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Abstract

Motivated by recent developments in applied dynamic analysis, this paper presents

new sufficient conditions for the existence of Markov perfect equilibrium in dynamic

stochastic games. The main results imply the existence of Markov perfect equilibrium

provided the sets of actions are compact, the set of states is countable, the period payoff

functions are upper semi continuous on the action profiles and lower semi continuous

on actions taken by rival firms, and the transition function depends continuously on the

actions. Additionally, if for each firm a static best reply set is convex, then the equi-

librium can be taken to be in pure strategies. Sufficient conditions for the convexity of

the best replies are presented and discussed. In particular, we introduce new sufficient

conditions ensuring the dynamic programming problem each firm faces has a convex

solution set and deduce the existence of Markov perfect equilibrium for this class of

games. Our results expand and unify the available modeling alternatives and apply

to several models of interest in industrial organization, including models of industry
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1 Introduction

This paper considers infinite horizon games where at each period, after observing a payoff

relevant state variable, players choose actions simultaneously. The state of the game evolves

stochastically parameterized by past history in a stationary Markov fashion. The setting

includes a broad class of models, including Ericson and Pakes’s (1995) model, as well as

more general dynamic models of imperfect competition.

We present our main existence results in an abstract way and offer several applications in

Section 4. A strict implication from our main result is the following. A dynamic stochastic

game possesses a behavior strategy Markov perfect equilibrium if the sets of actions are

compact, the set of states is countable, the period payoff functions are u.s.c.-l.s.c. in current

actions (or, more generally, depend on actions in a sense similar to that considered by

Dasgupta and Maskin 1986), and the probability distribution of the next state depends

continuously on the actions chosen. Moreover, if for each player a static best reply set is

convex, then the equilibrium can be additionally shown to be in pure strategies.

As in received work (Horst 2005, Doraszelski and Satterthwaite 2010), in order to obtain

existence in pure strategies we impose convexity restrictions on the dynamic game. Our

result requires the game to have convex best replies, meaning that for all rivals’ actions

and all (bounded) continuation functions, each firm’s static best reply set is convex. This

condition resembles (and indeed reduces to) the standard convexity restriction imposed on

the payoff functions in strategic form games to ensure the existence of Nash equilibrium. We

state independent, sufficient conditions ensuring the convexity of the best replies. Our first

sufficient condition is the uniqueness of the set of best replies, a condition requiring best reply

sets to be single valued. This condition reduces to the convexity condition introduced by

Doraszelski and Satterthwaite (2010) in an industry dynamics model. The second sufficient

condition, satisfied by the so called games with concave reduced payoffs, ensures that each

player’s maximization problem is concave and so best replies are convex valued. While

these two conditions do not cover all the games having convex best replies, they significantly

broaden the modeling alternatives offered by existent results.

There are several applications of our main results; Section 4 provides a few. We analyze an

industry dynamics model similar to that introduced by Ericson and Pakes (1995). Doraszelski

and Satterthwaite (2010) have recently studied a version of the Ericson-Pakes model and

introduced a condition, named the unique investment choice condition (UIC), to guarantee

equilibrium existence. Under Doraszelski and Satterthwaite’s (2010) UIC condition, best

replies are single valued and thus our convexity restrictions are met. Moreover, we provide a
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new alternative condition for existence in the Ericson-Pakes model and discuss how this new

condition permits modeling alternatives uncovered by Doraszelski and Satterthwaite’s (2010)

analysis. In particular, in contrast to Doraszelski and Satterthwaite’s (2010) framework, our

results allow for multidimensional investment decisions and complementarities among firms’

investments.

We also study a Markov Cournot game, in which firms compete in quantities and at

each round a decision-controlled demand shock is realized. We provide sufficient conditions

ensuring equilibrium existence. We show how restrictions on how payoffs are affected by

rivals’ actions and on how the transition depends on action profiles make existent results

unsatisfactory (Horst 2005, Amir 1996, Nowak 2007). Notably, in order to ensure equilibrium

existence, we do not need to restrict the number of game players nor do we need to assume

the transition function is linear in action profiles. We also consider a version of the Markov

Cournot game in which firms have fixed costs and show results ensuring existence of behavior

strategy equilibrium.

Finally, our results are also applied to an incomplete information dynamic model exten-

sively studied recently (e.g. Bajari, Benkard, and Levin 2007, Doraszelski and Escobar 2010).

Dating back to Shapley (1953), several authors have studied the problem of equilibrium

existence in dynamic stochastic games. Until recently, most of the researchers provided

conditions for the existence of mixed or correlated equilibria. Among these, Mertens and

Parthasarathy (1987), Nowak and Raghavan (1992), and Duffie, Geanakoplos, Mas-Colell,

and McLennan (1994) constitute important contributions which neither generalize nor are

generalized by our results.

Two strands of the literature are more closely related to this work. First, Horst (2005),

Doraszelski and Satterthwaite (2010), and Nowak (2007) deal with the pure strategy equi-

librium existence problem. Some of these results cover state spaces uncovered by our results.

Although our main result is formally unrelated to these authors’, this paper identifies con-

vexity conditions that significantly expand and unify the modeling alternatives available.

Indeed, a game satisfying any of the convexity conditions imposed by those authors has

convex best replies as required by our main result. Moreover, games as considered by Horst

(2005) and Nowak (2007) are games with concave reduced payoffs and so, according to

Lemma 2, have convex best replies.1 This work contributes to this literature by identifying

convexity restrictions that significantly generalize the conditions so far available.2

1Bernheim and Ray (1989) and Dutta and Sundaram (1992) derive pure strategy results formally unrelated
to ours. For a class of dynamic models, they restrict the strategy sets so that best replies are single valued
and the games therefore satisfy the convexity restrictions required by our analysis.

2While Amir (1996) and Curtat (1996) restrict their attention to supermodular stochastic games, they do
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These results also contribute to the literature on dynamic games with countable state

spaces. Federgruen (1978) and Whitt (1980) provide existence results which are corollaries

to our main behavior strategy result, Theorem 6, in that they do not permit payoffs to be

discontinuous. In particular, they do not deal with the problem of pure strategy existence,

nor do they answer whether a convexity condition as the one here imposed could be satisfied

by a nontrivial class of models.

The paper is organized as follows. Section 2 presents the model. Section 3 presents and

discusses the main theorem. Section 4 provides a number of applications of our results.

Section 5 concludes. Additional material has been relegated to the Appendix.

2 Set Up

In this section we introduce our dynamic game model and define our equilibrium notion. As

frequently studied in Industrial Organization, we consider a dynamic stochastic game played

by a finite set of firms. In each round of play, there is a payoff relevant state variable (e.g.

the identity of the incumbent firms). The state variable evolves stochastically, and firms can

influence its evolution through actions (e.g. by entering or exiting the market). The goal of

each firm is to maximize the expected present value of its stream of payoffs.

2.1 Model

There is a finite set of firms denoted by I. At the outset of period t = 1, firms are informed

about the initial state of the game, s1. Then they pick their actions a1 = (ai1)i∈I simultane-

ously. At the outset of period t = 2, firms are informed of the new state of the game s2 and

then pick simultaneously their actions a2 = (ai2)i∈I . And so on for t ≥ 3.

The state space is S and we assume that S a countable set. For each firm i, the set of

actions Ai is compact and contained in a linear metric space. In most applications, we will

assume that Ai is contained in RLi
, where Li is a natural number, but it will be useful to

allow some more generality when studying models of imperfect competition in which firms

receive private technology shocks (see Section 4.3).

When firms make decisions at round t, they know the sequence of past states s1, . . . , st,

and their action profile at determines the distribution of the state in the next round st+1.

need to impose convexity conditions that, as explained in Subsection 3.2, cannot be deemed as less stringent
than mine.
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Moreover, the transition function takes the form

P[st+1 ∈ B | at, . . . , a1, st, . . . , s1] = Q(B; at, st)

whereB ⊆ S. We will abuse notation writingQ(s′; at, st) = P[st+1 = s′ | at, . . . , a1, st, . . . , s1].

