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Abstract

A typical goal for a gambler facing an online selection problem is to choose the
best element, particularly in comparison to the best hindsight-optimal selection.
This objective is nontrivial when there is high competition for top elements. For
example, highly skilled job candidates are often recruited by top companies, leav-
ing less competitive companies with the remaining candidates. This phenomenon
introduces nontrivial correlations among the remaining candidates; hence, a gam-
bler facing this problem with misaligned beliefs might act sub optimally if she
expects a top element to still be available for selection. Motivated by these con-
siderations, we introduce the residual prophet inequality (k-RPI) problem. In the
k-RPI problem, we consider a finite sequence of n nonnegative independent ran-
dom values with known distributions and a known integer 0 ≤ k ≤ n − 1.
Before the gambler observes the sequence, the top k values are removed from
the sequence whereas the remaining n − k values are streamed sequentially to
the gambler. Upon observing a value, the gambler must decide irrevocably if to
accept/reject a value without the possibility of revisiting past values. We study
two variants of k-RPI, according to whether the gambler learns online of the
identity of the variable that he sees (FI model) or not (NI model). Our main
result is a randomized algorithm in the FI model with competitive ratio of at least
1/(k + 2), which we show is tight. Our algorithm is data-driven and requires
access only to the k + 1 largest values of a single sample from the n input dis-
tributions. In the NI model, we provide a similar algorithm that guarantees a
competitive ratio of 1/(2k+2). We further analyze independent and identically
distributed instances when k = 1. We build a single-threshold algorithm with a
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competitive ratio of at least 0.4901, and show that no single-threshold strategy
can get a competitive ratio greater than 0.5464.

Keywords: Prophet inequalities, Competitive ratio, Online algorithms

1 Introduction

The prophet inequality is a classical model in optimal stopping theory [1–3]. In its
simplest form, a finite sequence of n independent and nonnegative random variables
X1, . . . , Xn is observed sequentially by a gambler. Upon observing the i-th value Xi,
the gambler has to irrevocably accept the value and stop the process or reject the value
and observe the next value in the sequence, if any. The gambler’s goal is to devise
an online algorithm that maximizes the expected accepted value. The quality of an
algorithm is measured by means of the competitive ratio which is the fraction between
the expected value obtained by the algorithm and the expected optimal offline value
E(maxi Xi), the so-called prophet value. The competitive ratio measures the price paid
by the gambler who does not know the entire sequence of values upfront. Surprisingly,
[3], showed that a simple single-threshold rule guarantees a competitive ratio of at
least 1/2 and this is tight. Prophet inequalities have received renewed attention due
to their applicability in posted price mechanisms and auction theory [4–6] and have
become a cornerstone modeling tool for online algorithms in Bayesian scenarios and
resource allocation [7–9].

In this work we introduce the residual prophet inequality (k-RPI) problem: For a
fixed integer 0 ≤ k ≤ n− 1, the k variables corresponding to the top k realizations in
the sequence X1, . . . , Xn are removed before the gambler observes the sequence. The
gambler’s goal is to maximize the expected accepted value among the remaining n−k
variables. Since some variables have been removed and the gambler will only observe
the remaining ones, two different models can be considered, depending on whether the
gambler knows the identity of the observed variable at each time or not:

Full-information (FI) In this version, the gambler observes the n−k variables sequen-
tially and upon observing a value, he also observes the identity of the variable.

No-information (NI) In this version, the gambler only observes the n − k remaining
values after removing the largest k values.

Algorithms designed for NI k-RPI imply algorithms for FI k-RPI. Regardless of the
information model (FI or NI), the gambler can only hope to accept a value comparable
to the expectation of the largest value of the n − k non-removed values. This is the
same as the expectation of the (k + 1)-th largest value in the original sequence of n
values, that is, the expectation of the (k + 1) order statistics E(X(k+1)).

1

Given an information model, the competitive ratio of an algorithm for k-RPI is the
ratio between the expected value of the algorithm and E(X(k+1)). Hence, a competitive

1We assume that the order statistic of the variables X1, . . . , Xn are ordered as X(1) ≥ · · · ≥ X(n). Note
that this ordering is the reverse of the convention commonly used in the literature.
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ratio of γ for NI k-RPI implies a competitive ratio of γ for FI k-RPI. Likewise, hard
instances for FI k-RPI imply hard instances for the less informative model NI.

The k-RPI problem can be regarded as a robust version of the classical prophet
inequality problem (case k = 0), where high values are impossible to obtain due
to exogenous factors. The k-RPI problem is very general and naturally relates to
problems such as the postdoc problem [10, 11], which have applications in hiring
problems [12–14]. Specifically, one could imagine a gambler attempting to hire an
employee in a highly competitive market where the top candidates are hired by leading
companies, leaving the gambler to select the best applicant from the remaining pool
(see also, [15]). Another related application is in advertising. Several platforms (e.g.,
YouTube, Spotify, Canva, Pandora) offer both a free version supported by ads and
a premium version without ads. Essentially, users paying the premium opt out from
observing ads, leaving the platform to focus on advertising the high-value users among
the remaining free users.

