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1. Introduction

Trust-based relationships often exhibit apparent deviations from cooperative behavior. For ex-
ample, duringWorldWar I, frontline soldiers often refrained from attacking the enemy –provided
that their restraint was reciprocated by soldiers on the other side– but unilateral aggressions did
occur and triggered retaliations and mutual attacks (Ashworth, 1980). Likewise, cartel members
often make unilateral price cuts, even in fully-functioning cartels (Marshall and Marx, 2013),
and governments in self-enforcing trade agreements raise their import tariffs, despite the fact
that such measures are detrimental for foreign partners (Bagwell and Staiger, 2005). In contrast,
in most repeated game models, players never play apparently uncooperative actions on the path
of play Green and Porter (1984); Rotemberg and Saloner (1986); Fudenberg and Maskin (1986);
Abreu et al. (1986); Athey and Bagwell (2001).

In this paper, we shed light on this kind of phenomena by studying the scope for cooperation
in a repeated game with Markovian private information. Two players make perfectly observable
decisions at each round. Player 1 is privately informed about his own payoffs, which evolve
according to a finite Markov chain. Importantly, since players cannot exchange cheap-talk
messages, player 2 can learn about player 1’s type only by observing player 1’s actions.1 We
show that the combination of private information and lack of communication may result (but
need not to) in apparent cooperation breaks, such as unilateral price cuts, aggressions, debt
defaults, etc. These breaks substitute direct communication and may benefit the relationship
by allowing the informed player to use his private information and signal the most profitable
course of play. Our main theoretical results characterize a class of approximately Pareto-optimal
equilibria as players become arbitrarily patient. This characterization uncovers new economic
forces in repeated interactions with incomplete information and can be used in a variety of
applications.

In our dynamic game, the amount of information revealed by player 1 is endogenously de-
termined. Given any history of actions, player 1 may fully reveal his private information by
separating and signaling his types. A benefit from such information revelation is that once types
have been perfectly revealed by player 1’s actions, the uninformed player can move on to the
next round with more precise beliefs about the new type of player 1 that he will face, and this
information improvement is beneficial for the relationship. A second benefit from full revelation
is that player 1’s payoffs do depend on his types and typically it will be in his short-run interest to
choose a type-dependent action (which reveals his type). Yet, a perfectly revealing strategy need

1 The assumption of no communication is just a simplifying one, and acknowledges the fact –articulated byMarschak
and Radner (1972) and Arrow (1985) among others– that oftentimes parties encounter nontrivial communication
costs. This assumption is natural in collusion applications since price discussions between competitors are gen-
erally illegal. Ashworth (1980) documents the communication problems faced by enemy troops trying to avoid
confrontation during World War I. When discussing limited war, Schelling (1960) explains that “an agreement on
limits is difficult to reach . . . because communication becomes difficult between adversaries in a time of war.”
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not be optimal: when the informed player is fully revealing his private information, it is harder
for player 2 to predict player 1’s current action, which hurts player 2’s current payoffs. The costs
of revealing information at any given history are the losses that the uninformed player has when
the informed player’s action is unknown.

We formally capture this tradeoff by ignoring incentive constraints and studying the problem
of maximizing the average expected payoffs over all strategies. This optimization problem can be
formulated as a Bellman equation in which the state variable is the public belief the uninformed
player has about the current type. A solution to this equation solves the tradeoff between revealing
and not revealing information, and yields an optimal equilibrium path for the repeated game with
Markovian private information.

The construction of an approximately optimal equilibrium for the repeated game specifies a
strategy in which the uninformed player forgives but does not forget hostile actions. To see this,
consider two firms that are trying to collude in a market. Most of the time, firms are equally
efficient –and therefore should fix the monopoly price and share the demand– but sometimes
firm 1 is much more efficient and it is therefore desirable for the cartel to have firm 1 as the only
producer. The problem is that only firm 1 knows its costs. The cartel should not allow firm 1 to
freely undercut firm 2 because firm 1 would undercut even when both firms are equally efficient.
We show that, more generally, the uninformed player forgives apparently hostile actions –such
as price reductions–but does not forget them. Indeed, in equilibrium, the uninformed player
keeps track of the number of actions played by the informed player conditional on public beliefs,
and (off-path) the relationship enters a punishment phase if the path of actions seems openly
mischievous.

The equilibrium strategies feature on-path dynamics that differ from previous literature. In
an equilibrium with some information revelation, public beliefs determine the distribution over
actions at any given history. In particular, apparently uncooperative actions (such as price cuts
and price wars in a collusion application) occur on the path of play and are the optimal response
of the relationship to incomplete information and lack of communication.

The assumptions of private information and no communication are natural in many long-run
relationships. We illustrate our results and methods with some applications.

The first application is motivated by the live and let live system during World War I. During
trench warfare, frontline soldiers often refrained from attacking the enemy. Army commanders
were aware of the tendency towards non-aggression andwould order raids to correct the “offensive
spirit” of the troops (Ashworth, 1980; Axelrod, 1984). Battalions faced severe information
asymmetries because they could not discern if aggressions were caused by opportunistic behavior
or by military orders. Moreover, direct, cheap-talk communication was virtually non-existent
as it was severely punished by high command. We apply our general results to explain how
cooperation can arise and evolve in this type of environment. We model the relationship between
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soldiers as a prisoners dilemma, in which one of the sides can receive a privately observed shock
that makes mutual cooperation inefficient. Our dynamic programming characterization can be
used to show that aggressions can occur on the path of play. Full cooperation can be resumed
after the informed side signals that army commanders left by stopping aggressions, or after a
cooling-off phase in which both sides mutually attack for a fixed (but optimally chosen) number
of periods. We complement our theoretical analysis with some evidence showing that soldiers
actually kept an account of the number of aggressions received from the other side, suggesting
that our equilibrium strategies may be a good approximation to the way soldiers actually behaved.

Our second application is to collusion with Bertrand competition. Firms trying to collude
face severe informational asymmetries –local demand conditions, private technological shocks–
and price discussions between competitors are illegal. We characterize the optimal collusive
scheme in a Bertrand game of differentiated products in which one of the firms has private
information about its demand. Consistent with case studies (Marshall and Marx, 2013), in our
model unilateral price cuts occur on the path of play. Our repeated Bertrand game can also
be interpreted as a model of collusive price leadership (Stigler, 1947; Markham, 1951; Scherer
and Ross, 1990), in which an uninformed firm follows the informed firm’s price changes.2 We
show that the dynamics of price leadership –which is the result of incomplete information and no
communication– may involve significant costs for leader and follower. When demand increases,
the informed firm raises its price, and experiences a short-term loss until its price raise is matched
by the follower. Likewise, the follower experiences a short-term loss when the leader lowers its
price after a demand reduction. These short-term losses are significant in many industries (see,
for example, Clark and Houde, 2013) and our model provides a natural explanation for them.

These results extend the analysis of Bertrand games with incomplete information about mar-
ginal costs pioneered by Athey and Bagwell (2001, 2008). In Athey and Bagwell (2001), firms
have iid private costs and, before choosing actions, can freely exchange messages. Athey and
Bagwell (2008) extend the model to allow for Markovian private costs. In these papers, firms
can be arbitrarily close to the first best collusive outcome, in which only the lowest cost firm
produces and fixes the monopoly price. As Athey and Bagwell (2008) observe, communication
can be dispensed with as prices can be used to signal costs at an arbitrarily low loss. But this ob-
servation crucially depends on the assumption of inelastic demand and constant returns to scale.
Our results show that in more realistic Bertrand games, firms payoffs are bounded away from the
perfectly collusive outcomes when the exchange of messages is costly even with arbitrarily high
patience.3

2Collusive price leadership is relevant in many industries. Allen (1976), for example, documents collusive price
leadership in the market of steam turbine generators in the 1960s and 1970s. In Section 5.2 we discuss additional
empirical evidence.
3Athey et al. (2004) show conditions under which firms pool on the path of play –and therefore the cartel is bounded
away from perfect collusion. But that result hinges on the restriction to strongly symmetric equilibria.
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Our results reveal the constraints that lack of communication can impose in repeated inter-
actions. In doing so, they provide the first tight characterization for the value of cheap-talk
communication in repeated games. But our results can also be used to explore the value of com-
munication in applications. We illustrate this point by studying the social value of communication
in cartels in the context of a Cournot model with private costs. We show that communication
reduces price distortions and therefore it is socially beneficial. Moreover, we show that con-
sumers’ surplus increases when cartel members communicate to coordinate production. This
result confirms an informal argument made by Carlton et al. (1996) and complements Awaya and
Krishna (2014) who show a strictly positive lower bound for the value of communication for the
cartel in a repeated Bertrand game with private monitoring.

Our final application studies the decision to centralize decision making. Wemodel the tradeoff
between coordination and speed of adaptation (Roberts, 2004), by assuming that the informed
agent can send a cheap-talk message communicating his type, but this message arrives to the
uninformed agent with a two-period lag. Thus, centralization allows agents to coordinate better
on private information, but leads to delays in decision making. Our results show that when
direct communication has implicit costs, such as delays in decision making, agents may organize
optimally to choose actions with limited communication.

Section 6 refines our analysis by studying a prisoners dilemma as interactions become more
frequent. Following a tradition initiated by Abreu et al. (1991), we observe that as interactions
become more frequent not only does the discount factor increase but also the the informed
player’s types become more persistent. Changing the persistence of the process of types has
important effects on cooperation and equilibrium payoffs. As interactions become arbitrarily
frequent, signaling becomes inexpensive compared to the benefits frommore precise beliefs and,
as a result, incomplete information has virtually no costs.

This paper connects to work on repeated games with Markovian private information. Athey
and Bagwell (2008), Escobar and Toikka (2013), Renault et al. (2013), and Hörner et al. (2015)
characterize optimal equilibria in games with communication. When players can exchange
cheap-talk messages right before choosing actions, Escobar and Toikka (2013) and Hörner et al.
(2015) show that the folk theorem holds. In these papers, actions have no signaling content
and the dynamics of cooperation are similar to those of games with complete information and
changing types if players are sufficiently patient (Rotemberg and Saloner, 1986; Dutta, 1995).
We contribute to this literature by providing a new characterization for optimal equilibrium
behavior in repeated games without communication. Further, our results identify new tradeoffs
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and inefficiencies in repeated games with incomplete information, and can be applied to a variety
of economic examples.4

We finally observe that in games with imperfect public monitoring, players can also cycle
between cooperative and uncooperative actions (Green and Porter, 1984; Abreu et al., 1986,
1990, 1991). Green and Porter (1984) and Abreu et al. (1986) study repeated games with
quantity competition, and characterize equilibria with high and low price regimes. Transitions
between regimes depend on the realization of an exogenous random factor affecting demand. In
our adverse selection environment, in contrast, regime changes are triggered by players’ actions.
For example, a low-price regime (or price war) may be triggered by a price cuts, whereas a
return to a high-price regime may require unilateral price rises. Abreu et al. (1991) studies a
prisoners’ dilemma with imperfect monitoring and shows that cooperation can be broken and
never resumed in the optimal equilibrium. There is therefore room for renegotiating punishments.
In our model, in contrast, virtually no value is burnt on the path of play and there is little room
for renegotiation.5

2. Examples

In this section, we discuss two examples that illustrate some of the tradeoffs and inefficiencies
arising in repeated games with Markovian private information.

2.1. A Coordination Game. Two players, i = 1, 2, interact repeatedly in the coordination game
in Figure 1.

S O

S 1 + αθt, β 0, 0

O 0, 0 1 + α(1 − θt ), β

Figure 1. A repeated coordination game. (θt )t≥1 is a Markov chain observed
only by player 1. The importance of coordination in the profile preferred by player
1 given θt is α > 0. The importance of coordination for player 2 is β > 0.

4Other papers studying repeated games with Markovian types include Gale and Rosenthal (1994), Cole et al. (1995),
and Phelan (2006). These papers focus on specific equilibria that are typically bounded away from the Pareto-
frontier. Gensbittel and Renault (2015) and Pęski and Toikka (2016) characterize the value of zero-sum games with
Markovian private information.
5 Liu (2011) and Liu and Skrzypacz (2014) study games between a long-run player and a sequence of short-run
players. The long-run player can be opportunistic or behavioral, and this is defined once and for all at the beginning
of the game. Short-run players cannot freely access to the whole history of actions. This generates cycles of
cooperation in which the long-run player builds and exploits his reputation. In those models, defaults are strategic
while in our model defaults are mainly non-strategic. Acemoglu and Wolitzky (2014) study a reputation model
in which players have limited and noisy observations. In all these models, memory restrictions play a key role
determining cycles. The force in our model is unrelated to memory limits.
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At each t ≥ 1, θt is privately observed by player 1 and players simultaneously choose actions.
Actions are perfectly observable. The support of θt is {0, 1}, P[θt+1 = θt | θt] = λ, and θ1 is
drawn from the invariant distribution. We assume that λ ≥ 1/2 so the Markov chain has positive
persistence.

If θt was observed by both players at the beginning of t, then players could perfectly coordinate
and play (O,O) when θt = 0 and (S, S) when θt = 1. This strategy profile would maximize the
sum of expected total payoffs and would result in average total payoffs equal to 1 + α + β. Our
focus is on games with incomplete information and no communication. This means that θt is
observed only by player 1 and player 1 cannot tell the value of θt to player 2.

We now consider the private information case. Only for this example, we ignore incentive
issues and focus on the informational value that pooling and separating strategies have.

Consider first a separating strategy profile in which player 1 fully reveals his type and player
2 mimics player 1’s action in the previous period. In other words, player 1 plays S if θt = 1 and
plays O if θt = 0. At t + 1, player 2 plays the action chosen by player 1 in period t. Conditional
on θt , total payoffs in t + 1 equal 1 + α + β with probability λ and 0 with probability 1 − λ. The
normalized sum of total discounted expected payoffs equals

(1 − δ) *
,

1 + α + β
2

+
∑
t≥2

δt−1 λ (1 + α + β)+
-
= (1 − δ) (1 + α + β)

(
1
2
+ λ

δ

1 − δ

)
,

which converges to λ (1 + α + β) as δ → 1.
Alternatively, the informed player could pool his types and, for example, players could play

(S, S) in each round. This means that player 2 always gets the payoff from coordination β, but
player 1 receives 1+ α when θt = 1 and 1 when θt = 0. The normalized sum of total discounted
expected payoffs is 1 + 1

2α + β.
The perfectly revealing strategy profile results in higher total payoffs than the pooling profile

as players become patient iff λ(1+α+ β) > 1+ α
2 + β. The revealing profile dominates when (i)

λ is large (because the information generated by signaling lasts longer), or (ii) α is large (because
the value of perfect coordination is high for player 1), or (iii) β is low (because otherwise player
2 values coordination and the only way to ensure such coordination occurs is by having player 1
pooling).

