ S | c ≻s ĉ, iĉ ≥ pĉ, pc′ > ic′∀c′ ̸= ĉ}.

Clearly,

ν̄(S̄) =
( ∫

P[c ≻ ĉ | i]ν(di)
)
(1− pĉ)

∏
c′ ̸=ĉ

pc′ > 0

Without loss, assume that ν̄(S̄) = ν̄(Ŝ).20 Construct the matching µ̄ by µ̄(c′) = µ(c′) for all c′ ∈ C\{c, ĉ}
and

µ̄(c) = (µ(c) ∪ S̄ \ Ŝ and µ̄(ĉ) = (µ(ĉ) ∪ Ŝ \ S̄.

It follows that µ̄ is a matching and S ′ = S̄ ∪ Ŝ is part of Pareto-improving pairs. As a result,

{s is assigned to a school that is not her top) ≤
⋃

S̃ is part of Pareto-improving pairs

S̃

and since

ν̄({s is assigned to a school that is not her top) =
∑
c

(kc −R(1)(c))

20If not, scale down the set with the largest measure so that the measures coincide.
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it follows that
N∑
c=1

(kc −R(1)(c)) ≤ ν̄(
⋃

S̃ is part of Pareto-improving pairs

S̃) = P2.

We deduce that under multiple-tie breaking, P = P2 and
∑N

c=1(kc − R(1)(c)) = P2. The proof for

distance-based priorities is analogous.

The following example shows that under distance-based priorities, inequality (4.9) can be strict when

condition (4.3) does not hold.

Example 7. Suppose that N = 2 and I = [0, 1]. School c1 has capacity k1 and is located in 3/4, while

school c2 has capacity k2 and is located in 1. Students find both schools acceptable and for each i, a

fraction 1/2 of students prefer c1 over c2.

Under distance-based priorities, we characterize a stable matching such that all students with score

above the cutoff p1 also have score above p2 for school c2:∫
|i−3/4|<1−p1

1

2
di = k1 and

∫
i>p2

di−
∫
|i−3/4|<1−p1

1

2
di = k2.

The first condition is the market clearing condition for school c1: the demand for school 1 is given by

half of the student living within distance p1 of the schools. The second condition is the market clearing

condition for school c2: the demand for school 2 is given by all students living with distance p2 of schools

2 minus the fraction of students that get admission to school 1. We can solve for the cutoffs:

(1− p1) = k1 1− p2 = k1 + k2

with 3/4 − k1 > 1 − (k1 + k2) (so that students that can be accepted to c1 can also be accepted to c2).

For k2 > 1/4 and k1 < k2,

R
(1)
DB(c1) = k1 and R

(1)
DB(c2) =

(k2 − k1)

2
.

The matching is Pareto-efficient and P = 0, but

∑
c

R(1)(c) + P <
∑
c

kc.
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