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Abstract

Centralized school assignment mechanisms play an important role in educational

policy worldwide. In these systems, families face the non-trivial task of discovering

and ranking schools. We evaluate the impact of information protocols on equilibrium

search behavior and social welfare. We study a large market model in which students

are assigned to schools using the deferred acceptance algorithm. We show that full

transparency about the number of seats in the market is suboptimal. We also examine

the effects of disclosing information about schools that are likely to be attractive to

students, showing that transparency regarding top choices reduces congestion and in-

creases welfare. Our analysis provides new insights for market designers as information

interventions may subtly affect behavior and welfare.

1 Introduction

Centralized mechanisms for assigning students to schools are an essential tool for pol-

icymakers globally. The deferred acceptance algorithm proposed by Gale and Shapley

(1962) is a common practice in this domain, providing a stable matching based on the
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preferences of schools and students. While this algorithm ensures truthfulness in report-

ing preferences (Roth, 1982), families face the daunting task of discovering and ranking

schools.

The resultant uncertainty presents challenges and opportunities for authorities. Poli-

cymakers often institute protocols to assist families in their applications within matching

markets. Some interventions, such as those detailed by Arteaga et al. (2022) and Elacqua

et al. (2022), provide families with information about market congestion levels, encour-

aging them to apply to a broader range of schools. Others, as discussed by Hastings

and Weinstein (2008), Andrabi et al. (2017), and Correa et al. (2022), offer information

about schools’ characteristics, aiding families in identifying attractive options based on

location and academic performance.

While information protocols offer valuable guidance, it is well-established in the liter-

ature that information in markets and multi-person interactions can have subtle effects

and, if mismanaged, may lead to reduced welfare.1 This observation becomes particu-

larly significant in matching markets utilizing the deferred acceptance algorithm. Here,

the efforts of individual families to search and apply to schools may impact the admission

chances of others and create excess demand for certain schools.

Our primary goal is to shed light on the impact of information interventions in

matching markets. Focusing on a centralized school choice setting where students are

assigned to schools using the deferred acceptance algorithm, we explore the policymaker’s

role in designing information protocols. Is transparency socially desirable? Should

authorities refrain from disclosing some information? Is the impact of the intervention

different when information is about admission probabilities than when information is

about characteristics of schools?

To address these questions, we employ a large market model where a continuum of

students applies to a finite number of schools (Azevedo and Leshno, 2016). Students

face uncertainty about the available seats, and all schools have excess demand. Families

discover schools through costly searching, deciding how many schools to inspect to form

rank order lists. Families submit applications, schools rank applicants randomly, and

the deferred acceptance algorithm outputs a stable matching (Gale and Shapley, 1962).

In our model, students face uncertainty about market congestion and do not know

the schools they like. Students can inspect schools. The number of schools a student

1The literature includes Hirshleifer (1971), Kamien et al. (1990), Levin (2001) and recent works on infor-
mation design in games such as Taneva (2019) and Bergemann and Morris (2016).
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inspects depends on market fundamentals, including her belief about the supply of seats.

Critically, search effort is determined by admission probabilities, and since these proba-

bilities depend on the search intensity of all market participants, search behavior must

be determined in equilibrium. Our results characterize equilibrium search patterns and

the influence of information on equilibrium behavior and welfare.

Our first set of results characterizes equilibrium behavior. We show that by increasing

the number of searched schools, a student reduces the chances of other students getting

admission to their listed schools. Searching thus generates a negative externality. We

also show that the model has strategic complementarities: the more a student searches,

the larger the number of schools inspected by other students (Milgrom and Roberts,

1990). In equilibrium, students over-search and equilibria are Pareto-ranked.

The second set of results describes how information provision about the number

of seats in the market changes equilibrium behavior and welfare. We show that full

transparency is never optimal. When capacity turns out to be low, market congestion

intensifies, and search behavior becomes overly intense under full transparency. Us-

ing information design tools, we show that a policymaker can avoid this outcome by

withholding some information (Kamenica and Gentzkow, 2011).

Our final set of results explores the impact of disclosing information about schools.

When the policymaker knows and discloses the name of her most preferred school to

each student, the incremental value of learning is reduced for the student, resulting

in reduced equilibrium congestion. By simplifying the decision problem of each family

and reducing congestion, disclosing top schools results in welfare gains. In contrast,

disclosing unattractive schools likely to be listed at the bottom of the rank order list

increases equilibrium congestion and results in welfare losses.

Our analysis hinges on strategic complementarities in search behavior. This prop-

erty depends on two critical restrictions in the model: valuations for schools follow

independent distributions governed by a distribution that satisfies the monotone hazard

rate property, and market congestion remains bounded. Exploiting these constraints, we

demonstrate that as the search behavior of one student intensifies, so does that of others.

This property allows us to leverage the theory of supermodular games to derive com-

parative statics results with respect to beliefs and to evaluate the impact of information

interventions on market outcomes (Milgrom and Roberts, 1990).

Beyond its technical implications, the notion that a student’s search intensity in-
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creases with the actions of others is empirically plausible. Arteaga et al. (2022) shows

evidence from school choice programs in Chile and the US, where some families are

informed about market congestion. They show that students engage in more active

search behavior when they hold less optimistic views about their admission possibilities,

substantiating the idea of strategic complementarities in search patterns.

Regarding practical implications, our theory provides important insights for the de-

sign of informational policies in matching markets.

Providing information that motivates increased search and applications is not guar-

anteed to result in Pareto improvements. Students who expand their rank order list after

the information intervention would undoubtedly improve their admission chances, but

that comes at the cost of leaving some other students unassigned or assigned to worse

schools. Our model suggests that the evaluation of policies that disclose information

to motivate search needs careful consideration of the winners and losers created by the

intervention.

Targeted information interventions to motivate increased search could encourage

some students to add schools with available seats, as in (Arteaga et al., 2022). While

those seats would still be available in the aftermarket,2 information interventions dur-

ing the regular application process could facilitate search. As the interventions expand,

the gains from additional applications to schools with slack capacity would eventually

exhaust and the congestion effects captured by our model will become relevant.

Our model suggests that limiting the number of applications may be socially desir-

able. Imposing upper bounds on the number of schools students can apply to, a policy

present in many school choice and college admission systems, could be an effective tool.

Additionally, maintaining families’ optimism about their admission chances may serve

as another means to avoid an excessive number of applications.

Providing families with personalized information about schools they are likely to value

has double benefits. It allows families to economize on search costs while simultaneously

reducing market congestion and increasing overall welfare. Policies informing families

about nearby schools or those with excellent academic performance could be particularly

beneficial, but only when the disclosed schools align with the families’ preferences.

Our theory provides a simple test to evaluate the welfare impact of a protocol dis-

closing personalized information about schools. The suggested schools’ positions in the

2School choice systems typically have an aftermarket procedure in which students can get admission to
uncongested schools.
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rank order list serve as a clear indicator: when placed at the top, welfare is likely to

increase due to reduced congestion; when situated towards the bottom, the protocol may

contribute to congestion and reduce welfare.

Related Literature. Our paper relates to several theoretical works exploring in-

formational aspects in matching markets.3 Chen and He (2022) compares information

acquisition in the Immediate and deferred acceptance algorithms. Most closely related,

Immorlica et al. (2020) explores a college admissions model in which students form their

preferences by acquiring costly information. To capture the information acquisition pro-

cess, they explore the notion of regret-free stability and show how historical information

can be used to induce efficient price discovery. In our model, students acquire informa-

tion about schools before the matching. This is particularly relevant in school choice

markets where the supply of seats and schools is uncertain and changes over time. Our

results emphasize how students search under uncertainty and how information policies

alter search behavior. We thus view our paper as complementary to Immorlica et al.

(2020).

Our paper builds on the old idea in the matching literature that changing an agent’s

choices in a two-sided matching market has different consequences on both sides of the

market. For instance, Kelso Jr and Crawford (1982) shows that adding workers to the

market leaves firms better off, while increasing the number of firms leaves workers better

off. Gale and Sotomayor (1985) shows that adding women to a marriage market can

never make any of the men worse off.4 Using choice rules as the tool to handle the agent’s

chosen alternatives, Echenique and Yenmez (2015) shows that expanding a college choice

rule in a college-student matching market makes students better off. More generally,

Chambers and Yenmez (2017) shows that expanding the choice rules of an agent on one

side of a (many-to-many) matching market benefits the agents on the other side while

worsening agents on the same side of the market. Thus, when a student adds a school

to their application list in a centralized school admission system, all remaining students

are weakly worse off. Our model captures such an effect as a negative externality that

increases the system’s congestion. We endogenize the length of the student’s list through

an individual search process, and we study how the system’s congestion responds to

3For empirical work on informational policy interventions, see Arteaga et al. (2022), Andrabi et al. (2017),
Hastings and Weinstein (2008).