It is also worth noting that regardless of the strategy profile used, total expected payoffs are
below the payoffs attained if informationwere complete: max{λ(1+α+ β), 1+ α2 + β} < 1+α+ β.
This is a general feature of our model and does not depend on the restriction on strategies used
in this example. Intuitively, with incomplete information players will not be able to perfectly
coordinate every round. With a separating profile, players will not coordinate a fraction (1 − λ)
of rounds (whenever the state changes), whereas with a pooling profile players will imperfectly
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coordinate attaining total payoffs 1 + β < 1 + α + β half of the time. The cost of incomplete
information does not vanish even as players become arbitrarily patient.

2.2. A Prisoners Dilemma. Two players, i = 1, 2, interact repeatedly in a public-good invest-
ment game. Every period, players decide whether to invest (I) or not to invest (N). Stage payoffs
are equal to investment revenues minus cost. If both players invest, each player obtains a revenue
of a. If only one player invests, each player obtains a revenue of b. If no player invests, both
players obtain zero revenues. Let 0 < b < a. Player 1’s investment cost in period t is θt ∈ {l, h},
where l < h, and player 2’s investment cost is l every period. Figure 2 shows the payoff matrix.

I N

I a − θt, a − l b − θt, b

N b, b − l 0, 0

Figure 2. A prisoners dilemma. Player 1’s cost is privately known. Joint
investment is socially desirable only when θt = l.

Assume that 2(a− l) > 0, 2a− l − h < 0, 2b− l < 0, and a− l < b. This means that playing N
is a dominant action, that when the cost is low θ = l outcome (I, I) is socially desirable, whereas
when the cost is high θ = h outcome (N, N ) is socially desirable.

As in our previous example, at each t ≥ 1, θt is privately observed by player 1 and players
simultaneously choose actions. Players’ actions are perfectly observable. The transitions are
P[θt+1 = θt | θt] = λ, and θ1 is drawn from the invariant distribution. We assume that λ ≥ 1/2
so the Markov chain has positive persistence.6
There are several strategies that could maximize the sum of total payoffs. Our main results

imply that a revealing strategy profile σR in which player 1 invests iff θt = l and player 2 mimics
player 1’s previous action at

2 = at−1
1 is optimal over all strategies when λ is sufficiently large

and a − b < h/2, resulting in total average payoffs equal to
(
2λ(a − l) − (l − 2b)(1 − λ)

) 1
2 > 0

(details are given in Sections 4 and Section 6). The revealing strategy profile σR = (σR
1 , σ

R
2 )

can be formulated as
σR

1 (θt ) = I iff θt = l

6It is worth pointing out two benchmarks that are relatively easy to solve. With complete information, the type of
player 1, θt , is publicly observed at the beginning of round t. If δ is large enough, we can construct a trigger-strategy
equilibrium in which play is efficient and both players invest in t if and only if θt = l (Rotemberg and Saloner, 1986;
Dutta, 1995). Another interesting benchmark is the case of incomplete information and communication, in which
player 1 is privately informed about θt but can send a cheap-talk message to player 2 before actions are decided. If
δ is sufficiently big, one can construct an efficient equilibrium in which player 1 truthfully reveals his type and both
players invest only when θt = l (Escobar and Toikka, 2013).
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and σR
2 (pt ) = I if pt = λ and σR

2 (pt ) = N if pt = 1 − λ, where pt = P[θt = I | at−1
1 ] is the belief

that player 2 has about θt after observing the action previously chosen by player 1.7 Intuitively,
the revealing strategy profile is optimal because, as in the coordination game, when the state is
sufficiently persistent the relationship benefits from information revelation.

The issue of incentives is subtle. The revealing strategy profile σR maximizes the sum of total
payoffs but whether private incentives can be aligned is non-trivial. On the one hand, player
1 should have some flexibility to choose actions and use his private information to benefit the
relationship but, on the other hand, if player 1 is given full freedom to choose actions he will
behave opportunistically with the purpose of maximizing his own payoffs. The problem that we
face is how to balance these two forces.

Equilibrium strategies for the repeated game such that on-path play is arbitrarily close to the
optimal strategy profile σR are constructed as follows. First, observe that ensuring player 2
behaves properly is simple as any deviation by 2 is observable and can be immediately punished
by reverting to the static Nash equilibrium. Incentives for player 1 are given by noting that as
play transpires, player 2 can keep checking whether player 1’s behavior seems likely to have
been generated from the revealing strategy σR

1 . More precisely, note that under σR
1 , the process

of beliefs (pt )t≥1 is Markovian, with transitions that can be drawn as shown in Figure 3. By
mechanically calculating probabilities using player 1’s actions, the uninformed player 2 can check
whether the proportions of investment and no-investment actions seem credible. For example,
out of all the visits to pt = λ, player 2 can check whether player 1 has played I in a proportion
close to λ. A failure to do so would be observable and easily punished by Nash reversion.

λ 1 − λ

1 − λ

at
1 = N

1 − λ

at
1 = I

Figure 3. Dynamics of beliefs (pt )t≥1 when player 1 uses the revealing strategy
σR

1 . The support of (pt )t≥1 is the set {λ, 1 − µ}.

The strategies discussed above continuously check whether player 1’s actions seem credible.
They are similar to strategies used in repeated games with imperfect monitoring (Radner, 1981)
and in dynamic mechanism design (Jackson and Sonnenschein, 2007; Escobar and Toikka,
2013).8 In our construction of strategies, while player 2 can tolerate some failures (i.e., periods

7Given the revealing strategy of player 1 σR
1 , player 2 need not condition on the whole history of actions.

8As in all these papers, our strategies are derived from a test based on necessary conditions for “appropriate
behavior”. We then show that the necessary conditions are actually sufficient to align incentives.
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in which player 2 invested but player 1 did not), he keeps track of the number of offenses, and
players enter a punishment phase if that number becomes suspiciously high.9 In other words,
equilibrium strategies are so that player 2 forgives but does not forget failures.

(0, 0)

u2

u1
V

F ∗

(a) F ∗ is the set of limit equilibrium pay-
offs in the game with complete informa-
tion or incomplete information and com-
munication. It contains all feasible payoffs
above the minmax vector (0, 0).

(0, 0)

u2

u1
V

E∗

(b) E∗ is the set of limit equilibrium pay-
offs in the game with incomplete informa-
tion and no communication. It is strictly
contained in F ∗. When signaling is too
costly, E∗ = {(0, 0)}.

Figure 4. Sets of equilibrium payoffs for games with and without communication.

Informational constraints are key to determine optimal equilibrium paths. While incentive
problems disappear as players become more patient, equilibria are bounded away from first-best
payoffs. Indeed, with incomplete information and communication (or with complete informa-
tion), players can attain average total payoffs equal to 2(a − l) 1

2 . Assuming the conditions under
which revealing information is optimal, under incomplete information total average payoffs are(
2λ(a − l) − (l − 2b)(1 − λ)

) 1
2 . Moreover, when the signaling costs are too high, the only

equilibrium of the game is the repetition of the static Nash equilibrium even when the discount
factor is arbitrarily close to 1.10 While communication obviously expands the set of equilibria,
we seem to be the first ones fully characterizing the gains from communication in a repeated
game model.

9In this example, punishments simply consist in Nash reversion. In the general model of Section 3, punishments are
more complex in order to guarantee that adhering to these punishments is incentive compatible for both players.
10As Hörner et al. (2015) show in their Corollary 3, the set of equilibrium payoffs in the game with communication
depends on the transitions only through the invariant distribution. In contrast, in our model without communication
transitions do matter to determine the equilibrium set. Another difference is that without communication the set of
equilibrium payoffs is not a polytope.
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3. Model

We consider a discrete-time infinitely repeated game played by 2 players. At each t ≥ 1, player
1 is privately informed about his type θt ∈ Θ. Players simultaneously make decisions at

i ∈ Ai.
Let A = A1 × A2. We assume that A1, A2, and Θ are finite sets. Within each round t, play
transpires as follows:

t.0 A randomization device χt is publicly realized
t.1 Player 1 is privately informed about θt ∈ Θ

t.2 Players choose actions at
i ∈ Ai simultaneously

t.3 Players observe the action profile chosen at ∈ A

We assume players know their payoffs. The period payoff function for player 1 is u1(a, θ),
whereas player 2’s payoff is u2(a). We will sometimes abuse notation and write ui (a, θ),
even when player 2’s payoff does not depend on θ. Players rank flows of payoffs according
to (1 − δ)

∑
t≥1 δ

t−1ui (at, θt ), where δ < 1 is the common discount factor. We assume that
|A1 | ≥ |Θ|.11
The realizations of the randomization device are independent across time and distributed

according to a uniform in [0, 1]. The initial type of player 1, θ1, is drawn from a distribution
p1 ∈ ∆(Θ). Player 1’s private types, (θt )t≥1, evolve according to a Markov chain with transition
matrix P on Θ. We assume that the process of types has full support: for all θ, θ′ ∈ Θ,
P(θ′ | θ) > 0. Let π ∈ ∆(Θ) be the stationary distribution for P.
A (behavior) strategy for player 1 is a sequence of functions s1 = (st

1)t≥1 with st
1 : Θt ×

At−1 × [0, 1]t → ∆(A1), whereas a strategy for the uninformed player 2 is s2 = (st
2)t≥1 with

st
2 : At−1 × [0, 1]t → ∆(A2). Any strategy profile s = (s1, s2) induces a probability distribution
over histories. We can therefore define the vector of expected payoffs given s as

vδ (s) = (1 − δ)Es[
∑
t≥1

δt−1u(at, θt )] ∈ R2.

Let
V (δ, p1) =

{
v = vδ (s) ∈ R2 for some strategy s

}

be the set of all feasible payoffs that players can attain by employing arbitrary strategy profiles s.
In passing, we note that V (δ, p1) ⊆ R2 is convex and compact.

Our definitions of strategies and set of feasible payoffs differ from those used stochastic
games (Dutta, 1995; Hörner et al., 2010) and repeated games with incomplete information and
communication (Escobar and Toikka, 2013; Hörner et al., 2015). The difference comes from
the fact that in our model player 2 decides only based on publicly available information –the
sequence of actions and public randomizations in the game.

11 A one-sided incomplete information model is considered for expositional simplicity. We extend all our results to
the two-sided incomplete information case in the Supplementary Appendix.
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A strategy profile s∗ = (s∗1, s
∗
2) is a perfect Bayesian equilibrium if there exists a system

of beliefs constructed from Bayes rule (when possible) such that s∗i is sequentially rational
(Fudenberg and Tirole, 1991). The set of perfect Bayesian equilibrium payoffs will be denoted
E (δ, p1) ⊆ R2. It follows that E (δ, p1) ⊆ V (δ, p1) for all δ < 1.

4. Equilibrium Analysis

We will characterize equilibrium play in two steps. In the first step, we provide a dynamic
programming formulation for efficient strategies ignoring incentive constraints. In the second
step, we construct repeated game strategies that approximate the efficient benchmark. We finally
show some general comparative statics results for the solutions to the dynamic programming
problem.

4.1. Efficient Payoffs and Information Revelation. This section analyzes the problem ofmaxi-
mizing the weighted sum of payoffs ignoring incentive constraints. This problem is formulated as
a dynamic programming problem that identifies the tradeoff between revealing and not revealing
information after any history.

A strategy profile s is efficient if for some α ∈ R2
++, s is a solution to

q(α) = max{α · vδ (s′) | s′ is a strategy profile }. (4.1)

Let sα,δ solve (4.1). We say that vα,δ = vδ (sα,δ) ∈ R2 is an efficient payoff vector.12
Solutions to (4.1) can be found using dynamic programming tools. To see this, take the belief

p1 that player 2 has about player 1’s type at the beginning of the game. The belief p1 and
the strategies used in the first round of play determine the sum of weighted payoffs in the first
round. After player 1’s action is observed, the strategies also determine the belief p2 that player
2 has about the new type at the beginning of period 2. This means that the strategy profile that
maximizes the weighted sum of period payoffs can be found by decomposing the discounted sum
of weigthed payoffs in current and continuation payoffs using the public belief as a state variable.

To formulate the dynamic programing problem, we introduce some notation. Let Σ1 =

{σ1 : Θ → A1} be a set of controls for player 1 and let Σ = Σ1 × A2. An element σ ∈ Σ is a
control profile. Let p ∈ ∆(Θ) be a belief about player 1’s type given public information, and
let p(θ) denote the θ-element of p. For σ ∈ Σ and p ∈ ∆(Θ), we define the vector of expected
period utilities U (σ, p) ∈ R2 by

U1(σ, p) =
∑
θ∈Θ

u1(σ1(θ), σ2, θ) p(θ) U2(σ, p) =
∑
θ∈Θ

u2(σ1(θ), σ2)p(θ).

12Since any such vα,δ solves the problem max{α ·v | v ∈ V (δ, p1)}, the set of efficient payoff vectors v that maximize
payoffs given a direction α ∈ R2

++ is convex.
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For α ∈ R2
++, let Uα (σ, p) = α · U (σ, p) =

∑2
i=1 αi Ui (σ, p) be the ex-ante weighted sum

of period payoffs given σ ∈ Σ and beliefs p ∈ ∆(Θ). We also define the Bayes operator
B(· | σ1, p, a1) ∈ ∆(Θ) as

B(θ′ | σ1, p, a1) =
∑

{θ |σ1(θ)=a1}

P(θ′ | θ)
p(θ)∑

{θ̂ |σ1(θ̂)=a1}
p(θ̂)

(4.2)

whenever σ1(θ̂) = a1 for some θ̂1 such that p(θ̂) > 0. In words, B(θ′ | σ1, p, a1) is the
probability that player 2 assigns to θt+1 = θ′ given that at the beginning of round t his belief
about θt was p, player 1 uses the control σ1 = σ1(θt ), and player 2 observed player 1’s action
at

1 = a1.
For α ∈ R2

++, consider the only solution to the Bellman equation

wα,δ (p) = max
σ∈Σ

{
(1 − δ)Uα (σ, p) + δ

∑
a1∈A1

wα,δ
(
B(· | σ1, p, a1)

) ∑
θ∈Θ,σ1(θ)=a1

p(θ)
}

(4.3)

for all p ∈ ∆(Θ). The right hand side of this equation maximizes the weighted sum of current
and continuation payoffs over all control profiles σ ∈ Σ, capturing the impact that a control has
on current expected payoffs and continuation beliefs. Take σα,δ (· | p) as the control profile
attaining the maximum in (4.3) as a function of beliefs p. A control rule σ is such that for all
p ∈ ∆(Θ), σ(· | p) → Σ. Using the control rule σα,δ, we can construct a (pure) strategy profile
s = sα,δ from σα,δ by setting

st
1(a1, . . . , at−1, θ1, . . . , θt, χ1, . . . , χt ) = σα,δ

1 (θt | pt ),

st
2(a1, . . . , at−1, χ1, . . . , χt ) = σα,δ

2 (pt ),

where pt is the belief that player 2 has about θt at the beginning of t and can be recursively
computed as

pt+1(θ) = B(θ | σα,δ
1 (· | pt ), pt, at

1) for t ≥ 1.

