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Abstract. We consider network games with atomic players, which indicates that some players control a

positive amount of flow. Instead of studying Nash equilibria as previous work has done, we consider that

players with considerable market power will make decisions before the others because they can predict the

decisions of players without market power. This description fits the framework of Stackelberg games, where

those with market power are leaders and the rest are price-taking followers. As Stackelberg equilibria are

difficult to characterize, we prove bounds on the inefficiency of the solutions that arise when the leader uses

a heuristic that approximate its optimal strategy.
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1. Introduction

This article studies the efficiency loss due to selfish behavior in network games with atomic players that can

split their flow among different paths. These games can be used to model situations in which players, who

control an arbitrary portion of the whole demand, have to ship flow from their origins to their destinations.

Competition arises because shipment costs depend on how much flow from all the participants is sent on

each link, which creates externalities. Typical applications of these games can be found in the domains of

telecommunication, transportation and distribution networks.

Roughgarden and Tardos (2002), Correa, Schulz, and Stier-Moses (2005), and Cominetti, Correa, and Stier-

Moses (2006) concentrated on Nash equilibria for atomic games, and proved bounds for their inefficiency with

respect to a coordinated solution that achieves a minimal social cost. The problem is that, as exemplified by

some instances presented by Cominetti et al., a Nash equilibrium may fail to capture what participants of the

game would do if presented with that decision. This is especially the case in situations in which some players

have more market power than others. Although a Nash equilibrium demands that a player controlling most

of the demand plays a best response to what the rest do, this player can do better by simply predicting what

the rest will do for each possible strategy and selecting the best. Indeed, the others players are price-takers,

so they cannot influence the market by themselves unless they collude. This observation led us to consider

a Stackelberg setting in which the players with market power are leaders while those without market power

are followers (von Stackelberg 1934). In a situation of this type, Stackelberg equilibria may lead to a better

representation of players’ behavior.

As providing a characterization of Stackelberg equilibria is much more difficult than describing Nash equilib-

ria, we consider a simpler market structure in which there is a single atomic player with market power, and

a continuum of nonatomic players represented by the price-taking followers. The atomic player can predict
1



2 J. R. CORREA AND N. E. STIER-MOSES

how nonatomic players will react to its routing decision because nonatomic players select shortest paths as

they would do under a Wardrop equilibrium (Wardrop 1952).

In Section 2 we introduce the problem and define the linear programming strategy for the leader. This

strategy generalizes the LLF strategy defined by Roughgarden (2004) for parallel links networks. Section 3

considers general network topologies and prove bounds on the price of anarchy for some natural strategies

that have a similar flavor than the known bounds for the price of anarchy of nonatomic network games.

These bounds depend heavily on the type of congestion functions allowed in the network. Furthermore, we

prove a counterintuitive phenomena appearing in general networks. Namely, if the leader plays according to

the LP strategy, it may end up having larger cost than the optimal flow, even though she routes a smaller

amount of flow. This construction allows us to show that the total cost experienced by all players may not

approach to the system optimal cost when the fraction controlled by the leader goes to 1. Thus the bound

of 1/d proved by Roughgarden for parallel links networks (where d is the fraction controlled by the leader)

does not hold in general. We conclude Section 3 with a short proof of the latter result.

In Section 4 we impose more structure to the competition and study series-parallel networks. Our main

analytical tool in this section is a structural property that establishes that a circulation in a series-parallel

network always has a path from the source to the sink with non-negative flow on every arc. This result

does not hold in general networks. In this section, we prove that several natural properties about Wardrop

and optimal flows (which would lead to approaches to bound the price of anarchy) do not hold already

for series-parallel networks. We conclude the section by providing our bounds on the price of anarchy for

series-parallel networks.

Related Literature. Koutsoupias and Papadimitriou (1999) proposed to use the worst-case inefficiency of

an arbitrary equilibrium in an arbitrary instance of a game as a way to quantify the impact of not being able

to impose a coordinated solution. This concept became known as the price of anarchy (Papadimitriou 2001)

and has been used to measure the inefficiency introduced by competition in various settings. Starting with

the seminal work of Roughgarden and Tardos (2002), many articles used this idea to quantify the inefficiency

of equilibria in various versions of network and congestion games under different assumptions.