4See also Blum et al. (1997), Kamada and Kojima (2014) and Konishi and Ünver (2006).

5



the fundamentals of the model. We show that the strategic interaction through the

centralized school system results in an inefficient Nash equilibrium.

Finally, our paper relates to the literature on information design in congestion games.

This literature studies how information can be used to reduce congestion in the context

of traffic networks.5 Our paper also uses tools from the Bayesian persuasion literature to

study welfare-maximizing information policies in a congested two-sided matching market.

Our optimal information intervention shares the intuition of the optimal policy in Das

et al. (2017). Giving full information when a road has a lagged delay over crowds the

non-congested road, and the authorities can do better by hiding information to reduce

congestion. We apply similar tools to a different framework, so these results do not

imply our conclusions.

The rest of the paper is organized as follows. Section 2 sets up the framework.

Section 3 studies the strategic consequences of search and establishes the inefficiency of

Nash equilibria. Section 4 characterizes the optimal public information disclosure policy

regarding the system’s capacities. Section 5 shows the effect of private information

about families’ valuation for schools on the equilibrium congestion. Finally, Section 6

concludes.

2 The Model

We consider a school choice model with a finite set of schools S := {1, . . . , N}, with

N ≥ 2, and a continuum of students in the interval [0, 1]. Students have types in

{1, . . . , I} and for each type, there is a fraction ρ(i) ∈]0, 1[ of students having type i,

with
∑I

i=1 ρ(i) = 1. All schools have the same capacity k, which is randomly realized

from a finite set K ⊂]0,∞[ according to a distribution µ ∈ ∆(K). We assume for all

k ∈ K, k < 1/N .

Searching for schools. Students search for schools. Each student receives us from

attending school s, which is distributed independently (across students and schools)

according to a commonly known cumulative distribution function F over R+. We denote

the derivative of F by f . We assume the hazard rate f(u)
1−F (u) is non-decreasing and

the reverse hazard rate f(u)
F (u) is non-increasing. These conditions are satisfied when the

5See for instance Acemoglu et al. (2018), Wu et al. (2017) and Tavafoghi and Teneketzis (2017).
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density is log-concave (that is, ln(f(u)) is concave). Several commonly used distributions,

including the uniform distribution, are log-concave. An unassigned student receives

utility 0. We can also interpret unassigned students as students that are assigned to

unattractive schools that have excess supply of seats.

Each student decides a number in {0, 1, . . . , N} of schools to be searched. After n is

chosen by a student, a random (and uniformly chosen) list of schools S′ = {s1, . . . , sn} ⊆

S of size n is realized. The student observes n realizations from F , the highest realization

is the utility the student derives from school s1, the second highest realization is the

utility the student derives from school s2, and so on. The student thus ranks the schools

in S′ and forms a rank order list containing the n schools in S′. In particular, the rank

order list only contains schools the student inspects. Searching for n schools costs ci ·n to

a student, where i is the type of the student and ci is the type-dependent marginal cost

of searching for schools. We assume that for all i, 0 < ci < EF [u] =
∫
udF (u) so that

all students always search when admission to schools is ensured.6 This cost captures the

opportunity cost of time of inspecting and discovering schools.

By searching, a student discovers schools and learns how attractive the discovered

schools are. By expanding the number of inspected schools, a student enlarges her rank

order list and observes the values of additional schools. How attractive searching for

schools is will depend on the procedure used to assign students to schools, which is what

we describe now.

Centralized assignment. After searching for schools, students participate in a

matching algorithm that assigns students to schools. Let n̄i ∈ {0, . . . , N} be the num-

ber of schools searched by type i students. Students submit rank order lists and schools

rank applicants by drawing independent scores from the uniform distribution over [0, 1].7

After k ∈ K is realized, the school district runs the (student-proposing) Gale-Shapley

deferred acceptance algorithm (Gale and Shapley, 1962).

A profile n̄ = (n̄i)
I
i=1 induces a probability distribution πn̄ ∈ ∆({1, . . . , N}) over

the number of searched schools. Formally, the measure of students searching for l ∈
6Throughout the paper, for a random variable x distributed according to G, we use the term EG[x] to

denote the expectation of x with respect to the distribution G.
7We are thus assuming that ties are broken using multiple lotteries. We discuss the tie-breaking rule later

in the paper.

7



{1, . . . , N} schools is

πn̄
l :=

∑
{i:n̄i=l}

ρ(i). (2.1)

Stable matchings can be characterized by solutions to market clearing conditions (Azevedo

and Leshno, 2016). Since schools are ex-ante identical, we can obtain a stable matching

through a unique cutoff p ∈ [0, 1] such that a student is assigned to the school she prefers

the most among those where her scores exceed the cutoff p. Given a profile of search

strategies n̄ = (n̄i)i∈I , the cutoff p must satisfy the following market clearing condition:

N∑
l=1

πn̄
l

l∑
η=1

(1− p)pη−1 1

N
= k (2.2)

To understand this condition, note that given that l schools have been ranked, the

probability that a school is in the rank order list is l/N , and it will be ranked in position

η with probability 1/l. This explains the term 1/N on the left-hand side of (2.2). Finally,

the term (1−p)pη−1 is the probability that a student that ranks school in the η-position

is accepted in the school. By rearranging equation (2.2), we obtain

N∑
l=1

πn̄
l p

l = 1−Nk. (2.3)

When πn̄
0 < 1 the market clearing condition (2.3) has a unique solution p = pk,n̄ ∈ [0, 1],

where we emphasize the fact that the equilibrium cutoff depends on the realized capacity

k and the profile n̄ = (n̄i)i∈I (through the distribution πn).8

We are interested in equilibrium search patterns. The benefit that student obtains

when exploring n > 0 schools is the expected utility from the school she is assigned to.

Formally, given a profile n̄ = (n̄i)
I
i=1, the realized capacity k, and a cutoff p = pk,n̄,

the expected benefit that a type i students obtains when searching for n ∈ {0, . . . , N}

schools equals

b(n, pk,n̄, k) :=

EFn

[∑n
l=1 ũ

l
n(1− pk,n̄)p

l−1
k,n̄

]
if n > 0

0 if n = 0,
(2.4)

8When πn
0 = 1, schools receive no applications and we thus define pn,k = 0. See Azevedo and Leshno (2016)

for details.
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where ũn = (ũ1n, . . . , ũ
n
n) is the vector of n ordered independent draws from the distri-

bution F , whose (joint) distribution we denote by Fn. We assume that the draws are

ordered from top to bottom, i.e. ũ1n ≥ · · · ≥ ũnn. By defining

ui(n, pk,n̄, µ) := Eµ[b(n, pk,n̄, k)]− ci · n (2.5)

we can characterize a Nash equilibrium of the search game G as a profile n̄ = (n̄i)i∈I

such that for all i

n̄i ∈ argmax
n′∈{0,...,N}

ui(n
′, pk,n̄, µ). (2.6)

This condition captures the idea that a student should search for a given number of

schools to maximize the expected utility of the school where she will be assigned, taken

the search behavior of all other students (including those of her own type) as given.9 We

denote by NE(µ) the set of all Nash equilibria given beliefs µ.

Since search costs are heterogeneous, in equilibrium some students search intensely

and apply to several schools while others apply to few schools. Students are forward

looking and Bayesian. In particular, students understand that the realized capacities will

determine admission chances, but that their information about those admission chances

is imperfect.

3 Congestion and Strategic Complementarities

This Section characterizes equilibrium search behaviour. We offer two main substantive

results. First, we show that by increasing the number of searched schools, a student

reduces the chances of other students getting admitted to their listed schools. Searching

is thus a negative externality. Second, the more schools a student searches, the larger

the number of schools searched by other students. In other words, our search game is

supermodular and exhibits strategic complementarities (Milgrom and Roberts, 1990).

Define B(n, n̄, k) = b(n, pk,n̄, k) for n ∈ {1, . . . , N}, n̄ = (n̄i), k ∈ K, and probability

measure µ over K. We also write Ui(n, n̄, µ) for the expected utility of a type i student

that searches for n schools when all other students search for n̄ schools, given belief µ

about k. Our first result describes the properties of the function B(n, n̄, k).

Lemma 1 (Negative externalities). The following hold:

9Note that no player can change the probability distribution π when unilaterally changing her strategy.
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a. B(n, n̄, k) is increasing and concave in n.

b. B(n, n̄, k) is non-increasing in n̄. Moreover, for n ≥ 1, B(n, n̄, k) is decreasing in

n̄, that is, for ñ = (ñi)i and n̄ = (n̄i)i with ñi ≥ n̄i for all i, B(n, n̄, k) ≥ B(n, ñ, k)

The fact that B(n, n̄, k) is increasing in the number of searched schools n captures the

idea that searching for schools benefits the student. The concavity of the function shows

that adding a school has a decreasing incremental value as more schools are already in

the application. B is concave in n, and so is U . As a result, there exists a N0 ≤ N such

that a student searches at most N0 schools.10

Since B(n, n̄, k) is decreasing in n̄, a student is hurt when other students search more.