The following lemma shows that the dynamic programming formulation (4.3) provides a solution
to the problem of finding efficient payoffs given weighs α ∈ R2

++.

Lemma 1. Let α ∈ R2
++. Then, the value of the maximization problem (4.1) is q(α) = wα,δ (p1).

Moreover, the strategy s = sα,δ constructed from σα,δ above is a solution to (4.1).

Like most of the literature in repeated games (Fudenberg and Maskin, 1986; Athey and
Bagwell, 2008; Hörner et al., 2011), we characterize equilibrium behavior when players are
sufficiently patient. It will be useful to consider efficient strategies and payoffs as δ → 1. We
define the differential discounted value function as

hα,δ (p) =
wα,δ (p)
1 − δ

−
wα,δ (p1)

1 − δ
(4.4)
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for any p ∈ ∆(Θ). Using this definition we can rewrite (4.3) as

hα,δ (p) + wα,δ (p1) = max
σ∈Σ

{
Uα (σ, p) + δ

∑
a1∈A1

hα,δ
(
B(· | σ1, p, a1)

) ( ∑
θ∈Θ,σ1(θ)=a

p(θ)
)}

(4.5)

Just to set ideas, assume that there exist subsequences (hα,δ
ν
)ν≥0, (wα,δν )ν≥0 and functions

hα : ∆(Θ) → R,wα : ∆(Θ) → R such that hα (p) = limν→∞ hα,δ
ν
(p) andwα (p) = limν→∞ wα,δν (p)

for all p with δν → 1. Therefore, ρα = limν→∞ wα,δν (p1) does not depend on p1.13 Taking
the limit in equation (4.5), we deduce that the pair (h, ρ) = (hα, ρα) solves the average reward
optimality equation (AROE)

h(p)+ ρ = max
σ∈Σ

{
α1U1(σ, p)+α2U2(σ, p)+

∑
a1∈A1

h
(
B(· | σ1, p, a1)

) ( ∑
θ∈Θ,σ1(θ)=a1

p(θ)
)}

(4.6)

for all p ∈ ∆(Θ). Let σα (· | p) ∈ Σ be the control profile attaining the maximum in the dynamic
programming problem (4.6) given p ∈ ∆(Θ).

The following result establishes the key properties connecting the discounted and undiscounted
dynamic programing problems.

Theorem 1 (Efficiency Theorem, Arapostathis et al. (1993)). Fix α ∈ R2
++. The following hold:

a. The AROE (4.6) has a solution (hα, ρα) and a control rule σα that attains the optimum.
b. For any converging subsequence hα,δ

ν
→ h̄ as ν → ∞ , we can take ρ = limν→∞ wα,δν (p1)

that does not depend on p1, and obtain a pair (h̄, ρ) that solves the AROE (4.6). The
function h̄ : ∆(Θ) → R is convex.

c. For any strategy s, lim supδ→1
∑2

i=1 αiv
δ
i (s) ≤ limν→∞ wα,δν (p1) = ρα.

The first part of the Theorem ensures existence of solution. This is not obvious since (4.6)
does not define a contraction map. The second part shows that such solution can be found by
solving the Bellman equations as the discount factor goes to 1. The second part also establishes
that h̄ is a convex function, which means that continuation values improve when a compound
lottery is resolved. The third part formally establishes that the solution ρ ∈ R to (4.6) provides a
tight upper bound for the value of the discounted problem, as the discount factor goes to 1.

The AROE (4.6) is central to our analysis. The right-hand side of (4.6) captures the trade-off
that an optimal control σ solves as a function of current beliefs p ∈ ∆(Θ). As we show below,
each of the three terms on the right-hand side of (4.6) is maximized either by a pooling or a
separating rule.

A control rule σ1 is separating if for any belief p ∈ ∆(Θ) having positive probability in the
path (θt, pt )t≥1, types are separated: σ1(θ | p) , σ1(θ′ | p) for all θ , θ′. This means that player
1’s types can be perfectly inferred after observing player 1’s actions, given σα.

13To see this, note that for all ε > 0, there exists ν̄ ∈ N such that for all ν > ν̄, |wα,δν (p) − wα,δ
ν
(p1) − (1 −

δν)hα (p)(1 − δ) | < (1 − δν)ε . Taking the limit, it follows that limν→∞ wα,δ
ν
(p) = limν→∞ wα,δ

ν
(p1).
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A separating control σ1 allows player 1 to fully reveal his type by setting a different action
for each state of the world. The problem of maximizing player 1’s payoff U1(σ1, σ2, p) typically
results in a fully revealing strategy σ1. A second benefit of perfect information revelation is that
by fully separating his types in period t, player 1 makes continuation beliefs pt+1 more precise
and therefore player 2 faces less uncertainty about θt+1 at the beginning of t +1. To see this, note
that Theorem 1 (part b) shows that the limit differential discounted value h(p) is convex in p.
This means that given p′, q′ ∈ ∆(Θ) and λ ∈ [0, 1], h(λp′ + (1− λ)q′) ≤ λh(p′) + (1− λ)h(q′).
If player 1 uses a separating rule σ1 in period t, he is fully resolving the uncertainty about θt

at the end of round t and therefore maximizing
∑

a1∈A1 h
(
B(· | σ̃1, p, a1)

) ( ∑
θ∈Θ,σ̃1(θ)=a1 p(θ)

)
over all σ̃1 ∈ Σ1.
A pooling control σ1 does not reveal information. The benefit of a pooling control is that it

allows player 2 to perfectly predict player 1’s current action. To see this, note that θ does not
determine player 2’s payoffs, and therefore the profile that maximizes player 2’s expected payoff
maxσ∈ΣU2(σ, p) will typically involve a pooling rule σ1.14
More generally, solutions to (4.6) will be determined by a complex mix of tradeoffs between

revealing and not revealing information as time passes by.15 The following result can be used to
find those solutions in applications.

Proposition 1. Consider a belief p ∈ ∆(Θ) and a rule σ̄ = (σ̄1, σ̄2) with σ̄1 : Θ → A1 and
σ̄2 ∈ A2 such that for all θ , θ′, σ̄1(θ) , σ̄1(θ′) and

σ̄ ∈ arg max
σ∈Σ

Uα (σ, p).

Then,
σ̄ ∈ arg max

σ∈Σ

{
Uα (σ, p) +

∑
a1∈A1

h
(
B(· | σ1, p, a1)

) ( ∑
θ∈Θ,σ1(θ)=a1

p(θ)
)}
. (4.7)

This proposition shows that if a rule that separates typesmaximizes current weighted payoffs, it
also maximizes total undiscounted weighted payoffs. When current total payoffs are maximized
by fully revealing, adding continuation payoffs can only reinforce the benefits from revelation.

4.2. Equilibrium Strategies. In this section, we investigate the conditions under which the
efficient path characterized by (4.6) can be approximated by an equilibrium of the repeated
game. We construct strategies in which player 1 losses credibility if his behavior does not
match the efficient strategy profile. From an applied perspective, this implies that there exists an

14It is relatively simple to see that for an open set of full measure of payoffs for player 2, the maximization problem
maxσ∈ΣU2(σ, p) has a pooling solution σ1. Moreover, this property also holds for all the examples presented in
this paper.
15Problem (4.6) is similar to a bandit problemwithMarkovian hidden state (Keller and Rady, 1999). Separating rules
maximize exploration. Propositions 1 and 2 show conditions under which the standard exploration vs exploitation
dilemma (Bergemann and Valimaki, 2006) does not arise.
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equilibrium path that is approximately equal to the path generated from the control rule σα that
solves (4.6), provided players are patient enough.

A control rule σ together with the initial beliefs p1 recursively determine a belief process
(pt )t≥1 by

pt+1 = B(· | σ, pt, at
1) ∀t ≥ 1.

Given any control rule σ, the joint process (θt, pt )t≥1 is Markovian, with p1 and θ1 given.
To construct equilibrium strategies for the repeated game, the main challenge is to align player

1’s incentives. This is subtle because, on the one hand, we want to allow player 1 to use his
private information but, on the other, allowing him to freely choose actions may open up the
room for opportunistic behavior. However, player 2 can keep an account of the frequencies with
which player 1 has played different actions and punish behaviors that seem, in a statistical sense,
suspicious. To properly formulate how suspicious behaviors are identified, it will be useful to
restrict attention to rules that generate well-behaved paths of beliefs.

Definition 1. A control rule σ determines a unique recurrence class if the process (θt, pt )t≥1 is
a finite Markov chain having a unique recurrence class.16

Note that when σα is separating, continuation beliefs come from the set {P(· | θ) | θ ∈ Θ},
the support of the process (θt, pt )t≥1 is Θ × ({p1} ∪ {P(· | θ) | θ ∈ Θ}) and its unique recurrence
class is Θ× {P(· | θ) | θ ∈ Θ}. A separating solution σα to (4.6) determines a unique recurrence
class. On the other hand, when the rule pools all types along the path and the initial belief does
not coincide with the stationary distribution of the transition matrix P, the path of the Markov
chain (θt, pt )t≥1 is countably infinite.17 However, we will show that the restriction to efficient
control rules that determine a unique recurrence class is virtually without loss.

The following result shows that relaxing the optimality requirement to allow for approximate
efficiency is enough to ensure the existence of a control rule determining a unique recurrence
class.

Lemma 2. For all ε > 0, and all α ∈ R2
++, there exists a control rule σ, and T̄ ∈ N such that

a. σ determines a unique recurrence class; and
b. 1

T
∑T

t=1Eσ,p[α · u(at, θt )] ≥ ρα − ε for al T ≥ T̄ , and all p in the (finite) path of beliefs
generated by σ and p1. Moreover, when σα is a separating rule, we can take σ = σα.

Moreover, if σα is separating, we can take σ = σα.

16In other words, a control rule determines a unique recurrence class if there exists a finite set P ⊆ ∆(Θ) such that
(θt, pt )t≥1 ⊆ Θ × P and a unique subset P ′ ⊆ P such that for all (θ, p) ∈ Θ × P ′, if the Markov chain visits (θ, p),
then in the next period it will stay in P ′ with probability 1, and no proper subset of P ′ has this property. See Stokey
and Lucas (1989) for additional discussion.
17Exploring the ergodicity properties of (θt, pt )t≥1 in hidden Markov models is a question dating back to Blackwell
(1951). Recent developments Van Handel (2009); Tong and Van Handel (2012) do not apply to a model like ours
in which the observation variable is endogenous .
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When the control rule σα solving the AROE perfectly reveals types, this lemma is immediate
and we can take σ = σα. To intuitively understand this result, consider the prisoners dilemma
in Section 2.2 and assume that the optimal rule is such that player 1 pools by playing I on the
path of play.18 This rule generates an infinite belief path. We can modify the rule so that after a
sufficiently large number of periods, player 1’s rule separates his types. This will, again, generate
a new belief path that can be truncated after some time by changing the rule so that player 1’s
types are separated again. The modified rule determines a unique recurrence class and incurs an
arbitrarily small loss in welfare.

For any control rule σ determining a unique recurrence class, the limit-average payoffs

v∞1 (σ) = lim
T→∞

1
T
E[

T∑
t=1

u1(σ(θt | pt ), θt )], v∞2 (σ) = lim
T→∞

1
T
E[

T∑
t=1

u2(σ(θt | pt ))]

are well defined. This follows from Proposition 8.1.1 in Puterman (2005) after noticing that
the limits above are average rewards from a stationary Markov decision rule over a finite state
Markov process.19 We define v∞(σ) = (v∞i (σ))i=1,2.
Fix a control rule σ determining a unique recurrence class Θ × P. Define mσ

1 (· | p) ∈ ∆(A1)
as the distribution over actions given a belief p ∈ P:

mσ
1 (a1 | p) =

∑
{θ∈Θ|a1=σ1(θ |p)}

p(θ).

For a ∈ A and p ∈ P, we define mσ (a | p) analogously.
Given any sequence of actions a1

1, . . . , a
t
1 and a fixed control rule σ determining a unique

recurrence class, we can mechanically calculate probabilities p̄t+1 = B(· | σ1, p̄t, at
1) (if this

is not well defined, we set p̄t+1 to be an arbitrary element of the support of the process of
beliefs (pt )t≥1) with p̄1 = p1. These simulated probabilities need not coincide with the beliefs
a Bayesian agent would have about player 1’s types as his actions in the game could be derived
from an arbitrary strategy s1. For a control rule σ determining a unique recurrence class with
support Θ × P and given any sequence (at, θt, p̄t (σ))t≥1, for a ∈ A and p ∈ P, we can compute
the occupancy rate of actions conditional on simulated probabilities as

m̄δ (a | p) =
∑∞

t=1 δ
t−1
1{at=a,p̄t=p}∑∞

t=1 δ
t−11{p̄t=p}

.

18The problem of ensuring appropriate behavior from player 1 when the optimal rule pools is simple. This example
is used just to illustrate the lemma.
19 Letting π̄ = π̄σ ∈ ∆(Θ× P) be the stationary distribution for the Markov chain (θt, pt )t≥1, given the control rule
σ, with Θ × P the recurrence class of the Markov chain, it follows that

v∞1 (σ) =
∑

(θ,p)∈Θ×P

u1(σ(θ | p), θ)π̄(θ, p) and v∞2 (σ) =
∑

(θ,p)∈Θ×P

u2(σ(θ | p))π̄(θ, p).
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We define the stationary minmax value as the smallest payoff a player can attain when his rival
chooses a fixed action and he chooses actions optimally. More formally,

v1 = min
a2∈A2

Eπ[max
a1∈A1

u1(a, θ)], v2 = min
a1∈A1

max
a2∈A2

u2(a).

This definition of minmax value does not yield the lowest payoff one could impose on a player
(Escobar and Toikka, 2013; Hörner et al., 2015), but it is simple toworkwith and fully satisfactory
in our applications.20 A vector v ∈ R2 is strictly individually rational if vi > vi for i = 1, 2.
The following theorem shows that the efficiency analysis performed in Section 4.1 is useful to

understand equilibrium behavior.

Theorem 2 (Equilibrium Theorem). Fix ε > 0. For α, α1, α2 ∈ R2
++, take control rules σ, σ1,

and σ2 as in Lemma 2. Assume

i. All payoff vectors v = v∞(σ), v1 ≡ v∞(σ1), v2 ≡ v∞(σ2) are strictly individually
rational;

ii. vi
i < vi < v−i

i , for i = 1, 2.

