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Abstract

We provide a competitive equilibrium theory of urban segregation in a linear city. Households

demand consumption and housing along the city and are exposed to neighborhood externalities.

We show that equilibria that are robust to small coalitional deviations are completely segregated.

Our results explain urban segregation in a standard neoclassical framework and emphasize the

difficulties faced by authorities to integrate cities.
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1 Introduction

Urban segregation by race or income is a pervasive feature of cities around the world (Boustan

2011, Musterd, Marcińczak, Van Ham, and Tammaru 2017). In the US, for example, urban

segregation in most major cities has persisted despite the fact that the 1968 Fair Housing Act

banned discrimination in the housing market and the black-white income gap has shrunk (Sethi

and Somanathan 2004). The distribution of households across a city partly determines the socioe-

conomic outcomes of different groups (Ananat 2011, Card and Rothstein 2007, Chetty, Hendren,

Kline, and Saez 2014). As urban segregation is deemed detrimental for minorities and low income

households, several policies–ranging from housing subsidies to public infrastructure improvements

in minority ghettos–have been proposed and implemented to promote urban integration. Yet, it

is difficult to design and evaluate measures intended to combat segregation without understanding

its causes and consequences.

We propose a competitive theory of urban segregation based on the idea of neighborhood exter-

nalities in a linear city. Neighborhood externalities refer to a variety of interactions among residents

that are determined by location (Durlauf 2004). For example, a given house can be more attractive

for a family when neighbors are richer, more educated, or have the same race. Neighborhood effects

have been documented in a number of empirical studies1 and, not surprisingly, have been incor-

porated into most models of sorting and location decisions. Yet, the existing literature either fails

to explain urban segregation by rather showing stratification in settings of isolated jurisdications

(de Bartolome 1990, Benabou 1996, Epple and Platt 1998, Becker and Murphy 2000, Sethi and

Somanathan 2004), or has entirely neglected the role of prices in the housing market by assuming

houses are bartered (Schelling 1969, Pancs and Vriend 2007).2 This paper fills this gap by showing

that urban segregation naturally arises in a spatial neoclassical model of a city under neighborhood

externalities. We additionally obtain a pricing equation for each location (which can be used to

infer preferences) and show that common policy interventions are unlikely to reduce segregation.

We model a city as an interval. Households decide where to live and how much to consume.

Consumption and housing are provided competitively. Households are of two types, types 1 and 2,

which can be interpreted broadly, including race (black and white) or income (rich and poor). How

attractive a given location is for a household depends on the household type and on how the entire

population of households is distributed across the city. Consumption is supplied inelastically and

1See, for example, Ioannides (2002) and Rossi-Hansberg, Sarte, and Owens III (2010).
2We discuss the literature in detail later.
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houses can be frictionlessly traded at equilibrium rental prices. An equilibrium is a configuration in

which, given rental prices, each household chooses a bundle (location and consumption) optimally,

and markets clear.

The main driver of urban segregation in our model comes from the idea that different groups of

households have different willingness to trade consumption and locations in the city. Formally, we

introduce a single crossing condition, which captures differences in marginal rates of substitution

and requires that the indifference curves of type 1 and type 2 agents cross at most once. The single

crossing condition is easy to check in practice. Notably, single crossing is a rather general condition

that accommodates a number of attitudes towards neighborhood composition, including setups

in which one type of household, say type 1, imposes a positive externality on every household

(Guerrieri, Hartley, and Hurst 2013), and models in which each household’ ideal configuration

involves some level of urban integration as in Schelling’s (1969) groundbreaking analysis.

We first observe that a perfectly integrated equilibrium–in which households are evenly dis-

tributed along the city and rental prices are constant–always exists. Our first main result, Theorem

1, is an equilibrium segregation theorem showing that, under the single-crossing condition, in any

equilibrium other that the perfectly integrated one, households are segregated. This means that

the city can be divided into disjoint intervals, each of them being a ghetto where only one type of

household lives. This result rules out, for example, allocations in which households are unevenly

distributed over the whole city or in which some neighborhoods are perfectly integrated. Behind

the equilibrium segregation theorem is the intuition that the price system cannot bring together

to an integrated neighborhood households having different willingnesses to pay for location, unless

the housing market is degenerate and offers exactly one option of neighborhood composition. In

other words, in equilibrium the price scheme can integrate households only if integration is perfect.

Our second main result, Theorem 2, complements Theorem 1 by exploring equilibrium robust-

ness to coalitional deviations. We say that an equilibrium is stable if no small coalition of households

can redistribute their equilibrium allocations to attain higher utility. Theorem 2 shows that, under

relatively weak restrictions, the only stable equilibrium outcome is complete segregation. The main

idea behind our result is that complete segregation is stable when type 1 households are more will-

ing than type 2 households to give up consumption in order to live in neighborhoods with higher

concentrations of type 1 agents. Theorems 1 and 2 together point to the market forces that move

equilibrium outcomes away from integration and towards segregated allocations.

Our competitive theory of urban segregation brings important lessons. First, the empirical
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literature has emphasized a number of mechanisms through which segregation can arise in a city,

including black-self segregation, white collective action, and white individual action (Boustan 2011).

We show that segregation is a plausible outcome under a variety of attitudes towards the compo-

sition of neighborhoods in a full fledged spatial and competitive equilibrium model. Notably, our

results apply for a rich set of specifications about how households rank different neighborhoods.

Second, our model points to the difficulties faced by authorities attempting to reduce urban

segregation. We modify our setup to show that commonly used policies, such as subsidies and

place-based investments, are unlikely to integrate a city. On the contrary, authorities that want

to fight urban segregation need to resort to much more aggressive measures, including minority

quotas and social housing spread throughout different neighborhoods in the city.3

Third, applied work using equilibrium models in linear cities ignores nonsegregated allocations

and restricts attention to segregated ones (Guerrieri, Hartley, and Hurst 2013). Our results provide

a foundation for this restriction by deriving conditions under which, without loss, researchers can

focus on segregated equilibria in neoclassical models over linear cities. More generally, we hope our

model can be used as a workhorse for applied research.

As in Schelling (1969), in our model small preferences for segregation may result in a completely

segregated city. In contrast to Schelling (1969) and the ensuing literature (Pancs and Vriend 2007,

Fagiolo, Valente, and Vriend 2009), in our model houses are traded through the market, instead of

bartered. This brings our work closer to both reality and the urban economics literature (Fujita

and Ogawa 1982, Lucas and Rossi-Hansberg 2002, Guerrieri, Hartley, and Hurst 2013, Card, Mas,

and Rothstein 2008), and allows us to evaluate the impact of common policy interventions under

a standard microeconomics framework.

Our paper is also related to the literature on neighborhood sorting, including de Bartolome

(1990), Benabou (1996), Epple and Platt (1998), Becker and Murphy (2000), and Sethi and So-

manathan (2004).4 Similar to Tiebout (1956), households can choose among different jurisdictions

and how attractive a given jurisdiction is depends entirely on its own composition but not on

how other jurisdictions are composed.5 In these models, equilibria are typically stratified: within

each jurisdiction there is only one type of household.The spatial nature of cities–that has long

been recognized by the urban economics literature–is absent in these papers and, as a result, their

3Quotas for different ethnic groups at the block and neighborhood levels are in place in Singapore (Wong 2013).
4The literature is vast. See Durlauf (2004) and Kuminoff, Smith, and Timmins (2013) for surveys.
5Another way to put it is that in these models, neighborhoods are non-overlapping.
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stratification results cannot be interpreted as urban segregation.6

Earlier papers attempted to derive urban segregation patterns as equilibrium outcomes in a

linear city. Courant and Yinger (1977) restricted attention to completely segregated equilibria

and urban segregation was an assumption (rather than a result). Yinger (1976) and Kern (1981)

focused on both completely segregated and perfectly integrated outcomes under the assumption

that externalities are entirely determined by the next-door neighbors.7 Importantly, this earlier

literature recognized the importance of exploring models in which externalities are determined by

averaging compositions over different locations but, as Yinger (1976) points out, in such models

progress was unfeasible “because the mathematics is not tractable.” We contribute to this literature

by providing a framework under which the analysis is tractable and results in novel economic

mechanisms.