Using Stackelberg games and strategies to improve the inefficiency of equilibria precedes the idea of measuring

that inefficiency with the price of anarchy. Korilis, Lazar, and Orda (1997) considered a system manager that

routes a fraction of the flow with the goal of achieving an optimal solution for the system. Later, Kaporis,

Politopoulou, and Spirakis (2005), and Kaporis and Spirakis (2006) quantified the minimum demand that

the leader is required to control to guarantee optimality. Sharma and Williamson (2006) considered a related

question: they quantified the minimum demand that the leader needs to control to guarantee a lower social

cost than at a Nash equilibrium.

More in line with our results, Roughgarden (2004) considered parallel-link networks and a Stackelberg leader

that controls a fraction of the demand. The objective of this leader is aligned with the system’s because

the leader tries to minimize the social cost. As computing the optimal strategy is difficult, Roughgarden

studies a number of heuristics with good worst-case performances. We are especially interested in the

heuristics SCALE and LLF introduced in that article. Anil Kumar and Marathe (2002) extended this

research and found an approximation scheme for the best Stackelberg strategy. More recently, Karakostas and

Kolliopoulos (2006), and Swamy (2007) proposed extensions to more general network structures. Specifically,



STACKELBERG ROUTING IN ATOMIC NETWORK GAMES 3

Karakostas and Kolliopoulos give an almost tight bound for the price of anarchy when cost functions are

affine and the underlying strategy of the leader is SCALE. On the other hand, Swamy considers series-

parallel networks and proves a result similar to our Theorem 1 for a generalization of strategy LLF to

general networks (this generalization is different from ours). It is important to point out that, although we

proved Theorem 1 independently, it was after we learned of Swamy’s result.

2. The Model

We consider a network G = (V,A) with a single OD pair (s, t) and a total demand equal to one (unless we

explicitly specify another demand value). As we said in the introduction, there is a single atomic player (the

leader) that controls a demand of d ∈ [0, 1] units of flow, while the rest of the demand 1− d is controlled by

nonatomic players (the followers). We associate a nondecreasing cost function ca(·) : R+ → R+ to every arc

a ∈ A which maps the total flow fa on an arc a to its per-unit cost ca(fa). Players are homogeneous so they

all experience the same cost.

The leader’s strategy consists on deciding how to route its demand d. If it selects flow x, the followers will

take that flow as fixed and will select a shortest path with respect to the corresponding costs. Namely, they

will route their collective demand of 1−d according to flow y, defined as a Wardrop equilibrium with respect

to costs ĉa(ya) := ca(xa +ya) where xa is considered constant from the nonatomic players’ perspective. Here,

a Wardrop equilibrium is the solution under which all followers take shortest paths between s and t under

the prevailing costs (Beckmann et al. 1956). Given an objective for the leader (see next section), an optimal

solution for the leader x∗ together with the corresponding Wardrop equilibrium y∗ is called a Stackelberg

equilibrium because neither the leader, nor the followers, have the incentive to deviate from it. Indeed, x∗ is

best for the leader and the followers cannot unilaterally influence the leader because they are price-takers.

Consider the solution x selected by the leader following a predefined strategy (the optimal one or a heuristic),

and its corresponding Wardrop equilibrium y. To quantify the quality of a flow f := x + y, we consider its

social cost, which is given by C(f) :=
∑

a∈A faca(fa). Additionally, we write Cx(x+y) :=
∑

a∈A xaca(xa+ya)

to refer to the share of the cost paid by the leader, and Cy(x + y) :=
∑

a∈A yaca(xa + ya) to refer to the

followers’ share. A flow fopt minimizing C(·) among all feasible flows that route a unit demand is called a

social optimum.

A global measure of the inefficiency of a solution is given by the ratio between its cost and that of the social

optimum. Indeed, the price of anarchy is defined as the worst-case inefficiency of the solution arising from

the leader’s strategy:

max
I∈ instances

C(x + y)

C(fopt)
, (1)

where x, y, and fopt correspond to instance I. On occasions, we will also compare solutions to the Wardrop

equilibrium when the total demand is one unit, which will be denoted by fwe. For this solution, we assume

that all the demand is controlled by nonatomic users.