Then, there exists δ̄ < 1 such that for all δ > δ̄, the infinitely repeated game with discount factor
δ has a perfect Bayesian equilibrium s∗ = (s∗1, s

∗
2) such that

a. α · vδ (s∗) ≥ ρα − 2ε; and
b. Ps∗

[
maxa∈A,p∈P |m̄δ (a | p) − mσ (a | p) | < ε

]
≥ 1 − ε , where Θ × P ⊆ Θ × ∆(Θ) is the

recurrence class of the process (θt, pt )t≥1 generated by σ.

This result characterizes approximately optimal equilibrium behavior when players are suffi-
ciently patient.21 The result assumes that we have player specific punishmenrs v1, v2 ∈ R2 so that
when players are patient enough the target optimal payoff vector can be approximated. The first
part of Theorem 2 shows that players’ incentives can be aligned to attain total weighted payoffs
arbitrarily close to ρα. Moreover, with sufficiently high probability, conditional on simulated be-
liefs, players equilibrium actions will approximate the frequencies induced by the approximately
optimal rule σ. This means that the problem of determining approximately optimal equilibrium
dynamics reduces to solving the dynamic programing problem AROE (4.6).

The construction of equilibrium strategies combines forgiveness and memory. If player 1
plays and action resulting in low current payoffs for player 2, player 2 keeps playing according
to the efficient control σ2 given simulated beliefs. But if the number of such actions becomes
suspiciously high (which happens off-path), a punishment phase against player 1 is triggered.

20Our definition of minmax is restrictive because it only considers pure strategies. Furthermore, when player 2 is
minmaxing 1, he could find optimal to use the information revealed by player 1 during the minmaxing phase. This
introduces complexities beyond the scope of the paper. See Pęski and Toikka (2016).
21In contrast to two-player repeated games with complete information, our result requires the existence of player-
specific punishments (Fudenberg and Maskin, 1986). In our problem, types are hidden and for some types the
minmaxing action could actually yield high payoffs to the minmaxed player.
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The proof of Theorem 2 revisits the review strategy idea from Radner (1981) and Townsend
(1982). The proof builds strategies in which player 2 keeps checking whether the path of player
1’s actions can be distinguished from the control ruleσ1. At each round, player 2 builds simulated
beliefs p̄t and checks whether the path of actions played by 1 is close to the path of action if
player 1 were using the control rule σ1. If this is not the case, a punishment phase is triggered.
The proof shows that it is always in the interest of player 1 to choose a path of actions which is
close to the one generated from the efficient control rule σ1.

To formalize the construction of strategies, take (a1, . . . , at ) ∈ At , (p, a1) ∈ P× A1, and define

N t (p) =
t∑

t ′=1
1{p̄t ′=p}, N t (p, a1) =

t∑
t ′=1

1
{(p̄t ′,at ′1 )=(p,a1)}, m̄t (a1 | p) =

N t (p, a1)
N t (p)

.

The number m̄t (a1 | p) is the empirical frequency of player 1’s actions conditional on p̄t = p.
For any decreasing sequence (bk ) converging to 0, we say that player 1 passes the test (bk )

given a history (a1, . . . , at ) ∈ At if

max
a1∈A1

|mσ
1 (a1 | p) − m̄t

1(a1 | p) | ≤ bt

for all p ∈ P. Given T ≥ 1, a control rule σ and a sequence (bk ), construct the decision problem
of credible play (σ, (bk ),T ) for player 1 as follows. For t ≤ T , if player 1 has passed the test
(bk ) in all previous rounds t′ = 1, . . . , t − 1, then he can freely select his action at

1; otherwise,
at

1 is an action randomly drawn from the distribution m1(· | p̄t ). Player 2 is always forced to
chose an action that matches σ2 given the history. We define the obedient strategy for player 1 as
ŝt

1(θ1, . . . , θt, a1, . . . , at−1) = σ1(θt | p̄t ) whenever he is allowed to choose actions. We will also
define the block-decision problem of credible play (σ, (bk ),T )∞ as the infinite horizon problem
in which a decision problem of credible play restarts after T rounds of play (with discount factor
δ).

Lemma 3. Let η > 0.
a. There exists a test (bk ) such that, for any initial belief p1 ∈ ∆(Θ)

Pŝ1[Player 1 passes the test (bk ) at (a1, . . . , at ) for all t] ≥ 1 − η.

b. There exists a test (bk ) and δ̄ < 1 such that for all δ > δ̄ there exists T̄ such that for
all T ≥ T̄ , for any strategy s1 of player 1 in the block-decision problem of credible play
(σ, (bk ),T )∞ given discount δ,

Ps1

[
max

a1∈A1,p∈P
|m̄δ (a1 | p) − mσ (a1 | p) | < η

]
≥ 1 − η.

The first part of the lemma ensures that player 1 can pass the test using the obedient strategy
s̃1. The second part ensures that regardless of the strategy used by player 1, the occupancy rate
of actions is close enough to the distribution of actions drawn from σ1 given simulated beliefs.
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To establish Theorem 2, we use this lemma to construct strategies delivering the desired
weighted equilibrium payoffs ρα. Strategies are of the stick-and-carrot type (Fudenberg and
Maskin, 1986). On the path of play, players choose actions mimicking the path of play in the
equilibrium of the block-decision problem of credible play from Lemma 3. Any observable
deviation by i triggers a punishment phase, in which player i is minmaxed during a fixed number
of rounds, and then play proceed to a carrot phase in which players mimic the play of the game
of credible play yielding payoffs vi. Further deviations trigger new punishment phases.

The construction of equilibrium strategies is related to the so called quota mechanisms in Jack-
son and Sonnenschein (2007), Renault et al. (2013), Renou and Tomala (2015), and particularly
Escobar and Toikka (2013). One difference between our construction and all previous papers
is that in our model players observe actions, not reports or cheap-talk messages. The path of
actions need not be a Markov chain, even when players follow (stationary Markov) control rules
and, as a result, the equilibrium strategies in the game cannot be formulated by simply testing
the transition rates between consecutive actions. To overcome this difficulty, we summarize
the history of actions by constructing simulated beliefs (p̄t )t≥1 from a dynamic programming
formulation, and test actions conditional on those beliefs.

A second, more technical, difference is that in our model the process of beliefs need not be a
finite Markov chain, let alone an irreducible Markov chain. To overcome this difficulty, we need
to approximate the belief path using rounds of revelation. To achieve this, Lemma 2 approximates
the efficient control rule by one that induces a unique recurrence class of beliefs using rounds of
revelation along the path of play at an arbitrarily small efficiency loss.

4.3. Games with Monotonic Efficient Control Rules. We now provide a characterization of
solutions to (4.6). This characterization uses lattice theory tools to show that solutions to AROE
(4.6) are strictly increasing in types (and therefore types are separated).

We assume that A1 and Θ are contained in R and write A1 = {an | n = 1, . . . , |A1 |} and
Θ = {θm | m = 1, . . . , |Θ|} with an < an+1 and θm < θm+1. We extend the payoff function
for player 1, u1, to actions a1 ∈ R and states θ ∈ Θ so that u1(a1, a2, θ) is twice continuously
differentiable in (a1, θ) ∈ R × R.

Definition 2. We will say that u1 has strongly increasing differences in (a1, θ) if

min
{∂2u1(a1, a2, θ)

∂a1∂θ
| a1 ∈ R, a2 ∈ A2, θ ∈ R

}
> 0.

Proposition 2 shows conditions under which the optimal control rule is strictly increasing.
Since actions are discrete, this property cannot be inferred by simply appealing to strong increas-
ing differences. There are two forces behind this result. Separating rules (in particular, strictly
increasing rules) make continuation beliefs more precise and therefore maximize continuation

20



payoffs (Proposition 1). This effect is reinforced when the action set is rich because in this case
the maximization of total period payoffs yield strictly increasing rules.

Proposition 2. Assume that u1 has strongly increasing differences in (a1, θ). Let α ∈ R2
++ be

such that

α1u1(a |A1 |−1, a2, θ) + α2u2(a |A1 |−1, a2) > α1u1(a |A1 |, a2, θ) + α2u2(a |A1 |, a2) (4.8)

and
α1u1(a1, a2, θ) + α2u2(a1, a2) < α1u1(a2, a2, θ) + α2u2(a2, a2) (4.9)

for all a2 ∈ A2 and all θ ∈ Θ and α1u1(a1, a2, θ) + α2u2(a1, a2) is concave in a1 ∈ R. Define

c1 = max
a1∈R,a2∈A2,θ∈R

(
− α1

∂2u1(a1, a2, θ)
∂a2

1
− α2

∂2u2(a1, a2)
∂a2

1

)
≥ 0

and
c2 = min

a1∈R,a2∈A2,θ∈R

∂2u1(a1, a2, θ)
∂a1∂θ

> 0.

Assume that
2c1
α1c2

max
n=1,...,|A1 |−1

{an+1 − an} < min
m=1,...,|Θ|−1

{θm+1 − θm}. (4.10)

Then, any rule σα attaining the maximum in (4.6) is such that σα
1 (θ | p) is strictly increasing

as a function of θ for all p ∈ ∆(Θ) with p(θ) > 0 for all θ ∈ Θ. Moreover, endowing ∆(Θ)
with the (partial) order ≥∆(Θ) given by first-order stochastic dominance, and assuming that
P(· | θ′) ≥∆(Θ) P(· | θ) for all θ′ ≥ θ, and u1(a, θ) and u2(a) are supermodular (in (a, θ) and a
respectively), then σα (θ | p) is nondecreasing in (θ, p).

Equations (4.8)-(4.9) ensure that the optimal rule is not in the boundary. Provided the set of
actions is rich enough, as imposed in (4.10), it follows that the optimal rule always separates
types. Observe that the separating rule σα determines a unique ergodic class.

5. Applications

This section presents applications of our results and methods.

5.1. Live and Let Live. In this section, we explore the issue of implicit cooperation between
enemy combatants in the Western Front in World War I (Ashworth, 1980; Axelrod, 1984). In
the Western Front, armies adopted mostly static positions along a trench line of 475 miles which
ranged from the North Sea to the Swiss Alps. Trench warfare was different from traditional war
in that “the same small units faced each other in immobile sectors for extended periods of time”
(Axelrod, 1984, p. 77). Repeated interaction between enemy battalions allowed enemy soldiers
to engage in cooperative attitudes and to limit the level of aggressions. Such behavior was known
as live and let live.
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Army commanders understood the potential for cooperation and tried to limit it by ordering
raids and attacks on enemy trenches.22 Enemy soldiers could not discern if such attacks were
caused by military orders from high command or by opportunistic behavior.23 Moreover, direct
communication was difficult, if not impossible. As Ashworth (1980, p. 38) explains, “although
verbally arranged truces occurred intermittently for the duration of thewar [. . . ] theywere neither
pervasive nor continuous.” On the contrary, “such truces were mostly irregular and ephemeral,
since being highly visible they were easily repressed by high command.” For example, a British
Divisional Commander issued a memo in 1917 stating that “any understanding with the enemy
[. . . ] is strictly forbidden [. . . ] In the event of any infringement disciplinary action is to be
taken” (Ashworth, 1980, p. 37). Yet, cooperation was prevalent and battalions were successful
at maintaining low levels of aggression for significant lengths of time.

As this discussion suggests, cooperation between battalions arose under severe information
asymmetries. We apply our general insights and results to shed light on this issue.24 We consider
a repeated game between two battalions. At each t = 1, 2, . . . , battalions 1 and 2 simultaneously
decide S or N S (shoot or not). Battalion 1’s private information is whether its army commanders
have shown up or not and is represented by θt ∈ {0, 1}, where θt = 0means that army commanders
are absent. Payoffs are represented in Figure 5 .

N S S

N S R − θt K , R −C − θt K , G

S G , −C 0 , 0

Figure 5. A game between battalions.

We assume C > G > R > 0. These inequalities imply that when θt = 0, playing S is a dominant
action, but that the outcome (N S, N S) is socially desirable. In other words, when θt = 0, the
interaction between battalions is a prisoners dilemma.25 The term −θt K captures the cost that

22In the British Army, for example, the lack of aggression was “both contrary to the spirit of the offensive, [...] and
to an official British directive of 1915 which made active trench war mandatory,” and a British training manual of
1916 stated that “the fostering of the offensive spirit [...] calls for incessant attention” (Ashworth, 1980, pp. 42-43).
23By attacks caused by opportunistic behavior we mean attacks that are not caused by army commanders orders but
by the desire to have a short-run gain by inflicting losses on the enemy.
24Studying this well-documented example is interesting because it also yield insights about other episodes of limited
war, such as the Korean War (Gorman, 1953) and the Cold War (Schelling, 1960).
25As Axelrod (1984) points out, “At any time, the choices are to shoot to kill or deliberately to shoot to avoid
causing damage. For both sides, weakening the enemy is an important value because it will promote survival if a
major battle is ordered in the sector. Therefore, in the short run it is better to do damage now whether the enemy
is shooting back or not. This establishes that mutual defection is preferred to unilateral restraint [. . . ], and that
unilateral restraint by the other side is even better than mutual cooperation [. . . ]. In addition, the reward for mutual
restraint is preferred by the local units to the outcome of mutual punishment [. . . ], since mutual punishment would
imply that both units would suffer for little or no relative gain.”
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battalion 1 must pay if army commanders showed up and ordered raids (θt = 1), but the battalion
does not shoot. We assume that 2R − K < 0 so that when θt = 1, the outcome (S, S) maximizes
the sum of stage payoffs.

Battalion 1’s type evolves according to a Markov process with transition probabilities given
by

P[θt = 0 | θt−1 = 0] = λ,

P[θt = 1 | θt−1 = 1] = µ,

where λ + µ ≥ 1. This means that the process of types has positive persistence. For simplicity,
we assume that the initial type is drawn according to P[θ1 = 0] = λ. Type θt is realized at the
beginning of period t and is privately observed by player 1. Once player 1 observes his type,
players simultaneously choose actions. Actions are publicly and perfectly observed. Players have
a common discount factor δ < 1 and their utility equals the discounted sum of period payoffs.

We focus on equilibrium strategies that maximize the sum of total payoffs. To do this, we first
solve the AROE (4.6). The differential discounted function h maps distributions over {0, 1} to
real numbers. We simplify notation by keeping track of a single number p ∈ [0, 1] representing
the probability that θ = 0 given public information. Thus, h : [0, 1] → R is a convex function.
Fixing p, the optimization problem on the right hand side of AROE (4.6) is defined over all
controls (σ1(0), σ1(1), σ2) ∈ {S, N S}3. It is relatively simple to show that controls (N S, N S, S),
(S, S, N S), (S, N S, N S), and (S, N S, S) are not optimal.26 When 2R − K < G − C we can
also rule out the control (N S, N S, N S). Indeed, the right hand side of AROE (4.6) at control
(N S, N S, N S) equals

p(2R) + (1 − p)(2R − K ) + h(pλ + (1 − p)µ).