Finally, our formulation follows the urban economics literature by considering both the housing

market and externalities in a model of a spatial city (Fujita and Ogawa 1982, Lucas and Rossi-

Hansberg 2002). We share with this literature the focus on understanding how equilibrium forces

determine the use of different locations. However, our goal is different as we explore how distinct

types of households compete for land and how this competition determines urban segregation.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 states

and discusses our main results. Section 4 presents policy implications and extensions. Supporting

material is relegated to the Appendix.

2 Model

A city is modeled as the interval [0, 1]. The total mass of households is 1. At each t ∈ [0, 1], there is

capacity for dt households, which means that the supply of housing has a constant unitary density.

There are two types of households, i ∈ {1, 2}. We say that a household type i initially assigned at

h ∈ [0, 1] is endowed with a unit of housing at h. At each h, a fraction β of households are type 1,

whereas a fraction (1− β) are type 2. Thus, households are initially uniformly assigned across the

city and β is the fraction of type 1 households in the whole population.8 We explore the resulting

6To see this, take N ≥ 2 (even) jurisdictions and assume that half of them are type 1 and half of them are type 2. Since
each jurisdiction is isolated from others, arranging jurisdictions back-to-back in a linear city does not alter the equilibrium
but results in a rather integrated city.

7These are models of jurisdictions and, as we explained above, result in stratification but not necessarily in urban
segregation.

8The initial allocation of households is irrelevant for our main results.
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outcomes when households can trade.

2.1 Allocations, neighborhood composition, and equilibrium

A housing allocation is x = (x1, x2), with xi : [0, 1]→ [0, 1]. We interpret an allocation x by saying

that households of type i endowed with housing at h ∈ [0, 1] are assigned to xi(h). Any such

allocation determines a distribution of households of type i across the city by

Di(t) = dX
(
x−1
i ([0, t])

)
= dX ({Household type i endowed with housing at some h ∈ [0, 1] | xi(h) ≤ t})

for any t ∈ [0, 1]. Di(t) is the measure of type i households living within distance t of the origin.9

In general, the distribution Di need not have a density. We will restrict attention to housing

allocations such that the induced distribution Di is absolutely continuous and therefore has a

(unique) density di(t), for i = 1, 2.10

Given a housing allocation x, we define γi : [0, 1] → [0, 1] as the fraction of type i agents that

live at each t ∈ [0, 1]:

γi(t) =


di(t)

d1(t)+d2(t) if d1(t) + d2(t) > 0

1 if not.

For our main results, whether we normalize by d1(t)+d2(t) or not is immaterial since d1(t)+d2(t) =

1 for any feasible allocation. We denote L∞ = {γ : [0, 1]→ R+ | sup essy∈[0,1]γ(y) <∞}.11

In order to capture rich neighborhood externalities, we formulate our model so that the utility of

a household of type i living at t depends not only on γi(t) but on the entire function γi : [0, 1]→ 1.

Formally, a type i agent located at t has a perception Γi(t) about her neighborhood defined by

Γi(t) =

∫ 1

0
ft(y)γi(y)dy (2.1)

where ft : [0, 1]→ R+ is a weight function and it is assumed continuous in (t, y) and
∫ 1

0 ft(y)dy = 1.

Γi(t) measures the perception that a household living at t has about the distribution of types in the

9Note that D1(t) ≤ β and D2(t) ≤ 1− β for all t.
10This restriction is without losee since we assume that at each t, there is capacity for dt households. Thus, in the

model, it is not feasible to assign a positive measure of agents at any t.
11Here, sup essx∈X f(x) denotes the essential supremum of a function f , defined as the smallest number such that
{x ∈ X | f(x) > α} has measure 0.
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city. The larger Γi(t), the bigger the perception that a household at t has about the prevalence of

type i agents when living at t. We denote Γ(t) = (Γ1(t),Γ2(t)). Denoting ∆ = {p ∈ R2
+ | p1 + p2 =

1} the 1-simplex, Γ(t) ∈ ∆ by construction.

Each household h consumes housing at some t ∈ [0, 1] in addition to a composite consumption

good c ∈ R. Given x, let us denote Γx(t) the neighborhood composition function induced by x.

Then the utility enjoyed by a type i household that consumes c ∈ R and lives in t ∈ [0, 1] is

Ui(c,Γ
x(t)) = c+ vi(Γ

x
i (t)),

with vi : [0, 1] → R a continuously differentiable function. Assuming that vi is a function of Γi

simplifies exposition.

There are several sources of neighborhood externalities (Durlauf 2004). The composition of a

neighborhood may determine the quality of public goods (parks, schools) or the social interactions

(peer effects, role models) that a household living in t may have. All these externalities are captured

by Γi(t).

Consumption is supplied elastically at price pc = 1. The price of housing services at location t

is denoted R(t). Thus, the initial wealth of a household assigned at h is R(h).

We now define an equilibrium for our model.

Definition 1. An equilibrium is a price function R : [0, 1]→ R, housing and consumption alloca-

tions xi : [0, 1] → R and ci : [0, 1] → [0, 1] , i = 1, 2, that induce distributions Di and densities di

such that

i. For all t ∈ [0, 1]

d1(t) + d2(t) = 1

ii. For all i and all h ∈ [0, 1], (xi(h), ci(h)) solves

max
t∈[0,1],c̃∈R

{
Ui(c̃,Γ

x
i (t)) | c̃+R(t) ≤ R(h)

}
This is the standard definition of competitive equilibrium for an economy with a continuum

of goods and externalities. The first condition ensures the housing market at each t clears. The

second condition imposes each household chooses consumption and location optimally.

Observe that if R : [0, 1] → R is an equilibrium price function, then so is R̃(t) := R(t) + r for

any constant r. So, an equilibrium price function is defined up to translation.
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The model is constructed abstracting away from many features. Later, we extend our results

to allow for nonquasilinear utility functions, more than two groups, and production.

We observe that an equilibrium always exists.

Lemma 1. An equilibrium in which households are uniformly distributed across the city always

exists.

To see why this lemma holds, define R(t) = 1 and allocations x such that d1(t) = β and

d2(t) = 1 − β. This means that each group of households is uniformly distributed across the city

and thus all locations are equally attractive. It is thus immediate to see that the initial allocation

of households is an equilibrium of the model. This equilibrium is integrated. Our main results

characterize other equilibria.

2.2 Segregated and integrated allocations

It will be useful to distinguish different types of locations and housing allocations.

Definition 2. Let x = (x1, x2) be a housing allocation.

a. A location t ∈ [0, 1] is mixed if there exists ε > 0 such that for almost every t′ ∈ (t− ε, t+ ε),

γ1(t′), γ2(t′) ∈ (0, 1);

b. A location t ∈ [0, 1] is segregated if there exists ε > 0 and i ∈ {1, 2} such that for almost

every t′ ∈ (t− ε, t+ ε), γi(t
′) = 1;

c. A location t ∈ [0, 1] is frontier if it is neither of the above.

By construction, every location is either mixed, segregated, or frontier. These definitions are

illustrated in Figure 1.

b b b

A C B
X

d1 d2

Figure 1: Location A is mixed, location B is segregated, location C is frontier.

We now distinguish different allocations.

8



Definition 3. a. A housing allocation x is integrated if every location is mixed. It is perfectly

integrated if, in addition, there exists γ̄ ∈ R such that γx1 (t) = γ̄ for almost every t ∈ [0, 1].

b. A housing allocation x is segregated if there are no mixed locations. It is completely segre-

gated if in addition there is only one frontier location.