Strategies for the Leader. Roughgarden (2004) considered a model in which the atomic player’s objective

is aligned with the system’s: the leader selects the flow x that minimizes C(x + y). He proved that finding

the corresponding Stackelberg equilibrium is NP-hard, and hence he considered heuristics for the atomic

player for which he could prove guarantees.
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In a selfish setting, the atomic player cares more about its cost Cx(·), as opposed to the social cost. Because

of that, we shall also consider the worst-case inefficiency from the perspective of the atomic player. Indeed,

atomic players would prefer strategies that incur in low per-unit costs. We can quantify the performance of

a given strategy for the leader by computing:

max
instances

Cx(x + y)/d

C(fopt)/1
. (2)

Although the complexity of finding the Stackelberg equilibrium in the latter case is open, it is likely to be

NP-hard as well. As the leader is unlikely to be able to solve its problem to optimality, we analyze the

following two simple heuristics. The leader’s bounded rationality justifies the use of approximations to the

Stackelberg equilibrium of the game.

SCALE: the leader routes proportionally to the social optimum considering all the demand: x = dfopt

(Roughgarden 2004).

LP: the leader routes its flow in the most expensive arcs first because they are the ones that followers

are less likely to choose for themselves. This can be achieved by solving the following LP:

max
{

∑

a∈A

xaca(fopt

a ) : xa 6 fopt

a and x is a feasible flow for demand d
}

, (3)

which generalizes the Largest Latency First (LLF) heuristic proposed by Roughgarden (2004). The

latter strategy works in parallel-link networks, and consists in sorting the arcs according to ca(fopt

a )

from high to low and assigning the necessary demand d to the arcs in that order without surpassing

the system-optimal flow fopt

a .

3. General Networks

The nonatomic players in a Stackelberg game with a single OD pair are always better off than the single

atomic player. The reason is that as the nonatomic players decide afterwards, they will always route their

demand along shortest paths. Hence, the common length of all the paths used by nonatomic players equals

Cy(x+y)/(1−d) 6 minP {cP (x+y) : xP > 0} 6 Cx(x+y)/d. Using this inequality and Cy(x+y)+Cx(x+y) =

C(x+y), we also get that Cy(x+y)/(1−d) 6 C(x+y) 6 Cx(x+y)/d, which means that the overall per-unit

cost is higher than that of nonatomic players but lower than that of the atomic player.

The following simple example illustrates that if one considers arbitrary strategies, they can perform very

badly and hurt both the system and the nonatomic players. In particular, the per-unit cost arising from the

Stackelberg competition can be much higher than that of a Wardrop equilibrium.

Example 1. For arbitrary networks, minQ{cQ(x+y) : yQ > 0} can be arbitrarily larger than minQ{cQ(fwe) :

fwe

Q > 0} for any d.

Proof. Consider the network depicted in Figure 1, where the atomic player controls a demand of d, there are

k horizontal arcs, and the costs not displayed are 0. The Wardrop equilibrium in this network is the flow

that splits the demand equally along the k ‘direct’ paths through a horizontal arc. Their costs are equal to

cP (fwe) = 1
kd

. If x routes its d units of flow along the zigzag path that takes all horizontal arcs, all paths

have cost cP (x + y) > 1. ¤
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1 1

x/d

x/d

x/d

x/d

x/d

Figure 1. Instance for Example 1

For this reason we will restrict our attention to strategies that always route less than a social optimum,

that is, xa 6 fopt

a for all a ∈ A. Notice that the two strategies defined in the previous section satisfy that

property. Using this property, we can prove some bounds that are independent of d but dependent on the

set of allowed cost functions. Let us see first that the worst-case inefficiency of the resulting solution cannot

be worse than that of a Wardrop equilibrium. Notice that this result holds even though the game is atomic,

and Nash equilibria of atomic games can be more inefficient than the worst-case inefficiency of Wardrop

equilibria. (We refer the reader to Cominetti et al. 2006 for a discussion of the inefficiency of Nash equilibria

in atomic games.)