Given realized sequences of actions (at)t≥1 and states (st)t≥1, the total payoff for firm i is

the discounted sum of period payoffs

∞∑
t=1

(δi)t−1πi(at, st)

where δi ∈ [0, 1[ is the discount factor, and πi(a, s) is the per period payoff function. We

assume that πi is bounded for all i. Let πil and πiu be, respectively, the lower and upper

bounds for the function πi and denote ‖πi‖∞ = supa∈A,s∈S|πi(a, s)|. This completes the

description of our dynamic stochastic game.

This dynamic stochastic game model is very flexible and, indeed, several models widely

used in the literature fit into this framework (Maskin and Tirole 1988, Ericson and Pakes

1995). Applications and examples will be discussed in Section 4.

2.2 Markov Perfect Equilibria

We will now present the equilibrium notion we will work with. One may study subgame

perfect equilibria of our dynamic model, but recent research has focused on Markov perfect

equilibria. Markov perfect equilibria is a class of subgame perfect equilibrium strategies in

which players condition their play only on payoff relevant information.3 The idea is that,

in a given round, firms choose actions depending on the current state with the purpose of

maximizing the sum of current and future expected discounted payoffs.

A Markov strategy for firm i is a function āi : S → Ai mapping current states to actions.

Thus, a Markov strategy defines a dynamic game strategy in which in each round t firm i

chooses action āi(st), where st is the shock realized in round t. A tuple of Markov strategies

(āi)i∈I is a Markov perfect equilibrium if it is a subgame perfect equilibrium of the dynamic

game. In a Markov perfect equilibrium, while firms condition their play only on the current

state, they may deviate to arbitrary strategies conditioning on the whole transpired history.

We will also consider behavior Markov perfect equilibria, defined as a subgame perfect equi-

3Several arguments in favor of this restriction can be given, and Maskin and Tirole (2001) provide and
insightful discussion.
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libria in which each firm i uses a strategy āi : S → ∆(Ai) that maps current states to a

distribution over actions.

3 The Main Result

In this section we present our main existence result, Theorem 1. After stating it, a brief

discussion is presented and its proof is provided.

3.1 Statement

As in many dynamic models, dynamic programming tools will be useful to analyze our set

up. We thus define

Πi(a, s; vi) = πi(a, s) + δi
∑
s′∈S

vi(s′)Q(s′; a, s),

where a ∈ A, s ∈ S, and vi : S → R is a bounded function. The number Πi(a, s; vi) is

the total expected payoff for player i, given that the current state is s ∈ S, the current

action profile is a ∈ A, and the continuation payoff, as a function of the next state s′ ∈ S,

is vi(s′). Intuitively, fixing a state s and continuation value functions (vi)i∈I , the functions

Πi(·, s; vi), i ∈ I, define a static game in which firms’ action profiles are a ∈ A. As we will

see in Section 3.3, the Markov perfect equilibrium requirement, on the one hand, restricts

continuation value functions and, on the other hand, induces Nash equilibrium behavior in

the corresponding family of static games.

To guarantee the existence of Markov perfect equilibrium, we will impose convexity and

regularity restrictions on our dynamic game. The dynamic stochastic game is said to have

convex best replies if for all i, all s ∈ S, all a−i in A−i, and all bounded function vi : S →
[
πi

l

1−δi ,
πi

u

1−δi ] the best reply set

arg max
xi∈Ai

Πi
(
(xi, a−i), s; vi

)
(3.1)

is convex. This condition says that the static optimization problem in which each firm

i chooses an action xi ∈ Ai with the purpose of maximizing its total payoffs has a convex

solution set, given the profile played by its rivals a−i, the current state s and the continuation

value function vi

6



It will also be useful to impose some continuity restrictions on the payoffs and the tran-

sition. The game is transition continuous if the transition function Q is setwise continuous

in a ∈ A: for every B ⊆ S and s ∈ S, Q(B; a, s) is continuous in a ∈ A (Royden 1968,

Chapter 11.4). The game is upper semi continuous if for all i, the function πi(a, s) is upper

semi continuous in a: for all i, all s, and all sequence an → a in A

lim sup
n→∞

πin(an, s) ≤ πi(a, s).

Finally, we say that the game is weak lower semi continuous if for all i, all s ∈ S, and all

sequence a−in → a−i in A−i, there exists a sequence ain → ai in Ai

lim inf
n→∞

πi(an, s) ≥ πi(a, s).

We also say that πi(a, s) is weak lower semi continuous if the condition above holds.4 Observe

that if πi(a, s) is lower semi continuous in a−i then it is weak lower semi continuous.5 The

basic idea behind the definition of weak lower semi continuity is that if firm i attains a period

payoff πi(a, s) given actions a and rivals deviate slightly from a−i to a−in , then firm i can

attain virtually the same payoff by playing an action ain close to ai.

The following is our main existence result.

Theorem 1 If the dynamic stochastic game is transition continuous, upper semi continuous,

and weak lower semi continuous, then it possesses a Markov perfect equilibrium provided it

has convex best replies.

A number of comments on the theorem and its assumptions can be made; a complete

discussion is presented in the following subsection.

3.2 Discussion and Sufficient Conditions

The convexity assumption is a restriction on a static best reply set. If we rely on Kakutani’s

fixed point theorem to obtain the existence of a profile satisfying (at least) a static Nash

equilibrium condition, this kind of convexity restriction is virtually unavoidable. Indeed, in

4Upper semi continuity and weak lower semi continuity allow us to ensure best replies are closed. Similar
conditions appear in Dasgupta and Maskin (1986); in particular, weak lower semi continuity implies their
graph continuity restriction. Related notions are studied in the math literature (Rockafellar and Roger 2004,
Chapter 7).

5Note that if πi(a, s) is lower semicontinuous in a−i and upper semi continuous in a, then it is a continuous
function of a−i.
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strategic form games, to ensure pure strategy existence, the convexity of the best reply set

is imposed for every strategy followed by rivals. In our dynamic setting, that restriction is

imposed not only for every strategy followed by rivals, but also for every continuation value

function.6

The game will have convex best replies whenever the set of maximizers (3.1) is a singleton;

in this case we say the game has single valued best replies. Games studied by Horst (2005)

and Doraszelski and Satterthwaite (2010), among others, have single valued best replies.

Section 4 presents models extensively employed in the applied IO literature where this kind

of uniqueness restriction can be exploited.

Before presenting a sufficient condition for the convexity of the best replies, we will

provide some more structure to the main setting. The set of actions of each player i, Ai,

will be a convex set contained in RLi
, where Li is a natural number. We will also assume

that πi(a, s) and Q(s′; a, s) are twice continuously differentiable respect to ai ∈ Ai; denote

the Hessian matrices with respect to ai ∈ Ai by πiii(a, s) and Qii(s
′; a, s) respectively.

For a given real valued symmetric square matrix M , we consider the real number

mev(M) = max{λ | λ is an eigenvalue of M}.

To see the relevance of the maximum eigenvalue of a symmetric matrix in our context, recall

that for a given column vector x,

x′Mx ≤mev(M)‖x‖22,

where ‖·‖2 is the Euclidean norm (Section 9.4 in Aleskerov, Ersel, and Piontkovski 2011).

We can therefore interpret the maximum eigenvalue of a symmetric matrix M , mev(M), as

a measure of how negative definite the matrix M is. In our dynamic model, it will be useful

to impose the concavity (with respect to own actions ) of the sum of current and continuous

payoffs, and measuring concavity through the maximum eigenvalue of each term will prove

useful.