Intuitively, when n̄ increases, schools are more congested and therefore, the market

clearing cutoff pk,n̄ rises. A higher cutoff reduces the admission chances of a student

searching for n ≥ 1 schools. In our model, searching for schools is a negative externality.

The negative externality result relies on the assumption that searched schools are

oversubscribed. If students discover under-demanded schools, by searching, they could

add schools with available seats and alleviate congestion in over-demanded schools. Our

analysis is relevant in environments in which most search resources are spent to discover

schools with more demand than available seats.

We now explore strategic feedback effects in our game. Fixing the prior belief µ and

the profile of searched schools by all students in the market n̄ ∈ {0, . . . , N0}, consider

the search incentives of a type i student:

BRi(n̄;µ) = argmax
n∈{0,...,N0}

Ui(n, n̄, µ).

We will show that the best response map BRi is non-monotonic in n̄. However, over

an important range of parameters, BRi(n̄;µ) is non-decreasing in n̄. Since BRi is a

set-valued map, we say that BRi(n̄;µ) is non-decreasing in n̄ if maxn{n ∈ BRi(n̄;µ)}

and minn{n ∈ BRi(n̄)} are both non-decreasing in n̄.

Let uln := E[ũln] be the expected value of the school ranked l after searching for n ≥ l

schools. Denote un+1
n = 0 and ∆l

n := uln+1 − uln. Define p̃ by

10We define N0 as:

N0 := max
{n̄,µ}

{
argmax

{n}
U(n, n̄, µ)

}
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p̃ := min
n∈{1,...,N0}

{
1−

(
1

n+ 1

) ∑n
l=1∆

l
n

un+1
n+1

, min
l∈{1,...,n}

{
∆l

n+1

∆l
n

}

}
. (3.1)

As shown in the Appendix, the decreasing hazard rate property implies p̃ ∈]0, 1[.

Assumption 1. For all k ∈ K, k ≥ 1
N

(
1− p̃N0

)
:= k̃ .

Assumption 1 says the school system has a non-negligible capacity. It implies that

admission cutoffs are bounded away from 0, and therefore, students search knowing that

there are non-trivial opportunities to get admission to over-demanded schools.

Proposition 1 (Strategic complementarities). Under Assumption 1, BRi(n̄;µ) is non-

decreasing in n̄ for all i and all µ.

This result is important for two reasons. First, it reveals that strategic feedback ef-

fects are positive: the incentives of a student to search are stronger when other students

search more and admission chances are lower. This is an empirically plausible prop-

erty. For example, in a school choice setup, Arteaga et al. (2022) show that students

participating in centralized platforms under the deferred acceptance algorithm apply to

more schools when admission chances are revealed lower. Second, the fact that the best

response map is non-decreasing provides important insights about the basic economic

forces behind search behavior and allows us to neatly characterize equilibria using the

theory of supermodular games (Milgrom and Roberts, 1990).

Bounding cutoffs by above –as Assumption 1 does– is key for Proposition 1. When

the assumption does not hold, the best a student can do when others search a lot is

not to search.11 In this case, BRi(n̄;µ) = 0 for n̄ large enough; therefore, BRi has a

decreasing portion. In the proof of Proposition 1, we also establish that the expectation

of the order statistic uln is supermodular in (l, n), which is a new property that can be

useful in other applications (see Lemma 5).

Proposition 2 (Properties of Nash equilibria). Under Assumption 1, the following hold.

a. The game G has a nonempty set of Nash equilibria: NE(µ) ̸= ∅.

b. The set of Nash equilibria NE(µ) has smallest and a largest element.

11When Assumption 1 does not hold and others search a lot, the admission cutoffs are high, and therefore,
any search effort is likely to be wasteful.
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c. Let n̄ and ñ be Nash equilibria with n̄i ≤ ñi for all i. Then, all students get higher

payoffs under equilibrium n̄ than under equilibrium ñ.

d. The smallest and largest Nash equilibria are non-increasing in the distribution µ ∈

∆(K), where we endow ∆(K) with the first order stochastic dominance.

Proposition 2 establishes important properties of the set of Nash equilibria. It guar-

antees the existence of Nash equilibria. As in many games with strategic complements,

there may be several equilibria.12 Notably, there is a smallest and a largest Nash equilib-

rium. Equilibria can be Pareto-ranked: students prefer an equilibrium with low search.

The result also shows that as µ increases and more weight is placed on high capacities,

equilibrium search decreases.

Our main focus is on information interventions. Information interventions are com-

mon in practical applications of matching theory. They range from information about

admission chances to suggestions of schools that are likely to be attractive to students.

Surprisingly, little is known (theoretically or empirically) about the system-wide impacts

of these interventions. The rest of the paper endeavours to fill this gap.

4 Disclosing Congestion

Several interventions provide information about congestion and admission chances to

motivate students to apply to more schools. For example, Arteaga et al. (2022) report

interventions in Chile and New Haven, where students receive information about their

admission possibilities and are encouraged to add more schools to their applications.

Elacqua et al. (2022) shows a similar intervention in Peru’s centralized assignment of

school teachers. This Section offers a counterpoint to those exercises by showing that

fully disclosing how congested the market is has subtle equilibrium effects and results in

welfare losses.

12Different school choice systems exhibit important differences in the lengths submitted applications. For
example, in NYC high school matches, students rank seven schools on average, while in Chile, families rank
only three schools (Abdulkadiroğlu et al., 2009; Correa et al., 2022). Of course, these differences could be
explained by different market fundamentals. Our search game shows that identical markets may have different
equilibrium application intensities.
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4.1 Public Experiments

We consider game G and explore how information about the supply of schools k changes

equilibrium outcomes. More specifically, we build on the information design literature

and consider a social planner who can run a public experiment (Kamenica and Gentzkow,

2011). A public experiment consists of a finite realization space T and a family of

probability distributions τ := (τk)k∈K , where τk ∈ ∆(T ) for k ∈ K. We assume that

students publicly observe the signals drawn from the experiment.

The timing of information provision is as follows. First, the planner commits to an

experiment τ . Second, the state k is drawn according to µ, and the public signal is

drawn according to τk. After observing t ∈ T , students form posterior beliefs γt(k) =

P(k | t) = τk(t)µ(k)∑
k′ τk′ (t)µ(k

′) . Finally, students play the game G given updated beliefs γt. We

assume the planner can induce any equilibrium given beliefs γt.

An experiment τ publicly reveals information about capacities k. For example, when

the realization space is T = K, and τk puts a weight of one on t = k, the realization

of the experiment perfectly reveals the supply of seats in the system. In contrast, when

τk does not depend on k, students learn nothing by observing the realized signal. More

generally, an experiment τ may provide partial information, leaving students uncertain

about the total supply of seats.

Experiments can also be implemented by suggesting incentive-compatible actions

(numbers of schools to be applied to) to students (Bergemann and Morris, 2016). Sug-

gesting the number of schools to be included in the application may be simpler to imple-

ment (and it is actually done in practical applications of matching theory), but working

with experiments is analytically more convenient.

To state our information design problem, we abuse notation and let τ ∈ ∆(∆(K))

be the probability distribution over posterior beliefs induced by experiment τ .13 Since

students update beliefs using the Bayes rule, the distribution τ ∈ ∆(∆(K)) over posterior

is Bayes plausible, i.e. the induced posterior beliefs average up to the prior. As discussed

by Kamenica and Gentzkow (2011), Bayes plausibility is the only restriction imposed

over posterior beliefs when students update using the Bayes rule.

Multiple equilibria may exist when belief γ is drawn from the experiment τ . Let

nγ = (nγ
i ) be the smallest symmetric Nash equilibrium of the game G given belief γ.

13See Kamenica and Gentzkow (2011).
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The social welfare given belief γ is14

V (γ) :=
I∑

i=1

Ui(n
γ
i , n

γ , γ)w(i)ρ(i) (4.1)

where w(i) ≥ 0 is the Pareto weight that type i students receive in the welfare function.

Our formulation allows for social welfare functions that put more weight on some groups.

For example, the social planner could put more weight on groups with higher search costs

and that therefore in equilibrium apply to fewer schools.

The social planner thus solves

max
{τ∈∆(∆(K))}

Eτ [V (γ)]

s.t. (4.2)

(i)
∑

γ∈supp(τ)

γτ(γ) = µ

where the expectation in the objective of (4.2) is taken over final beliefs γ distributed

according to the experiment τ .

Define γmaxK ∈ ∆(K) as the probability distribution that puts all the weight on the

highest capacity in K. Clearly, for all γ, nγmaxK ≤ nγ . Define M = {γ | nγmaxK = nγ}.

In words, M is the set of all beliefs that induce the lowest equilibrium search intensity.