Evaluating the right hand side of (4.6) at (N S, S, N S) results in

p(2R) + (1 − p)(G − C) + ph(λ) + (1 − p)h(µ).

Since h is convex, ph(λ) + (1− p)h(µ) ≥ h(pλ + (1− p)µ) and therefore control (N S, N S, N S)
is not optimal. In the sequel, we rule out the control (N S, N S, N S) by assuming 2R−K < G−C.

Lemma 4 characterizes optimal dynamics. We say that a control rule σ : [0, 1] → {S, N S}3

generates reactive-signaling dynamics if on the path, battalion 1 does not shoot when its type is
θt = 0 and shoots when its type is θt = 1, whereas battalion 2 imitates the action of battalion
1 in the previous period. Thus, battalion 1 signals its private information through its actions,
and battalion 2 reacts to such information. Given τ̂ ∈ {0, 1, 2, . . . } ∪ {∞}, we say that a control
rule generates time-off dynamics if, on the path, battalion 1 does not shoot only if it is in good

26For example, control (N S, N S, S) gives less total period payoffs than (S, S, S). Since both controls determine the
same distribution over continuation beliefs, control (N S, N S, S) cannot be optimal.
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standing and its type is θt = 0, and battalion 2 does not shoot if and only if battalion 1 is in good
standing. Battalion 1 is in good standing if it did not shoot in the previous period, or if it shot in
the previous period, but it was in good standing τ̂ + 1 periods before. Thus, a time-off control
rule leads to a waiting phase of τ̂ periods after an aggression by battalion 1.27
Let σ∗ be the control rule solving AROE (4.6). The following result characterizes the optimal

path.

Lemma 4. If λ < C−G
2 R+C−G , σ

∗ has both battalions playing S on the path of play. If λ > C−G
2 R+C−G ,

σ∗ generates either reactive-signaling or time-off dynamics (potentially, with τ̂ = 0 or = ∞).

The restriction λ > C−G
2 R+C−G implies that control (N S, S, N S) is optimal at belief p = λ. If

battalion 1 plays N S at p = λ then in the next period the belief is λ and the optimal control
continues to be (N S, S, N S). If battalion 1 plays S instead, it ‘signals’ a change in type, and in the
next period the optimal control is either (N S, S, S) (in which case σ∗ generates reactive-signaling
dynamics) or (S, S, S) (in which case σ∗ generates time-off dynamics).28
Regardless of the specific form that the solution to AROE (4.6) assumes, whenever both

battalions have strictly positive limit-average payoffs, we can use Theorem 2 to deduce that
such path can be an equilibrium outcome for the repeated game model when players are patient
enough. Moreover, in this case, we can simply use the repetition of the static Nash equilibrium
to punish observable defections.

The analysis of this repeated game model yields new insights about cooperation between
battalions. First, alternating between periods of aggressions and periods of non-aggressions can
be optimal for the battalions. These dynamics are consistent with those observed in the Western
Front, where “many sectors were a mixture of war and peace, that is, of exchanges of peace
as well as exchanges of aggression and these were more frequent than either very quiet or very
active sectors” (Ashworth, p. 39).

Second, consistent with our equilibrium construction, soldiers under the live and let live system
kept an account of the number of aggressions received from the other side. As Ashworth (1980)
observes, “combatants generally had a good idea of what was, or was not, compatible with live
and let live, and if one side deviated the other meted out punishments by returning to officially
prescribed levels of aggression.” Moreover, Ashworth (1980) notes that the rules “were not
broken by the arrival of four to twelve grenades, which were regarded as routine, but if twelve
were exceeded, ’the chances were’, retaliation followed.” This suggests that soldiers could have
deemed sufficiently low numbers of aggressions as tolerable, which is similar to the combination
of forgiveness and memory in the equilibrium strategies discussed after Theorem 2.

27Note that reactive signaling is not a particular case of time-off. A time-off control rule with τ̂ = 0 implies that
battalion 1 always signals its type, but battalion 2 keeps playing N S.
28Lemma 4 rules out dynamics inwhich signaling can occur only after an exogenous number of rounds has transpired.
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5.2. Price Cuts and Price Leadership. In this section, we study a model of tacit collusion
with Bertrand competition, and show that price cuts and price leadership naturally arise in an
equilibrium of the model.

Two firms set prices ai ∈ Ai at each t = 1, 2 . . . . Firms sell heterogeneous goods. The demand
functions are given by

Q1(a1, a2, θ) = θ − a1 + za2, Q2(a1, a2) = 1 − a2 + za1

with 0 < z < 1. We normalize marginal costs to 0. Firm 1’s demand shock is private information
θ ∈ {θ, θ̄}, with θ < θ̄. Players’ utility functions equal revenues and take the form

u1(a1, a2, θ) = Q1(a1, a2, θ) a1,

u2(a1, a2) = Q2(a1, a2)a2.

We assume that types follow a Markov chain P with P(θ′ | θ) > 0 for all θ′, θ ∈ {θ, θ̄}, with
P(θ̄ | θ̄) ≥ P(θ̄ | θ).29
We can apply Proposition 2 to characterize the welfare maximizing control rule σα, for

α = (1, 1). Up to integer restrictions,

σα
2 (p) =

1 + zEp[θ]
2(1 − z2)

, σα
1 (θ | p) =

θ

2
+ zσα

2 (p).

Under the optimal control rule σα, firm 1 signals its type by choosing a higher price when its
demand is high. When firm 1 chooses a high price in period t, then its demand is more likely to
be high in period t + 1 and player 2’s price is also higher. In this sense, a low price by firm 1 in
t acts both as a signal of privately-observed demand conditions and as an invitation from firm 1
to firm 2 to switch to a low-price regime in t + 1. Likewise, a price increase by firm 1 in t is an
invitation to switch to a high-price regime in t + 1. This mechanism matches the one described
by Judge Posner in his decision on the High Fructose Corn Syrup case:

If a firm raises price in the expectation that its competitors will do likewise, and
they do, the firm’s behavior can be conceptualized as the offer of a unilateral
contract that the offerees accept by raising their prices.

Figure 6 illustrates a sample path of private costs and prices. Observe that σα is a rule
determining a unique recurrence class and therefore Theorem 2 immediately applies.30
In contrast to other theoretical papers, such as Green and Porter (1984) and Abreu et al. (1986),

in our setup unilateral price cuts actually occur and are observed in equilibrium, and apparent
deviations can be seen as the result of firms using their private information to maximize total

29In the Supplementary Appendix, we explore a model in which both firms may have private information. In that
model, both firms may become price leaders.
30Note that in this model, the repetition of the static equilibrium resulting in payoffs (0, 0) can be used as a
punishment.
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Figure 6. A sample path of private costs and prices.

profits and signal their continuation play. Rahman (2014) provides a complementary view in
a repeated game model with imperfect monitoring. In such model, price cuts can be used to
improve monitoring.31

Our model shows that price leadership may be an optimal strategy for firms when direct
communication is not feasible. The informed firm becomes a price leader as whenever it raises
its price in t, firm 2’s price will be higher in t + 1. On the contrary, when firm 1 lowers its
price in t, firm 2’s price will be lower in t + 1. Thus, our model gives theoretical support
to Stigler’s (1947) observation that price leadership may be an efficient mechanism to transmit
information, and toMarkham’s (1951) view that firmsmay use price leadership in lieu of an overt
agreement. In our model, price leadership is an imperfect substitute to explicit communication.
Indeed, if firms could freely communicate, firm 1 would send messages to firm 2 to coordinate
their pricing decisions and firms would simultaneously raise or lower their prices. But without
communication, firm 1’s price is used as a signal of market conditions. Using firm 1’s price
as a substitute to communication entails a cost: Pricing decisions are uncoordinated and lack

31Collusion and price cuts can also arise in a mixed strategy equilibrium of a repeated Bertrand game (Bernheim
and Madsen, 2014).
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of communication does not allow the cartel to adjust prices to optimally assign demand after
market conditions change.

Collusive price leadership has been extensively supported empirically.32 Our model provides
an explanation for price leadership in a natural repeated Bertrand game with incomplete infor-
mation. Rotemberg and Saloner (1990) also study collusion and price leadership in a Bertrand
model with incomplete information. Their model exhibits iid private information and for price
leadership to emerge, within each round the informed firm must set its price before the unin-
formed one. Such sequentiality is not needed in our model. Furthermore, in Rotemberg and
Saloner’s (1990) model, price leadership entails no cost for the cartel as, within each round, pro-
duction takes place after both firms has set prices. Empirical evidence supports the observation
that unilateral price increases are costly for the cartel. For example, Clark and Houde (2013)
study price leadership in gasoline markets in Quebec, and find that a small price premium for a
few hours can result in a significant reduction in a station’s sales for the day (up to 50%).

Our collusion model differs from the more standard analysis of Bertrand games with inelastic
demand and incomplete information about costs. In Athey and Bagwell (2001), firms have iid
private costs and, before choosing actions, can freely exchange messages. Athey and Bagwell
(2008) and Escobar and Toikka (2013) extend the model to allow for Markovian private costs.33
In all these works, firms can be arbitrarily close to the first best collusive outcome, in which only
the lowest cost firm produces and fixed the consumers’ reservation value. As Athey and Bagwell
(2001) observe, communication can be dispensed with as prices can be used to signal costs (at an
arbitrarily low cost) when firms are sufficiently patient. But this observation crucially depends
on the assumption of inelastic demand. Our analysis shows that in more general Bertrand games,
firms are bounded away from a perfectly collusive outcome when the exchange of messages is
costly. Moreover, in the Bertrand models of Athey and Bagwell (2001, 2008) and Escobar and
Toikka (2013), the path of collusive prices cannot be distinguished from the prices one would
observe when firms’ information is symmetric and players were patient (as in Rotemberg and
Saloner, 1986). In contrast, our analysis not only shows that the costs of incomplete information
can be substantive for a cartel, but also that asymmetric information has nontrivial implications
for the dynamics of prices.34

32Nicholls (1951) describes price leadership in the cigarette industry; Stigler (1947) discusses price leadership in
the steel, dynamite, anthracite, and airline industries; Allen (1976) shows evidence of collusive price leadership in
the market of steam turbine generators; Mouraviev and Rey (2011) show that price leadership features in 16 out of
49 European Commission’s cartel decisions as of July 2010; and Seaton and Waterson (2013) characterize price
leadership in British supermarkets.
33Athey and Bagwell (2008) additionally study a model with perfectly persistent costs and prove that in the optimal
equilibrium firms pool by fixing the monopoly price. Pęski (2014) shows that the pooling result does not survive to
more general demand functions.
34Athey et al. (2004) study a repeated Bertrand game with iid cost and show that optimal equilibrium is in (on-path)
pooling strategies when firms are restricted to use strongly symmetric strategies.
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5.3. TheSocialValue ofCommunication inCartels. Communication between cartelmembers
can serve several roles. One role that communication has is to allow cartel members to better
coordinate production. From a legal perspective, communication to share information about
market conditions is typically seen as welfare enhancing (Carlton et al., 1996). Here, we confirm
this intuition. We show that consumer surplus increases when firms communicate and therefore
communication between cartel members has a pro-competitive effect.

Two firms set quantities ai ∈ Ai at each t = 1, 2, . . . . Firms sell homogeneous products and
the (inverse) demand is given by P (a1 + a2), where P > 0 and it is strictly decreasing in a1 + a2.
The marginal cost of firm 1 is θ ∈ Θ, whereas the marginal cost of firm 2 is c > 0. Firms’s utility
functions are

u1(a1, a2, θ) = P (a1 + a2)a1 − θa1,

u2(a1, a2) = P (a1 + a2)a2 − ca2.

We assume that types follow a Markov chain with transitions P(θ′ | θ) for all θ, θ′ ∈ Θ. To
simplify the analysis, we assume that A1 = A2 and Ai = {0, g, 2g, . . . , ( |Ai | − 1)g}, where g > 0.
We define the monopoly quantity given any cost κ ≥ 0 as

QM (κ) = max
q∈{0,g,... }

P (q)q − κq.

Note that QM (κ) decreases in κ. Assuming a sufficiently rich grid, we can assume that QM (θ) is
strictly decreasing. Finally, we assume that the set of actions Ai is such that QM (0) < max{ai |

ai ∈ Ai}. We assume that no firm is always the most efficient one: min{θ ∈ Θ} < c < max{θ ∈
Θ}.

We focus on profiles that maximize the sum of firms’ payoffs. If firms could communicate,
only the firm having the lowest cost would produce the monopoly quantity QM (min{θ, c}) and
total payoffs would be maxq∈{0,g,... }

{
P (q)q −min{c, θ}q

}
. Theorem 4.1 in Escobar and Toikka

(2013) implies that firms can attain monopoly profits on the path of play in the repeated game
with communication.

When firms cannot communicate, the monopoly arrangement is not feasible. To characterize
and approximately optimal path, assume that the belief that firm 2 has about θ is p ∈ ∆(Θ) and
consider the problem of maximizing the expected sum of firms’ payoffs over all feasible rules:

max
σ1 : Θ→A1,σ2∈A2

U (1,1) (σ, p) :=
∑
θ∈Θ

(
P (σ1(θ) + σ2)(σ1(θ) + σ2) − θσ1(θ) − cσ2

)
p(θ) (5.1)

Consider first the case Ep[θ] :=
∑
θ θp(θ) > c. Then, for any solution of (5.1), σ2 = 0. If not,

σ2 > 0. Take the alternative profile σ̃2 = σ2 − g and σ̃1(θ) = σ1(θ) + g.35 The difference in

35Note that σ1(θ) ≤ QM (0) and thus σ̃1(θ) ∈ Ai .
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total expected payoffs would be

U (1,1) (σ̃, p) −U (1,1) (σ, p) = g
(
Ep[θ] − c

)
> 0.

Thus σ2 > 0 cannot be optimal. It follows that the optimal solution is σ1(θ) = QM (θ) and
σ2 = 0 and total profits equal (P (QM (θ)) − θ)QM (θ). In other words, firm 1 ends up producing
even when it is less efficient than firm 2. Since σ is a separating rule, Proposition 1 implies
that it solves the AROE given beliefs p. Intuitively, the cartel must decide production under
uncertainty and let the firm that is more efficient on average to produce the monopoly quantity.
Assuming that for all p ∈ {p1} ∪θ∈Θ {P(· | θ)}, Ep[θ] < c, the optimal control σ can actually be
implemented as an equilibrium of the repeated game using Theorem 2.36
This analysis shows that the cartel gets lower payoffs when communication is not allowed.