More concretely, we say that the game has concave reduced payoffs if for all i, the function

6Unless one gives some more structure to the game, little can be said about continuation functions which
are solutions to a dynamic programming condition. This resembles the analysis of static games: unless one
adds some more structure to a (say Bayesian) game, there is no way to impose the convexity restriction on
a smaller set of rivals’ strategies.
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πi(a, s) is concave in ai and for all (a, s) ∈ A× S either

(
πiu − πil

)∑
s′∈S

max{0,mev(Qii(s
′; a, s))} −mev(πiii(a, s)) = 0

or this expression is strictly positive and

δi ≤ −mev(πiii(a, s))

(πiu − πil)
∑

s′∈S max{0,mev(Qii(s′; a, s))} −mev(πiii(a, s))
. (3.2)

The following result provides a sufficient condition for a game to have convex best replies.

Proposition 2 Suppose that the game has concave reduced payoffs. Then, for all i ∈ I,

all a ∈ A, all s ∈ S, and all function vi : S → [
πi

l

1−δi ,
πi

u

1−δi ], Πi(a, s; vi) is concave in ai. In

particular, the game has convex best replies.

This result provides a condition under which Πi(a, s; vi) is a concave function of ai for

all a−i ∈ A−i, all s ∈ S, and all vi. To gain intuition, suppose first that πi(a, s) is strictly

concave in ai. Then, even if for some vi the term
∑

s′∈S v
i(s′)Q(s′; a, s) is ill-behaved (in the

sense that it is “very convex”), the sum of πi(a, s) and δi
∑

s′∈S v
i(s′)Q(s′; a, s) can still be

a concave function if δi is small enough. More generally, taking the maximum eigenvalue

of the Hessian matrix as a measure of the concavity of a function (as we discussed above),

(3.2) can be seen as making explicit a tension between the discount factor δi and the second

derivatives with respect to ai of πi(a, s) and Q(s′; a, s).

Proposition 2 establishes a trade-off between δi and the concavity of πi(a, s) andQ(s′; a, s)

as functions of ai. Moreover, δi can be made arbitrarily close to 1 provided Q(s′; a, s) is

sufficiently flat or πi(a, s) is sufficiently concave in ai. Indeed, as the following result shows,

in some models Condition (3.2) imposes no restriction on δi.

Lemma 3 Suppose that the for all i, πi(a, s) is a concave function of ai, and that the

transition function can be written as

Q(s′; a, s) =
K∑
k=1

αk(a)Fk(s
′; s)

where for all s, Fk(·; s) is a probability distribution over S and, for all a ∈ A,
∑K

k=1 αk(a) = 1

with αk(a) ≥ 0 for all k. Assume that for all k, αk is twice continuously differentiable as a

function of ai ∈ Ai ⊆ RLi
and its second derivative equals 0. Then, the game has concave

reduced payoffs and therefore best replies are convex.
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The importance of this lemma is that it provides easy to check sufficient conditions

ensuring the convexity of the best replies. In particular, when the transition function Q is

a multilinear function of (a1, . . . , a|I|), the game has concave reduced payoffs provided each

πi(a, s) is a concave function of ai ∈ Ai. While in some applications this restriction on Q

may seem demanding, it provides as much flexibility in period payoffs as one can hope for

(namely, concavity of payoffs as functions of own actions) and imposes no restriction on the

discount factors.

One of the attractive features of games with concave reduced payoffs is their tractability.

Indeed, in games with concave reduced payoffs, first order conditions, being necessary and

sufficient for optimality, can be used to characterize equilibrium strategies. This observation

is important not only when analytically deriving properties of the equilibrium strategies, but

also when numerically solving for those strategies.

Let me now discuss how the restriction to games having concave reduced payoffs relates

to similar conditions imposed in previous works. Horst’s (2005) Weak Interaction Condition

(2005) is strictly more demanding than the sufficient condition given above; this can be seen

by noting that any stochastic game satisfying Condition (7) in Horst’s (2005) paper also

satisfies Condition (3.2).7 Indeed, Horst’s (2005) assumption additionally makes reaction

functions virtually flat functions of others’ strategies. More recently, Nowak (2007) works

under the assumption that πi(a, s) is concave in ai, Q(s′; a, s) is affine in ai (as in Lemma

3), and a strict diagonal dominance assumption holds.8 It is not hard to see that under

Nowak’s (2007) concavity condition, Qii = 0 and so the game has concave reduced payoffs

and convex best replies for all δi < 1.

Amir (1996) and Curtat (1996) have studied supermodular stochastic games. These

authors work under the assumption that the payoffs and the transition are supermodular

and satisfy a positive spillovers property.9 Moreover, these works still need to impose some

7To see this, assuming that πil = 0, Li = 1, and δi = δ for all i, our condition (3.2) can be equivalently
written as

δ

1− δ
‖πi‖∞ sup

a∈A

∑
s′∈S

max{0, Qii(s′; a, s)}
|πiii(a, s)|

≤ 1

for all i and all s. Denoting by πiij(a, s) = ∂πi(a,s)
∂ai∂aj , Condition 7 on Assumption 2.2 in Horst (2005) can be

written as∑
j 6=i

sup
a∈A

|πiij(a, s)|
|πiii(a, s)|

+
δ

1− δ
‖πi‖∞

∑
j 6=i

sup
a∈A

∑
s′∈S |Qij(s′; a, s)|
|πiii(a, s)|

+
δ

1− δ
‖πi‖∞ sup

a∈A

∑
s′∈S

|Qii(s′; a, s)|
|πiii(a, s)|

< 1

for all i and all s. It follows that the left hand side of my restriction is strictly less than the left hand side
of the restriction above.

8This assumption makes reaction functions in the static one-shot game a contraction.
9A game has positive spillovers if payoff functions are nondecreasing in rivals’ actions.
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convexity restrictions. Consider, for example, Curtat’s (1996) Strict Diagonal Dominance

(SDD) assumption. To simplify the exposition, assume first that for all i, Ai ⊂ R. Then, the

SDD condition can be expressed as follows: For all i and all (a, s) ∈ A×S,
∑

i∈I
∂2πi(a,s)
∂ai∂aj < 0.

Since πi is supermodular, SDD implies that πi is strictly concave in ai. More generally, if

Ai ⊂ RLi
, Li 6= 1, SDD is related to the concavity of πi(a, s) in a, but neither condition

implies the other. Yet, the SDD condition on the transition restricts the model dynamics

substantially. Indeed, in all the examples studied by Curtat (1996), the transition is a linear

function of the action profile a ∈ A.

It is possible to state a number of corollaries by combining Theorem 1 and the sufficient

conditions presented. The following corollaries will prove useful in applications.

Corollary 4 Let the game be transition continuous. If for all i, πi(a, s) is continuous in

a, then the game possesses a Markov perfect equilibrium provided it has single valued best

replies.

Corollary 5 Let the game be transition continuous game. If for all i, πi(a, s) is weak

lower semi continuous, then the game possesses a Markov perfect equilibrium provided it has

concave reduced payoffs.

By explicitly including time as a state variable, our framework encompasses alternating

move games (Maskin and Tirole 1988), as well as finite horizon games. Additionally, we can

allow the payoff functions and transition probabilities to depend not only on the current

public signal but also on past signals just by redefining the state variable.

Our main result can also be applied to deduce the existence of behavior Markov perfect

equilibria.

Theorem 6 Let the game be transition continuous, and πi(a, s) be upper semi continuous

in a ∈ A and lower semi continuous in a−i ∈ A−i. Then, it possesses a behavior Markov

perfect equilibrium.

We observe that under the assumptions of the theorem above, πi(a, s) is continuous in

a−i. So, the theorem only allows for discontinuities in ai.
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3.3 Proof of Theorem 1

In this subsection Theorem 1 is proven. The reader interested in applications may skip to

Section 4. We begin by stating the following key result (Stokey and Lucas 1989, Theorem

9.2 ).