Proposition 3 (Disclosing congestion). Under Assumption 1, suppose that M ⊆ ∆(K)

has nonempty interior and its convex hull is not ∆(K). The following hold.

a. For all µ ∈ ∆(K), perfectly revealing the state k is suboptimal.

b. For all µ ∈ M, an uninformative experiment τk = τk′ is optimal.

Proposition 3 characterizes optimal information provision in game G. The restriction

over M is natural as it ensures equilibrium behavior reacts to information and also that

for all beliefs close enough to γmaxK equilibrium behavior coincides with nγmaxK . The

result shows that fully disclosing information is never optimal. Intuitively, full disclosure

is not optimal because when k equals the lowest capacity, the system is congested,

admission cutoffs will be high, and students will search a lot. By hiding some information,

the planner can always avoid that outcome.

14As shown in Proposition 2, the set of Nash equilibria (given belief γ) has a smallest element. Since the
equilibria can be Pareto-ranked, the smallest Nash equilibrium is the one the planner prefers the most. See
the proof of Lemma 2 for detailed discussion.
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The result also shows that when students put sufficiently high weight on the highest

capacity in K, disclosing no information is optimal. In this case, students believe that

lower capacities are so unlikely that there is no way to motivate them to apply to fewer

schools.15

The proof of Proposition 3 employs ideas from information design by building the

concave closure of the function V (γ). We derive some properties of the function V (γ)

to characterize its concave closure and shape the planner’s information design problem.

Lemma 2. Under Assumption 1, the function V (γ) is a piece-wise linear and upper

semi-continuous function that is non-decreasing in γ.

This lemma is key to establishing Proposition 3. In the proof, we repeatedly use the

fact that, thanks to Assumption 1, our game G is supermodular and, as a result, its

equilibrium set is monotone in the public belief γ. Figure 1 illustrates V and its concave

closure.

µ = P[k1]

V (µ)

µ̄ 1

Figure 1: The welfare function V (in blue) and its concave closure (in dashed red) when
K = {k0, k1} and k0 < k1. The set M described in Proposition 3 is given by [µ̄, 1].

Our focus is on public signals. Public information provides all students with the

same details about the market and can therefore be desirable for normative reasons. As

the following Subsection shows, private persuasion may be welfare enhancing

4.2 Private Experiments

We now explore private experiment. The general problem of information design in games

is very hard to solve (Mathevet et al., 2020). We now show that when the welfare function

15In this case there are are several optimal experiments. Importantly, full disclosure is never optimal.
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targets a small fraction of students, private signals may improve welfare over the optimal

public experiment.

To see this, suppose that type i′ students are a small fraction of the population (ρ(i′)

is close to 0) but have a high welfare weight (w(i′) >> w(i) for i ̸= i′). For example,

type i′ students may be disadvantaged, have a high search cost and therefore remain

poorly informed about the schools they prefer. Students in the market are relatively

optimistic so that µ puts almost all the weight on the highest capacity maxK. In this

case, Proposition 3 shows that the experiment that maximizes (4.2) is uninformative.

We assume that the Nash equilibrium given µ is strict.

Now, to build a private experiment, fix the equilibrium profile of students n̄i for i ̸= i′

under the uninformative experiment (that is, when their common belief is µ). Construct

the game among type i′ students in which, given a belief γ, they search for ñ schools

taken as fixed the search behavior of all other students in the market. The game among

type i’ students has a smallest Nash equilibrium nγ
i′ given their belief γ. Naturally,

nµ
i′ = n̄i′ . Let τi′ be an experiment that reveals information to type i′ students only.

The planner may find optimal to reveal more detailed information to type i′ students.

By doing so, the planner ensures type i′ students get better information and therefore

their welfare is improved. Congestion in the market does not increase much because, by

assumption, the fraction of type i′ students is small. Other type of students i ̸= i′ do not

change their behavior as only a small fraction of the population of students is changing

their behavior. While the information provided to type i′ students is detrimental to

i ̸= i′, we are assuming that the authority puts most of the welfare weight on type i

students. Private experiments may thus be welfare improving.

5 Disclosing Schools

In school choice systems, oftentimes platforms show some schools with much more promi-

nence than others. In Chile, for example, students who access the centralized applica-

tion platform are shown schools near their homes (Correa et al., 2022). Another com-

mon practice is to provide families with information about the academic effectiveness of

schools, including report cards about school performance (Hastings and Weinstein, 2008;

Andrabi et al., 2017; Elacqua et al., 2022). These policies simplify the search process

faced by families and help them elucidate their preferences for schools. In this Sec-
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tion, we study the impact that information provision about schools has on equilibrium

outcomes and welfare.

5.1 Disclosing Top Schools

In this subsection, we assume that the authority knows and fully discloses the school

liked the most by each student out of the N schools in the market. This assumes that

the authority knows the traits that are relevant for each family –academic performance,

proximity, music programs– and is able to compute the most preferred school for each

family. Each student receives the name of the school ranked top by her, searches for

additional schools, and submits her application.

A student that applies to n schools will actually search for n − 1 schools since her

top school is revealed by the platform. Fixing the profile n̄ = (n̄i)
I
i=1 of schools students

apply to, the expected utility a family gets when applying to n schools while receiving

information about the name of the top school is denoted U I(n, n̄, µ). The utility function

U I(n, n̄, µ) defines a game GI similar to game G introduced in Section 2.16. Game GI

is also supermodular and has a smallest Nash equilibrium. We compare Nash equilibria

of games GI and G.

Proposition 4 (Disclosing top schools). Under Assumption 1, the following hold:

a. The smallest (resp. largest) Nash equilibrium of the game GI (resp. G) is less than

or equal (resp. greater than or equal) to any Nash equilibrium of the game G (resp.

GI).

b. Let nI be the smallest Nash equilibrium of the game GI . Then, each student gets

strictly more welfare in the game GI under equilibrium nI than in any Nash equi-

librium of the game G.

Proposition 4 shows that disclosing top schools reduces the equilibrium number of

applications. The result also shows that the disclosure of top schools increases welfare.

The following result is key to understanding the Proposition.

16Two observations are in order. First, in the game GI , students receive information about top schools.
Since the model is symmetric, different realizations of the signal disclosed (the name of the top school) do not
change students’ payoffs. So, a strategy in game GI is effectively a number n ∈ {1, . . . , N0}. Second, in the
game GI , the market clearing condition is identical to the one discussed in Section 2
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Lemma 3. Under Assumption 1, for all n ≥ 1,

U I(n+ 1, n̄, µ)− U I(n, n̄, µ) ≤ U(n+ 1, n̄, µ)− U(n, n̄, µ)

In other words, disclosing the top school reduces the incremental utility of adding

a school to the rank order list. Intuitively, after the top school is disclosed, a student

searches for schools that, on average, are less valuable and, as a result, her incentives to

include more schools in her application list are reduced.

The reduction in search incentives when the top school is disclosed implies Propo-

sition 4 part a.17 Part b in the Proposition follows because in the lowest equilibrium

of game GI , each family solves a search problem with more information and has more

chances to get admission than in any equilibrium of game G.

5.2 The Limits of Information About Schools

We have shown that disclosing the top school improves welfare. Is any kind of infor-

mation about schools welfare improving? In this Subsection, we explore this question

by assuming that each family receives the name of the least valued school. Disclosing

the worst school is a rather stark way to model the idea that the information provided

is about a school that is unlikely to be highly ranked by a student. Given the revealed

school, each student searches for additional schools and submits her application. The

student searching for n− 1 schools will always add the school revealed by the authority

at the bottom of her application.

Proposition 5 (Disclosing bottom schools). Under Assumption 1, suppose that F is

uniform, and N ≥ N0 + 1. The following hold:

a. The smallest (resp. largest) Nash equilibrium of the game G (resp. GIB) is less

than or equal (resp. greater than or equal) to any Nash equilibrium of the game

GIB (resp. G).

b. Let n be the smallest Nash equilibrium of the game G and assume that n is strictly

smaller than all Nash equilibria of game GIB. Let N̄0 be the unique N0 satisfying

N0(1−Nk1)
N0 = 1/15. Then, if N0 ≤ N̄0, each student gets strictly more welfare

in the game G under equilibrium n than in any Nash equilibrium of the game GIB.

17Milgrom and Roberts (1990) show comparative statics results for equilibria in supermodular games.
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Proposition 5 shows that disclosing the bottom schools creates additional congestion

in the market and reduces welfare. While Proposition 4 shows that disclosing top schools

is socially desirable, Proposition 5 puts a limit to the idea that all types of information

interventions about schools are desirable.

The following result is key to understanding Proposition 5.