Perhaps surprisingly, consumers are also hurt by the lack of communication. To see this, note
that with communication the quantity produced is QM (min{θ, c}). Without communication, the
total quantity is QM (θ), where p is the belief that firm 2 has about θ. Since QM is decreasing, the
quantity produced when the cartel communicates is always above the quantity produced when the
cartel cannot communicate and the consumer’s loss is smaller when the cartel can communicate
than when it cannot. Intuitively, lack of communication distorts the cartel pricing and quantity
decision as it cannot coordinate production efficiently. Communication improves not only the
cartel’s profits but also the consumers’ surplus.

Athey and Bagwell (2001) show an example in which, for intermediate levels of patience,
firms can better collude with communication. Our results apply even when firms are arbitrarily
patient. Another role that communication has in cartels is to enhance monitoring (Whinston,
2008). As Awaya and Krishna (2014) show in a private monitoring Bertrand game with complete
information, communication among firms allows them to set higher prices. Our finding is related
to these ones, but herewe show that communication also improves consumerswelfare by reducing
the price distortions that uncoordinated production induces.37

5.4. Centralization, Communication, and Delays. We now study the decision to centralize
or decentralize decision making, which is affected by a trade off between coordination and the
speed of adaptation. Centralization may allow an organization to coordinate agents on a jointly

36Since firm 2 never produces, its payoff equals the minmax, violating the conditions in Theorem 2. To deal with
this difficulty, change the rule so that firm 2 produces g in every period and thus its payoff is strictly positive. When
g is small enough, this entails an arbitrarily small loss. We also note that the restriction to Ep[θ] < c –which is
the main driver of the result that firm 2 does not produce–is rather strong and can be relaxed. In the more general
model, the same basic intuition holds: Consumers are hurt by the lack of communication between firms.
37Our finding depends on the assumption that firms perfectly collude (either with or without communication).
Shapiro (1986) shows in a static linear Cournot environment that communication can be detrimental for consumers’s
surplus. Gerlach (2009) also study the value of communication among cartel members for consumers in a Bertrand
model with incomplete information. In his inelastic demand model, consumers’ surplus vanish as firms become
arbitrarily patient regardless of whether or not communication is available. He therefore emphasizes different
mechanisms.
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optimal set of choices, but it may also lead to delays in decision making (Simon, 1973; Radner,
1993; Bolton and Dewatripont, 1994; Van Zandt, 1999). As Roberts (2004, p. 235) explains:
“Empowering those with the information to act upon it clearly speeds action [. . . ]. There is no
need to wait while the information is communicated up, absorbed, and analyzed, and then the
decisions sent back down.”

To model delays from direct communication, consider the coordination game of Section 2.1
and assume that the informed agent can send a cheap-talk message about his type, which reaches
the uninformed party with a two-period lag. The timing within each period t is as follows. First,
agent 1 learns θt and sends a message mt ∈ Θ to agent 2. Second, agent 2 receives the message
mt−2. Third, agents choose their actions.
It is straightforward to extend our results to this new setting. First, given informational

constraints, we find the optimal control rules as functions of the state. At any period, player 1
has private information over his type and over the message that has not reached player 2 yet.
The state is now composed of a belief over the informed agent’s type, together with a belief
over the message sent in the last period. As before, the optimal rule may indicate player 1 to
play according her private information –in addition to public beliefs–, but player 2’s actions may
only depend on public beliefs. Second, we show that it is possible to find strategies such that
equilibrium play is arbitrarily close to optimal play.

Given a control σ1(θ), an action a1 in period t − 1 and a message m ∈ Θ sent in period t − 2,
the belief over player 1’s type in period t is

B(θ′ | σ1, a1,m) =
∑

{θ |σ1(θ)=a1}

P(θ′ | θ)
P(θ | m)∑

{θ̂ |σ1(θ̂)=a1}
P(θ̂ | m)

whenever σ1(θ̂) = a1 for some θ̂. As before, player 1 may signal her type with her actions. What
changes is that player 1’s message from two periods before conveys precise information about
his type. This is why the rule for updating beliefs differs from the one in Section 4.1 (equation
4.2) .

The coordination game has two types (θ ∈ {0, 1}) and two actions (a1 ∈ {S,O}). Therefore,
beliefs take simple forms. If the control is pooling (i.e., σ1(0) = σ1(1) = a1), then

B(θ′ | σ1, a1,m) = P(θ′ | 1) P(1 | m) + P(θ′ | 0) P(0 | m).

With a pooling control, player 1’s actions do not transmit information, but her message two
periods before does. For example, if player 1 is playing a pooling control, and sent a message
mt−2 = 1, the probabilities that θt = 1 and θt = 0 are

B(1 | σ1, a1, 1) = P(1 | 1) P(1 | 1) + P(1 | 0) P(0 | 1) = λ2 + (1 − λ)2,

B(0 | σ1, a1, 1) = P(0 | 1) P(1 | 1) + P(0 | 0) P(0 | 1) = 2 λ (1 − λ).
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Given that λ2 + (1 − λ)2 > 2 λ (1 − λ) for λ > 1/2, a message mt−2 = 1 implies that θt = 1 is
more likely than θt = 0.

On the other hand, if the control is separating (i.e., σ1(0) , σ1(1)), then

B(θ′ | σ1, a1,m) = P(θ′ | θ) �� {θ |σ1(θ)=a1}
=




λ if σ1(θ′) = a1,

1 − λ if σ1(θ′) , a1.

With a separating control, actions perfectly signal player 1’s type in the previous period, and
therefore, the message from two periods before is redundant.

It simple to show that if the optimal control is separating for belief λ, then it is separating
for belief 1 − λ. This is because the game with θt = 1 is equal to the game with θt = 0 (up to
relabeling). Likewise, if the optimal control is pooling for belief λ2 + (1− λ)2, then it is pooling
for the complementary belief 2 λ (1 − λ).

If a pooling control is optimal, then it is optimal to coordinate at t on the action that is optimal
given period t − 2’s message –that is, at time t, players play (S, S) when mt−2 = 1 and (O,O)
when mt−2 = 0–, rather than playing a constant pooling profile (such as playing (S, S) or (O,O)
for all t). To see this, suppose that players are coordinated on (S, S) for all t, and agent 2 receives
a message mt−2 = 0. This means that the probability that θt = 0 is larger than the probability
than θt = 1, which means that if players were to coordinate on playing (O,O) at time t, they
would be more likely to obtain the joint payoff 1 + α + β than if they were to play the constant
rule (S, S).
We deduce that agents will optimally organize in one of two ways: They may play a pooling

control and choose actions based on player 1’s message from two periods before, or theymay play
a separating control, as in the signaling equilibrium of Section 2.1. The first case corresponds to
an organization with centralized information and decision making. The second case corresponds
to an organization with decentralized decision making.

By centralizing information, players avoid the cost of miscoordination that is incurred when
player 1 signals a change in type. On the other hand, centralization means that players choose
actions based on old information, which causes a two-period delay in adaptation. Moreover, this
delay implies that player 1’s type may have switched back to its original state by the time agents
change their actions, in which case players would play actions that are not adapted to the state of
the world for one more period.

In Section 2.1, we showed that a separating action profile yields a payoff of λ(1 + α + β) as
δ → 1. In Section A.5 in the Appendix, we show that a pooling action profile in which players
coordinate on player 1’s message from two periods ago yields a payoff of 1+α (1−2 (1−λ) λ)+ β
as δ → 1. Intuitively, by playing a pooling profile, players obtain a payoff of 1 + β in every
period, and obtain α a proportion 1 − 2 (1 − λ) λ of times.
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Centralization is preferred over decentralization when λ <
1+α+β

2 α . As the importance of
coordination for player 1 (α) increases, decentralization becomes more valuable because it
allows for faster adaptation to player 1’s type. As the importance of coordination for player 2
(β) increases, centralization becomes more valuable because it allows players to avoid the costs
of miscoordination caused by signaling type changes with actions. These results are consistent
with the findings of McElheran (2014), which studies delegation of IT purchasing decisions and
shows that a high value of adaptation (a large α) is associated with delegation, and a high value
of coordination (a large β) is correlated with centralization.

Finally, note that in this simple model, it is easy to give agents incentives to play according to
the optimal rule, given that agents obtain a payoff of 0 when they choose discoordinated actions.
Our results show that our when direct communication has implicit costs, agents may optimally
coordinate to play with limited communication.

6. Equilibrium as Interactions Become Frequent

Our limit results, Theorems 1 and 2, apply when δ → 1. As Abreu et al. (1991) point out,
the limit δ → 1 can be interpreted saying that either interest (discount) rates are low or that
players move frequently. In games with imperfect monitoring, Abreu et al. (1991) and Sannikov
and Skrzypacz (2007) show that the two interpretations can lead to radically different results as
when moves become more frequent not only the interest rates change but also the quality of the
monitoring technology. In our perfect monitoring game of incomplete information, the impact
of more frequent moves is also subtle as types are more likely to remain unchanged between two
consecutive rounds. In this section, we explore these issues in a simple prisoners’ dilemma.

Two players choose actions at each t = D, 2D, . . . , where D > 0 is the period length. At each
t, players play a prisoners dilemma, with the payoffs given in Figure 2. Monitoring is perfect, but
only player 1 can observe θt ∈ {l, h} at the beginning of round t, with l < h. We parameterize
both the discount factor and the transitions by D. The discount factor equals δ = exp (−rD),
where r > 0 is the discount rate per time unit. Transitions are given by

P[θt = l | θt−1 = l] = 1 − φD, P[θt = h | θt−1 = h] = 1 − χD

with φ, χ > 0. We make explicit the dependence of the transition matrix and the Bayes operator
on D by writing P = PD and B = BD. Under this parametrization we can interpret our previous
findings as taking the interest rate to 0 (r → 0). Our interest now is in the limit D → 0.
The formulation of the dynamic programming problem characterizing decision rules that

maximize the sum of payoffs for D > 0 can be imported from Section 4. More explicitly, given
a belief p = P[θt = l], the value function for the problem of maximizing the sum of payoffs is

wD (p) = (6.1)
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max
σ∈Σ

{
(1 − exp(−rD)) U (1,1) (σ, p) + exp(−rD)

∑
a1∈{M,K }

wD (
BD (· | σ1, p, a1)

) ∑
θ,σ1(θ)=a1

p(θ)
}
.

The following result characterizes the solution to this problem when D and r are small.

Proposition 3. The following hold:
a. There exists D̄ > 0 such that for all D < D̄ and all p ∈ [χD, 1 − φD], the right-hand

side of (6.1) has a unique solution σ̄, with σ̄1(l | p) = I and σ̄1(h | p) = N I. Moreover,
wD (p) → 2(a − l) χ

φ+χ as D → 0.
b. For all ε > 0, there exists D̂ ∈]0, D̄[ such that for D < D̂ we can find r̄ (= r̄ (D)) such that

the game played every D units of time with discount rate r < r̄ (D) has an equilibrium
attaining payoffs within distance ε of (a − l) χ

φ+χ (1, 1)′.

This result shows that a separating rule (that generates a reactive-signaling path) is optimal
whenever the game is played frequently, and that the incentive costs are modest. Intuitively,
when the game is played frequently, the costs of signaling a change of type is small (it is incurred
once) compared to the benefit of perfectly revealing information (which results in almost perfect
information for several rounds of interaction).38 This implies that as interactions become more
frequent, it becomes more likely that players can attain the full benefits of cooperation without
incurring significant signaling costs. Indeed, as D → 0, first best payoffs converges to 2(a−l) χ

φ+χ

–the payoff attained in the game with frequent moves.

7. Conclusions and Extensions

Oftentimes, economic agents in a long-run relationship can only partially know the conditions
under which their partners are making decisions. Moreover, communicating tough or favorable
conditions is difficult because such protocols are either incomplete or non-existent (Schelling,
1960; Marschak and Radner, 1972; Whinston, 2008). Communication may also be difficult
because economic shocks may materialize only after some other player has already made a
decision. We explore optimal equilibria in this type of environment. Our exercise uncovers
new tradeoffs arising in dynamic models of incomplete information –how much information
is revealed is endogenously determined and the uninformed player forgives but does not forget
apparently hostile actions. We show that the cooperation paths are quite rich and novel, and
provide applications that shed light on phenomena that were previously unexplained.

Some extensions to our model are simple. We have worked with a one-sided incomplete
information game to emphasize the forces in the model, but extending the results to allow for
two-sided incomplete information is relatively simple.39 We could also extend our results to
allow for restricted or costly communication (in the direction of Section 5.4) or communication

38The costs of signaling are O(D) whereas the benefits are O(1).
39Details are available in a Supplementary Appendix.
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only once the stage game has been played (but before the subsequent type is realized). Our
setup can also be used to explore equilibria in a dynamic model of sovereign default, in which a
country faces privately observed (economical or political) shocks that maymake defaults socially
attractive (Cole et al., 1995; Sandleris, 2008). In such model, a government decision of whether
or not to pay its debt would affect others’ beliefs about fundamentals and their willingness to
lend or invest in the future.40 Amore challenging question is to explore the equilibrium set when
the discount factor is not arbitrarily close to 1, possibly allowing for imperfect monitoring. We
suspect that when δ is not close to 1, our insights (about whether and how information is revealed
and about how strategies balance forgiveness and memory) will also show up, but additional
incentive constraints may introduce new tradeoffs. Another interesting extension is to explore the
continuous time limit model in Section 6, keeping constant the interest rate r > 0. Keeping fixed
the interest rate r , the review blocks used in Proposition 3 become arbitrarily long and therefore
the informed player need not have incentives to play an obedient strategy. These extensions are
left for future research.

Appendix A. Proofs

This Appendix contains proofs for all the results in the main text.

A.1. Proofs for Section 4.1.

Proof of Lemma 1. The result is the standard dynamic programming formulation of partially
observedMarkov decision processes (Arapostathis et al., 1993). Aminor subtlety arises due to the
fact that our control variables aremixed strategies which, in contrast towhat is typically addressed
in the literature, involve private randomizations. To address this, note that a decision rule can be
equivalently written as s = (st

i ) with st
i : At−1 ×Θt

i × [0, 1]t × [0, 1]→ Ai. In other words, we can
reformulate a behavior strategy by assuming that at

i = st
i (a1, . . . , at−1, θ1

i , . . . , θ
t
i, χ

1, . . . , χt, χt
i )

where χt
i is only used by player i. We can expand the set over which the maximization (4.1) is

performed by allowing rules where all players at t condition on the whole vector ( χt
1, . . . , χ

t
N ).