X

d1

d2

(a) Integrated allocation

X

d1

d2

(b) Perfectly integrated allocation

X

d1 d2

(c) Segregated allocation

X

d1 d2

(d) Completely segregated allocation

Figure 2: Representation of different allocations in Definition 3.

As seen in Figure 2a, there are some integrated allocations for which the neighborhood composi-

tion might change, for example if d1 increases at the same time that d2 decreases, but they are both

positive. Those allocations are integrated, but not perfectly. As shown in Figure 2d, if a segregated

allocation has exactly one frontier location, then the city is divided into two connected areas each

of which is occupied by a different type of household. If there were more frontier locations, then

there would be two non connected areas occupied by the same type of household, as in Figure 2c.

3 Analysis

This section states and discusses our main theorems. Subsection 3.1 introduces and illustrates a

single-crossing condition. Subsection 3.2 imposes restrictions on the weight function ft that are

motivated by our our location model.

The main results are presented in Subsections 3.3, 3.4, and 3.5. In Subsection 3.3, we show

that other than trivial perfectly integrated equilibrium, all equilibria are segregated. In Subsection

3.4, we show that any equilibrium that is robust to small coalitional deviations must be completely

segregated. Finally, in Subsection 3.5 we derive comparative statics results for the completely

segregated equilibrium.
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3.1 The single crossing condition

In our model, preferences for neighborhood composition are captured by the function vi. We do not

assume any functional form on vi but rather impose an assumption that allows us to capture several

attitudes towards neighbors, ranging from homophily to one group generating positive externalities

on every household.

The following definition is key to derive our results.

Definition 4. .

a. The single-crossing condition (SCC) holds if v1(P )− v2(1− P ) is one-to-one over P ∈ [0, 1].

b. The strong single crossing condition (S-SCC) holds if v1 and v2 are differentiable and v′1(P )+

v′2(1− P ) > 0 for all P ∈ [0, 1].

Under the SCC, the indifference curves of group i and group −i cross once. To see this, take

(c′, P ′), (c, P ) ∈ R×∆ that belong to the same indifference curve for group i, with Pi 6= P ′i . Then,

vi(Pi)− vi(P ′i ) = c′i− ci. When the SCC holds, v−i(P−i)− v−i(P ′−i) 6= vi(Pi)− vi(P ′i ) = c′i− ci and

therefore (c, P ) and (c′, P ′) are not in the same indifference curve for group −i. In other words, the

SCC models situations in which the consumption compensation that a household should receive

to be willing to move to a neighborhood with a different composition depends on the household

group.

Since vi is continuous and, under the SCC, also one-to-one, P 7→ v1(P ) − v2(1 − P ) is either

strictly increasing or strictly decreasing. Under the S-SCC, P 7→ v1(P ) − v2(1 − P ) is strictly

incresing.12 Under the S-SCC, v′1(P ) > −v′2(1− P ) and therefore type 1 households are willing to

give up more consumption than type 2 agents to increase the share of type 1 households in their

neighborhood.

The following example discusses different specification of the model that satisfy the SSC and

that have been frequently employed in the literature (Schelling 1969, Sethi and Somanathan 2004,

Guerrieri, Hartley, and Hurst 2013).

Example 1. i. Own group’s preferences: For all i, vi(Γi) increases in Γi ∈ [0, 1]. Then, v1(Γi)−

v2(1− Γi) is strictly increasing in Γi. See Figure 3a.

12The S-SCC is strictly more demanding than the condition P 7→ v1(P )− v2(1− P ) being strictly increasing. Indeed,
a strictly increasing function could have a derivative that equals 0 in some points.
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ii. Schelling’s preferences (Schelling 1969, Sethi and Somanathan 2004): v1 = v2 = v is concave,

v is maximized when Γ = ρ, with ρ ∈ [1/2, 1], and v′(ρ−P ) > −v′(ρ+P ) for all P ∈]0, 1−ρ].

Schelling’s preferences capture the idea that there is an ideal segregation level ρ but that

a household would prefer to be slightly over-represented rather than under-represented and

therefore the utility function over P > ρ is flatter than over P < ρ.13

To see that the SCC holds, note that if 1 − ρ < P < ρ, v′(P ) + v′(1 − P ) > 0. If P <

1 − ρ, then −v′(1 − P ) = −v′(ρ + (1 − P − ρ)) < v′(2ρ − 1 + P ) < v′(P ) and therefore

v′(P ) + v′(1−P ) > 0. Finally, if P > ρ, −v′(P ) = −v′(ρ+ (P − ρ)) < v′(2ρ−P ) < v′(1−P )

and thus v′(P ) + v′(1−P ) > 0. Thus, the function P 7→ v(P )− v(1−P ) is strictly increasing

as its derivative is strictly positive on [0, 1]\{ρ, 1−ρ}. The S-SCC holds when we additionally

impose that v′1(ρ) + v′2(1− ρ) > 0 and v′1(1− ρ) + v′2(1− ρ) > 0.14 See Figure 3b.

iii. Positive externalities I: v1(Γ1) increases in Γ1 and v2(Γ2) decreases in Γ2. The S-SCC holds

provided v′1(P ) + v′2(1 − P ) > 0. Similar to Guerrieri, Hartley, and Hurst (2013), these

preferences capture the idea that while both types of agents prefer to live close to type 1

households (so v′1 > 0 but v′2 < 0). When there are positive externalities it is reasonable to

suppose that the willingness to pay for living closer to type 1 households is larger for type 1

than for type 2 agents. See Figure 3c.

iv. Positive externalities II: v1(Γ1) increases in Γ1 and v2(Γ2) decreases in Γ2. It is theoretically

possible that type 2 agents would trade more consumption for living closer to group 1. In this

case, v′1(P ) + v′2(1− P ) < 0, the SCC holds but S-SCC does not. See Figure 3d.

3.2 Perceptions for neighborhood composition

We now impose some restrictions on the weight function ft that are motivated by the fact that

households use it to form perceptions about neighborhoods. Recall that the perception Γi(t),

defined on equation (2.1), is determined both by γi (which is an endogenous variable) and the

weight function ft.

13As Schelling (1969) put it: “Whites and blacks may not mind each other’s presence, even prefer some integration,
but, if there is a limit to how small a minority either color is willing to be, initial mixtures more extreme than that
will lose their minority members...” Wong (2013) provides support to Schelling’s preferences by presenting evidence that
households prefer some degree of racial integration.

14To see an example of this type of preferences where the SCC holds but S-SCC does not, suppose that ρ = 1/2 and
therefore v′1(ρ) = v′2(1− ρ) = 0.
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Γ1

v1

v2

(a) Own group’s preferences

Γ1

v1

v2

(b) Schelling’s preferences

Γ1

v1

v2

(c) Positive externalities and S-SCC

Γ1

v1

v2

(d) Positive externalities and SCC but not S-SCC

Figure 3: Indifference curves

Definition 5. We say that households perceive differences in city composition if for any open

interval T ⊆ [0, 1] such that Γi(t) = Γi(t
′) for almost every t, t′ ∈ T , there exists γ̄ ∈ [0, 1] such that

γi(t) = γ̄ for almost every t ∈ [0, 1].

This restriction captures the idea that differences in the composition of agents along the city

γi imply differences in how households perceive the group composition across different locations

Γi. Household perceive differences in city composition if whenever the fraction of agents of type

i, γi, is not constant, then in any open interval T we can find locations t, t′ ∈ T where the city is

perceived differently: Γi(t) 6= Γi(t
′).

The idea that households perceive differences in city composition is natural in our model of

neighborhood effects. Indeed, under the extremely opposite assumption that perceptions Γx(t) do

not depend on x (or γ), the neighborhood composition would be irrelevant for households and

would be undetermined in equilibrium. Our goal is to explore the impact of neighborhood effects

on equilibrium choices and, accordingly, Definition 5 says that the distribution of households over
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the city matters for households decisions.