Lemma 4. Under Assumption 1, suppose that F is uniform and N ≥ N0 + 1. Then,

for all n ≥ 2, we have

U IB(n+ 1, n̄, µ)− U IB(n, n̄, µ) ≥ U(n+ 1, n̄, µ)− U(n, n̄, µ)

The lemma says that disclosing the least preferred school increases the incremental

utility of adding a school to the rank order list. On the one hand, disclosing the least

preferred school gives a free school to apply to a student. On the other hand, the

disclosure of the least preferred school reduces the uncertainty about remaining schools,

which reduces the search incentives. When N ≥ N0 +1 is large enough, uNN is relatively

small, and knowing that a school is the least attractive school in the market is not very

informative. As a result, the main effect of disclosing the least preferred schools is to

give students free applications.

Proposition 5 part a follows since students have stronger incentives to apply to schools

when the bottom schools are disclosed. Part b in the Proposition follows because in the

lowest equilibrium of game G, there is strictly less congestion than in the game GIB

and the additional information about bottom schools provided in GIB has little value

for each student.18

6 Conclusion

This paper explores information interventions in centralized school assignment mecha-

nisms and reveals nuanced considerations for policymakers. Recognizing the challenges

faced by families in the school selection process, our findings suggest a cautious approach

to information disclosure. Full transparency about the system capacities and admission

chances is never optimal. In contrast, if the authority has information about schools that

18Note that for information to reduce aggregate welfare, it has to induce more applications. If the equilibrium
number of applications were the same, all agents would be better off with information because congestion would
be the same.
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are attractive to students, that information should be provided to the families. Our work

contributes to ongoing discussion on optimizing centralized school assignment systems.

We now discuss some extensions and variations of our model.

Single tie breaking. We have assumed that schools rank students independently

using multiple tie breaking, but in some systems a single tie breaking is used and scores

are perfectly correlated (Abdulkadiroğlu et al., 2009).

In our model, under single tie breaking, all students are assigned to their top ranked

school and cutoffs search intensities do not depend on the profile n̄. In particular,

each student’ search problem does not depend on the search intensity of other students.

As a result, under single tie breaking, full transparency about capacities and schools

characteristics Pareto dominates any other information policy.

Several papers have shown that single tie breaking results in more students assigned

to their top schools than multiple tie breaking. These results are sometimes used to favor

single tie breaking in some practical applications. Our exercise provides an informational

rational for the use of single tie breaking. Under single tie breaking, students search

incentives are aligned with social goals and thus information can be fully disclosed and

used.

Correlated preferences. We have assumed that students have independent pref-

erences in the sense that knowing the top school of a student does not predict what are

other attractive schools for the student. In practice, students are more likely to find

attractive schools with similar characteristics. Our model and results can be accommo-

dated to allow for correlated preferences.

Suppose that students live in one of two districts and each district has N/2 schools (N

even). A student is more likely to find attractive schools in her own district. Concretely, if

a student searches for n ≤ N/2 schools, the student gets n draws from the distribution F

but each school in her district is more likely to be part of the discovered schools. Schools

are symmetric. A students will tend to apply more to schools in her own district, but will

still place applications to schools in the other district. Our results extend immediately

to this setup. Exploring our results in more general models with correlated preferences

is an interesting venue for future research.
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Appendix

A Proof of Lemma 1

Lemma 1 (Negative externalities). The following hold:

a. B(n, n̄, k) is increasing and concave in n.

b. B(n, n̄, k) is non-increasing in n̄. Moreover, for n ≥ 1, B(n, n̄, k) is decreasing in

n̄, that is, for ñ = (ñi)i and n̄ = (n̄i)i with ñi ≥ n̄i for all i, B(n, n̄, k) ≥ B(n, ñ, k)

Proof. We show that the function b(n′, pk,n, k) satisfies [a] and [b], which implies the

function B(n, n̄, k) does as well. We drop the sub-index k, n from p to simplify notation.

We first show the part [a]. Let

∆bn := b(n+ 1, p, k)− b(n, p, k) =
n∑

j=1

∆j
n(1− p)pj−1 + un+1

n+1(1− p)pn

By theorem 1 (b) in Watt (2021), when F satisfies the MHR property, ∆j
n ≥ 0, and the

function B increases in n. Furthermore, simple algebra shows that

∆bn −∆bn−1 =
n−1∑
j=1

(∆j
n −∆j

n−1)(1− p)pj−1 +∆n
n(1− p)n−1 + un+1

n+1(1− p)pn − unn(1− p)pn−1

By Theorem 1 (b) in Watt (2021), when F satisfies the MHR property, ∆j
n −∆j

n−1 ≤ 0.

Hence,

∆bn −∆bn−1 ≤ (1− p)pn−2

n−1∑
j=1

(∆j
n −∆j

n−1) + p
(
∆n

n + un+1
n+1p− unn

)
≤ (1− p)pn−2

n−1∑
j=1

(∆j
n −∆j

n−1) + p
(
∆n

n + un+1
n+1 − unn

)
≤ (1− p)pn−2

n−1∑
j=1

(∆j
n −∆j

n−1) + ∆n
n + un+1

n+1 − unn


Where the last inequality follows because ∆n

n + un+1
n+1 − unn ≥ 0 (see below). Hence, for b

to be concave, it is enough to show that

n−1∑
j=1

(∆j
n−1 −∆j

n−2) + ∆n
n + un+1

n+1 − unn ≤ 0 (.1)
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But our statistics ujn and ujn−1 corresponds to the statistics µn−j+1
n and µn−j

n−1 (respec-

tively) when counting the statistics from bottom to top. Thus, from Lemma 2 (b) in

David (1997), we have

∆j
n−1 = µn−j+1

n − µn−j
n−1 =

n− 1

n− j

∫ 1

0
F (ũ)n−j(1− F (ũ))jdũ (.2)

And

∆j
n −∆j

n−1 =

n− 1

n− j

∫ 1

0
F (ũ)n−j(1− F (ũ))j

[
n

n− j + 1
F (ũ)− 1

]
dũ (.3)

Also, from Lemma 2 (a) in David (1997)

unn − un+1
n+1 = µ1

n − µ1
n+1 =

n

0

∫ 1

0
F (ũ)(1− F (ũ))ndũ

Thus,

∆n
n − (unn − un+1

n+1) =

n

1

∫ 1

0
F (ũ)(1− F (ũ))ndũ−

n

0

∫ 1

0
F (ũ)(1− F (ũ))ndũ

=

n− 1

1

∫ 1

0
F (ũ)(1− F (ũ))ndũ

Now let

A0 :=

n− 1

1

∫ 1

0
F (ũ)(1− F (ũ))ndũ

A1 := A0 +∆n−1
n −∆n−1

n−1

...

Am := Am−1 +∆n−m
n −∆n−m

n−1

defined for m ≤ n− 1. Now, we show that for all m ≤ n− 2,

Am =

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−mdũ
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It is easy to see that it holds for m = 0. Now suppose it holds for m ≤ n− 3. Then,

Am+1 =

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−mdũ+∆n−(m+1)

n −∆
n−(m+1)
n−1

=

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−mdũ+ ...

...

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−m−1

[
n

m+ 2
F (ũ)− 1

]
dũ

=

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−m−1

[
(1− F (ũ)) +

n

m+ 2
F (ũ)− 1

]
dũ

=

n− 1

m+ 1

∫ 1

0
F (ũ)m+1(1− F (ũ))n−m−1

[
F
n−m− 2

m+ 2

]
dũ

=

n− 1

m+ 2

∫ 1

0
F (ũ)m+2(1− F (ũ))n−m−1dũ

Finally, it is easy to see that, when m = n− 2, we obtain

An−2 =

n− 1

n− 1

∫ 1

0
F (ũ)n−1(1− F (ũ))2dũ

And that

∆1
n −∆1

n−1 =

n− 1

n− 1

∫ 1

0
F (ũ)n−1(1− F (ũ))1

[
n

n− 1 + 1
F (ũ)− 1

]
dũ

=

n− 1

n− 1

∫ 1

0
F (ũ)n−1(1− F (ũ))2dũ

= An−2

Thus, we conclude that equation (.1) is zero, because

n−1∑
j=1

(∆j
n−1 −∆j

n−2) + ∆n
n + un+1

n+1 − unn = ∆1
n −∆1

n−1 +An−2 = 0

And so the function B is concave.
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Now, we show part b. It is easy to see from equation (2.1) that for profiles n̄ = (n̄i)

and n̄′ = (n̄′
i), if n̄i ≥ n̄′

i, then pn̄,k ≥ pn̄′,k for all k. Thus, to show that b(n, pk,n̄, k) is

decreasing in n̄, it is enough to show that it is decreasing in pk,n. Thus, when n ≥ 1

∂b

∂p
= −u1n + u2n(1− 2p) + u3n(2p− 3p2) + ...unn((n− 1)pn−2 − npn−1)

= −(u1n − u2n)− (u2n − u3n)2p− (u3n − u4n)3p
2...− (un−1

n − unn)(n− 1)pn−2 − npn−1

= −
n−1∑
l=1

(uln − ul+1
n )lpl−1 − npn−1

Which is less than zero because uln−ul+1
n > 0 for all l. Finally, when n = 0, b(n, p, k) = 0,

and b is constant with respect to p.