This relaxed efficiency problem admits a dynamic programming formulation in which, without
loss, public randomizations are not used. Since the solution of the relaxed problem is feasible
for (4.1), we deduce that q(α) = wα,δ (λ). �

Proof of Theorem 1. We use the so-called vanishing discount approach. Parts a and b follow
from Platzman (1980) or Theorem 11 in Hsu et al. (2006). It is enough to note that the hidden
Markov process (θt )t≥1 has full support and note that, for example, Assumption 2 in Hsu et al.
(2006) holds. To deduce c, we use part (d) Corollary on p.369 in Platzman (1980). �

40This is similar to the model in Sandleris (2008), but in that model the game has a finite horizon and shocks are
drawn once.
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Proof of Proposition 1. Consider the problem

max
σ∈Σ

∑
a1∈A1

h(B(· | σ1, p, a1))
∑

θ∈Θ,σ1(θ)=a1

p(θ)

with h : ∆(Θ) → R convex. The solution is any separating rule (in particular, σ̄(· | p̄) in the text
solves this problem). To see this, notice that the problem can be reformulated as the problem
of choosing a Bayes-consistent belief distribution over beliefs with the purpose of maximizing a
convex function (Gentzkow and Kamenica, 2011). The value of that problem equals the concave
hull of the objective and is attained by a distribution putting appropriate weights over delta-Dirac
beliefs. �

A.2. Proofs for Section 4.2.

Proof of Lemma 2. Let σ̄α be the control rule solving the AROE given α. In particular, there
exists T̄ ∈ N such that

1
T

T∑
t=1
Eσ̄α,p̄1[α · u(at, θt )] ≥ ρα − ε/2

for all T ≥ T̄ , and all p̄1 ∈ {p1} ∪
(
∪θ∈Θ {P(· | θ)}

)
. Let Qt (p1) ⊆ ∆(Θ) be the finite set of

beliefs having positive probability under σ̄α at round t given p1. Let

Q ≡
( ⋃

p̄1∈{p1}∪

(
∪θ∈Θ{P(·|θ)}

) QT̄ (p̄1)
)
\
( T̄−1⋃

t=1

⋃
p̄1∈{p1}∪

(
∪θ∈Θ{P(·|θ)}

) Qt (p̄1)
)

be the set of beliefs that can be reached at time T̄ (for some initial belief p̄1 ∈ {p1} ∪ (∪θ∈Θ{P(· |
θ)})) but that cannot be reached before. For p ∈ Q, define the control ruleσ1(· | p) : Θ→ A1 such
that σ1(θ | p) , σ1(θ′ | p) for θ , θ′ and σ2(p) arbitrary. For p < Q, take σ(· | p) ≡ σ̄α (· | p).
Intuitively, the control rule σ is similar to σα but at beliefs p ∈ Q, σ perfectly reveals player 1’s
type. By construction, σ determines a unique recurrence class, with a set of beliefs in

T̄⋃
t=1

⋃
p̄1∈{p1}∪

(
∪θ∈Θ{P(·|θ)}

) Qt (p̄1).

Moreover, for any n ∈ N,

1
T̄

T̄ (n+1)∑
t=T̄n+1

Eσ,p1[α · u(at, θt )] ≥
1
T̄

T̄ (n+1)∑
t=T̄n+1

Eσα,p1[α · u(at, θt )] −
ε

4
≥ ρα −

3
4
ε

and therefore for all p1 and all T ≥ T̄ , 1
T
∑T

t=1Eσ,p1[α · u(at, θt )] ≥ ρα − ε . �

Proof of Lemma 3. Let us first prove a. Since the control rule σ determine a unique recurrence
class (Definition 3), there exists an irreducible transition matrix P̄ for the joint process of states
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and beliefs, (θt, pt )t≥1 ∈ Θ×P and a unique stationary distribution π̄ onΘ×P. Using Blackwell’s
(1957) construction, we can extend the Markov chain (θt, at ) to the negative numbers t ∈ Z, and
compute the invariant measure π̄(θ, p) = P{θ0 = θ, P[θ0 = · | (at )t≤0] = p(·)}. In particular, for
any (θ, p) ∈ Θ × P,

π̄(θ | p) = P
[
θ0 = θ | p = P[θ0 = · | (at )t≤0]

]
= p(θ). (A.1)

For any sequence (θt, pt )t≥1, we define the empirical transition matrix P̄t on Θ × P as

P̄t ((θ′, p′) | (θ, p)
)
=
|{t′ ≤ t − 1 | (θt ′, pt ′) = (θ, p), (θt ′+1, pt ′+1) = (θ′, p′)}|

|{t′ ≤ t − 1 | (θt ′, pt ′) = (θ, p)}|
.

and the empirical measures

π̄t (θ, p) =
1
t

t∑
t ′=1

1(θt ′,pt ′ )=(θ,p) π̄t (p) =
∑
θ∈Θ

π̄t (θ, p) =
1
t

t∑
t ′=1

1pt=p.

Finally, for (θ, p) ∈ Θ × P define N t (θ, p) =
∑t

t ′=1 1(θt ′,pt ′ )=(θ,p).
Our first observation is that there exists a constant c1 > 0 (depending on P̄ and π̄) such that

for any t ≥ 1 and an empirical transition matrix P̄t on Θ × P sufficiently close to P̄,

‖π̄t − π̄‖ ≤ c1‖P̄t − P̄‖ + c1
1
t

where ‖·‖ is the supreme norm. To see this inequality, we borrow the following two formulas
from Lemma B.2 in Escobar and Toikka (2013)

π̄t =
(
I − P̄t + E

)−1
(1 + et ), π̄ =

(
I − P̄ + E

)−1
1

where ‖et ‖ ≤
|Θ| |P |

t and note that the map P̄′ 7→
(
I − P̄′+ E

)−1
is Lipschitz in a neighborhood of

P̄. Moreover, since π̄(θ, p) > 0 for all θ ∈ Θ and all p ∈ P, without loss we can take c1 such that

‖
π̄t (θ, p)
π̄t (p)

− π̄(θ | p)‖ ≤ c1‖P̄t − P̄‖ + c1
1
t

for all (θ, p) ∈ Θ × P. Combining this observation with (A.1) we deduce that for all p ∈ P

‖π̄t (· | p) − p(·)‖ ≤ c1‖P̄t − P̄‖ + c1
1
t

(A.2)

Now, ignore the moves of player 0 and assume that player 1’s actions are never modified. Use
Lemma B.1 in Escobar and Toikka (2013) to show that there exists a decreasing sequence (dk )k

converging to 0 such that

Pŝ1[‖P̄t (· | (p, θ)) − P̄(· | (p, θ))‖ < dN t (p,θ) ∀t ≥ 1,∀(θ, p)] ≥ 1 −
η

2
. (A.3)

Fix 0 < ψ < minθ,p π̄(θ, p) and use Theorem 1.10.2 in Norris (1997) to find t̄ such that

Pŝ1[N t (p, θ) ≥ t(π̄(θ, p) − ψ), ∀t ≥ t̄] ≥ 1 −
η

2
. (A.4)
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Define c2 = minθ,p π̄(θ, p)(> 0) and the sequence (bk )k by bk = c1 |Θ|
(
dk (c2−ψ) +

1
k
)
for all k ≥ t̄

(for k < t̄, bk = 2). From (A.2), (A.3), and (A.4)

Pŝ1[‖π̄t (· | p) − p(·)‖ ≤
1
|Θ|

bt ∀t ≥ 1, p ∈ P] ≥ 1 − η.

Note that for any element of the event above, player 1 passes the test (bk ) because

max
a1∈A1

‖mt (a1 | p) − m(a1 | p)‖ ≤ |Θ|‖π̄t (· | p) − π̄(· | p)‖ ≤ bt

and therefore P[1 passes test (bk ) at (a1, . . . , at ), ∀t] ≥ 1 − η. It follows that if we introduce the
possibility that player 0 changes player 1’s actions after failing a test, the lower bound for the
probability above remains unaltered.

We now prove b. There exists T̄ ≥ 1 such that for any T ≥ T̄ , and any strategy s1 for player 1
in the credible reporting game (σ, (bk ),T ),

Ps1[‖mT (· | p) − m(· | p)‖ ≤ η,∀p ∈ P] ≥ 1 − η.

This observation follows by noticing that regardless of the strategy s1 used by 1, if at any given
round player 1 fails the test, the continuation actions are drawn from m(· | p) (see Lemma B.5
in Escobar and Toikka (2013)). Therefore, with sufficiently high probability, for any strategy s1,
player 1 passes a relaxed test at the end of the block given the history of actions (a1, . . . , aT ). �

Proof of Theorem 2. Take η > 0 small enough in Lemma 3 such that the expected average
payoff for player 2 over the course of a game of credible play is within ε of v2 and, for any
sequential best response s1 = sδ1 of player 1 in the block-game of credible play, vδ1 (sδ1) ≥ v1 − ε .
In particular, α · vδ (sδ1) ≥ α · v − ε ≥ ρα − 2ε , where the last inequality follows from Lemma 2.

We now construct the equilibrium strategy profile s∗ as follows. Players start in a cooperative
phase by choosing actions as in the equilibrium of the games of credible play (σα, (bk ),T )∞.
Any observable deviation by player i triggers a stick phase in which the players play minmax
against i during L periods. Any deviation by a player restart a minmax phase of L rounds against
that player. After the L rounds of minmax against i, a carrot phase is started in which players
choose actions as in the equilibrium of the game of credible play (σαi

, (bk ),T )∞. Deviations
restart the minmax phase and so on.

Let ε > 0 be small enough such that for some γ ∈]0, 1[

v−i
i − vi

i > 2ε, (1 − γ) >
2ε

vi
i − vi

, γ
(
v−i

i − vi
i − 2ε

)
> (1 − γ)

(
vi − m + ε

)
for i = 1, 2. Take δ̄ < 1 such that for all δ > δ̄ the games (σα′, (bk ),T )∞, for α′ = α, α1, α2,
have discounted equilibrium payoffs Uα′ (δ) within distance ε of the target payoffs vα′. Define
the length of the stick phase as L(δ) = max{d ∈ N | d ≤ ln(γ)

ln(δ) } and note that δL → γ. Lemma
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6.1 in Escobar and Toikka (2013) shows that discounted payoffs during the L periods of the stick
phase against i are bounded above by (1 − δL)(vi + ε ) for δ sufficiently large.
Now, consider the incentives in the carrot phase

vi − ε ≥ (1 − δ)M + (δ − δL+1)(vi + ε ) + δL+1(vi
i + ε )

The incentives of player i in the stick phase against j , i can be written

(1 − δL)m + δL (v j
i − ε ) ≥ (1 − δ)M + (δ − δL+1)(vi + ε ) + δL+1(vi

i + ε )

Finally, the incentives of player i in the carrot phase against j can be written as

v
j
i − ε ≥ (1 − δ)M + (δ − δL+1)(vi + ε ) + δL+1(vi

i + ε )

Taking the limit as δ → 1 in all these inequalities, by construction of ε and γ, we deduce the
existence of a critical discount factor such that all incentive constraints hold. �

A.3. A Proof for Section 4.3.

Proof of Proposition 2. Consider first a solution σ∗ ∈ Σ to the problem

max
σ∈Σ

∑
θ∈Θ

(
α1u1(σ1(θ), σ2, θ) + α2u2(σ1(θ), σ2)

)
p(θ)

Since p(θ) > 0 for all θ, σ∗1(θ) ∈ arg maxa1∈A1 {α1u1(a1, σ
∗
2, θ) + α2u2(a1, σ

∗
2)}. Fix θm ∈ Θ

with m < |Θ| and an = σ∗1(θ) with 2 ≤ n ≤ |A1 | − 1. By concavity, the derivative

∂

∂a1

(
α1u1 + α2u2

)
(an−1, σ∗2, θ

m)

is nonnegative. Now,
∂

∂a1

(
α1u1 + α2u2

)
(an+1, σ∗2, θ

m+1) =
∂

∂a1

(
α1u1 + α2u2

)
(an−1, σ∗2, θ

m)

+

∫ an+1

an−1

∂2

∂a2
1

(
α1u1 + α2u2

)
(y, σ∗2, θ

m)dy + α1

∫ θm+1

θm

∂2

∂a1∂θ
u1(an−1, σ∗2, y)dy

≥ |an+1 − an |(−c1) + α1c2(θm+1 − θm)

is positive under (4.10). It follows thatσ∗1(θm+1 | p) ≥ an+1 > σ∗1(θm | p). To deduce the second
part of the Proposition, use the results in Van Zandt and Vives (2007) for monotone comparative
statics in Bayesian games. �

A.4. A Proof for Section 5.1.

Proof of Lemma 4. Under the assumptions λ > C−G
2R+C−G , the AROE (4.6) is maximized by control

(N S, S, N S) when p = λ. This follows from the fact that under this restriction on parameters,
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(N S, S, N S) maximizes maxσ U (1/2,1/2) (λ) and, from Proposition 1, (N S, S, N S) also solves
(4.6).

Now, if at belief p = 1− µ, control (N S, S, S) is optimal for the right hand side of AROE (4.6),
then σ generates reactive-signaling dynamics and the result holds. So, suppose that (N S, S, S) is
not optimal at p = 1− µ. This means that either (S, S, S) or (N S, S, N S) are optimal at p = 1− µ.
If (N S, S, N S) is optimal, then σ generates time-off dynamics with τ̂ = 0. If (S, S, S) is optimal
at 1− µ, then it must result in higher total payoffs than (N S, S, S) for all p > (1− µ).41 When the
control (S, S, S) is employed, the path of beliefs increases as time passes by. If after some belief
in the path, (N S, S, N S) is optimal, then the optimal control rule generates time-off dynamics
with finite τ̂. If not, (S, S, S) is played along the path and the optimal control rule generates
time-off dynamics with τ̂ = ∞. �

A.5. A Proof for Section 5.4. In this section, we show how to obtain the discounted sum of
payoffs when players play a pooling profile and choose actions that fit player 1’s message from
two periods before. That is, at time t, players play (S, S) when mt−2 = 1 and (O,O) when
mt−2 = 0.
Given the symmetry of payoffs with respect to beliefs, the only relevant information for

constructing payoffs is agent 1’s announcements of a change in type. Let SXY represent a state
of past announcements such that agent 1 announced a change in type in the last period if X = 1
(otherwise X = 0) and announced a change in type in the current period if Y = 1 (otherwise
Y = 0). There are four states to be considered: S00, S01, S10, and S11. The value functions for
each state are:

W00 = (1 − δ) (1 + α + β) + δ (λW00 + (1 − λ) W01),

W01 = (1 − δ) (1 + β) + δ (λW10 + (1 − λ) W11),

W10 = (1 − δ) (1 + β) + δ (λW00 + (1 − λ) W01),

W11 = (1 − δ) (1 + α + β) + δ (λW10 + (1 − λ) W11).