The following example shows a density for which households do not perceive differences in city

composition.

Example 2. Take 0 < a < b < 1 and define r1 = ln
(

1+ea

2

)
(< a) and r2 = − ln

(
e−b+e−1

2

)
(> b).

Consider the housing allocation x where intervals (0, r1) and (b, r2) consists of type 1 households,

intervals (r1, a) and (r2, 1) consists only of type 2 households, and (a, b) is a mixed interval where

households type 1 and 2 live in equal proportions and are uniformly distributed along (a, b). For

this allocation, γ1(t) = 1(0,r1)∪(b,r2)(t) + 1
21(a,b)(t), where 1A represents the characteristic function

of the set A.

t

γ1

r1 a b r2

Figure 4: This figure shows the fraction of type 1 households, γ1(t), at each location t ∈ [0, 1].

Consider the weight function ft(y) = exp(−|t − y|)κ(t) where κ(t) =
(∫ 1

0 exp(−|t− y|) dy
)−1

.

For this weight function, households do not perceive differences in city composition. Indeed, ∀t ∈

(a, b), Γx1(t) = 1
2 .15 Thus when ft is used to form perceptions Γ(t), agents perceive exactly the same

neighborhood composition at each location t ∈ (a, b) even though locations across t ∈ (a, b) seem

qualitatively very different.

The restriction to households perceiving differences in city composition is related to the idea of

bounded completeness of a family of measures used in statistics (Casella and Berger 2002). The

following result is a corollary to well-known characterizations in the statistics literature.

Lemma 2. Suppose that ft(y) = exp
(
λ(t)q(y) + V (y) + W (t)

)
, where λ, q, V , and W are con-

tinuous, {λ(t) | t ∈ T} is open for any open set T ⊆ [0, 1], and q is one-to-one. Then, households

perceive differences in city composition.

15To see this, note that κ(t) = 1∫ 1
0
exp(−|t−y|)dy = 1

2−exp(−t)−exp(t−1) , whereas
∫
γ1(y) exp(−|t− y|)dy = 1

2

(
2− exp(−t)−

exp(t− 1)
)

for t ∈ (a, b).
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We can use this lemma to specify several densities ft for which households perceive differences

in city composition.

Example 3. For each of the following densities, households perceive differences in city composition:

i. ft(y) = exp
(
−(t−y)2

2σ2

)
κ(t) where κ(t) =

(∫ 1
0 exp

(
−(t−y)2

2σ2

)
dy
)−1

. This density is a location

family with truncated Gaussian kernel.

ii. ft(y) = exp(−V ′(t)y + V (y) + W (t)), where V (y) is twice continuously differentiable and

strictly concave. For fixed t, this density attains its maximum at y = t, is increasing over

y ∈ [0, t] and decreasing over y ∈ [t, 1]. This density extends the location family with Gaussian

kernel.

iii. ft(y) = (2−y)
2−t
2+t

2+y κ(t), where κ(t) =

(∫ 1
0

(2−y)
2−t
2+t

2+y

)−1

. This weight function is obtained from

Lemma 2 by setting λ(t) = 2−t
2+t , q(y) = ln(2 − y), and V (y) = ln(2 + y). For fixed t, this

density attains its maximum at y = t.

We also consider the following restrictions on the weight function ft.

Definition 6. i. Households care most about next-door neighbors if {t} = arg maxy∈[0,1] ft(y)

for all t.

ii. Households have monotone perceptions if for all y ∈ [0, 1], t 7→ Ft(y) =
∫ y

0 ft(s)ds is strictly

decreasing.

iii. Households have regular perceptions when they care most about next-door neighbors, have

monotone perceptions, and perceive differences in city composition.

On the one hand, households care most about next-door neighbors when they put most weight

on the location at which they are evaluating the distribution of households. The densities in

Example 3 model perceptions in which households located at t put the highest weight on the next-

door neighbors y = t. These densities model situations in which agents care most about neighbors

closer to them. On the other hand, noting that Ft(y) is the perception that a household living at

t has about a ghetto with all its members living in [0, y], households have monotone perceptions

when their perceptions about the ghetto reduce as they move to the right.16 For the family of

distributions illustrated in Lemma 2, we can derive a simple sufficient condition for monotone

perceptions.

16Obviously, monotone perceptions for all x is equivalent to Ft being increasing in t in the first order stochastic
dominance sense.
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Lemma 3. For any weight function ft(y) in Lemma 2, households have monotone perceptions if

λ and q are both non-decreasing or both non-increasing.

This lemma immediately implies that for all the weight functions in Example 3, households

have monotone perceptions. Thus, for all distributions in Example 3, households have regular

perceptions.

3.3 Equilibrium segregation

The following result says that segregated allocations are the only non-trivial equilibrium outcomes.

Theorem 1. Suppose that households perceive differences in city composition and that SCC holds.

Then, any equilibrium allocation is either segregated or perfectly integrated.

This result shows that, other than the trivial perfectly integrated equilibrium, equilibrium

allocations are segregated and the city can be partitioned in intervals, each of them containing only

one type of household. This result rules out configurations in which some only some neighborhoods

are integrated, or in which all neighborhoods are partially integrated.

The main force behind this theorem is the following. Take an equilibrium that is not perfectly

integrated such that there is some open interval T ⊆ [0, 1] in which both groups live. Take any two

locations t′ and t′′ in the mixed interval T , and note that prices R(t′) and R(t′′) must ensure that

households of type i = 1, 2 find t′ and t′′ equally attractive. Since the allocation is not perfectly

integrated, both types of households perceive locations t′ and t′′ differently. Prices R(t′) and R(t′′)

must therefore attract both types of households i = 1, 2 to locations t′ and t′′ that are different.

This is impossible under the SCC, since households have different willingness to pay for locations

t′ and t′′. The equilibrium must therefore be segregated.

We now explore the existence of a completely segregated equilibrium. Let us take a completely

segregated allocation in which type 1 households live in [0, β], while type 2 households live in [β, 1].

Then let us define the rent price function:

R(t) =

v1(Ft(β)) if t ≤ β,

v2(1− Ft(β)) + η if t > β.

where η ∈ R is to be determined. Given R, all type 1 households find any location t ∈ [0, β] equally

attractive. In the Appendix, we prove that when perceptions are monotone and S-SCC holds, type
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1 households strictly prefer to live in [0, β] over ]β, 1] and households type 2 strictly prefer to live

in ]β, 1] over [0, β] iff

η = v1(Fβ(β))− v2(1− Fβ(β)).

We observe that in a completely segregated equilibrium the price function R is continuous even at

t = β.

We state our main existence result.

Proposition 1. Suppose that households have monotone perceptions at any y and SCC holds.

Then, a completely segregated equilibrium exists iff S-SCC holds.

The proof of this result is constructive. In Appendix A.4, we provide necessary and sufficient

conditions for the existence of a segregated equilibrium that is not completely segregated.

3.4 Coalitions, stability and segregation

In this section we discuss a refinement of equilibria that borrows some ideas from the core allocation

of the economy (Aumann 1964). Formally, take a subset of households Bi ⊆ [0, 1] for each i. We

say the assignment (xB, cB) is built from (x, c) by coalition B if

(i) All households outside of the coalition maintain their consumption and housing, that is,

xBi (h) = xi(h) and cBi (h) = ci(h) for all h /∈ Bi; and

(ii) Consumption and housing are redistributed among households inside B, that is,

β

∫
B1

cB1 (h)dh+ (1− β)

∫
B2

cB2 (h)dh = β

∫
B1

c1(h)dh+ (1− β)

∫
B2

c2(h)dh

and

dB1 (t) + dB2 (t) = 1 ∀t ∈ [0, 1]

where dBi is the density induced by the distribution DB
i (t) = |{h ∈ [0, 1] | xBi (h) ≤ t}|.