Proposition 1. Consider an arbitrary network with cost functions that belong to a set C. If the strategy for

the atomic player satisfies that 0 6 xa 6 fopt

a , then C(x + y) 6 (1 − β(C))−1C(fopt).

Proof. Reasoning as in Correa et al. (2005), the fact that y is routed along shortest paths can be expressed

as a variational inequality. This implies that for any flow z feasible for the nonatomic player,

C(x + y) =
∑

a∈A

(xa + ya)ca(xa + ya) 6
∑

a∈A

(xa + za)ca(xa + ya).

Hence, defining

β(c) := max
x,y,z∈R

3
+

(x + z)(c(x + y) − c(x + z))

(x + y)c(x + y)

and β(C) := supc∈C β(c), we get that
∑

a∈A(xa + za)ca(xa + ya) 6 β(C)C(x + y) + C(x + z). If we set

z = fopt − x > 0, the claim follows because C(x + z) = C(fopt). ¤

Notice that the constant β in the previous proof coincides with that of Correa et al. (2005) because x, y

and z are arbitrary reals. Therefore, as long as the leader does not route more flow along each arc than in

a social optimum (but otherwise regardless of how it plays), the resulting situation is not worse than for a

Wardrop equilibrium in the worst case. Another trivial way to guarantee the same bound is when the leader

does not route more flow along each arc than in a Wardrop equilibrium. Indeed, in that case the nonatomic

players ‘complete’ the Wardrop equilibrium, and the bound follows from previous results (Roughgarden 2003;

Correa, Schulz, and Stier-Moses 2004). The following result provides a bound on the cost experienced by

the leader.
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Table 1. Comparison of Props. 1 and 2 as a function of the maximum degree of the allowed polynomials.

Result Pr. of An. 0 1 2 3 4 . . . k

Prop. 1 (1 − β(·))−1 1 4/3 1.626 1.896 2.151 (k+1)1+1/k

(k+1)1+1/k−k

Prop. 2 αk 1 1 1.185 1.688 2.621 2
k+1

(

2k
k+1

)k

Proposition 2. Consider an arbitrary network with cost functions that are polynomials of degree at most k.

If the strategy for the atomic player satisfies that 0 6 xa 6 fopt

a , then Cx(x + y) 6 αkC(fopt), where

αk :=
2

k + 1

(

2k

k + 1

)k

.

Proof. As in the proof of Proposition 1,
∑

a yaca(xa + ya) 6
∑

a(fopt

a − xa)ca(xa + ya) because fopt − x is

feasible for the nonatomic players. Rewriting the inequality, we get that Cx(x + y) 6
∑

a(fopt

a − ya)ca(xa +

ya) 6
∑

a(fopt

a − ya)ca(fopt

a + ya). Let us compare the last expression with the cost of the system optimum

for monomials of degree k. Letting αk := maxy,f∈R
2
+

(f−y)(f+y)k

fk+1 , we have that Cx(x + y) 6 αkC(fopt)

when cost functions are taken from the set of polynomials of degree up to k. To compute αk, we solve

maxy{(f−y)(f +y)k : 0 6 y 6 f}. As the derivative of the objective function is k(f +y)k−1(f−y)−(f +y)k,

y has to be equal to k−1
k+1f . Plugging y back into the formula, we get the expression in the claim. ¤

Computing αk for specific values of k, we get the values shown in Table 1. Although the αk’s increase

exponentially on the maximum degree of the polynomials used as cost functions, for small degrees—which is

what appears in practice—the inefficiency is small. For example, for affine cost functions, the leader’s cost

is always bounded from above by the social cost of an optimal solution, regardless of how much demand it

controls.

We now present an example to illustrate that Stackelberg equilibria do not behave intuitively. It turns out

that if the leader goes from high market power to an absolute monopoly, we observe a discontinuity in the

cost experienced by the leader. Notice that the first part of the claim below cannot occur when cost functions

are affine or for parallel-link networks (as we shall prove in Proposition 3).