In contrast to the classic prophet inequality problem, the observed values in k-RPI
are correlated. The following example demonstrates that correlation plays a signifi-
cant role in k-RPI, rendering the single-threshold solutions from [3, 16] unsuitable for
direct application to k-RPI.

Example 1. Consider the following instance of k-RPI with k = 1, n = 3, X1 = 1
with probability (w.p.) 1 and X2 and X3 both independent and identically distributed
(i.i.d.) taking value 1/ε2 w.p. ε < 1/2, and 0 otherwise.

The quantity E(X(2)) is given by

E(X(2)) = ε2ε−2 + 2ε (1− ε) = 1 + 2ε− 2ε2.

Let us analyze the performance of the strategy with the single-threshold solutions
from [3, 16], that is E(X(2))/2 and the median of X(2). For the former, a case analysis
shows that the gambler gets 0 when X2 = X3 = 0, which happens with probability
(1−ε)2 and gets 1 with the remaining probability. Thus, the gambler gets in expectation:

E(Alg) = 1− (1− ε)
2
= 2ε− ε2,

and therefore, we have
E(Alg)

E(X(2))
=

2ε− ε2

1 + 2ε− 2ε2
<

1

2
.

Moreover, E(Alg)
E(X(2))

= O(ε) and then the gambler cannot guarantee a constant factor

of E(X(2)).
On the other hand, we see that the median of X(2) is 0, so using any threshold

between the median and E(X(2)) will not produce a different result.
In fact, any strategy that accepts value 1 is ineffective because, once the value 1

has been observed, the expectation of the second variable is 1/((2 − ε)ε) ≫ 1. Such a
positive correlation between the two observed variables is what makes classic strategies
fail.
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1.1 Results and technical contributions

The previous example illustrates that correlation plays a major role for k-RPI. The
examples also show that traditional and well-liked thresholds such as the median or the
expectation of X(k+1) can be arbitrarily poor choices. This is contrary to the negative
correlated case where we can guarantee a competitive ratio of 1/2 [17–19], as in the
independent case. Our first contribution is a new algorithmic approach that bypasses
this hardness.

Main Result [Lower bound on competitive ratio]

We show that for the full information model of k-RPI, there exists an algorithm
with a competitive ratio of at least 1/(k + 2). Our algorithm first samples one value
from each input distribution and randomly selects one of the k + 1 largest values in
the sample. It then uses this value and the identities of the arrivals to perform the
online selection. The randomization is independent of the input, and we note that our
algorithm extends the approach of [20] for the classic prophet inequality problem. We
present the details of our algorithm and its analysis in Section 3.

Our algorithmic solution for the FI k-RPI is robust in some key aspects. On one
hand, it works against any arrival order making it highly applicable in online problems.
On the other, by construction, it does not need to know the distributions of each vari-
able, but only requires one sample from each variable. This is particularly important
for applications in posted price mechanisms, where consumer valuation distributions
are typically unknown, and only a limited amount of past sales data is available.

For the no-information model of the k-RPI, we prove that there exists a single-
threshold strategy with a competitive ratio of at least 1/(2k + 2). The idea is similar
to that of the FI k-RPI model, but the algorithm uses only one of the top k + 1
sample values—selected uniformly at random—as the threshold for making the online
selection. The lack of information regarding the identities of the removed variables
leads to a degradation in the competitive guarantee. Nevertheless, this guarantee can
be transferred to the FI k-RPI model, showing that it is possible to achieve a constant-
factor approximation of E(X(k+1)) using a single-threshold strategy.

Next, we prove that our main result for the FI model is tight.

Tightness [Upper bound on competitive ratio]

For any information model of k-RPI, there is no algorithm that has a competitive ratio
larger than 1/(k + 2). To provide this negative result, we construct a hard instance
in the FI k-RPI model; which will imply the negative result for the model with less
information. Our instance extends the hard instance for the classic prophet inequality
problem: it consists of a sequence X1, . . . , X2(k+1) of two-point distributions, where
each Xi ∈ {0, ai}. The values ai are positive and increase rapidly with i, while the
events Xi = ai occur rarely for i larger than k+1. We provide the details in Section 4.

Our hard instance unveils that part of the hardness of the k-RPI problem stems
from the order in which the values are observed by the gambler. For every infor-
mation model of k-RPI, if the gambler observes the values in random order (RO),
then there is an algorithm with a competitive ratio at least 1/e. The algorithm is a
straightforward application of the secretary problem algorithm [21–24] and we defer
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the details to Appendix A. Our last result is an exploration to the independent and
identically distributed (i.i.d.) k-RPI problem where X1, . . . , Xn are drawn from the
same distribution.