Lemma 7 For each i ∈ I, consider a function āi : S → Ai. Suppose that there exists a tuple

(vi)i∈I , where vi : S → R is bounded, such that for all i and for all s ∈ S

vi(s) = max{πi((xi, ā−i(s)), s) + δi
∑
s′∈S

vi(s′)Q(s′; (xi, ā−i(s)), s) | xi ∈ Ai} (3.3)

and

āi(s) ∈ arg max{πi((xi, ā−i(s)), s) + δi
∑
s′∈S

vi(s′)Q(s′; (xi, ā−i(s)), s) | xi ∈ Ai}. (3.4)

Then, (āi)i∈I is a Markov perfect equilibrium.

This result allows us to reduce the problem of finding an equilibrium to the problem of

solving a system of functional equations. We will therefore verify the existence of solutions

to this system of functional equations using Kakutani’s fixed point theorem.

For each i, define Ai as the set of functions ai : S → Ai and V i as the set of functions

vi : S → [
πi

l

1−δi ,
πi

u

1−δi ]. Each of these sets is contained in a vectorial space that, when endowed

with the product topology, is a Hausdorff topological vector space. Since Ai and [
πi

l

1−δi ,
πi

u

1−δi ]

are compact, Tychonoff’s theorem (Royden 1968, Chapter 9, Theorem 14) implies that

Ai and V i are compact. Additionally, since S is countable, Ai and V i are metric spaces

(Royden 1968, Chapter 8, Exercise 45).10 We define A =
∏

i∈I Ai, and V =
∏

i∈I V i. We

have therefore shown the following result.

Lemma 8 A× V is a convex compact subset of a linear metric space.

10Observe that if S were not countable, the sets Ai and Vi need not be metric spaces. The fact that these
sets are metric spaces is used in the proof of Lemma 11.
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Now, for i ∈ I, consider the map Φi defined on A× V by

(a, v) ∈ A× V 7→ Φi(a, v) =
{
āi ∈ A | āi(s) ∈ arg max

xi∈Ai
Πi((xi, a−i(s)), s; vi) for all s ∈ S

}
.

This map yields the best Markov strategies āi for firm i, given arbitrary strategies for i’s

rivals and given continuation values vi. Observe that the arguments (vj)j 6=i and ai in the

definition of Φi appear only for consistency (as will be shown soon).

It will also be useful to nail down continuation values. To do that, define the map T i by

(a, v) ∈ A× V 7→ T i(a, v) =
{
v̄i ∈ V i | v̄i(s) = max

xi∈Ai
Πi((xi, a−i(s)), s; v̄i) for all s ∈ S

}
.

This map yields the solutions to the dynamic programming problem faced by firm i, given

the Markov strategies followed by i’s rivals. Again, the dependance of this map on (vj)j∈I

and ai is just for consistency.

Finally define Φ by Φ(a, v) =
(∏

i∈I Φi(a, v)
)
×
(∏

i∈I T
i(a, v)

)
. We state three prelimi-

nary results.

Lemma 9 Φ(A× V) ⊆ A× V.

To see this lemma, fix i and note that for any (a, v) ∈ A × V , Φi(a, v) ⊆ Ai and

T i(a, v) ⊆ V i. This implies that Φ(a, v) ⊆ A× V

Lemma 10 Φ is nonempty- and convex-valued.

The proof of this lemma is as follows. Since the product of sets which are nonempty-

and convex-valued inherits these properties, it is enough to prove that for each i, Φi and

T i are nonempty- and convex-valued. Fix i. Given a−i : S → A−i and a continuation value

vi : S → R+, for each s the existence of solution for firm i’s static problem (3.4) is evident;

let ai(s) be such a solution. By definition, ai ∈ Φi so that Φi is nonempty-valued. Moreover,

Φi is convex-valued. Indeed, fix λ ∈ [0, 1] and consider φi, φi
′ ∈ Φi(a, v), where a, v ∈ A×V .

Then, for all s, φi(s), φi
′
(s) ∈ arg maxxi∈Ai Πi((xi, a−i(s)), s; vi). Since the game has convex

best replies, for all s, λφi(s)+(1−λ)φi
′
(s) ∈ arg maxxi∈Ai Πi((xi, a−i(s)), s; vi). This implies

that λφi + (1− λ)φi
′ ∈ Φi(a, v) and proves that Φi is convex-valued. Now, let us analyze T i.

Given a−i : S → A−i, Theorem 13 in the Appendix implies the existence of a single function

vi ∈ V i satisfying the dynamic programming condition (3.3) for firm i. Consequently, T i,

being the set of all such solutions to (3.3), is nonempty- and single-valued. This completes

the proof.
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Lemma 11 Φ has closed graph.

Since A × V is a metric space, to prove this lemma it is enough to prove that for any

sequence φn ∈ Φ(an, vn) with φn → φ and (an, vn) → (a, v), we have φ ∈ Φ(a, v). Since

the game is upper semi continuous, weak lower semi continuous, and transition continuous,

Lemma 11 follows as an immediate consequence of Proposition 14 in the Appendix.

We are now in a position to provide a proof of Theorem 1. Lemma 8 implies that

A × V is a compact convex set contained in a metric linear space. From Lemmata 9, 10

and 11, Φ: A× V → A× V is nonempty- and convex-valued, and its graph is closed. From

Glicksberg’s (1952) generalization of Kakutani’s fixed point theorem, we deduce the existence

of a fixed point (ā, v) ∈ A×V of Φ: (ā, v) ∈ Φ(ā, v). It readily follows that, for each i ∈ I and

each s ∈ S, (ā, v) satisfies conditions (3.3) and (3.4). Lemma 7 implies that ā is a Markov

perfect equilibrium.

4 Applications

This section provides a number of applications of our main results. Subsection 4.1 studies

a model similar to Ericson and Pakes’s (1995) and relates our sufficient conditions to those

recently derived by Doraszelski and Satterthwaite (2010). Subsection 4.2 shows a dynamic

version of the textbook Cournot game with stochastic demand. Subsection 4.3 ensures

equilibrium existence in a dynamic model of incomplete information (Bajari, Benkard, and

Levin 2007, Doraszelski and Escobar 2010). Finally, Subsection 4.4 ensures existence in

behavior strategies in a Markov Cournot game with fixed costs.

4.1 Ericson-Pakes Industry Dynamics Model

We now study an industry dynamics game in the spirit of Ericson and Pakes’s (1995) seminal

model. Consider a finite set I of firms. At each t, some of the firms are incumbent; the others

are entrant. The state of firm i is si = (s̄i, ηi) ∈ S̄i × {0, 1}, where s̄i reflects a demand or

technology shock; ηi = 1 if firm i is an incumbent, and ηi = 0 if firm i is an entrant. The

state of the industry is s = (si)i∈I .

The action of firm i is (1i, xi) ∈ {0, 1} ×X, with X ⊂ RL
+, where 1i = 1 (resp. 1i = 0)

if firm i changes (resp. does not change) its incumbency/entrance status and xi is a vector

of investment projects firm i undertakes. In other words, if firm i is an entrant (resp.
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incumbent) and 1i = 1, then i becomes an incumbent (resp. entrant). Since the set {0, 1}
is not convex, we allow firms to randomize. Let pi ∈ [0, 1] be the probability with which i

changes its statues. Firm i’s action is therefore a vector ai = (pi, xi) ∈ [0, 1]×X; we assume

that X is convex and compact.

Given a state s and an action profile a = (ai)i∈I , the per period payoff for firm i is given

by

πi(a, s) = ηi
(
gi(s) + ψi(s)pi

)
+ (1− ηi)

(
− ψ̄i(s)pi

)
− ci(xi, s).

The first term is the profit that firm i obtains when competing in a spot market, gi(s), plus

the scrap value at which firm i may be sold, ψi(s), times the probability of exit pi when

firm i is incumbent, ηi = 1. The second term is the setup price firm i must pay to enter

into the market, −ψ̄i(s), times the probability of entry, pi when firm i is an entrant, ηi = 0.