B Proof of Proposition 1

Proposition 1. Under Assumption 1, BR(n̄;µ) is non-decreasing in n̄ ∈ {0, . . . , N} for

all µ.

Proof. The proof of Propositions 1 and 2 rely on the following two Lemmas, whose

proofs are below.

Lemma 5. For all n ≤ N and j ≤ n, ∆j
n−1 is non decreasing in j. That is,

ujn − ujn−1 ≥ uj−1
n − uj−1

n−1

Lemma 6. Define p̃ as:

p̃ := min
n∈{1,...,N0}

{
1−

(
1

n+ 1

) ∑n
j=1∆

j
n

un+1
n+1

}
. (.4)

Then, p̃ ∈]0, 1[. The function bi(n, p, k) has increasing differences in n and p ≤ p̃.

Because of Lemma 6, under Assumption 1, properties (A1) − (A4) in Milgrom and

Roberts (1990) are satisfied, so the game is supermodular. Thus, by Topkis’s Mono-

tonicity Theorem (see Milgrom and Roberts (1990)), BRi(n̄;µ) is non-decreasing in

n̄ ∈ {0, . . . , N} for all µ.
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B.1 Proof of Lemma 5

Proof. We first show that ∆j
n−1 is non-decreasing in j for j ≤ n − 1. Then, we show

it is true for j = n. First, note that when counting from bottom to top, our statistic

ujn corresponds to the statistic µn−j+1
n . Analogously, ujn−1 corresponds to µn−j

n−1. From

Watt (2021), we know that

∆j
n−1 := µn−j+1

n − µn−j
n−1 =

n− 1

n− j

∫ 1

0
F (ũ)n−j(1− F (ũ))jdũ (.5)

Thus, we want to show that ∆j
n−1 − ∆j−1

n−1 ≥ 0. From equation (.2) in the proof of

Lemma 1, we have

∆j
n−1 −∆j−1

n−1 =

n− 1

n− j

∫ 1

0
F (ũ)n−j(1− F (ũ))j−1

[
1− n

n− j + 1
F (ũ)

]
dũ (.6)

=

n− 1

n− j

∫ 1

0
F (ũ)n−j(1− F (ũ))j−2

[
1− n

n− j + 1
F (ũ)

]
f(ũ)g(ũ)dũ

where g(ũ) := 1
h(ũ) is decreasing by assumption, because h(ũ) is increasing. Let ũ∗ be

such that

F (ũ∗) =
n− j + 1

n

So that for ũ > ũ∗, the integrand in (.6) is negative, for ũ = ũ∗ is zero, and for ũ < ũ∗

is positive. Consider now the integral

W (t) :=

∫ t

0
F (ũ)n−j(1− F (ũ))j−2

[
1− n

n− j + 1
F (ũ)

]
f(ũ)dũ (.7)

It is clear that for t ≤ ũ∗, W (t) ≥ 0. For t > ũ∗, we have that W (t) ≥ W (t′) for t ≤ t′.

Thus, if W (1) ≥ 0, we can conclude that W (t) ≥ 0 for all t. Making the change of

variable x = F (ũ), we rewrite W (1) as

W (1) :=

∫ 1

0
xn−j(1− x)j−2

[
1− n

n− j + 1
x

]
dx (.8)
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And using the fact that, for any m,n,∫ 1

0
xm(1− x)ndx =

n! m!

(n+m+ 1)!

We obtain

W (1) =
(n− j)!(j − 2)!

(n− 1)!
− n

n− j + 1
· (n− j + 1)!(j − 2)!

n!
= 0

Thus, W (t) ≥ 0 for all t. Finally, equation (.6) can be written as

∫ 1

0
g(t)dW (t)

Integrating by parts with u(t) = g(t) and v(t) = W (t), obtain

∫ 1

0
g(t)dW (t) = g(t)W (t)

∣∣∣∣∣
1

0

−
∫ 1

0
W (t)g′(t)dt

= −
∫ t

0
W (t)g′(t)dt ≥ 0

where the second equality follows because g(1) = 0, W (0) = 0, W (t) ≥ 0 for all t, and

g′(x) ≤ 0. Thus, we have shown ∆j
n −∆j−1

n ≥ 0. Now, we show it is also true for j = n.

That is, we want to show that

∆n+1
n −∆n

n = un+1
n+1 − (unn+1 − unn) ≥ 0

In terms of the statistics when counting from bottom to top, we want to show

µ1
n+1 − (µ2

n+1 − µ1
n) ≥ 0

Let F i
n denote the (cumulative) distribution of the i-th order statistic when counting

from bottom to top. Thus,

µi
n =

∫ 1

0
ũdF i

n(ũ)

Integrating by parts, get

µi
n = 1−

∫ 1

0
F i
n(ũ)dũ
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Thus, obtain

µ1
n+1 − (µ2

n+1 − µ1
n) = 1−

∫ 1

0

(
F 1
n+1(ũ) + F 1

n(ũ)− F 2
n+1(ũ)

)
dũ (.9)

But it is well known that19

F i
n(ũ) =

n∑
k=i

n

k

F (ũ)k(1− F (ũ))n−k

Hence,

F 1
n+1(ũ) + F 1

n(ũ)− F 2
n+1(ũ) =

n+ 1

1

F (ũ)(1− F (ũ))n +

n∑
k=0

n

k

F (ũ)k(1− F (ũ))n−k − ...

...

n

0

 (1− F (ũ))n

= 1− (n+ 1)(1− F (ũ))n
[

1

n+ 1
− F

]
Hence, equation (.9) becomes

(.9) = (n+ 1)

∫ 1

0
(1− F (ũ))n

[
1

n+ 1
− F

]
dũ

=

∫ 1

0
(1− F (ũ))n−1

[
1

n+ 1
− F

]
f(ũ)g(ũ)dũ

Where g(ũ) = 1−F (ũ)
f(ũ) is the inverse hazard rate that is decreasing by assumption. Let

W (t) :=

∫ t

0
(1− F (ũ))n−1

[
1

n+ 1
− F

]
f(ũ)dũ

Using the same argument as before, we need to show that W (1) ≥ 0. Indeed,

W (1) :=
(n− 1)!

(n+ 1)n!
− (n− 1)!

(n+ 1)!
= 0

And we conclude that µ1
n+1 − (µ2

n+1 − µ1
n) ≥ 0.

19See for instance Balakrishnan and Cohen (2014).
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B.2 Proof of Lemma 6

Proof. As before, to show that b(n′, pk,n, k) has decreasing differences in n′, n, it is

enough to show that it has decreasing differences n′, pk,n. Again, we drop the sub-index

n, k from p to ease notation. From equation (2.4), it is easy to see that, for n ≥ 1,

∂

∂p

(
b(n+ 1, p, k)− b(n, p, k)

)
=

n∑
j=1

∆j
n

(
(j − 1)pj−2 − jpj−1

)
+ un+1

n+1(np
n−1 − (n+ 1)pn)

= 1(∆2
n −∆1

n) + 2p(∆3
n −∆2

n) + · · ·+ npn−1(∆n+1
n −∆n

n)− ..

...un+1
n+1(n+ 1)pn

=
n∑

j=1

jpj−1(∆j+1
n −∆j

n)− un+1
n+1(n+ 1)pn

We know that ∆j
n is non-decreasing in j for j ≤ n. Then,

∂

∂p

(
b(n+ 1, p, k)− b(n, p, k)

)
≥ pn−1

 n∑
j=1

j(∆j+1
n −∆j

n)− un+1
n+1(n+ 1)p


= pn−1

 n∑
j=1

((j + 1)∆j+1
n − j∆j

n)− un+1
n+1(n+ 1)p−

n∑
j=1

∆j+1
n


= pn−1

(n+ 1)∆n+1
n −∆1

n − un+1
n+1(n+ 1)p−

n∑
j=1

∆j+1
n


= pn−1

(n+ 1)∆n+1
n − un+1

n+1(n+ 1)p−
n∑

j=1

∆j
n


= pn−1

(n+ 1)un+1
n+1 − un+1

n+1(n+ 1)p−
n∑

j=1

∆j
n


So, a sufficient condition for ∂

∂p

(
b(n+ 1, p, k)− b(n, p, k)

)
≥ 0 is

0 ≤ (n+ 1)un+1
n+1 − un+1

n+1(n+ 1)p−
n∑

j=1

∆j
n

p ≤ 1−
(

1

n+ 1

) ∑n
j=1∆

j
n

un+1
n+1

= p̃
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Note that p̃ is greater than zero because

∆n+1
n ≥ ∆j

n

(n+ 1)∆n+1
n >

∑
j

∆j
n

1 >

(
1

n+ 1

) ∑n
j=1∆

j
n

un+1
n+1

Thus, whenever

p ≤ p̃ := min
{n}

{
1−

(
1

n+ 1

) ∑n
j=1∆

j
n

un+1
n+1

}

the function b(n, p) has increasing differences in n and p, which concludes the proof.