Additional result [i.i.d. k-RPI, k = 1]

The previous observation implies that for i.i.d. random variables and arbitrary k, we
can always guarantee a factor 1/e using the classic secretary algorithm. This shows a
stark difference between k-RPI and its i.i.d. counterpart and indeed even for small k
this improves upon our tight factor of 1/(k+2) for k-RPI. Therefore, it is interesting
to explore the gap between the i.i.d. and the independent versions of the problem, even
in the case k = 1. We prove that for both information models of 1-RPI, if the values
X1, . . . , Xn are i.i.d., then there exists an algorithm with a competitive ratio 0.4901.
Our algorithm here is more standard. We propose a single-threshold strategy for NI 1-
RPI which determines the threshold τ via Pr(X ≥ τ) = q, where q is an input quantile.
Our analysis follows a quantile-based approach, expressing both the expected value of
the algorithm and the optimal value E(X(2)) as functions of quantiles. By comparing
their ratio, we derive a lower bound that depends solely on q. Optimizing over q yields
the desired result. We also establish that no single-threshold strategy can achieve a
competitive ratio greater than 0.5464 in any information model. This result shows that
the optimal competitive ratio of 1−1/e for single-threshold strategies [2, 25], attained
when k = 0, cannot be recovered for k ≥ 1. We present the details in Section 5.

1.2 Related Literature

The prophet inequality problem, as introduced by Krengel and Sucheston [1], was
resolved by using a dynamic program that gave a tight approximation ratio of 1/2.
[3] later proved that a single-threshold strategy yields the same guarantee; this also
showed that the order in which the variables are observed is immaterial. The renewed
interest in prophet inequalities is due to their relevance to auctions, specifically posted
priced mechanisms (PPMs) in online sales [26–30]. It was implicitly shown by [27]
and [29] that every prophet-type inequality implies a corresponding approximation
guarantee in a PPM, and the converse is true as well [5].

The closest work to ours is likely that of [20], where the authors used the principle
of deferred decision to prove that a single sample from each distribution is sufficient
to achieve a competitive ratio of 1/2 for the classic prophet inequality. This technique
has also been applied to other optimal stopping problems (see, e.g., [31, 32]).

In essence, after obtaining one sample from each distribution, [20] sets the thresh-
old as the maximum of these samples. Although our proof for the general case is also
based on this principle, the analysis is much more intricate due to the complexity of the
k-RPI problem, which necessitates a more sophisticated algorithm. Specifically, for our
approach to be effective, it is insufficient to simply use a threshold based on the j-th
order statistic of the sample set for some fixed j. Instead, the algorithm first selects j
according to a carefully chosen distribution. Moreover, in the FI model, the algorithm
must discard certain elements based on their identity, even when their values exceed
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the j-th order statistic. Thus, in contrast to Rubinstein’s work, where j is determin-
istically fixed at 1, our approach introduces an additional layer of randomization, and
the j-th order statistic is not exactly used as a threshold in the FI model.

There has been a growing interest in competitive versions of online selection prob-
lems [33–37]. The closest paper in this stream of literature to ours is the one by [33],
where the authors consider a generalization of the prophet inequality problem with
k + 1 gamblers. Gambler j observes the sequence after the first j − 1 gamblers have
gone through the sequence, and they study reward guarantees under single-threshold
strategies. Note that, in our case, we can imagine that there are k+1 gamblers but the
first k gamblers are all-mighty. These k gamblers are not strategic, hence we do not
need a game-theoretic analysis, unlike in the aforementioned papers on competitive
prophet inequalities.

2 Model

For 0 ≤ k ≤ n − 1, an instance of k-RPI is given by a sequence X1, . . . , Xn of
nonnegative independent random variables, where Xi has cumulative density function
(cdf) Fi. Nature removes k variables corresponding to the top k realizations,2 and we
denote by D the corresponding set of indices of the remaining variables. We consider
two information models that determines what the gambler observes sequentially.

In the full information (FI) model, the gambler observes online the pairs (Xi, i)i∈D.
That is, the gambler observes both the value and the index of the random variable
from which the value originates.

In the no information (NI) model, the gambler only observes online the n−k values
in the sequence (Xi)i∈D. In both information models, D is unknown to the gambler
upfront. Given an information model (FI or NI), the gambler wants to implement an
online algorithm ALG that observes the online values according to the information
model and accepts a value. Regardless of the model, and abusing notation, we denote
by ALG the value accepted by the online algorithm. The expected optimal offline
solution corresponds to E (maxi∈D Xi) = E(X(k+1)).

For γ > 0, we say that ALG has a competitive ratio γ if E(ALG) ≥ γ · E(X(k+1))
for any input of k-RPI. For each k, we are interested in finding the largest γk such
that there is an algorithm ALG with competitive ratio γk for k-RPI. Note that for
k = 0, we have γ0 = 1/2 [3]. We note that an algorithm with a competitive ratio γ for
the NI model implies an algorithm with competitive ratio γ for the FI model.

3 Lower bound on competitive ratio

In this section, we prove our main result. We assume that the distributions F1, . . . , Fn

are independent but not necessarily identically distributed.