The third term is the cost of investment xi when the state is s. In applied work, one would

restrict gi(s) to depend not on the whole vector s but only on those sj for which firm j is

an incumbent ηj = 1. Analogously, the scrap and set up values will typically depend only

on the firm’s own state si. Firm i’s discount factor is δi.

For a given vector 1 = (1i)i∈I ∈ {0, 1}|I| of decisions on status changes and a profile x =

(xi)i∈I of investment decisions, the state of the system in the following period is distributed

according to Qr(·;1, x, s). It is relatively easy to see that given the vector of actions a =

(p, x), the next period state is distributed according to

Q(s′; a, s) =
∑

1∈{0,1}|I|
Qr(s′;1, x, s)

( |I|∏
j=1

(pj)1
j

(1− pj)1−1j
)

where we define 00 = 0. We assume that ci(xi, s) and Qr(s′;1, x, s) are twice continuously

differentiable functions of xi.

A similar model is studied by Doraszelski and Satterthwaite (2010). They introduce the

Unique Investment Choice (UIC) condition, a condition implying that the best reply set (3.1)

is unique. It is therefore evident that after introducing a UIC condition in our model, the

stochastic game has convex best replies and so the existence of equilibrium is a consequence

of Corollary 4.11 While the UIC condition may be applied to many variations of the Ericson-

Pakes model, we provide an alternative condition that imposes much less structure on the

11For completeness, let me simplify the model to offer a UIC condition in the spirit of Doraszelski and
Satterthwaite (2010). Suppose that the status change decision is (payoff) irrelevant, that is, the only choice
variable is xi. Also suppose that X = [0, 1] and ci(xi, s) = xi. Then the UIC condition holds provided for all
i, Q(s′;x, s) = ai(s′;x−i, s)ηi(s, xi) + bi(s′;x−i, s), where ηi is twice differentiable, strictly increasing, and
strictly concave in xi. Under this condition, (3.1) is single valued.
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transition and the investment decisions.

First note that

πiii(a, s) = −ciii(xi, s)

where ciii(x
i, s) denotes the matrix of second derivatives with respect to xi. Now, the Hessian

matrix of the transition function, Q, can be expressed as

Qii(s
′; p, x, s) =

∑
1∈{0,1}|I|

(∏
j 6=i

(pj)1
j

(1− pj)1−1j
)
×

(
0 [Qr

xi(s′;1, x, s)]
′
(21i − 1)

Qr
xi(s′;1, x, s)(21i − 1) Qr

xixi(s′;1, x, s)(pi)1
i
(1− pi)1−1i

)

where Qr
xi(s′;1, x, s) (resp. Qr

xixi(s′;1, x, s)) denotes the column vector of derivatives (resp.

matrix of second derivatives) of Qr(s′;1, x, s) with respect to the variable xi. Denoting

λi(s′; p, x, s) = mev(Qii(s
′; p, x, s)),it follows that the Ericson-Pakes industry dynamics

model has an equilibrium provided

δi ≤ −mev(−ciii(xi, s))
µi
∑

s′∈S max{0, λi(s′; p, x, s)} −mev(−ciii(xi, s))
(4.1)

for all i, p, x and s, where µi = πiu − πil equals

µi = max
s′′∈S with ηi=1,yi∈X

(
gi(s′′) + ψi(s′′)− ci(yi, s′′)

)
+ max

s′′∈S with ηi=0,yi∈X

(
ψ̄i(s′′) + ci(yi, s′′)

)
.

While (4.1) is not more general than the UIC condition (a condition already shown to fit

into our general framework), this new condition allows modeling alternatives uncovered by

Doraszelski and Satterthwaite (2010). Doraszelski and Satterthwaite’s (2010) analysis hinges

on the unidimensionality of the investment decisions –ruling out, for example, investment

plans that can affect the demand and the cost structure independently–, and the separable

form of the transition –ruling out several transitions exhibiting non trivial complementarities

among the investment decisions. This and other modeling alternatives can be analyzed with

this new alternative condition.

Condition (4.1) involves the maximum eigenvalue of the matrix of second derivatives of

minus the cost function. Intuitively, the condition says that −ciii must be sufficiently concave,

given the discount factor δi, so that all of its eigenvalues are negative enough. Alternatively,

the firm must be sufficiently impatient given the technology ciii. Condition 4.1 resonates well

with other existence results in equilibrium theory, which emphasize the importance of ruling

out increasing returns of production to ensure equilibrium existence (Mas-Colell, Whinston,
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and Green 1995, Proposition 17.BB.2). The novel aspect of Condition (4.1) is that, because

of the dynamics, convexity of the cost functions must be strengthened so that, even when

firms maximize total payoffs, best replies are convex valued. To do this, we restrict attention

to models in which returns to scale are “sufficiently decreasing”.

It is also of interest to observe that when (4.1) holds, each firm’s payoff is a concave

function of its decision variables. Thus, first order conditions are necessary and sufficient

for optimality. The problem of numerically finding equilibrium strategies is therefore ef-

fectively reduced to the problem of solving a (potentially huge) system of equalities (or

variational inequalities). Standard numerical methods –as the homotopy method imple-

mented by Besanko, Doraszelski, Kryukov, and Satterthwaite (2010)– are rarely ensured to

converge. Remarkably, under (4.1), we can be confident that a converging method will yield

an equilibrium of the model.

In applications, checking Condition (4.1) amounts to solving |I| × |S| nonlinear mini-

mization problems on ([0, 1] × X)|I|. In complicated models, this can be done numerically

before running the routines to solve for the equilibria. This first step is relatively easy to im-

plement numerically as the |I|× |S| minimization problems are unrelated. If this initial step

is successful, our model is well behaved in that not only it possesses an equilibrium but also

all the dynamic programming problems involved will be concave maximization problems.

The following example presents a simple model in which investment decisions are multi-

dimensional and returns to scale are decreasing; we observe that Doraszelski and Satterth-

waite’s (2010) results do not apply.

Example 12 Suppose that firms invest jointly in a project and the total investment deter-

mines the common state of the industry s̄. In other words, we now assume that s̄i = s̄j

for all i 6= j, and that this state is stochastically determined by
∑|I|

i=1 x
i, where xi ∈ [0, 1]2.

The state s̄ only determines spot market profits so that the profit of a firm competing in

the spot market is g(s̄, η), while scrap values and set up prices are ψi(s) = ψ ∈ R+ and

ψ̄i(s) = ψ̄ ∈ R+ for all i and all s. Each firm may carry out two types of investment projects

so that xi ∈ [0, 1]2, and the cost functions take the form ci(xi, s) = 1
2

(
(xi1)

2 + (xi2)
2
)
. We

assume that δi = δ for all i. This is a symmetric model in which firms jointly invest in

improving spot market profits for example, by doing advertising or by making the (non pro-

prietary) production technology more efficient. We refer to the state s̄ as the spot market

conditions.

The set of spot market conditions S̄ is ordered and can be written S̄ = {1, . . . , |S̄|}.
Higher states result in higher profits so that g(s̄, η) is increasing in s̄. The evolution of the
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spot market conditions s̄ takes the form

Qr(s̄′;x, s̄) = α(

|I|∑
i=1

xi)F1(s̄
′; s̄) +

(
1− α(

|I|∑
i=1

xi)
)
F2(s̄

′; s̄)

where α(y) ∈ [0, 1] for all y ∈ [0, |I|]2, and Fk(· | s̄) is a probability distribution over S̄ (as in

Lemma 3). The transitions are so that F1 moves the subsequent state up deterministically in

one step (or stays in the same state if the current step is |S̄|), while F2 moves the state down

in one step (or stays in the same state if the current step is 1). Intuitively, the highest the

joint effort y =
∑

i∈I x
i, the more likely the next spot market conditions will be favorable.