We say that coalition B can block (x, c) if (xB, cB) can be built by B and members in B get higher

utility under (xB, cB) than under (x, c), that is, for all h ∈ Bi,

cBi (h) + vi(Γ
xB

i (xBi (h))) > ci(h) + vi(Γ
x
i (xi(h))).
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In words, a coalition B can block (x, c) if agents in B can redistribute their housing and consumption

assignments so that all members in B get higher utility.

Definition 7. We say that an equilibrium allocation (x, c) is stable if there exists ε > 0 such that

for any coalition B such that |Bi| < ε, i = 1, 2, (x, c) cannot be blocked by B. An equilibrium

allocation (x, c) that is not stable is said to be unstable.

A stable equilibrium allocation is robust to small coalitional deviations. In our specific context

of housing decisions, the idea that an allocation (x, c) that can be blocked by some small coalition B

should be deemed fragile seems particularly appropriate, as private developers or real state agents

could coordinate some households to exclude others from some neighborhoods. This is consistent

with the “white collective action” view under which white homeowners or businesses exclude black

households from white areas (Boustan 2011). We therefore use the idea of small blocking coalitions

to define our stability notion.

Our definition of stable equilibrium allocations is reminiscent of (and indeed inspired by) the

core concept (Aumann 1964, Telser 1994). One distinction is that our definition of stability only

allows for small blocking coalitions. We note that while our model has a continuum of agents, core

equivalence does not hold due to neighborhood externalities (Aumann 1964). A full characterization

of core allocations is beyond the scope of this paper.

We are ready to state our main result about stable equilibrium allocations.

Theorem 2. Suppose that S-SCC holds and that households have regular perceptions. Then, a

completely segregated equilibrium exists and is stable. Moreover, any stable equilibrium must be

completely segregated.

This theorem provides conditions under which completely segregated allocations are the only

stable equilibria. Theorem 2 complements Theorem 1 by ruling out any equilibrium that is not

completely segregated.

Theorem 2 assumes the S-SCC. Under the S-SCC, for P > P ′, v1(P ) + v2(1 − P ′) > v1(P ′) +

v2(1−P ). This means that if a type 1 household is living under perception P and a type 2 household

is living under perception 1 − P ′, with P ′ < P , they would get lower total utility by switching

housing. In particular, in a completely segregated equilibrium, households type i and type −i

would not benefit from switching housing as they would both end up under lower perceptions and

would get lower total utility.
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To see that no other equilibrium can be stable, take the perfectly integrated allocation. Under

a perfectly integrated equilibrium, type 1 households have perception β while type 2 households

have perception (1−β). Since S-SCC holds, v′1(β)+v′2(1−β) > 0. This means that if a small mass

of type 1 and type 2 households switched housing, both types of households would end up having

higher perceptions and would therefore be willing to trade housing. As a result, the perfectly

integrated equilibrium cannot be stable.

Theorem 2 fails when we only impose SCC instead of S-SCC. Consider Schelling’s preferences

in Example 1 with ρ = 1/2 and β = 1/2. Under perfect integration, Γxi (t) = 1/2 and therefore

perfect integration maximizes the total sum of households’ utilities. Thus, no coalition can block

perfect integration.

3.5 Comparative statics

When perceptions are monotone, Ft(β) increases in t. This means that for the segregated allocation

in which type 1 households live in ghetto [0, β], a household living in t perceives more type 1 agents

than a household in t̄, for t < t̄ < β. Whether this translates in lower or higher rental prices

depends on v1. Indeed, for t < β

R′(t) = v′1(Ft(β))
∂Ft(β)

∂t
(3.1)

and therefore the sign of the derivative of R equals minus the sign of v′1(Ft(β)).17 The follow-

ing example shows the behavior of the rental price function for different specifications under the

assumption that perceptions are monotone.

Example 4. i. Own group’s preferences. Since vi(Γi) increases, R(t) decreases over [0, β] and

increases over [β, 1].

ii. Schelling’s preferences. The utility function v attains a maximum at ρ. Suppose F0(β) > ρ

and Fβ(β) < ρ. Then, R will be increasing over [0, t̂] and decreasing over [t̂, β], where Ft̂(β) =

ρ.

iii. Positive externalities. Since v′1 > 0 and v′2 < 0, R(t) is decreasing over [0, 1].

One important implication from these comparative statics results is that housing prices in

different locations can be used to infer preferences. For example, consider a city consisting of two

17Note that since perceptions are monotone, ∂Ft(β)
∂t ≤ 0.
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ghettos, one is black and the other white. If rental prices increase as we move from the core of the

black ghetto towards its frontier, this suggests that black households prefer whiter neighborhoods.

This would be consistent with preferences in which whites impose positive externalities on blacks.

4 Discussion

4.1 Policy interventions

There are several reasons authorities may want to fight segregation. First, there is no reason to

believe that the competitive equilibrium in a model with externalities will be Pareto efficient.18

Indeed, each household ignores the impact of its location decision on the well being of others

and thus the welfare theorems need not apply. Second, authorities may want to improve the

material conditions of households living in isolated low income segregated neighborhoods. Families

in segregated metropolitan areas have lower earnings as they have fewer employment opportunities

and harmful social interactions (Boustan 2011). Finally, segregation may damage societal values

such as inter group tolerance and social attitudes (Rao 2019).

Two measures are typically used to fight segregation. On the one hand, housing or loan subsidies

help individual home buyers or renters gain access to consolidated well off neighborhoods. On the

other hand, place-based investments improve the housing stock or amenities in black or low income

neighborhoods to encourage white or affluent households to move in. We use our model to shed

light on the difficulties these policies face to modify a segregated outcome.

For concreteness, suppose that type 2 households are the minority group living in a low income

ghetto [β, 1] in a completely segregated equilibrium as in Section 3.5. To see the impact of subsidies,

suppose now that type 2 households receive a subsidy s > 0 whenever they buy a house in the type

1 ghetto [0, β]. Right after the subsidy s is introduced, type 2 households find attractive locations

in [0, β] that are close to β. This creates excess demand and therefore prices should rise. It is hard

to examine the adjustment equilibrium dynamics. In the new equilibrium, segregation will prevail.

Moreover, we can now strengthen Theorem 1 to show that all equilibria must be segregated. Indeed,

the perfectly integrated allocation cannot be part of an equilibrium. To see this, note that if type

1 households demand all locations in [0,1], R(t) = R(0) for all t ∈ [0, 1]. If type 2 households

demand all locations in [0, 1], R(t) − s = R(t′) for all t < β and all t′ > β. These two conditions

18In our environment, it is relatively easy to formulate the problem of maximizing welfare over all housing allocations
x. Analytically solving the problem of optimal welfare seems unfeasible.
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are incompatible when s 6= 0. Adapting Theorem 1 to our model with subsidy s > 0, it follows

that any equilibrium must be segregated.

When the subsidy can condition on the location where the household chooses to live, the logic

above no longer applies. Indeed, we show in Appendix A.6 that given any housing allocation x,

there exists a location-dependent subsidy policy such that allocation x is an equilibrium. We think

this result is of limited practical interest as it requires a rather complex subsidy policy that depends

on parameters that are unknown to authorities.

Consider now a place-based investment policy that improves the type 2 ghetto [β, 1]. Concretely,

supposes that the government develops an infrastructure project such that a household living in

t ∈ [β, 1] gets an additional consumption utility I(t) > 0. Similar to the introduction of a subsidy,

right after the public infrastructure is built there will be excess demand for housing in [β, 1]. In

the new equilibrium, if households type 1 and 2 live in a mixed neighborhood, it must be the case

that the infrastructure discounted rental price makes both types indifferent between all locations

in the mixed neighborhood and therefore the allocation is perfectly integrated. Again, once public

infrastructure is introduced, the equilibrium must be segregated or perfectly integrated.19

4.2 Extensions

We present two extensions of our model. The first extension allows for production of houses. The

second extension allows for several groups and more general utility functions. Other extensions,

such as to two-dimensional cities, are promising and left for future research.