Theorem 1. For the FI model, there is an algorithm for k-RPI with competitive
ratio at least 1/(k + 2).

2If there are several choices due to ties, Nature randomizes the choice of the k variables.
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Theorem 2. For the NI model, there is a single-threshold algorithm for k-RPI with
competitive ratio at least 1/2(k + 1).

To prove both Theorem 1 and Theorem 2, we employ a randomized strategy. In
the case of Theorem 2, the strategy is, in fact, a randomized threshold strategy. We
highlight here that, as a corollary of Theorem 2, we obtain that in the FI model, there
exists a threshold strategy with a competitive ratio of at least 1

2(k+1) .

To understand the rationale behind the construction of our randomized strategies
to prove Theorem 1 and Theorem 2, let us recall the result obtained by [20] in the
classic prophet inequality setting. By drawing one sample from each distribution and
taking the maximum of them as a threshold, the gambler can guarantee a competitive
ratio of 1/2. A natural adaptation of that algorithm to our setting is to consider as
a threshold the (k + 1)-th maximum of the samples. We denote by MSAk+1 such a
strategy.

Unfortunately, such a strategy does not guarantee any constant competitive ratio.
Indeed, consider again the instance in Example 1 with k = 1.

The expected value of the algorithm MSA2 is:

E(MSA2) = ε2E(MSA2|τ = ε−2) + (1− ε2)E(MSA2|τ ≤ 1)

= ε2 · ε2 · ε−2 + (1− ε2) · [1− (1− ε)2] · 1
= 2ε− 2ε3 + ε4.

Given that E(X(2)) → 1 when ε → 0, we obtain that E(MSA2)/E(X(2)) → 0 as ε
tends to zero.

To tackle this problem and prove the competitive ratios in Theorem 1 and
Theorem 2, we draw one sample si from each distribution Fi, and consider k + 1
algorithms. For the NI model, we analyze single-threshold algorithms, denoted by
MSA1, . . . ,MSAk+1, defined as follows: in algorithm MSAi, for i ∈ {1, . . . , k + 1},
the gambler’s strategy is to set the threshold τ as the i-th largest value in the sample
set, and then select the first observed value xj exceeding τ .

For the FI model, the algorithms differ slightly for i ∈ {1, . . . , k}: they select the
first value exceeding the threshold that does not come from the same distribution
as the sample that defined the threshold. We denote these algorithms by MSAi for
i ∈ {1, . . . , k + 1}. It is worth highlighting that MSAk+1 is identical to MSAk+1.

Note that the algorithms MSAi, for i ∈ {1, . . . , k}, must determine whether the
arriving value originates from the same distribution as the sample used to define the
threshold, and therefore, the knowledge of the identity of each variable is necessary
for the online selection.

A complete analysis of these algorithms is provided in Subsections 3.1 and 3.2,
with some proofs deferred to Appendix B.

By the principle of deferred decision and following the formalism in [20], instead
of considering one sample for each distribution and then looking at the real values in
an online fashion, we can draw two samples from each distribution Fi, namely yi and
zi, and then flip a fair coin to decide which is equal to si and which is equal to xi.
This procedure correctly generates s1, . . . , sn and x1, . . . , xn as independent draws of
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F1, . . . Fn. From now on, we will denote by S the set of samples {s1, . . . , sn} and X
the set of true values {x1, . . . , xn}.

To analyze the performance of the algorithms, we assume that for each i, yi > zi
and we order all these samples in decreasing order, relabeling them as w1, . . . , w2n, so
that w1 ≥ w2 ≥ w3 ≥ · · · ≥ w2n

3. We say that (wl, wl′) is a pair, or that wl is paired
with wl′ , if they originate from the same distribution.

Moreover, for each j ∈ {1, . . . , k+1} we define ξj as the corresponding position of
the j-th value z in the sequence of w′s values. For example, if the first elements of the
w sequence are given by

y3 y5 y1 z5 y8 z8 z3 . . . ,

then ξ1 = 4 and ξ2 = 6. Note that ξj can be also seen as the position at which the
j-th pair (y, z) from the same distribution appears.

In the subsequent analysis, we fix specific realizations of the pairs (yi, zi), which
in turn determine the ξj and the wi.

3.1 Proof of Theorem 1

To show Theorem 1, we consider the k+1 algorithms MSA1, . . . ,MSAk+1 defined in
Section 3, and we use them to define the randomized strategy MSARAND as follows:
(1) before the game starts, select a random number I in {1, . . . , k + 1}, such that for
all i ∈ {1, . . . , k}, I = i with probability 1/(k + 2), and I = k + 1 with probability
2/(k + 2). (2) Play MSAI .

We will prove Theorem 1 by showing that the strategy MSARAND has a compet-
itive ratio 1

k+2 . Before proceeding to the proof of Theorem 1, we need to introduce
some definitions, and two technical lemmas, whose proofs have been deferred to
Appendix B.