We assume that α(·) is a linear function and that the first dimension of the investments

is more effective: α(y) = 1
2

+ α1y1 + α2y2 with α2 = α1/2. If no firm invests, then the

subsequent state is equally likely to go up or down.

Whether firms enter or exit the market is determined by

q(η′; p, η) =
( ∏
i:ηi=η′i

pi
)(

(
∏

i:ηi 6=η′i
(1− pi)

)
.

Therefore the transition takes the form

Q(s′; p, x, s) =
( ∏
j:ηj=η′j

pj
)( ∏

j:ηj 6=η′j
(1− pj)

)
·Qr(s̄′;x, s).

Once we have an expression for the transition function, it is relatively easy to show that12

∑
s′∈S

max{0, λi(s′; p, x, s)} = 2
√
α2

1 + α2
2 =
√

5α1

and that mev(−ciii(xi, s)) = −1. We also assume that ḡ + ψ + ψ̄ = 1, where ḡ = maxs g(s),

meaning that the sum of spot market profits, scrap values, and set up costs is at most 1

(which is the maximum investment cost a firm can incur). We derive the following sufficient

12To see this, note that Qii takes the form

P [η′−i | η−i, p]
(
F1(s̄′; s̄)− F2(s̄′; s̄)

) 0 α1 α2

α1 0 0
α2 0 0


and therefore mev(Qii(s′; p, x, s)) = P [η′−i | η−i, p]|F1(s̄′; s̄)− F2(s̄′; s̄)|

√
α2

1 + α2
2. Noting that each Fk(·; s̄)

puts positive weight on 2 states and summing up over subsequent states s′ ∈ S, the result follows.
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condition for equilibrium existence:

δ ≤ 1

2
√

5α1 + 1
.

For example, if α1 = 1/100 (so that a firm investing ∆ > 0 units can increase the probability

of the high state in ∆ per cent), then the condition above amounts to δ ≤ .96.13

When firms make entry and exit decisions before investment decisions, and when mak-

ing investment decisions firms observe the identity of the market participants, then in the

model above the existence of Markov perfect equilibrium can be guaranteed using Lemma

3, regardless of the discount factor. In such a model, since the transition Qr is linear in the

investment decisions and entry and exit decisions are randomized strategies, the game has

concave reduced payoffs for all discount factors. In some industries, advertising decisions

are likely to take place after the identity of the market participants is publicly known, and

therefore a model of sequential decisions would seem more appropriate. Of course, what the

appropriate timing is will depend on the application.

4.2 Markov Cournot Oligopoly

We now consider a simple dynamic version of the textbook Cournot game. There is a finite

set I of oligopolists. At each t, oligopolists set quantities ait ∈ [0, 1], i ∈ I, simultaneously

and independently. The (inverse) demand function takes the form P (
∑

i∈I a
i
t, st), where the

state, st, belongs to a finite set. There are no costs of production. So, the period payoff to

firm i is

πi(a, s) = ai · P (
∑
i∈I

ai, s).

The demand function assumes the functional form P (
∑

i∈I a
i, s) = s · (1−

∑
i∈I a

i). Players

discount future payoffs at a constant rate δ ∈]0, 1[.

The set of states S is a countable subset of ]0,∞[. The evolution of the state st is given

by the transition

Q(s′; a, s) =
K∑
k=1

αk(
∑
i∈I

ai)Fk(s
′; s)

where K is a finite number, αk is a quadratic function of
∑

i∈I a
i, and Fk(·; s) is a probability

distribution on S. As previously discussed, we can interpret this transition as being drawn in

13Observe that since α(y) must belong to [0,1], α1 is bounded above by 1
3|I| .
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two steps: first, we draw a lottery over the set {1, . . . , K} (where the weights are determined

by the total production
∑

i∈I a
i), then, given the result k of the lottery, a draw from the

distribution Fk(·; s) is realized and determines the subsequent state. The assumption that

αk is a quadratic function of
∑

i∈I a
i implies that its second derivative is constant; let ᾱk be

the second derivative of αk. We also assume that Fk(·; s) puts weight 1 on some state s′ ∈ S
(for example, it may put weight 1 on the state immediately below or above s).

It is relatively easy to see that14

∑
s′∈S

max
{

0, Qii(s
′; a, s)

}
≤

K∑
k=1

|ᾱk|.

for all a ∈ [0, 1]|I| and all s ∈ S. The existence of Markov perfect equilibrium is guaranteed

provided

δ ≤ 1
H
4L

∑K
k=1|ᾱk|+ 1

where H = max{s ∈ S} and L = min{s ∈ S}(> 0). Note that the results by Curtat (1996)

do not apply to this Cournot setting for he considers supermodular games satisfying strong

monotonicity restrictions. To ensure existence we do not need to impose conditions on the

number of players, nor do we need to assume that ᾱk = 0 for all k. In order to apply Horst’s

(2005) and Nowak’s (2007) results, regardless of the transition function, we would need to

impose that |I| ≤ 2. Moreover, results by Nowak (2007) can be applied only if we considered

a linear transition.

For example, consider a model of habit formation, in which K = 2, α1(
∑

i∈I a
i) =

ᾱ1(
∑

i∈I a
i)2, with ᾱ1 > 0, and given s ∈ S, F1(·; s) puts weight 1 on a point strictly greater

than the point in which F2(·; s) puts weight on. The idea is that the higher the volume

of sales
∑

i∈I a
i, the higher the probability the next demand state s′ will be high. Since

α1(
∑

i∈I a
i) ∈ [0, 1] and α1(

∑
i∈I a

i)+α2(
∑

i∈I a
i) = 1, it follows that |ᾱk| ≤ 1

|I|2 for k = 1, 2.

Assuming that H/L = 2, the sufficient condition for equilibrium existence is

δ ≤ |I|2

|I|2 + 1
.

14To see this, note that Qii(s′; a, s) =
∑K
k=1 ᾱkFk(s′; s). Fix s, and let s′(k) be the state with weight 1

given Fk(·; s). Then

∑
s′∈S

max
{

0, Qii(s′; a, s)
}
≤
∑
s′∈S

K∑
k=1

|ᾱk|Fk(s′; s) =
K∑
k=1

|ᾱk|Fk(s(k); s) =
K∑
k=1

|ᾱk|.
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When |I| = 2, there exists an equilibrium provided δ ≤ 4
5
, while when |I| = 6 equilibrium

existence is guaranteed when δ ≤ 36
37

.

4.3 Dynamic Model with Incomplete Information

We now consider a model of dynamic interaction with private information. Similar models

are extensively employed in the applied literature; consult Bajari, Benkard, and Levin (2007)

for a recent application.

Consider a model as that introduced in Section 2, but now suppose that at the beginning

of each period, each firm not only observes the public state st but also receives a private

shock νit ∈ RNi . Then, each firm picks its action ait and gets a period profit πi(a, s, νi).

Private shocks are drawn independently according to a distribution function Gi(·), i ∈ I,

and the transition function takes the form Q(s′; a, s).

A pure strategy for a firm is a function āi : S × RNi → Ai. However, in order to apply

our general framework, a strategy is interpreted as a function āi : S → A
i, where

A
i = {ai : RNi → Ai | ai is measurable }.

Functions in A
i are deemed identical if they are equal Gi-almost sure. Given functions

ai ∈ Ai and a public state s ∈ S, define

π̃i(a, s) =

∫
πi((a1(ν1), . . . , aI(νI)), s, νi)G1(dν1) . . . GI(dνI),

and

Q̃(s′; a, s) =

∫
Q(s′; (a1(ν1), . . . , aI(νI)), s)G1(dν1) . . . GI(dνI),

This defines a dynamic game that fits into our dynamic stochastic game framework. Applica-

tions of this private information set up abound (Bajari, Benkard, and Levin 2007, Doraszelski

and Escobar 2010).