Example 2. If the leader plays according to strategy LP, its cost Cx(x + y) can be larger that the optimal

social cost C(fopt) (even though the leader may have less amount of flow to route). In addition, Cx(x + y)

as function on d can be discontinuous at 1.

Proof. Let k be an arbitrary (large) integer and n be the maximum integer such that
(

k
k+1

)n
(n + 1) > 1.

Consider the network depicted in Figure 2, where the atomic player controls a demand of d = 1 − 1
2k

and

c(x) =
(

2k
k+1

)n
xn. The social optimum routes half the demand on the top path and the other half on the

bottom one. Its cost C(fopt) is 1+
(

k
k+1

)n
6 1+ 1

n+2
k+1

k
→ 1. As the leader uses strategy LP, it routes 1

2 on

the upper path and 1
2 − 1

2k
on the lower one. The nonatomic players route 1

2k
on the zigzag path, implying

that Cx(x + y) = 1
22 +

(

1
2 − 1

2k

)(

1 +
(

k
k+1

)n)

. The last expression tends to 3/2 when k → ∞. ¤

Obviously, the objective is continuous when the flow the leader controls tends to 1 for any fixed instance.

The previous example is based on different instances for different values of d. This is in line with the

definition of price of anarchy which takes the supremum over all instances, as we defined in (1) and (2). The
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1 1

c(x)

c(x)1

1

0

Figure 2. Instance for Example 2

previous example shows that the price of anarchy, parametrized with respect to the demand of the leader,

is a discontinuous function.

The following proposition was first shown by Roughgarden (2004) for strategy LLF. Here, we present a

simpler proof that results from using the variational inequality that describes the behavior of nonatomic

players.

Proposition 3 (Roughgarden 2004). Consider a parallel-link network and an atomic player that uses strategy

LP. In that case, the price of anarchy is bounded by 1/d.

Proof. First we prove that if xa > 0, then xa + ya 6 fopt

a . (Intuitively, this statement would seem to be true

in general, but Proposition 3 presents a counterexample with a series-parallel network.) With the purpose of

getting a contradiction, let us assume the opposite. Therefore, there is an arc a ∈ A such that 0 < xa 6 fopt

a

and xa + ya > fopt

a . This implies that ya > 0, and that for every arc b such that xb + yb 6 fopt

b ,

ca(fopt

a ) < ca(xa + ya) 6 cb(xb + yb) 6 cb(f
opt

b ).

As b would have to be used by x before a, this implies that xb = fopt

b and yb = 0. Summing over all arcs, we

get that
∑

a(xa + ya) >
∑

a fopt

a , which is a contradiction as x + y and fopt are flows routing the same total

demand. Hence, we have that Cx(x + y) 6 C(fopt) because we just proved that arcs used by x do not have

more flow than in fopt.

We continue by using the variational inequality that describes the behavior of the nonatomic players. Consid-

ering flow 1−d
d

x, which is feasible for the nonatomic players, we get that Cy(x+y) 6
∑

a

(

1−d
d

xa

)

ca(xa+ya) =
1−d

d
Cx(x + y). Finally, adding the costs for the atomic and nonatomic players, we get that C(x + y) 6

1
d
C(fopt) as we wanted to show. ¤

4. Series-Parallel Networks

In this section, we restrict our attention to series-parallel networks. This class can be used to model that

there are groups of resources that are complements and substitutes of each other. Because of this, series-

parallel networks are an order of magnitude more expressive than the class of parallel-link networks, which

is what most of the previous research on Stackelberg games for selfish routing considered so far.

A graph is called series-parallel when it can be generated recursively from an initial arc s-t using the following

two operations. (a) Given an arc a-b, add an intermediate node z and replace the old arc by arcs a-z and

z-b. (b) Given an arc a-b, add a parallel arc to it. Although this type of graphs can be arbitrarily complex,

it is guaranteed that there won’t be an instance like that of Figure 2 (a Braess’ paradox network) as a minor.