C Proof of Proposition 2

Proposition 2. Under Assumption 1, the following hold.

a. The game G has a nonempty set of Nash equilibria: NE(µ) ̸= ∅.

b. The set of Nash equilibria NE(µ) has a smallest and a largest element.

c. Let n̄ and ñ be Nash equilibria with n̄i ≤ ñi for all i. Then, all students get higher

payoffs under equilibrium n̄ than under equilibrium ñ.

d. The smallest and largest Nash equilibria are non-increasing in the distribution

µ ∈ ∆(K), where we endow ∆(K) with the first order stochastic dominance.

Proof. Under Assumption 1, properties (A1)− (A4) in Milgrom and Roberts (1990) are

satisfied. Then, by Theorem 5 in Milgrom and Roberts (1990), given any µ ∈ ∆(K), a

pure strategy Nash equilibrium always exists. The largest and smallest Nash equilibrium

profiles exist (see the proof of the corollaries of Theorem 5 in Milgrom and Roberts

(1990)). Part [c.] follows directly from Theorem 7 in Milgrom and Roberts (1990).

Moreover, it is easy to see that u(n, p, µ) has increasing differences in n and µ (for fixed

p). That is, since pn,k0 ≥ pn,k1 , and b is supermodular in (n, pn,k) under Assumption 1,

u has increasing differences in µ. Thus, by Theorem 6 in Milgrom and Roberts (1990),

the largest and smallest Nash equilibrium profiles are (weakly) increasing in µ.
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D Proof of Proposition 3

Proposition 3. Under Assumption 1, suppose that M ⊆ ∆(K) has nonempty interior

and its convex hull is not ∆(K). The following hold.

a. For all µ ∈ ∆(K), perfectly revealing the state k is suboptimal.

b. For all µ ∈ M, an uninformative experiment τk = τk′ is optimal.

Proof. Let cavV denote the smallest concave function that is greater than or equal to

V . Since V (γ) is linear in γ ∈ M and V (γ) > V (γ′) for all γ ∈ M and γ′ /∈ M, it follows

that cavV (γ) = V (γ) for all γ ∈ M. In particular, this proves that when µ ∈ M, an

uninformative experiment is optimal.

To prove that perfectly revealing the state is suboptimal, we will first argue that

cavV is not linear. Suppose cavV is linear. Note that for all γ ∈ M

cavV (γ) = V (γ) =
∑
k∈K

γ(k)
I∑

i=1

Ui(n̄, n̄, k)w(i)ρ(i)

where n̄ = nγ for all γ ∈ M . Since M has nonempty interior and, by way of contradition,

we are assuming that cavV is linear over γ ∈ ∆(K), it follows that for all γ ∈ ∆(K),

cavV (γ) =
∑
k∈K

γ(k)

I∑
i=1

Ui(n̄, n̄, k)w(i)ρ(i). (.10)

This implies that for any γ, there exits an experiment that implements n̄ for all signals.

For γ′ outside the convex hull of M, this is a contradiction. Thus, cavV is not linear

over ∆(K). In particular, for γ /∈ M, a perfectly revealing experiment cannot maximize

social welfare.

E Proof of Lemma 2

Lemma 2 Under Assumption 1, the function V (γ) is a piece-wise linear and upper

semi-continuous function that is non-decreasing in γ.

Proof. Let

Vi(γ) = max
n

Ui(n, n
γ , γ) = Ui(n

γ , nγ , γ)
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where nγ is the smallest Nash equilibrium given beliefs γ. Clearly, Vi(γ) is non-decreasing

in γ because nγ is non-increasing and the game has negative externalities. Moreover,

since the set {nγ | γ ∈ ∆(K)} is finite, it follows that ∆(K) can be written as a finite

disjoint union

∆(K) =
⋃
t

Et

so that for γ′, γ ∈ Et, n
γ = nγ′

. In particular, Vi(γ) is linear in γ ∈ Et. We now argue

that Vi is upper semi-continuous. Take any sequence γν → γ as ν → ∞ and note that

nγ = min{n ∈ NE(γ)} ≤ lim inf
ν→∞

nγν

where the inequality (in the componentwise order) follows since lim infν n
γν ∈ NE(γ).

Now, we prove that

lim sup
ν

Vi(γν) ≤ Vi(γ).

For simplicity, assume that the sequence γν attains the limsup so

lim sup
ν

Vi(γν) = lim
ν

Vi(γν).

It must be the case that for all ν large enough, nγν = n̄ ≥ nγ and therefore

lim
ν

Vi(γν) = Vi(n̄, n̄, γ) ≤ max
n′

Vi(n
′, n̄, γ) ≤ max

n′
Vi(n

′, nγ , γ) = Vi(γ).

where the second inequality follows since n̄ ≥ nγ and the game has negative externalities.

The function V (γ), being the weighted sum of piece-wise linear, non-decreasing and

upper semi-continuous functions, satisfies the properties stated in the lemma.

F Proof of Proposition 4

Proposition 4. Under Assumption 1, the following hold:

a. The smallest (resp. largest) Nash equilibrium of game GI (resp. G) is less than or

equal (resp. greater than or equal) to any Nash equilibrium of game G (resp. GI).

b. Let nI be the smallest Nash equilibrium of the game GI . Then, each student

gets strictly more welfare in the game GI under equilibrium nI than in any Nash

equilibrium of the game G.
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Proof. Part [a.] of the proposition follows directly from Lemma 3. Part [b.] holds

because when every player j ̸= i plays nI , the cutoff is weakly lower than when every

j ̸= i plays an equilibrium profile in the game G (because of Lemma 3). Then, each

family i solves the same problem as in G, but with more information than before while

facing a more favourable search pattern of the other families. Thus, family i is better

off.

G Proof of Lemma 3

Lemma 3 Under Assumption 1, for all n ≥ 1,

U I(n+ 1, n̄, µ)− U I(n, n̄, µ) ≤ U(n+ 1, n̄, µ)− U(n, n̄, µ)

Proof. When information about the top school is provided, the utility that a student

gets when applying to n schools is

U I(n, n̄, µ) = Eµ

(
(1− pn̄,k)E[u

1
N ] +

n−1∑
l=1

E[uln−1 | I](1− pn̄,k)p
l
n̄

)
− c(n− 1)

where E[uln−1 | I] denotes the expectation of the l-order statistics among n− 1 schools

after the information about the identity of the top schools is revealed. Thus, for n ≥ 2,

U I(n+1, n̄, µ)−U I(n, n̄, µ) =
n−1∑
l=1

(
E[uln | I]−E[uln−1 | I]

)
(1−pn̄, k)p

l
n̄,k+(1−pn̄,k)p

n−1
n̄,k E[u

n
n+1 | I]−c

Thus, to prove the Lemma it is enough to show that

n∑
l=1

(
E[uln‘+1]−E[uln]

)
(1− pn̄)p

l−1
n̄ + (1− pn̄)p

n
n̄E[u

n+1
n+1]

≥
n−1∑
l=1

(
E[uln | I]−E[uln−1 | I]

)
(1− pn̄)p

l
n̄ + (1− pn̄)p

n−1
n̄ E[unn+1 | I].

Denoting ∆̃l
n = E[uln+1 | I]−E[uln | I], we show in Lemma 7 that ∆̃l

n ≤ ∆l
n (see below).

Rerranging terms, it is enough to prove that

Eµ

(
(1− pn̄,k)

( n−1∑
j=1

(∆j
n − pn̄,k∆

j
n−1)p

j−1
n̄,k +∆n

np
n−1
n̄,k + (un+1

n+1 − unn)p
n
n̄,k

))
≥ 0
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Thus, it is enough to show that, given profile n̄, for all k, we have

(i) ∆j
n − pn̄,k∆

j
n−1 ≥ 0 ∀n ∈ {2, . . . , N0} ∀j ∈ {1, . . . , n− 1}

(ii) ∆n
n + pn̄,k(u

n+1
n+1 − unn) ≥ 0 ∀n ∈ {2, . . . , N0}

Note that by construction, for all n̄ and all k,

pn̄,k ≤ p̃ ≤ min
n∈{1,...,N0}

min
l∈{1,...,n}

{
∆l

n+1

∆l
n

}

which established (i). Now, to show (ii) we note that

∆n
n = n

∫
F (ũ)(1− F (ũ))ndũ

and

un+1
n+1 = µ1

n+1 =

∫
ũdF 1

n+1(ũ) = 1−
∫

F 1
n+1(ũ)dũ

= 1−
∫ 

n+1∑
k=1

n+ 1

k

F (ũ)k(1− F (ũ))n+1−kdũ


= 1−

∫ 
n+1∑
k=0

n+ 1

k

F (ũ)k(1− F (ũ))n+1−kdũ− (1− F (ũ))n+1


=

∫
(1− F (ũ))n+1dũ

Analogously, obtain unn =
∫
(1−F (ũ))ndũ. Then, the left hand side of condition (ii) can

be written as

(b) = n

∫
F (ũ)(1− F (ũ))ndũ+ p

(∫
(1− F (ũ))n+1dũ−

∫
(1− F (ũ))ndũ

)
= n

∫
(1− F (ũ))n

(
F
(
1− p

n

)
dũ

≥ 0

Lemma 7. ∆̃l
n ≤ ∆l

n
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Proof. Note that

∆̃l
n =

∫ (
E[uln+1 | u1N ]−E[uln | u1N ]

)
fu1

N
(u1N )du1N .