Definition 1. Let l ∈ {1, . . . , 2k + 1}. We say that wl is blocked if there exist
r, r′ ∈ {l + 1, . . . , 2k + 1} such that wr′ = yj and wr = zj for some j. We denote by
ml the smallest r that satisfies this property.

For example, if k = 3 and the first 2k+1 = 7 elements of the w sequence are given
by

y3 y5 y1 z5 y8 z8 z1 . . . ,

l = 2 is blocked, since the pairs (y1, z1) and (y8, z8) appear between the 3-rd and 7-th
positions. Moreover, in this case m2 = 6.

The pair (yj , zj) “blocks” wl, in the sense that no matter whether zj = wr is in
X or S, no threshold below wr can guarantee selecting the value wl.

Definition 2. Let l ∈ {1, . . . , 2k + 1} and p such that wp is paired with wl. We say
that wl is ill-paired if p ∈ {l + 1, . . . , 2k + 1}.

3If some values are identical, Nature randomizes their order within the sequence.
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That is, we say that a value wl is ill-paired if it is paired with a value greater
than or equal to w2k+1. For instance, considering the same sequence as before, w2 is
ill-paired since z5 appears before w7.

Definition 3. For each l ∈ {1, . . . , 2k + 1}, we define the parameter δl as follows:

δl =

 2−2k+l−1 if wl is not blocked and not ill-paired
2−2k+l if wl is not blocked and ill-paired
0 otherwise.

Lemma 1. If the gambler plays according to MSAk+1, his expected reward is at least

E(MSAk+1) ≥ 1

2

2k+1∑
l=k+1

P(X(k+1) = wl)wlδl +
1

2

ξk+1∑
l=2(k+1)

P(X(k+1) = wl)wl

Note that E(X(k+1)) is equal to
∑ξk+1

l=k+1 wlP(X(k+1) = wl). Consequently, when

k = 0, Lemma 1 recovers the result from [20] which states that MSA1 gives a 1/2
competitive ratio (δ1 = 1/2 since w1 is neither blocked nor ill-paired). The challenge
when k ≥ 1 arises from the fact that, for k + 1 ≤ l ≤ 2k, the coefficient accompany-
ing the term P(X(k+1) = wl)wl may be smaller than 1/(k + 2). In other words, for
k + 1 ≤ l ≤ 2k the coefficient may be “too small”, while for 2k + 1 ≤ l ≤ ξk+1, it is
“larger than necessary” (equal to 1/2). This imbalance motivates the introduction of
a randomization over the MSAi algorithms: by blending MSAk+1 with MSAi for
i ∈ {1, . . . , k}, we redistribute these coefficients more evenly. To analyze such a ran-
domization, we need first a lower bound on the performance of MSAi, i ∈ {1, . . . , k}.

Lemma 2. The sum of the expected reward of the gambler playing according to MSAi

for i ≤ k, conditional on ξj for j ∈ {1, . . . , k + 1} is at least

k∑
i=1

E(MSAi) ≥
2k+1∑
l=1

P(X(k+1) = wl)wl(1− δl).

The coefficients accompanying the P(X(k+1) = wl)wl in the above inequality are
higher than those in the expression of Lemma 1 for k + 1 ≤ l ≤ 2k, while they are
equal to 0 for l > 2k+ 1. This supports the idea that combining algorithms enables a
redistribution of coefficients. The surprising fact is that there exists a way to combine
the MSAi, i ∈ {1, . . . , k + 1} in a way that all the coefficients are simultaneously
higher than 1/(k+2), yielding the competitive factor of 1/(k+2). We prove this below.

Proof of Theorem 1. Let us consider the strategy for the gambler MSARAND consist-
ing on playing according to MSAi with probability 1/(k + 2), for i ∈ {1, . . . , k}, and
to MSAk+1 with probability 2/(k + 2).
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Then, (k + 2)E(MSARAND) =
∑k

i=1 E(MSAi) + 2E(MSAk+1), and by using
Lemma 1 and Lemma 2, we obtain

(k + 2)E(MSARAND) ≥
2k+1∑
l=1

P(X(k+1) = wl)wl(1− δl)

+ 2

2k+1∑
l=k+1

P(X(k+1) = wl)wl
δl
2
+ 2

ξk+1∑
l=2(k+1)

P(X(k+1) = wl)wl
1

2

=

ξk+1∑
l=k+1

P(X(k+1) = wl)wl = E(X(k+1)),

where the equality holds because P(X(k+1) = wl) = 0 for l < k + 1.
This concludes on the proof of Theorem 1.

3.2 Proof of Theorem 2

In order to prove Theorem 2, we use algorithms MSA1, . . . ,MSAk+1 defined in
Section 3. Then, we define the randomized strategy MSARAND as follows: (1) before
the game starts, select a number I in {1, . . . , k + 1} uniformly at random, that is,
I = i with probability 1/(k + 1). (2) Play MSAI .

Note that, unlike the randomized algorithm we used to prove Theorem 1, here
MSARAND does not need access to the identity of the arriving variables. In the next
proposition, we prove that MSARAND has a competitive ratio of at least 1

2(k+1) .