We will use that series-parallel graphs always have paths satisfying the following definition, which is proved
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below. Note that this is false for general networks; actually, it is not hard to have a counterexample using

the graph depicted in Figure 2. Indeed, taking a flow that splits the demand in two halves and another flow

that routes everything along the zigzag path, we see that there are instances such that no path is small.

Definition 1. Consider a directed graph G = (V,A) with a single source s ∈ V and a single sink t ∈ V .

Let v and v′ be two feasible flows satisfying the same demand. A path P from s to t is called small when

va 6 v′
a for all arcs a ∈ P .

Proposition 4. A small path always exists in a series-parallel graph.

Proof. Consider the graph G′ = (V,A′) that includes arcs a ∈ A such that va 6 v′
a, and reverse arcs ā of

arcs a ∈ A such that va > v′
a. Let us first prove by contradiction that there is a path P in G′ from s to t. If

there is no path, the connected component from s is a cut S ⊆ V . All outgoing arcs from S satisfy va > v′
a

(otherwise a would belong to A′), and all incoming arcs to S satisfy va 6 v′
a (otherwise a would belong to

A′). Summing over the cut, we get that v∆+ − v∆− > v′

∆+ − v′

∆− , a contradiction because v and v′ are

feasible flows carrying the same demand.

Therefore there is a path P from s to t in G′. If P takes a backward arc in A′, as the network is series-

parallel, it has to create a cycle. Removing the cycle and repeating, we get that P only uses forward arcs.

This implies that P is small. ¤

For the case when the leader plays arbitrary strategies, the following results study how cP (x + y) compares

to the cost C(fwe) of an equilibrium, for paths P that are used by nonatomic players.

Proposition 5. Consider a series-parallel network. Under an arbitrary strategy for the atomic player, the

average cost for nonatomic users is smaller than in a Wardrop equilibrium: Cy(x + y)/(1 − d) 6 C(fwe).

Proof. We restrict attention to arcs that are used by some flow (fwe

a > 0 or xa > 0 or ya > 0) because

otherwise they are irrelevant. As y routes flow along minimum cost paths,

Cy(x + y)

1 − d
= min

Q:yQ>0
cQ(x + y) 6 cP (x + y).

Proposition 4 implies that there is a path P such that xa + ya 6 fwe

a in all its arcs. Taking an appropriate

decomposition, fwe carries flow along P . Thus, the average cost for nonatomic users is bounded by cP (fwe) =

C(fwe). ¤

The next example proves that the property that was used in Proposition 3 needs not be true in general.

Notice that the leader uses the strategy LP in the example.

Example 3. In a series-parallel network, 0 < xa 6 fopt

a does not imply that xa + ya 6 fopt

a .

Proof. Consider the series-parallel network depicted in Figure 3, where the atomic player controls d = 1/3 of

the flow and the nonatomic one controls 2/3. Although the atomic user routes less than the system optimum

in all arcs, x + y is larger than fopt in the lower path, where the followers route 7/12 units of flow. ¤

In addition, the following example shows a similar property for nonatomic flows. Although a Wardrop

equilibrium may not load one arc too much, the leader may force followers to excessively use some arcs. As

before, in this example the atomic player uses strategy LP.
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replacements
Instance

11

1 + 3f

2f

1

f

Atomic Flow x

1/3 − .1

.1

.1

0

Nonatomic Flow y

1/12

7/12

0

7/12

Optimal Flow fopt

.4

.6

.1

.5

Figure 3. Instance for Example 3

Example 4. In a series-parallel network, ya > 0 does not imply that xa + ya 6 fwe

a .

Proof. Consider the series-parallel network depicted in Figure 4, where the total demand is 1.1 and atomic

player controls d = .45 while the nonatomic players control the rest. In the Stackelberg game, the lower left

arc is used more than in a Wardrop equilibrium. ¤

Instance

.9 + f

.1f

1

f

Atomic Flow x

0

.45

.45

0

Nonatomic Flow y

0

.65

0

.65

Wardrop Equilibrium fwe

.148

.952

0

.952

Figure 4. Instance for Example 4

Example 5. In a series-parallel network, the set of arcs used by a Wardrop equilibrium and by a system

optimum may not be included one inside the other.