Using the formula for the order statistics conditional on u1N , we obtain

(
E[uln+1 | u1N ]−E[uln | u1N ]

)
=

 n

n+ 1− l

∫ u1
N

0

( F (u)

F (u1N )

)n+1−l(
1− F (u)

F (u1N )

)l
du

=

 n

n+ 1− l

∫ un+1−l(1− u)
F (u1N )

f(F−1(uF (u1N )))
du.

We claim that for each u, the function u1N 7→ F (u1
N )

f(F−1(uF−1(u1
N )))

is non-decreasing. To see

this, define the increasing function z(u1N ) = F−1(uF (u1N )) and write

F (u1N )

f(F−1(uF (u1N )))
=

F (z(u1N ))/u

f(z(u1N ))
.

Since F (z)/f(z) is increasing, it follows that
F (u1

N )

f(F−1(uF−1(u1
N )))

is non-decreasing in u1N .

It thus follows that

(
E[uln+1 | u1N ]−E[uln | u1N ]

)
≤

 n

n+ 1− l

∫ un+1−l(1− u)l
1

f(F−1(u))
du = ∆l

n

ans, as a result, ∆̃l
n ≤ ∆l

n.

H Proof of Proposition 5

Proposition 5. Under Assumption 1, suppose that F is uniform, and N ≥ N0+1. The

following hold:

a. The smallest (resp. largest) Nash equilibrium of game G (resp. GIB) is less than

or equal (resp. greater than or equal) to any Nash equilibrium of game GIB (resp.

G).

b. Let n be the smallest Nash equilibrium of the game G and assume that n is strictly

smaller than all Nash equilibria of game GIB. Assume N0 ≤ N̄0, where N̄0 is the

unique N0 satisfying N0(1−Nk1)
N0 = 1/15. Then, each student gets strictly more

welfare in the game G under equilibrium n than in any Nash equilibrium of game
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GIB.

Proof. Part (a) of the proposition follows directly from Lemma 4. Let nIB be the

smallest Nash equilibrium in the game GIB. To proof part (b), it is enough to show

that U I(n′, pnIB ,k, µ) ≤ U(n′, pn,k, µ) for all n
′. To simplify notation and exposition, fix

a state k and let pIB := pnIB ,k and pE := pn,k. Also, let

U IB(n′, pIB, k) =
n′−1∑
l=1

[(1− uNN )uln′−1 + uNN ](1− pIB)p
l−1
IB + uNN (1− pIB)p

n′−1
IB − c(n′ − 1)

U(n′, pE , k) =
n′∑
l=1

uln′(1− pE)p
l−1
E − cn′

And note that

∂U(n′, pE , k)

∂p
=

n′−1∑
l=1

(ul+1
n′ − uln′)lpl−1

E − n′pn
′−1

E un
′

n′

=
1

n+ 1

n′∑
l=1

lpl−1
E

≤ −
n′pn

′−1
E

2

and

U(n′, pIB, k) = U(n′, pE , k) +

∫ pIB

pE

∂U

∂p
(n′, x, k)dx

≤ U(n′, pE)− (pIB − pE)
n′pn

′−1
E

2

Then, we have

U I(n′, pIB, k)− U(n′, pE , k) ≤ U I(n′, pIB, k)− U(n′, pIB)− (pIB − pE)
n′pn

′−1
E

2

And we want to show that, for all k,

U I(n′, pIB, k)− U(n′, pIB) ≤ (pIB − pE)
n′pn

′−1
E

2
n′−1∑
l=1

[(1− uNN )uln′−1 + uNN − uln′ ](1− pIB)p
l−1
IB + (uNN − un

′
n′)(1− pIB)p

n′−1
IB + c ≤ (pIB − pE)

n′pn
′−1

E

2
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But (1− uNN )uln′−1 + uNN − uln′ < 0 and uNN − un
′

n′ < 0. Thus, it is enough to show that

c ≤ 1

2
≤ (pIB − pE)

n′pn
′−1

E

2

Noticing that,

(pIB − pE) = pE((1−Nk)
1

nIB
− 1

n − 1)

≥ pE

((
1

1−Nk

) 1

N2
0 − 1

)

≥ pE

((
1

1−Nk0

) 1

N2
0 − 1

)

= pE

(
1

p̃2
− 1

)
≥ 15pE

We thus need

15n′pn
′

E

2
≥ 1

2

n′pn
′

E ≥ N0(1−Nk1)
N0 ≥ 1

15

Which concludes the proof.

I Proof of Lemma 4

Lemma 4 Under assumption 1, for all n ≥ 1,

BI(n+ 1, n̄, µ)−BI(n, n̄, µ) ≥ B(n+ 1, n̄, µ)−B(n, n̄, µ)

Proof. Let ∆BI
n := BI(n+1, n̄, µ)−BI(n, n̄, µ) and ∆Bn := B(n+1, n̄, µ)−B(n, n̄, µ),

and note that

∆BI
n = Eµ

[
(1− uNN )

(
(1− pn̄,k)

n−1∑
i=1

∆i
n−1p

i−1
n̄,k + unn(1− pn̄,k)p

n−1
n̄,k

)
+ uNN (1− pn̄,k)p

n
n̄,k

]

∆Bn = Eµ

[(
(1− pn̄,k)

n∑
i=1

∆i
np

i−1
n̄,k + un+1

n+1(1− pn̄,k)p
n
n̄,k

)]
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Thus, we want to show that

Eµ

[
(1− pn̄,k)

(
(1− uNN )

n−1∑
i=1

∆i
n−1p

i−1
n̄,k + (1− uNN )unnp

n−1
n̄,k + uNNpnn̄,k

−
n∑

i=1

∆i
np

i−1
n̄,k − un+1

n+1p
n
n̄,k

)]
≥ 0

To simplify notation, we drop the subindex n̄, k from p and show that, for all k

(1− uNN )
n−1∑
i=1

∆i
n−1p

i−1 + (1− uNN )unnp
n−1 + uNNpn −

n∑
i=1

∆i
np

i−1 − un+1
n+1p

n ≥ 0

Since F is uniform, we have

ujn =
n− j + 1

n+ 1
; ∆j

n =
j

(n+ 1)(n+ 2)

which implies that

n−1∑
i=1

(
N

N + 1
∆i

n−1 −∆i
n

)
pi−1 =

2N − n

n(n+ 1)(n+ 2)(N + 1)

n−1∑
i=1

ipi−1

≥ (2N − n)pn−2

n(n+ 1)(n+ 2)(N + 1)

n−1∑
i=1

i

=
(2N − n)(n− 1)pn−2

2(n+ 1)(n+ 2)(N + 1)

Hence, we need to show that

(2N − n)(n− 1)

2(n+ 1)(n+ 2)(N + 1)
pn−2 +

N

N + 1

1

n+ 1
pn−1 +

1

N + 1
pn

− n

(n+ 1)(n+ 2)
pn−1 − 1

n+ 2
pn ≥ 0

⇔ (2N − n)(n− 1)

2(n+ 1)(n+ 2)(N + 1)
pn−2 +

(
N

(N + 1)(n+ 1)
− n

(n+ 1)(n+ 2)

)
pn−1

− N − (n+ 1)

(N + 1)(n+ 2)
pn ≥ 0

⇔ (N − n/2)(n− 1) + (2N − n)p− (n+ 1)(N − (n+ 1))p2 ≥ 0
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But assumption 1 holds, so p ≤ 1/4, implying that

(N − n/2)(n− 1) + (2N − n)p− (n+ 1)(N − (n+ 1))p2 ≥

(N − n/2)(n− 1) + (2N − n)p− (n+ 1)(N − (n+ 1))
1

16

Thus, it is enough to prove that

(N − n/2)(n− 1)− (n+ 1)(N − (n+ 1))
1

16
≥ 0

⇔ N ≥ (7n− 3)(n− 1)− 4

15n− 17

This is always true because

N ≥ N0 + 1 ≥ n+ 1 ≥ (7n− 3)(n− 1)− 4

15n− 17

Which concludes the proof.
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