Production. In our model, we have assumed that the supply of houses if fixed. Our model

can be extended to allow for an endogenous supply of houses. Suppose that the cost of supplying

d(t) ≥ 0 units of housing is C(d(t)), with C strictly increasing, convex, and C(0) = 0. At each t,

housing is supplied by a competitive firm. In this extension, households are not initially endowed

with housing. In equilibrium, at each t ∈ [0, 1], the competitive production of houses d(t) will

satisfy C ′(d(t)) = R(t). Each household h ∈ [0, 1] of type i will choose (xi(h), ci(h)) to solve

max
t∈[0,1],c̃∈R

{
Ui(c̃,Γ

x(t)) | c̃+R(t) ≤ πi(h)
}

where πi(h) is the sum of profits received by the household. The market clearing is written as

19Different from the subsidy policy, perfect integration is an equilibrium of the model with public infrastructure. Indeed,
to sustain the perfectly integrated assignment it is enough to set R(t) = I(t), where we extend I(t) = 0 for t < β. Yet,
similar to Theorem 2, a perfectly integrated equilibrium will be unstable.
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d1(t) + d2(t) = d(t) for all t ∈ [0, 1], where di is built from xi as in our main model. Extending

Theorems 1 and 2 to this general environment is immediate.

General utility functions and several groups. Suppose now that there are n ≥ 2 groups,

with βi ≥ 0 the fraction of households of type i (
∑n

i=1 βi = 1). For each allocation x = (xi)
n
i=1, we

define di(t), γi(t) = di(t)/(
∑n

j=1 dj(t)), and Γi(t) analogously to the main model. We now assume

that the utility of a household of type i that consumes c ∈ R and lives in t is given by Ui(c,Γ(t)),

where Γ(t) = (Γj(t))
n
j=1. Denoting ∆ = {p ∈ Rn+ | p1 + · · ·+ pn = 1}, it follows that Γ(t) ∈ ∆. In

this extension, Ui need not be quasilinear in c. Our baseline model obtains when n = 2, β1 = β,

β2 = (1− β), and Ui(c,Γ(t)) = c+ vi(Γi(t)).

Assume that the wealth of each household of type i is given by π(i). We say that the single-

crossing condition holds if for all r, r′, all P, P ′ ∈ ∆, with (r, P ) 6= (r′, P ′), and all i 6= j

Ui(π(i)− r, P ) = Ui(π(i)− r′, P ′) implies Uj(π(j)− r, P ) 6= Uj(π(j)− r′, P ′).

This condition says that if bundles (π(i)−r, P ) and (π(i)−r′, P ′) are in the same indifference curve

for a household of type i, then a type j household would not find (π(j)− r, P ) and (π(j)− r′, P ′)

equally attractive. To see how Theorem 1 can be extended, consider a mixed neighborhood T in

which households type i and j live and note that for t, t′ ∈ T , Uk(π(k)−R(t),Γx(t)) = Uk(π(k)−

R(t′),Γx(t′)) for k = i, j. It must be the case that R(t) = R(t′) and Γx(t) = Γx(t′) and, since

households perceive differences in city composition, γx(t) = γ̄ for t ∈ [0, 1]. This means that the

allocation must be perfectly integrated.

21



A Appendix

A.1 Proofs for Lemmas

Proof of Lemma 2. The definition of households perceiving differences in city composition boils

down to the claim that for any open interval T ⊆ [0, 1], the family (ft)t∈T is boundedly complete,

as in Definition 6.2.21 in Casella and Berger (2002) (setting T (x) = x). The lemma follows

from Theorem 6.2.25 in Casella and Berger (2002). Just note that since q is one-to-one, to check

completeness we can assume without loss that q(y) = y.

Proof of Lemma 3. Note that Ft(x) is decreasing in t provided

λ′(t)

∫ x

0
q(y) exp(λ(t)q(y) + V (y) +W (t))dy ≤ −W ′(t)

∫ x

0
exp(λ(t)q(y) + V (y) +W (t))dy.

Since
∫ 1

0 ft(y)dy = 1, W ′(t) = −Et[q(y)]λ′(t) where the expectation is taken assuming that y

distributes according to the density ft(y). Thus, ∂
∂tFt(x) ≤ 0 provided

λ′(t)Et[q(y) | y ≤ x] ≤ λ′(t)Et[q(y)]. (A.1)

When λ and q are both increasing, λ′(t) ≥ 0 and Et[q(y) | y ≤ x] ≤ Et[q(y)]. When p and q are

both decreasing, Et[q(y) | y ≤ x] ≥ Et[q(y)] but λ′(t) ≤ 0. In both cases, condition (A.1) holds.

A.2 Proof of Theorem 1

Proof of Theorem 1. Consider an equilibrium allocation x that is not segregated and let t̄ be a

mixed location. Thus, there exists ε > 0 such that for almost every t′ ∈ (t̄− ε, t̄+ ε), γi(t
′) ∈ (0, 1).

For any such t′ and t′′ and for each i, take households h′i and h′′i living in t′ and t′′. Then

Ui(R(h′i)−R(t′),Γx(t′)) ≥ Ui(R(h′i)−R(t′′),Γx(t′′))

and

Ui(R(h′′i )−R(t′′),Γx(t′′)) ≥ Ui(R(h′′i )−R(t′),Γx(t′)).
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Equivalently, R(t′′)−R(t′) ≥ vi(Γxi (t′′))− vi(Γxi (t′)) and R(t′)−R(t′′) ≥ vi(Γxi (t′))− vi(Γxi (t′′)). In

other words, for all i = 1, 2,

R(t′)−R(t′′) = vi(Γ
x
i (t′))− vi(Γxi (t′′)).

In particular,

v1(Γx1(t′))− v1(Γx1(t′′)) = v2(Γx2(t′))− v2(Γx2(t′′))

The SCC implies that Γxi (t′) = Γxi (t′′) for i = 1, 2. Defining T = (t̄ − ε, t̄ + ε), it follows that

Γxi (t′) = Γxi (t′′) for almost all t′, t′′ ∈ T . Since households perceive differences in city composition,

γi(t) is constant in [0, 1]. It follows that the allocation is perfectly integrated.

A.3 Proof of Theorem 2

The proof of Theorem 2 follows from two lemmas.

Lemma 4. Suppose that S-SCC holds and that households have monotone perceptions. Then, a

completely segregated equilibrium is stable.

Proof. Take a completely segregated allocation x and suppose all type 1 agents are in the interval

[0, β]. For any type 1 agent living in some t ≤ β, Γx1(t) = Ft(β). For any type 2 agent living in

t′ ≥ β, Γx2(t) = 1−Ft(β). Since perceptions are monotone, for t 6= t′ with t ≤ β ≤ t′, Γx1(t) > Γx1(t′).