Proof. One inclusion follows easily from, e.g., Pigou’s network: the system optimum uses both arcs while the

equilibrium uses only one (see Roughgarden and Tardos 2002). Let us show that the opposite may happen.

Consider the series-parallel network depicted in the graph on the left of Figure 5, where the total demand is

1.01. As can be seen in the picture, the Wardrop equilibrium uses all arcs while the system optimum does

not use the lower right arc. ¤

Instance

2 + .1f

f

f2

1

Optimal Flow fopt

.445

.565

.565

0

Wardrop Equilibrium fwe

.009

1.001

1

.001

Figure 5. Instance for Example 5

Let us now derive bounds for the cost of paths used by the atomic and nontoamic players. The following

results will allow us to bound the inefficiency of a Stackelberg equilibrium.
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Lemma 1. Assume that the atomic player uses strategy LP. If the nonatomic players carry flow along path

P (yP > 0), then cP (x + y) 6 C(fopt)/d.

Proof. Let P y be a path such that yP y > 0. First we will prove that there is a path P ∗ such that xa+ya 6 fopt

a

and xa < fopt

a for all a ∈ P ∗. We proceed as in Proposition 4 by letting S be the connected component

from s that includes forward arcs such that xa + ya 6 fopt

a and xa < fopt

a , and backward arcs such that

xa + ya > fopt

a . To get a contradiction, let us assume that t 6∈ S. Hence, S is a cut and its forward arcs

satisfy that xa + ya > fopt

a or xa > fopt

a , and its backward arcs satisfy xa + ya < fopt

a . As the total flow

across the cut for x + y and fopt has to be the same, all forward arcs much satisfy that xa = fopt

a and

ya = 0 and there cannot be backward arcs. This is a contradiction and therefore, using that the graph is

series-parallel, there must be a path P ∗ with the desired property. Because y is at equilibrium and carries

flow along P y,
∑

a∈P y ca(xa + ya) 6
∑

a∈P∗ ca(xa + ya). By the monotonicity of c(·), the latter is bounded

by
∑

a∈P∗ ca(fopt

a ). As x is a maximizer of the LP displayed in (3), the fact that P ∗ is not saturated implies

that it is shortest with respect to ca(fopt

a ) among those used by x (i.e.,
∑

a∈P∗ ca(fopt) 6
∑

a∈Q ca(fopt) for

any path Q such that xQ > 0).

Note that the cost C(fopt) =
∑

P∈P:fopt
P >0 fopt

P cP (fopt) can be viewed as the average cost of paths used by

the flow fopt. Markov’s inequality1 implies that there cannot be more than a fraction d of the paths with

cost above C(fopt)/d. Hence, the cheapest path used by flow x has cost at most C(fopt)/d, implying that

cP∗(fopt) 6 C(fopt)/d and completing the proof. ¤

Lemma 2. Assume that the atomic player uses strategy LP. If the atomic player carries flow along path P

(xP > 0), then cP (x + y) 6 2cP (fopt).

Proof. Let P x be a path such that xa > 0 for all a ∈ P x (i.e., there is a flow decomposition for which

xP x > 0). Let P s = {a ∈ P x : xa + ya 6 fopt

a } and P l = {a ∈ P x : xa + ya > fopt

a }, so that P x = P s ∪ P l

and cP x(x + y) =
∑

a∈P s ca(xa + ya) +
∑

a∈P l ca(xa + ya). By monotonicity of c(·),
∑

a∈P s ca(xa + ya) 6
∑

a∈P x ca(fopt

a ). We will complete the proof by showing that
∑

a∈P l ca(xa + ya) is bounded by the same

expression. Note that by the choice of x, ya > 0 for all a ∈ P l. As the network is series-parallel, there is a

path P y such that P y ⊃ P l and ya > 0 for all a ∈ P y (otherwise there are two edges e and e′ in P l such

that no path from e to e′ has y-flow, which would imply that the network cannot be series-parallel). Using

the argument in the proof of Lemma 1, we get that
∑

a∈P l

ca(xa + ya) 6
∑

a∈P y

ca(xa + ya) 6
∑

a∈P x

ca(fopt

a ).