Proposition 1. The strategy MSARAND has a competitive ratio 1
2(k+1) .

Proposition 1 implies directly Theorem 2. Indeed, MSARAND is a randomization
over single-threshold algorithms. By linearity of expectation, there exists a single-
threshold strategy in the support of MSARAND that performs as well as MSARAND.

We defer the proof of Proposition 1 to Appendix B.

4 Upper bound on competitive ratio

In this section, we prove the tightness of the competitive ratio result for FI k-RPI
presented in Section 3, by providing a parameterized hard distribution for FI k-RPI
showing that no algorithm can have a competitive ratio of γ, with γ > 1/(k + 2) + β
for any β > 0. This leads to a similar result for the lower-information model NI.

Theorem 3. For each β > 0, there exists an instance with 2(k + 1) variables such
that no algorithm has a competitive ratio larger than 1/(k + 2) + β, regardless of the
information model in k-RPI.
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Proof of Theorem 3. Let 0 < ε < 1/(k + 1). Consider the following 2(k + 1) random
variables: Xi =

1

εi−1(k+1
i−1)

for i ∈ {1, . . . , k + 1} and for i ∈ {k + 2, . . . , 2(k + 1)}

Xi =

{
0 w.p. 1− ε,

1/εk+1 w.p. ε.

We now prove that for the instance with these 2(k + 1) random variables, no
strategy of the gambler can attain a competitive ratio larger than 1/(k + 2) +O(ε).

Note that, as ε < (k + 1)−1, it holds Xi < Xi+1 for 1 ≤ i ≤ k. That is, the
deterministic variables arrive in increasing order. Indeed, for i ∈ {1, . . . , k}, Xi > Xi+1

if and only if ε < i
k−i+2 . As i

k−i+2 is increasing in i, it is enough to have ε < (k+1)−1.
Let us compute E(X(k+1)). To this end, note that the (k + 1)-th largest variable

will correspond to Xi with i ≤ k+1 if and only if exactly i−1 variables take the value
1/εk+1 (because the deterministic variables arrive in increasing order with respect to
their value), and it will correspond to a variable Xi with i ≥ k + 2 if and only if all
variables j ≥ k + 2 take the value 1/εk+1.

We define the random variable Y as the number of variables among
Xk+2, . . . , X2(k+1) that take the value 1/εk+1. Then, conditioning on the value of Y ,
we have:

E(X(k+1)) =

k+1∑
j=0

E(Xk+1|Y = j)P(Y = j)

= 1 · (1− ε)k+1 +

k∑
j=1

E(Xk+1|Y = j) · P(Y = j) +
1

εk+1
· εk+1

= (1− ε)k+1 +

k∑
j=1

1

εj
(
k+1
j

) · (k + 1

j

)
· εj · (1− ε)k+1−j + 1

= 1 +

k∑
j=0

(1− ε)k+1−j

Let us now compute the optimal guarantee of the gambler. First, observe that the
gambler should always accept the value 1/εk+1, as it is the highest possible one. Fur-
thermore, since the deterministic values are strictly increasing, if the gambler sees that
a deterministic value has been removed, then all remaining variables—both determin-
istic and non-deterministic—must have either been removed or are equal to zero. In
this case, the gambler receives 0. As a result, the gambler does not gain any useful
information from observing past values, allowing us to restrict to strategies of the fol-
lowing form: (1) stop at time i, for some i ≤ k + 1 (2) stop at the first positive value
appearing after stage k + 2.

Call ALGi the payoff of a strategy of the form (1). Under such a strategy, the
gambler will pick Xi if and only if there are at least i − 1 variables taking a value
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1/εk+1. That is, if Y is greater than or equal to i− 1. Then, under this strategy, the
gambler obtains in expectation

E(ALGi) =

k+1∑
j=i−1

E(ALGi|Y = j)P(Y = j)

=
1

εi−1
(
k+1
i−1

) k+1∑
j=i−1

(
k + 1

j

)
εj(1− ε)k+1−j

= (1− ε)k−i+2 +

k+1∑
j=i

(
k+1
j

)(
k+1
i−1

)εj−i+1(1− ε)k+1−j .

Last, consider strategy (2). This strategy gets a positive payoff if and only if all
variables Xk+2, . . . , X2(k+2) are positive, which happens with probability εk+1. When

this is the case, it gets payoff ε−(k+1). Consequently, (2) guarantees εk+1 ·ε−(k+1) = 1.
It follows that the optimal payoff of the gambler goes to 1 as ε → 0. Moreover, we

have E(X(k+1)) → k + 2 as ε → 0. Consequently, for each β > 0, one can find ε > 0
such that no algorithm achieves a competitive ratio larger than 1/(k + 2) + β in the
corresponding instance. This proves the theorem.