Since v1(x)− v2(1− x) is increasing, v1(Γx1(t))− v2(Γx2(t)) > v1(Γx1(t′))− v2(Γx2(t′)) and therefore

v1(Γx1(t)) + v2(Γx2(t′)) > v1(Γx1(t′)) + v2(Γx2(t)). As a result, there exists ε > 0 such that for any

any coalition B, with B1 ∩ B2 = ∅, |Bi| < ε, and t ∈ B1, t
′ ∈ B2, v1(Γx1(t1)) + v2(Γx2(t2)) >

v1(ΓB1 (t1)) + v2(ΓB2 (t2)) for all ti ∈ Bi. Integrating over the set of agents switching housing, we get

β

∫
B1

v1(Γx1(x1(h)))dh+(1−β)

∫
B2

v2(Γx2(x2(h)))dh > β

∫
B1

v1(ΓB1 (xB1 (h)))dh+(1−β)

∫
B2

v2(ΓB2 (xB2 (h)))dh

It thus follows that for any feasible consumption allocation cB

β

∫
B1

(c1(h) + v1(Γx1(x1(h))))dh+ (1− β)

∫
B2

(c2(h) + v2(Γx2(x2(h))))dh

> β

∫
B1

(cB1 (h) + v1(ΓB1 (xB1 (h))))dh+ (1− β)

∫
B2

(cB2 (h) + v2(ΓB2 (xB2 (h))))dh

As a result, there exists a positive measure set of households such that ci(h) + vi(Γ
x
i (xi(h))) >
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cBi (h) + vi(Γ
B
i (xBi (h))). It thus follows that coalition B cannot block (x, c).

Lemma 5. Suppose that S-SCC holds and that households care most about next-door neighbors.

Then, any stable equilibrium must be completely segregated.

Proof. We first show that a perfectly integrated allocation x is not stable. For simplicity, assume

that xi(h) = h. By definition, at each t, there is βdt of type 1 households, and (1 − β)dt of type

2 households. Take intervals I1 ⊂ [0, 1/2] and I2 ⊂ [1/2, 1] with (1− β)|I1| = β|I2|. Assume these

intervals are small enough so that for all t ∈ I1

min
y∈I1

ft(y) > max
y∈I2

ft(y). (A.2)

and for all t ∈ I2, miny∈I2 ft(y) > maxy∈I1 ft(y). Take B1 = I2, B2 = I1, and xB such that the

resulting densities are given by

dB1 (t) =


β t /∈ I1 ∪ I2

β + ε1 t ∈ I1

β − ε2 t ∈ I2

and

dB2 (t) =


1− β t /∈ I1 ∪ I2

1− β − ε1 t ∈ I1

(1− β) + ε2 t ∈ I2

where ε1, ε2 > 0 are small enough and ε1|I1| = ε2|I2|. It then follows that for t ∈ I1∫
γB1 (y)ft(y)dy −

∫
γ1(y)ft(y)dy > 0 iff ε1

∫
I1

ft(y)dy > ε2

∫
I2

ft(y)dy.

From (A.2), for all t ∈ I1,

ε1

∫
I1

ft(y)dy ≥ ε1|I1|min
y∈I1

ft(y) > ε2|I2|max
y∈I2

ft(y) ≥ ε2
∫
I2

ft(y)dy

and therefore ∫
γB1 (y)ft(y)dy >

∫
γ1(y)ft(y)dy = β. (A.3)
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Analogously, for all t′ ∈ I2, ∫
γB2 (y)ft′(y)dy > (1− β). (A.4)

Note that as I1 and I2 get small and close enough, for all t ∈ I1 and all t′ ∈ I2,

|(
∫
γB1 (y)ft(y)dy − β)− (

∫
γB2 (y)ft′(y)dy − (1− β))| → 0.

Since (A.3)− (A.4) and y 7→ v1(β + y) + v2(1− β + y) is strictly increasing close to y = 0, we can

therefore take I1 and I2 so that for all t ∈ I1 and all t′ ∈ I2,

v1(

∫
γB1 (y)ft(y)dy) + v2(

∫
γB2 (y)ft′(y)dy) > v1(β) + v2(1− β).

We now construct the consumption assignment cB. For all h ∈ Bi, let c̃i(h) be defined by

c̃i(h) + vi
(
Γx

ε

i (xεi(h))
)

= ci(h) + vi
(
Γxi (xi(h))

)
Integrating,

β

∫
h∈B1

c̃1(h) + v1

(
Γx

ε

1 (xε1(h))
)
dh+(1− β)

∫
h∈B2

c̃2(h) + v2

(
Γx

ε

2 (xε2(h))
)
dh

=β

∫
h∈B1

c1(h) + v1

(
β)
)
dh+ (1− β)

∫
h∈B2

c2(h) + v2

(
β
)
dh

and therefore

β

∫
h∈B1

c̃1(h)dh+ (1− β)

∫
h∈B2

c̃2(h)dh < β

∫
h∈B1

c1(h)dh+ (1− β)

∫
h∈B2

c2(h)dh

We thus can build cB such that cBi (h) = ci(h) for h /∈ Bi, cBi (h) > c̃Bi (h) for h ∈ Bi with

β

∫
h∈B1

cB1 (h)dh+ (1− β)

∫
h∈B2

cB2 (h)dh = β

∫
h∈B1

c1(h)dh+ (1− β)

∫
h∈B2

c2(h)dh.

Since cBi (h) > c̃i(h) for h ∈ Bi , cBi (h) + vi(Γ
xB
i (xBi (h))) > ci(h) + vi(Γ

x
i (xi(h)))). Thus, coalition

B blocks (x, c).

Finally, take now a segregated equilibrium that is not completely segregated. Take two frontier

locations 0 < r < s < 1, and assume that in [0, r[ all households are type 1, whereas in ]r, s[

all households are type 2. Note that in equilibrium, all type 1 households get utility u1 which
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equals the utility level of type 1 households living in r. Analogously, all type 2 households get

utility u2 which equals the utility level of type 2 households living in s. Without loss, assume that

Γx1(r) ≥ Γx1(s) and Γx2(r) ≤ Γx2(s). Since households care most about next-door neighbors, we can

take ε > 0 small enough such that

min
y∈[r,r+ε]

fr(y)− max
y∈[s,s+t]

fr(y) > 0.

Move all type 1 households in [s, s + ε] to [r, r + ε], and move all type 2 households in [r, r + ε]

to [s, s + ε]. Call B the coalition of agents that were reassigned xε the new allocation. Now, for

all t ∈ [r, r + ε], Γx
ε

1 (t) > Γx1(r). By continuity, for all t ∈ [r, r + ε], Γx
ε

1 (t) > Γx1(r) ≥ Γx1(s).

Analogously, Γx
ε

2 (t) > Γx2(r) for all t ∈ [s, s+ ε]. Since the S-SCC holds, the coalition can block x

by means of a consumption assignment identical to the one built in the paragraph above (cB).

A.4 Constructing a segregated equilibrium

We construct an equilibrium that is segregated but not completely. Take x0 = 0 < x1 < x2 < · · · <

xn−1 < xn = 1 such that for any l odd (resp. even) Il :=]xl−1, xl[ only has type 1 (resp. type 2)

households. In equilibrium, the rental price function is pinned down by the condition

R(t) =

v1

(∑
m even Ft(xm)− Ft(xm−1)

)
if t ∈ Il, l even

v2

(∑
m odd Ft(xm)− Ft(xm−1)

)
+ η if t ∈ Il, l odd

where η is to be determined.20 In equilibrium, the rental price R(t) must be continuous and thus

v1

( ∑
m even

Fxl(xm)− Fxl(xm−1)
)

= v2

( ∑
m odd

Fxl(xm)− Fxl(xm−1)
)

+ η

for all l = 1, . . . , n− 1. The SCC implies that for all l = 2, . . . , n− 1,

∑
m even

Fxl(xm)− Fxl(xm−1) =
∑

m even

Fx1(xm)− Fx1(xm−1). (A.5)

Together with the condition
∑

l odd xl − xl−1 = β, these n − 1 conditions result in candidates for

the n− 1 parameters, x1, . . . , xn−1, characterizing a segregated equilibrium with n ghettos.

Since the equilibrium is not completely segregated, there exists l̄ ∈ {2, . . . , n − 1} such that

20Adding a constant η̄ to the rental price function when l is even is immaterial.