To see the importance of the private shocks when applying our results, assume that Ai

is finite, Gi is absolutely continuous with respect to the Lebesgue measure, N i = |Ai|, and

the period payoff function takes the form

πi(a, s, νi) = gi(a, s) +
∑
k∈Ai

1ai=kν
i,k.

Now, endow Ai with the discrete topology and Ai with the convergence in measure metric.
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That is, given measurable functions ai, bi : RN i → Ai, define

dA
i

(ai, bi) =

∫
di(ai(νi), bi(νi))

1 + di(ai(νi), bi(νi)
)Gi(dνi).

where di is the discrete metric over Ai. Under dA
i
, Ai is compact. The transition Q̃(s′; a, s)

is continuous and for all i, the payoff π̃i(a, s) is continuous in a ∈ A. Private signals come

crucially into play when verifying the convexity of the best replies. Indeed, it is not hard

to see that the best reply set of each firm is (essentially) unique for any continuation value

function.15 So, the game has single-valued best replies and the existence of equilibrium

follows from Corollary 4.

4.4 Markov Cournot Oligopoly with Fixed Costs

We finally apply our results to a Markov Cournot game with fixed costs. Fixed costs intro-

duce discontinuities that make all previous results in the literature unapplicable.16

There is a finite set I of oligopolists that, at each t, set quantities ai ∈ [0, 1], i ∈ I, simul-

taneously and independently. The (inverse) demand function takes the form P (
∑

i∈I a
i, s),

where the state, s, belongs to a countable set S. P (
∑

i∈I a
i, s) is a continuous function of∑

i∈I a
i. Firm i’s cost function, ci(ai, s), is lower semi continuous in ai. For example, suppose

that each firm must incur a fixed cost κ > 0 to produce any (strictly) positive quantity, and

that marginal costs equal 0. Then, firm i’s cost function can be written as

ci(ai, s) =

0 if ai = 0,

κ if ai > 0.

This cost function is lower semi continuous at ai = 0. More generally, the presence of fixed

costs (that, by definition, can be avoided if production is suspended in a given round) make

cost functions naturally lower semi continuous, but not continuous, at ai = 0. Hence, the

period payoff to firm i is

πi(a, s) = aiP (
∑
i∈I

ai, s)− ci(ai, s).

15Indeed, a firm is indifferent between two actions with probability zero.
16This paper seems to be the first one guaranteeing existence in a nontrivial discontinuous dynamic setting.

In this respect, the topological restrictions imposed by Theorem 1 are slightly more restrictive than those
imposed by Dasgupta and Maskin (1986). The main difference, which does not seem relevant in applications,
is that the lower semi continuity condition they impose is more permissive than ours.
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The transition is Q is assumed setwise continuous in a ∈ A. Since πi is upper semi continuous

in a and lower semi continuous in a−i, the existence of behavior strategy Markov perfect

equilibrium follows from Theorem 6.17

5 Concluding Comments

I offer results guaranteeing existence of Markov perfect equilibrium in a class of dynamic

stochastic games. Dynamic models that can be solved analytically are exceptional and

therefore oftentimes researchers need to resort to computational routines to analyze their

models. Yet, unless an equilibrium is guaranteed to exist, a non converging algorithm de-

signed to compute an equilibrium may fail either because an equilibrium exists and the

algorithm is not suitable for its computation or, more dramatically, because an equilibrium

does not exist. The results in this paper provide guidance on the nature of dynamic mod-

els possessing Markov perfect equilibrium (in pure and behavior strategies). In doing so,

we expand and unify several modeling alternatives available (Horst 2005, Doraszelski and

Satterthwaite 2010) and apply our results to several dynamic models of imperfect compe-

tition. We impose restrictions on the fundamentals of the model ensuring the each firm’s

optimization problem has a concave objective function. This property not only constitutes a

sufficient condition for equilibrium existence but also makes available numerical algorithms

more reliable.

The upper semi continuity restriction we impose on the payoff functions limits the ap-

plicability of our results. As a consequence of this assumption, our setting does not permit

applications to auction and pricing games. In fact, in those games the possibility of equilib-

rium ties makes payoff functions not upper semi continuous. Unless one rules out equilibrium

ties, our results are not applicable to auction and pricing games. This is an important re-

search avenue.

17As in static models, it is hard to ensure the existence of (pure) Markov perfect equilibria in models with
fixed costs. Thus, the most we can hope for is probably behavior strategy existence.
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6 Appendix

6.1 Omitted Proofs

Proof of Proposition 2 Observe first that Πi
ii(a, s; v

i) = πiii(a, s)+δ
i
∑

s′∈S v
i(s′)Qii(s

′; a, s).

Therefore, Πi
ii is concave if for all x ∈ RLi

,

x′πiii(a, s)x+ δi
∑
s′∈S

vi(s′)x′qii(s
′; a, s)x ≤ 0.

To prove this property, observe that for any symmetric matrix,

x′Mx ≤mev(M)‖x‖2.

Now, assume first that πil = 0 and therefore v : S → R+. Then

x′πiii(a, s)x+δi
∑
s′∈S

vi(s′)x′Qii(s
′; a, s)x

≤mev(πiii(a, s))‖x‖2 + δi
πiu

1− δi
∑
s′∈S

max{0, x′Qii(s
′; a, s)x}

≤mev(πiii(a, s))‖x‖2 + δi
πiu

1− δi
∑
s′∈S

max{0,mev(Qii(s
′; a, s))‖x‖2}

=
(
mev(πiii(a, s)) + δi

πiu
1− δi

∑
s′∈S

max{0,mev(Qii(s
′; a, s))}

)
‖x‖2

≤0.

Under the conditions of the lemma, this expression is less than or equal to 0. When πil 6= 0,

modify the payoffs and consider π̄i(a, s) = πi(a, s)− πil . Observe that the game with payoffs

πi has convex best replies iff so does the game with payoffs π̄i. The lower bound for the

function π̄i is 0 and therefore the original dynamic game has convex best replies provided

mev(πiii(a, s)) + δi
πiu − πil
1− δi

∑
s′∈S

max{0,mev(Qii(s
′; a, s))} ≤ 0.

The result follows rearranging terms. 2

Proof of Theorem 6 We will define a new game and apply Theorem 1 to this new game.

Denote the set of probability measures on Ai by P(Ai). We endow the set P(Ai) with the

weak* topology; consult Chapter 15 in Aliprantis and Border (2006) for details. This space
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is contained in a linear space. Given a profile µ = (µi)i∈I ∈
∏

i∈I P(Ai), we can define

π̄i(µ, s) =

∫
πi(a, s)(µ1 ⊗ · · · ⊗ µ|I|)(da)

Analogously, we can extend the transition function defining

Q̄(s′;µ, s) =

∫
Q(s′; a, s)(µ1 ⊗ · · · ⊗ µ|I|)(da)

Under our assumptions, these extensions are well defined. We can therefore consider a new

dynamic stochastic game, called the extended game, in which player i’s set of actions is P(Ai)

and payoffs and transitions, π̄i and Q̄, are evaluated taking expectations. Observe that a

Markov perfect equilibrium of the extended game is a behavior Markov perfect equilibrium

of the original game. Since Ai is compact, so is P(Ai) (Aliprantis and Border 2006, Theorem

15.11). It can be shown that since Q(s′; a, s) is continuous in a and πi(a, s) is upper semi

continuous in a and lower semi continuous in a−i, the extensions inherit these properties

(Aliprantis and Border 2006, Theorem 15.5). Since the extended game has convex best

replies, it possesses a Markov perfect equilibrium which in turn yields the desired result. 2

6.2 Dynamic Programming Results

Consider the functional equation

V (s) = sup
x∈X
{π(x, s) + δ

∑
s′∈S

V (s′)ν(s′;x, s)}, s ∈ S, (6.1)

where X is a compact subset of a metric space, π(x, s) is the per period profit function,

δ ∈ [0, 1[, ν(·;x, s) is a probability distribution over S.