5 I.I.D. Case for k = 1

In this section, we focus on i.i.d. instances where F1 = · · · = Fn in the case of k-RPI
with k = 1. That is, in the sequence X1, . . . , Xn, the maximum value has been
removed. The main result of this section is the following:

Theorem 4. For any information model, there is an algorithm for 1-RPI with a
competitive ratio of at least 0.4901.

For the rest of the section, we assume than Xi are continuous with cdf F (·). Fur-
thermore, following [38], we can also assume that F is strictly increasing and infinitely
differentiable. Since the gambler observes the sequence of n− 1 values, we can assume
that the maximum of the n values occurs in the last position n. Hence, the gambler
faces the problem under the event E = {X1, . . . , Xn−1 < Xn} = {maxi<n Xi < Xn}.
Note that P(E) = 1/n by the continuity of F .

To prove Theorem 4, we provide a fixed-threshold strategy that computes a
threshold based on quantiles q ∈ [0, 1]. That is, given q ∈ [0, 1], the algorithm will
compute u ≥ 0 such that q = P(X ≥ τ) = 1− F (τ), and will accept the first value at
least u in the observed sequence. We denote such an algorithm ALGq. The following
lemma provides a lower bound for a particular choice of quantiles q.
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Lemma 3. Let n ≥ 3. For NI 1-RPI, if ALGq is run with q = α/(n−1) for α ∈ [0, 2],
then,

E(ALGq)

E(X(2))
≥ min

{
1− e−α

α
, 1− e−α(1 + α)

}
,

for any continuous cdf F .
Using this lemma, and by equating (1− e−α)/α = 1− e−α(1 + α), we obtain that

α ≈ 1.64718 and the competitive ratio of fixed-threshold solutions is ≥ 0.4901. We
can also show that no fixed-threshold solution can obtain a competitive ratio better
than 0.5463. We defer this analysis to Appendix C.3.

In the remainder of the section, we provide the details of the proof of Lemma 3.

5.1 Proof of Lemma 3

In this subsection, we provide the lower bound on the competitive ratio of ALGq for
q = α/(n − 1). For notational convenience, we will avoid writing the subscript in
ALG. The algorithm ALG computes the threshold u in advance and accept the first
observed value that surpassed u. Then, the reward of ALG as a function of u is

E(ALG) =

n−2∑
i=0

P(X1, . . . , Xi < u | E)E
[
Xi+11{Xi+1≥u} | X1, . . . , Xi < u,E

]
By analyzing the different involved probabilities, we can find the following character-
ization of E(ALG) as a function of the quantile q:

Proposition 2. If q ∈ [0, 1], then

E(ALG) =

∫ 1

0

r(v)

n−2∑
i=0

n

n− i− 1
(1−q)i

(
min{q, v} −

(
1− (1−min{q, v})n−i

n− i

))
dv,

here r(v) ≥ 0 is such that F−1(1−u) =
∫ 1

u
r(v) dv which exists due to the assumptions

over the cdf F .
The proof of this proposition is technical and deferred to Appendix C.1. Likewise,

we can find an expression for E(X(2)) in terms of r(v) from the Proposition:

E(X(2)) =

∫ 1

0

r(v)P(Binom(n, v) ≥ 2) dv.

Then,

E(ALG)

E(X(2))
≥ inf

v∈[0,1]


∑n−2

i=0
n

n−i−1 (1− q)i
(
min{q, v} −

(
1−(1−min{q,v})n−i

n−i

))
P(Binom(n, v) ≥ 2)


This last bound is instance-independent and only depends on n and q. Let An,q(v)
be the function in the infimum. We study the the infimum of An,q(v) for the regime
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v > q and v < q separately. The following proposition characterizes the behavior of
An,q(v) in both regimes for q = α/(n− 1) and α ≤ 2. We defer the proof of this result
to Appendix C.2.

Proposition 3. For q = α/(n− 1) and α ≤ 2, we have
1. If v > q, then, An,q(v) is decreasing in v;
2. If v ≤ q, then, An,q(v) is increasing in v.
With this proposition, we obtain

E(ALG)

E(X(2))
≥ min

{
inf

v∈[0,q]
{An,q(v)} , inf

v∈[q,1]
{An,q(v)}

}
= min

{
lim
v→0

An,q(v), An,q(1)
}

= min

{
(n− 1)

1− (1− q)n−1

q
, 1− (1− q)n−1(1 + (n+ 1)q)

}
≥ min

{
1− e−α

α
, 1− e−α(1 + α)

}
where in the first equality we use Proposition 3, the second equality follows by a simple
calculation, and in the last inequality we use the standard inequality 1 − x ≤ e−x.
This finishes the proof of Lemma 3 and by setting q = α/(n − 1). This finishes the
proof of the lemma.