26



xl̄−1 6= 0 and xl̄ 6= 1 and suppose first that only type 2 households live in ]xl̄−1, xl̄[. The incentive

condition for type 1 to prefer xl̄−1 and xl̄ over any t ∈]xl̄−1, xl̄[ is

R(h)−R(xl̄−1)+v1

( ∑
m even

Fxl̄−1
(xm)− Fxl̄−1

(xm−1)
)

= R(h)−R(xl̄) + v1

( ∑
m even

Fxl̄(xm)− Fxl̄(xm−1)
)

≥ sup
t∈]xl̄−1,xl̄[

{
R(h)−R(t) + v1

( ∑
m even

Ft(xm)− Ft(xm−1)
)}

= max
t∈[xl̄−1,xl̄]

{
R(h)−R(t) + v1

( ∑
m even

Ft(xm)− Ft(xm−1)
)}

where the last equality follows by continuity of R(t) and t 7→ Ft(x). The incentive condition above

is equivalent to

v1

( ∑
m even

Fxl̄−1
(xm)− Fxl̄−1

(xm−1)
)
− v2(

∑
m odd

Fxl̄−1
(xm)− Fxl̄−1

(xm−1))

= v1

( ∑
m even

Fxl̄(xm)− Fxl̄(xm−1)
)
− v2(

∑
m odd

Fxl̄(xm)− Fxl̄(xm−1))

= max
t∈[xl̄−1,xl̄]

v1

( ∑
m even

Ft(xm)− Ft(xm−1)
)
− v2(

∑
m odd

Ft(xm)− Ft(xm−1))

This means that the function

t ∈ [xl̄−1, xl̄] 7→ v1

( ∑
m even

Ft(xm)− Ft(xm−1)
)
− v2(

∑
m odd

Ft(xm)− Ft(xm−1)) (A.6)

attains its maximum at t ∈ {xl̄−1, xl̄}. Analogously, assuming that only type 1 households live in

neighborhood [xl̄−1, xl̄], the function

t ∈ [xl̄−1, xl̄] 7→ v1

( ∑
m even

Ft(xm)− Ft(xm−1)
)
− v2(

∑
m odd

Ft(xm)− Ft(xm−1)) (A.7)

attains it minimum at t ∈ {xl̄−1, xl̄}. For neighborhood [0, x1], it must be that the function above

attains its minimum at t = x1, while for neighborhood [xn−1, 1] the minimum (resp. maximum) is

attained at t = xn−1 when only type 1 (resp. type 2) households live on it. All these conditions

are necessary and sufficient for a segregated equilibrium. When the S-SCC holds, these conditions

require that the function

t ∈ [0, 1] 7→
( ∑
m even

Ft(xm)− Ft(xm−1)
)
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has a periodic behavior, crossing through the points xl for l = 1, . . . , n− 1 downwards (resp.

upwards) if l is odd (resp. even).

A.5 Constructing a completely segregated equilibrium

A perfectly segregated allocation is characterized by a cutoff x̄ ∈]0, 1[ such that type 1 (resp. type

2) households live in [0, x̄] (resp. [x̄, 1]). Define the price function:

R(t) =

v1(
∫ x̄

0 ft(y)dy) if t ≤ x̄,

v2(
∫ 1
x̄ ft(y)dy) + η if t > x.

where η ∈ R is to be determined. We first argue that given R, households type 1 (resp. type

2) optimally demand housing in [0, x̄] (resp. in [x̄, 1]). Let ui(h) be the optimal utility level that

household h of type i gets. Then, for all h, −R(t) + v1(
∫ x̄

0 ft(y)dy) equals 0 for t ∈ [0, x̄] and thus

u1(h) = R(h). Analogously, −R(t) + v2(
∫ 1
x̄ ft(y)dy) = −η for t > x̄ and u2(h) = R(h) − η. By

demanding housing at any t > x̄, household type 1 gets at most

sup
t>x̄
{R(h)−R(t) + v1(

∫ x̄

0
ft(y)dy)} = sup

t>x̄
{R(h)−R(t) + v2(

∫ 1

x̄
ft(y))dy + v1(

∫ x̄

0
ft(y)dy)− v2(

∫ 1

x̄
ft(y))dy}

=u2(h) + sup
t>x̄
{v1(

∫ x̄

0
ft(y)dy)− v2(

∫ 1

x̄
ft(y))dy}

=R(h)− η + sup
t>x̄
{v1(

∫ x̄

0
ft(y)dy)− v2(

∫ 1

x̄
ft(y))dy}.

Thus, it is optimal for household type 1 to demand housing in [0, x̄] provided

−η + sup
t>x̄
{v1(

∫ x̄

0
ft(y)dy)− v2(

∫ 1

x̄
ft(y)dy)} ≤ 0.

Analogously, it is optimal to demand housing in t > x̄ for a household type 2 provided

sup
t≤x̄
{R(h)−R(t) + v2(

∫ 1

x̄
ft(y)dy)} ≤ R(h)− η

which is equivalent to

η + sup
t≤x̄

v2(

∫ 1

x̄
ft(y)dy)− v1(

∫ x̄

0
ft(y)dy) ≤ 0.
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Thus, it is enough to take η such that

sup
t>x̄
{v1(Ft(x̄))− v2(1− Ft(x̄))} ≤ η ≤ inf

t≤x̄
{v1(Ft(x̄))− v2(1− Ft(x̄))}. (A.8)

To complete the equilibrium construction, assign all households type 1 (resp. type 2) uniformly

in [0, x̄] (resp. in [x̄, 1]). The market clearing condition holds when x̄ = β and we have therefore

constructed a perfectly segregated equilibrium.

We are now in position to prove Proposition 1.

Proof of Proposition 1. We first claim that for x̄ = β,

sup
t>x̄
{v1(Ft(x̄))− v2(1− Ft(x̄))} = inf

t≤x̄
{v1(Ft(x̄))− v2(1− Ft(x̄))} = v1(Fx̄(x̄))− v2(1− Fx̄(x̄)).

To see this, note that t 7→ Ft(x̄) is decreasing and therefore its maximum value over [x̄, 1] is attained

at t = x̄. Analogously, t 7→ Ft(x̄) is minimized over t ≤ x̄ at t = x̄. Since v1(x) − v2(1 − x) is

increasing, for all t > x̄,

v1(Ft(x̄))− v2(1− Ft(x̄)) ≤ v1(Fx̄(x̄))− v2(1− Fx̄(x̄))

while for all t ≤ x̄,

v1(Ft(x̄))− v2(1− Ft(x̄)) ≥ v1(Fx̄(x̄))− v2(1− Fx̄(x̄)).

Now, it immediately follows that x̄ = β and η = v1(Fβ(β))− v2(1− Fβ(β)) satisfy (A.8). We have

therefore found a completely segregated equilibrium.

Now, suppose that a completely segregated equilibrium does not exist. Then, it must be the

case that (A.8) does not hold at x̄ = β. Therefore, there exist t̄ > β and t < β such that

v1(Ft̄(β))− v2(1− Ft̄(β)) > v1(Ft(β))− v2(1− Ft(β))

Since t < t̄, Ft̄(β) < Ft(β). But the SCC holds and therefore x 7→ v1(x) − v2(1 − x) is strictly

decreasing.
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A.6 Implementing a housing allocation using a general tax policy

Suppose now that a type 2 household that chooses location t receives φ(t). The definition of

equilibrium is similar to Definition 1, but now each household chooses consumption and location

optimally given the tax policy φ: For all i and all h ∈ [0, 1], (xi(h), ci(h)) solves

max
t∈[0,1],c̃∈R

{
Ui(c̃,Γ

x(t)) | c̃+R(t) ≤ R(h) + φ(t)
}

Proposition 2. Let x be any housing allocation. There exists a tax policy for group 2 φ : [0, 1]→

[0, 1] such that x is part of an equilibrium

Proof. Take

R(t) = v1(Γx1(t))

and

R(t)− φ(t) = v2(Γx2(t)).

It is clear that households are indifferent over any t ∈ [0, 1] and therefore x is part of an equilibrium.
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