In this subsection the solutions to the functional equation (6.1) are studied. Results con-

cerning the existence and continuity of those solutions are provided. Consider the following

assumptions.

(D1) π(x, s) is upper semi continuous in x ∈ X.

(D2) ν(s′;x, s) is setwise continuous in x ∈ X: for all E ⊆ S, ν(s′;x, s) is continuous in

x ∈ X

The following result guarantees the existence of a bounded solution for (6.1).
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Theorem 13 Assume (D1)-(D2). Then, there exists a single solution V̄ to (6.1). Moreover,

‖V̄ ‖∞ ≤ ‖π‖∞/(1− δ). Further, there exists a policy function x̄ : S → X.

The proof of this result is standard. The idea is that the left hand side of 6.1, as a

function of the continuation value function V , defines a contraction map. Since payoffs are

bounded, the contraction mapping theorem (Stokey and Lucas 1989, Theorem 3.2) implies

the existence and uniqueness of a solution V̄ . A similar method of proof is employed in

Theorem 9.6 in Stokey and Lucas (1989).

Now, let us study continuity properties for the only solution to (6.1), viewing this solution

as a function of the transition function ν and the per period payoff π. We can define

TV (s) = sup
x∈X

{
π(x, s) + δ

∑
s′∈S

V (s′)ν(s′;x, s)
}
. (6.2)

For each n ∈ N, consider a transition function νn and a per period payoff function πn. For

each n, consider the operator Tn defined as we did in (6.2), but replacing π and ν with πn

and νn respectively.

Let V̄n and V̄ be the only bounded functions such that TnV̄n = V̄n and T V̄ = V̄ . Addi-

tionally, let the set valued maps X̄n and X̄ be defined by

X̄n(s;V ) = arg max
x∈X
{πn(x, s) + δ

∑
s′∈S

V (s′)νn(s′;x, s)}

and

X̄(s;V ) = arg max
x∈X
{π(x, s) + δ

∑
s′∈S

V (s′)ν(s′;x, s)}.

The following result shows that the only solution to (6.1) and the related policy map depends

continuously on ν and π.

Proposition 14 For all n ∈ N, assume (D1)-(D2) for the problems defined by Tn and T .

Suppose that for all sequence xn → x in X, E ⊆ S, and s ∈ S, the sequence of real

numbers (νn(E;xn, s))n∈N converges to ν(E;x, s) Further suppose that for all s ∈ S

1. For all sequence xn → x in X, lim supn→∞ πn(xn, s) ≤ π(x, s);

2. For all x ∈ X, there exists yn → x in X, such that lim infn→∞ πn(yn, s) ≥ π(x, s).

Then, the following statements hold.
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(a) For all subsequence Vnj
→ V (pointwise) and given any selection x̄nj

(·) ∈ X̄nj
(·;Vnj

)

converging to x̄ : S → X, x̄(s) ∈ X̄(s;V ) for all s ∈ S.

(b) For all s ∈ S, V̄n(s)→ V̄ (s).

(c) The policy sets are closed maps of the per period payoff and transition functions.

Before proving this proposition, we establish a preliminary lemma.

Lemma 15 Let (Pn)n∈N and P be probability measures on S. Suppose that for all E ⊆ S,

Pn(E) converges to P (E). Fix α > 0 and let Vn : S → [−α, α] be a sequence of functions

pointwise converging to V : S → [−α, α]. Then,
∑

s′∈S Vn(s′)Pn(s)→
∑

s′∈S V (s′)P (s′).

Proof: Observe that |Vn| is bounded by α and that
∑

s′∈S αPn(s′) = α converges to∑
s′∈S αP (s′) = α. The result follows from Theorem 18 in Royden (1968, Chapter 11).2

Proof of Proposition 14. Let us begin proving (b). Consider any converging subsequence

(V̄nk
)k∈N to V̄0 (such a subsequence always exists). Fix s ∈ S. Consider any sequence xk → x

in X. Since V̄nk
, V̄0 are uniformly bounded by the same constant, we can apply Lemma 15

above to deduce that for any xk → x,
∑

s′∈S V̄nk
(s′)νnk

(s′;xk, s)→
∑

s′∈S V̄0(s
′)ν(s′;x, s). So,

defining ψn(x, s) =
∑

s′∈S V̄n(s′)νn(s′;x, s) and ψ0(x, s) =
∑

s′∈S V̄0(s
′)ν(s′;x, s), we deduce

that for all s, ψnk
(·, s) converges to ψ0(·, s) uniformly on the compact set X.

Fix now x ∈ X. Condition 1. in Proposition 14 permits us to deduce that for all xk → x

lim sup
k→∞

πnk
(xk, s) + δψnk

(xk, s) ≤ π(x, s) + δψ(x, s). (6.3)

Additionally, there exists a sequence yk such that

lim inf
k→∞

πnk
(yk, s) + δψnk

(yk, s) ≥ π(x, s) + δψ(x, s). (6.4)

To prove this result, define ϕnk
(x, s) = πnk

(x, s) + δ
∑

s′∈S V̄nk
(s′)νnk

(s′;x, s) and ϕ0(x, s) =

π(x, s) + δ
∑

s′∈S V̄0(s
′)ν(s′;x, s). Fix η > 0. From Condition 2. in the Proposition, there

exists x̂k → x in X such that πnk
(x̂k, s) ≥ π(x, s)− η

3
. We further know that the function x ∈

X 7→ δ
∑

s′∈S V̄nk
(s′)νnk

(s′;x, s) converges continuously to x ∈ X 7→ δ
∑

s′∈S V̄0(s
′)ν(s′;x, s).

Consequently, for k big enough δ
∑

s′∈S V̄0(s
′)ν(s′;x, s) − δ

∑
s′∈S V̄nk

(s′)ν(s′; x̂k, s) ≤ η
3
.
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Therefore,

max
x∈X

ϕnk
(x, s) ≥ϕnk

(x̂k, s)

≥π(x, s)− η

3
+ δ

∑
s′∈S

V̄nk
(s′)ν(s′; x̂k, s)

≥π(x, s)− η

3
+ δ

∑
s′∈S

V̄0(s
′)ν(s′;x, s)− η

3

Taking yk to be a η/3-maximizer of the maximization problem above, we deduce that for all

k big enough ϕnk
(yk, s) ≥ ϕ(x, s)− η. Taking liminf, inequality (6.4) follows.

With these preliminary results, we are in position to prove (b). We will prove that for

any subsequence V̄nk
→ V̄0, where V̄0 is some function, T V̄0 = V̄0. The result then follows

from the uniqueness property stated in Theorem 13. Let x̄nk
∈ X̄nk

(s; V̄nk
), s ∈ S. Since

X is compact, we assume without loss of generality that x̄nk
→ x̄ (eventually through a

subsequence). Let x ∈ X̄0(s; V̄0) and consider yk as in (6.4). Then

ϕ(x, s) ≤ lim inf
k→∞

ϕnk
(yk, s) ≤ lim inf

k→∞
ϕnk

(x̄nk
, s) ≤ lim sup

k→∞
ϕnk

(x̄nk
, s) ≤ ϕ(x̄).

The first inequality is by construction of the sequence yk. The second inequality follows since

x̄nk
∈ X̄nk

(s; V̄nk
). The third inequality follows by definition. The fourth inequality holds by

virtue of (6.3).

It follows that x̄ ∈ X̄0(s; V̄0) and that the sequence of inequalities above are actually

equalities. Therefore, V̄0(s) = limk→∞ V̄nk
(s) = limk→∞ Tnk

V̄nk
(s) = limk→∞ ϕnk

(x̄nk
, s) =

ϕ(x̄, s) = T V̄0(s), proving the first part of the proposition. Finally, to see (a), just apply the

argument above to Vnj
→ V . Finally, (c) follows from (a) and (b). 2
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