On the other hand, by Prop. 4 there is a path P ′′ such that xa + ya < fopt

a for all a ∈ P ′′. As y is at

equilibrium and routes flow along P ′,
∑

a∈BP

ca(xa + ya) 6
∑

a∈P ′

ca(xa + ya) 6
∑

a∈P ′′

ca(xa + ya) 6
∑

a∈P ′′

ca(fopt

a ).

To conclude, we prove that
∑

a∈P ′′ ca(fopt

a ) 6
∑

a∈P ca(fopt

a ). This holds since otherwise we can define:

x̃ = x + ε(eP ′′ − eP ),

1Markov’s inequality says that if X is a RV with positive support, then P (X > zE(X)) 6 1/z.
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where eA is the indicator vector of path A. Therefore x̃ is feasible strategy for the Stackelberg player since

xa > 0 for all a ∈ P and xa < fopt

a for all a ∈ P ′′. This is a contradiction because the objective value of x̃ is

larger than that of x. ¤

The previous two lemmas can be used to bound the price of anarchy. The bound we present below generalizes

that of Proposition 3 to series-parallel networks, losing only an additive factor of 1.

Theorem 1. Assume that we have a Stackelberg game on a series-parallel network and the atomic player

uses strategy LP. Then, the price of anarchy is bounded by 1 + 1
d
.

Proof. Lemma 1 implies that Cy(x + y) =
∑

P∈P
yP cP (x + y) 6 (C(fopt)/d)

∑

P∈P
yP = (1/d − 1)C(fopt),

and Lemma 2 implies that Cx(x+ y) =
∑

P∈P
xP cP (x+ y) 6 2

∑

P∈P
fopt

P cP (fopt) 6 2C(fopt). Putting the

two together, we get that C(x + y) 6 (1 + 1/d)C(fopt). ¤

The following result proves bounds on the cost of the solution resulting from the leader playing strategy LP.

Building on earlier results on the inefficiency of Wardrop equilibria, they can be used to prove that the price

of anarchy is not bounded.

Theorem 2. Assume that we have a Stackelberg game on a series-parallel network and the atomic player uses

strategy LP. Then, we have that (i) C(x+y) 6 2C(fopt)+(1−d)C(fwe), and (ii) C(x+y) 6 C(fopt)+C(fwe).

Proof. To see (i) it is enough to use Proposition 5 instead of Lemma 1, in the proof of the last theorem. Let

us prove (ii). To this end we first go back to the proof of Lemma 2 where we implicitly showed that
∑

P∈P

xP cP (x + y) 6
∑

P∈P

fopt

P cP (fopt) + dLy,

where Ly is the cost of a path P y such that yP y > 0. As y is at equilibrium, all paths used by y have equal

cost, implying that Ly = Cy(x + y)/(1 − d). Hence,

∑

P∈P

(xP + yP )cP (x + y) 6
∑

P∈P

fopt

P cP (fopt) + dLy +
∑

P∈P

yP cP (x + y)

= C(fopt) + Ly = C(fopt) + Cy(x + y)/(1 − d) 6 C(fopt) + C(fwe),

where the last inequality follows from Proposition 5. ¤

5. Conclusions

In the context of network competition with atomic players, we have presented positive and negative results

related to certain heuristics for an atomic player that competes against many small firms that do not control

prices. We have proved that as long as it routes less flow in all arcs than in an optimal solution, the worst-

case inefficiency is not going to be too bad. Moreover, we have extended earlier results from parallel-link

networks to series-parallel ones. Indeed, we have proved that the maximum inefficiency of a heuristic that

directs the atomic player to select the resources that are less likely to be used by the nonatomic players is

not high either.

Although the complexity of the problem that the leader has to solve is still unknown, in practice the problem

is a mathematical program with equilibrium constraints (MPEC). If the leader wants to compute the optimal
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strategy for a particular instance, there are relatively standard optimization techniques to solve this problem.

For a background on MPECs and solution methods, we refer the interested reader to the book by Luo, Pang,

and Ralph (1996).
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