Solving the above system of equations and taking the limit as δ → 1 yields 1+ β+α(1−2(1−λ)λ),
which is the result mentioned in the text.

A.6. A Proof for Section 6.

Proof of Proposition 3. Lemma 4 shows that the optimal equilibrium follows either reactive-
signaling or time-off dynamics. Let WRS (D) be given the reactive signaling rule. Let wτ

TO (D)
be the average value when a time-off control rule is used, given a punishment τ ∈ {0, 1, 2} ∪ {∞}.

41To see this, let hσ (p) be the right hand side of AROE (4.6) given a control σ. Note that h(S,S,S) (0) = h(NS,S,S) (0),
h(S,S,S) (1 − µ) > h(NS,S,S) (1 − µ), and h(S,S,S) (p) is convex whereas h(NS,S,S) (p) is linear. These three conditions
imply that h(S,S,S) (p) > h(NS,S,S) (p) for all p > 1 − µ.
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The limit of the value of playing reactive-signaling when D → 0 is

lim
D→0

wRS (D) = 2(a − l)
χ

φ + χ
.

The limit of the value of playing time-off for a given τ when D → 0 is

lim
D→0

(
max

τ∈{0,1,2... }
wτ

TO (D)
)
= 2(a − l)

χ

φ + χ
.

Now, we can also compute the derivatives and deduce that

lim
D→0

∂wRS

∂D
(D) ∈ R lim

D→0
max

τ∈{0,1,2,}∪{∞}

∂wτ
TO (D)
∂D

= −∞.

It follows that there exists D̂ such that for all D < D̂, a reactive-signaling control has greater
value than an optimally chosen time-off control. This proves part a of the proposition.

To prove b, we follow steps close to those in the proof of Theorem 2. The definition of game of
credible reporting remains unaltered for any given D. We will prove that for a proper choice of
parameters, we can replicate Lemma 3. We construct the sequence bk from the definition of dk

(see proof of Lemma 3) by picking 0 < ψ < limD→0 π̄
D (θ, p), with π̄D the stationary distribution

given D, and bk = c1 |Θ|(dk (c2−ψ) +
1
k ). Conditions (A.2) and (A.3) follow immediately for any

D. Condition (A.4) is also immediate, just notice that the choice of t̄ depends on D so t̄ = t̄(D).
This completes the first part of Lemma 3. To see the second part, construct T̄ = T̄ (D)(> t̄(D))
so that for any strategy s1 P

D
s1[‖mT (· | p) − mD (· | p)‖ ≤ ε ∀p ∈ PD] ≥ 1 − ε . Note that

for the game of credible play (σ̄, (bD
k ),T ), with T ≥ T̄ (D), Player 1 can obtain a payoff at least

(a− l) χ
φ+χ − ε . By construction, Player 2’s payoff is within ε of (a− l) χ

φ+χ . Fixing τ, T ≥ T̄ (D),
we can find r̄ (D) such that for all r < r̄ (D), for any best response s1 in the block-game of
credible play, Player 1 obtains a payoff at least (a − l) χ

φ+χ − ε . Taking D ≤ D̄ and r ≤ r̄ (D)
(sufficiently small if needed), by definition equilibrium payoffs in the game played every D units
of time with discount rate r are bounded above by 2 (a − l) χ

φ+χ + ε . Observable deviations from
the path of play of the block-credible reporting game are punished by Nash reversion. Provided
r̄ (D) is chosen sufficiently small, the result follows. �
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Pęski, M. (2014): “Repeated Games with Incomplete Information and Discounting,” Theoretical
Economics, 9, 651–694.
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Appendix B. Supplementary Appendix

B.1. Two-Sided Incomplete Information. We now extend the model to allow for two-sided
incomplete information. All our main results hold, but the notation becomes more cumbersome.
We also provide an application to a two-sided incomplete information Bertrand example.

B.1.1. Model. The model is as the one in the main text, but now the timing within each round t
is as follows

t.0 A randomization device χt is publicly realized
t.1 Player i is privately informed about θt

i ∈ Θ

t.2 Players choose actions at
i ∈ Ai simultaneously

t.3 Players observe the action profile chosen at ∈ A

The period payoff function for player i is ui (a, θi). We sometimes abuse notation and write
ui (a, θ). Players rank flows of payoffs according to (1 − δ)

∑
t≥1 δ

t−1ui (at, θt ), where δ < 1 is
the common discount factor. We assume that |Ai | ≥ |Θi | for i = 1, 2.

The initial type of player i, θ1
i , is drawn from a distribution p1

i ∈ ∆(Θi). Player i’s private
types, (θt

i )t≥1, evolve according to aMarkov chain (p1
i , Pi), where p1

i ∈ ∆(Θ) and Pi is a transition
matrix on Θ. Both Markov chains are independent. We assume that the process of types has
full support. This means that for all θ, θ′ ∈ Θ, Pi (θ′ | θ) > 0. Let πi ∈ ∆(Θ) be the stationary
distribution for Pi.
A strategy for player i is a sequence of functions si = (st

i )t≥1 with st
i : Θt

i×At−1×[0, 1]t → ∆(Ai).
We can therefore define the vector of expected payoffs vδ (s) given s, the set of all feasible payoffs
V (δ, λ), and the set of equilibrium payoffs E (δ, p1) ⊆ V (δ, p1) as we did in the main text.

B.1.2. Efficient Payoffs. A strategy s is efficient if for some α ∈ R2
++, s is a solution to

q(α) = max{α · vδ (s) | s is a strategy profile }. (B.1)

To characterize the solutions to this problem, we introduce some notation. Let Σi = {σi : Θi →

Ai}. Let pi ∈ ∆(Θi) be a belief about player i’s type given public information. For σ ∈ Σ and
p = (p1, p2) ∈ ∆(Θ1) × ∆(Θ2), we define the vector of expected period utility U (σ, p) ∈ R2 as

Ui (σ, p) =
∑
θ∈Θ

ui (σ1(θ1), σ2(θ2), θi) p1(θ1)p2(θ2)

For α ∈ R2
++, we consider the ex-ante weighted sum of period payoffs Uα (σ, p) = α ·U (σ, p).

We also define the Bayes operator Bi (· | σi, pi, ai) ∈ ∆(Θi) as

Bi (θ′i | σi, pi, ai) =
∑

{θi |σi (θi )=ai }

Pi (θ′i | θi)
pi (θi)∑

{θ̂i |σi (θ̂i )=ai } pi (θ̂i)
. (B.2)
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For α ∈ R2
++, consider the only solution to the Bellman equation

wα,δ (p) = max
σ∈Σ

{
(1−δ)Uα (σ, p)+δ

∑
a∈A

wα,δ
(
B1(· | σ1, p1, a1), B2(· | σ2, p2, a2)

) ∑
θ∈Θ,σ(θ)=a

p1(θ1)p2(θ2)
}

(B.3)
for all p ∈ ∆(Θ1) × ∆(Θ2). Take σα,δ (· | p) as the control profile attaining the maximum in
(4.3) as a function of beliefs p. Any σ such that σ(· | p) → Σ, for p ∈ ∆(Θ), will be a (Markov)
control rule. Using the control rule σα,δ, we can construct a (non-randomized) strategy profile
s = sα,δ from σα,δ as we did in the main text. That this dynamic programming formulation (4.3)
provides a solution to the problem of efficient payoffs given weighs α ∈ R2

++ is obvious given
the analysis in the main text.

We can also take the limit δ → 1 to deduce the average reward optimality equation (AROE)

h(p) + ρ =

max
σ∈Σ

{
α1U1(σ, p) + α2U2(σ, p) +

∑
a∈A

h
(
B1(· | σ1, p1, a1),B2(· | σ2, p2, a2)

) ( ∑
θ∈Θ,σ(θ)=a

p1(θ1)p2(θ2)
)}

for all p = (p1, p2) ∈ ∆(Θ1) × ∆(Θ2). Let σα (· | p) ∈ Σ be the control profile attaining the
maximum in the dynamic programming problem (4.6) given p ∈ ∆(Θ).

Theorem 1 can be easily extended to this more general setup without any changes.

B.1.3. Equilibrium Theorem. We now extend our main equilibrium theorem.
A control rule σ together with the initial beliefs p1 recursively determine a belief process

(pt )t≥1 by
pt+1(θ) = B1(θ1 | σ1, pt

1, a
t
1) × B2(θ2 | σ2, pt

2, a
t
2) ∀t ≥ 1.

Given any control rule σ, the joint process (θt, pt )t≥1 is Markovian, with p1 ∈ ∆(Θ1) × ∆(Θ2)
and θ1 ∈ Θ1 × Θ2 given.
The following definition will be useful to test suspicious behavior.

Definition 3. A control rule σ determines a unique recurrence class if the process (θt, pt )t≥1 is
a finite Markov chain having a unique recurrence class.

A separating solution σα to (4.6) determines a unique recurrence class. The following result
shows that relaxing the optimality requirement to allow for approximate efficiency is enough to
ensure the existence of a control rule determining a unique recurrence class.

Lemma 5. For all ε > 0, and all α ∈ R2
++, there exists a control rule σ, and T̄ ∈ N such that

a. σ determines a unique recurrence class; and
b. 1

T
∑T

t=1Eσ,p[α · u(at, θt )] ≥ ρα − ε for al T ≥ T̄ , and all p in the (finite) path of beliefs
generated by σ and p1. Moreover, when σα is a separating rule, we can take σ = σα.

Moreover, if σα is separating, we can take σ = σα.
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The proof of this lemma is analogous to the proof of Lemma 2 (which applies to the one-sided
case).

For any control rule σ determining a unique recurrence class, the limit-average payoffs

v∞1 (σ) = lim
T→∞

1
T
E[

T∑
t=1

u1(σ(θt | pt ), θt
1)], v∞2 (σ) = lim

T→∞

1
T
E[

T∑
t=1

u2(σ(θt | pt ), θt
2)]

are well defined. Letting π̄ = π̄σ ∈ ∆(Θ×P) be the stationary distribution for the Markov chain
(θt, pt )t≥1, given the control rule σ, with Θ × P the recurrence class of the Markov chain, it
follows that

v∞1 (σ) =
∑

(θ,p)∈Θ×P

u1(σ(θ | p), θ)π̄(θ, p) and v∞2 (σ) =
∑

(θ,p)∈Θ×P

u2(σ(θ | p))π̄(θ, p)

We define v∞(σ) = (v∞i (σ))i=1,2.
Fix a control rule σ determining a unique recurrence class Θ × P. Define mσ

1 (· | p) ∈ ∆(A1)
as the distribution over actions given a belief p ∈ P:

mσ
1 (a1 | p) =

∑
{θ∈Θ|a1=σ1(θ |p)}

p(θ).

For a ∈ A and p ∈ P, we define mσ (a | p) analogously.
Given any sequence of actions a1

1, . . . , a
t
1 and a fixed control rule σ determining a unique

recurrence class, we can mechanically calculate probabilities p̄t+1
i = B(· | σi, p̄t

i, a
t
i ) (if this is

not well defined, we set p̄t+1
i to be an arbitrary element of the support of the process of beliefs

(pt
i )t≥1) with p̄1

i = p1
i . The definitions of distribution over actions mσ (a | p) and occupancy

rates m̄δ (a | p) are analogous to the one-sided case. The definitions of minmax values can also
be extended in the obvious way.

Theorem 3 (Equilibrium Theorem, Two-Sided Incomplete Information). Fix ε > 0. For
α, α1, α2 ∈ R2

++, take control rules σ, σ1, and σ2 as in Lemma 5. Assume

i. All payoff vectors v = v∞(σ), v1 ≡ v∞(σ1), v2 ≡ v∞(σ2) are strictly individually
rational;

ii. vi
i < vi < v−i

i , for i = 1, 2.

Then, there exists δ̄ < 1 such that for all δ > δ̄, the infinitely repeated game with discount factor
δ has a perfect Bayesian equilibrium s∗ = (s∗1, s

∗
2) such that

a. α · vδ (s∗) ≥ ρα − 2ε; and
b. Ps∗

[
maxa∈A,p∈P |m̄δ (a | p) − mσ (a | p) | < ε

]
≥ 1 − ε , where Θ × P ⊆ Θ × ∆(Θ) is the

recurrence class of the process (θt, pt )t≥1 generated by σ.

This theorem is proved testing actions conditional on beliefs. To formulate the test, we
introduce some terminology. For any decreasing sequence (bk ) converging to 0, we say that
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player i passes the test (bk ) given a history (a1, . . . , at ) ∈ At if

max
ai∈Ai

|mσ
i (ai | p) − m̄t

i (a1 | p) | ≤ bt

for all p ∈ P. Given T ≥ 1, a rule σ and sequence (bk ), the game of credible play (σ, (bk ),T )
is constructed as follows. For t ≤ T , if player i has passed the test (bk ) in all previous rounds
t′ = 1, . . . , t−1, then he can freely select his action at

i ; otherwise, player 0 chooses at
i by randomly

drawing an action according to the distribution mi (· | p̄t ). We define the obedient strategy for
player i as ŝt

i (θ
1
i , . . . , θ

t
i, a

1, . . . , at−1) = σi (θt
i | p̄t ) whenever he is allowed to choose actions.

We will also define the block-game of credible play (σ, (bk ),T )∞ as the infinite horizon problem
in which a game of credible play restarts after T rounds of play (with discount factor δ). This test
has similar properties to those of the test in the main text. In particular, the test allows player i to
pass the test with high probability regardless of the strategy used by −i just by using the obedient
strategy. The proof is similar to that of Lemma 3 and therefore omitted.

B.1.4. A Bertrand Example. We now revisit the Bertrand example in Section 5.2, but assume
that both firms have private information. More concretely, the demand functions are given by

Qi (a, θi) = θi − ai + za−i

where θi ∈ {θi, θ̄i}. We assume that each θt
i follows a Markov chain Pi (θ′i | θi), with Pi (θ̄i | θ̄i) ≥

P(θ̄i | θi). We focus on equilibria that maximizes the sum of payoffs. It is relatively simple to
see that up to integer constraints, the solution to the AROE takes the form

σi (θi | p) =
θi

2
+

z
2(1 − z2)

(
Epj [θ j] + zEpi [θi]

)
with p = (p1, p2) ∈ ∆({θ̄1, θ1}) × ∆({θ̄2, θ2}). This means that on the path of play, both firms
signal their types. The larger the price fixed by i in t, the larger both firms’ prices in t + 1. In this
model, both firms can become price leaders. Yet, if the types of one of the firms is independent
across time, then that firm will not be a price leader as its price in t does not convey relevant
information for t + 1.
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