6 Conclusion and Final Remarks

In this work, we introduced the residual prophet inequality problem (k-RPI), a new
variant of the classical prophet inequality model where the top k variables are removed
before observation. Our formulation highlights the impact of correlation in sequential
selection problems and demonstrates that classical single-threshold approaches are
insufficient in this setting. We provided a randomized algorithm with a competitive
ratio of 1/(k+2) for the FI model and showed the tightness of this bound. For the NI
model, we give a randomized threshold algorithm with a competitive ratio of 1/(2k+2).
Additionally, we analyzed the i.i.d. case of 1-RPI and proposed an algorithm with a
competitive ratio of at least 0.4901. Furthermore, we proved that no single-threshold
strategy can achieve a competitive ratio greater than 0.5464.

Since this is the first time k-RPI is introduced, our work opens up several promising
directions for future research. One such direction is to investigate whether the 1/(k+2)
competitive ratio can be achieved using a threshold-based strategy. Another natural
avenue is to determine the tight competitive ratio for single-threshold strategies in the
i.i.d. case of 1-RPI, and to explore how these results might extend to k-RPI for k ≥ 2.
One of the limitations of our current analysis is that it relies heavily on being able to
compute probabilities under the condition of the maximum value being removed; these
probabilities become intractable to handle for larger values of k. Naturally, determining
the optimal policy k-RPI or even analyzing multi-thresholds strategies are exciting
future questions, even for k = 1.
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A natural extension is to explore k-RPI under natural combinatorial constraints
such as cardinality or matroid constraints, where the gambler can select multiple values
while satisfying feasibility conditions, as it has been studied for the classical prophet
inequality [16].

The k-RPI problem is very pessimistic as the k largest random variables are
removed from the observed sequence. A more relaxed model would consider probabil-
ities of failure. For example, a possibility could be where the i-th largest variable is
removed with probability pi. This is related to the model by [15, 39, 40] where pi = p
for all i.

Finally, an interesting extension is to study if better competitive ratios for k-RPI
can be obtained when the removed variables are not necessary the largest, and
the gambler has some offline information regarding the variables and/or the values
removed.
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Appendix A Random Order RPI

In this subsection, we justify that in any information model for k-RPI, if the gambler
observes the values in random order, then there is an algorithm that attains a com-
petitive ratio of at least 1/e. The result follows from the following,

Lemma 4. In the NI k-RPI, the secretary problem algorithm guarantees a competitive
ratio of at least 1/e if the values are observed in a random order.

Proof. Let X1, . . . , Xn be the random values and let X(k+1) ≥ · · · ≥ X(n) be the n−k
values observed by the gambler. Applying the secretary problem algorithm, guarantees
that the gambler accepts X(k+1) with probability at least 1/e. From here, the result
follows.

Appendix B Missing Proofs From Section 3

B.1 Proof of Lemma 1

The proof of Lemma 1 is divided into two intermediary results, that we state now.

Lemma 5.

E(MSAk+11τk+1=w2k+2
) ≥

2k+1∑
l=k+1

P(X(k+1) = wl)wl
δl
2
.
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Lemma 6. Assume that 2k + 2 ̸= ξk+1. Then

E(MSAk+11τk+1≤w2k+3
) ≥ 1

2

ξk+1∑
l=2(k+1)

P(X(k+1) = wl)wl.

In the case where 2k + 2 ̸= ξk+1, summing the two inequalities proves Lemma 1.
Assume that 2k + 2 = ξk+1. This means that the elements of {w1, . . . , w2k+2} form
k+1 pairs. Hence, if w2k+2 ∈ S, which happens with probability 1/2, there are exactly
k + 1 elements larger than w2k+2 that are in X. In that case, MSAk+1 picks X(k+1).
It follows that

E(MSAk+1) ≥
1

2
E(X(k+1)).

In particular, Lemma 1 holds. We dedicate one sub-section to each lemma.

B.1.1 Proof of Lemma 5

Lemma 5 is a consequence of the following lemma.

Lemma 7. Let l ∈ {1, . . . , 2k + 1} such that wl is not blocked.
a) If wl is not ill-paired, it holds that

P(MSAk+1 = wl ∩ τk+1 = w2k+2)|X(k+1) = wl) ≥ 2−2k−2+l.

b) If wl is ill-paired, then

P(MSAk+1 = wl ∩ τk+1 = w2k+2|X(k+1) = wl) ≥ 2−2k−1+l

Proof of Lemma 7. a) We claim that when X(k+1) = wl and τk+1 = w2k+2, then

MSAk+1 picks wl. Indeeed, when X(k+1) = wl, there are exactly l−1−k elements
in {w1, . . . , wl−1} that are in S. If, in addition, τk+1 = w2k+2, then there should
be exactly k − (l − 1 − k) = 2k + 1 − l elements of {wl+1, . . . , w2k+1} that are
in S, meaning that they should all be in S. Under these circumstances, wl is the
only element in X that is above τ2k+2 and that is not among the k best values
in X, and is thus selected by MSAk+1. We deduce that

P(
{
MSAk+1 = wl

}
∩ {τk+1 = w2k+2} |X(k+1) = wl)

= P(τk+1 = w2k+2|X(k+1) = wl).

Therefore, it is enough to prove P(τk+1 = w2k+2|X(k+1) = wl) ≥ 2−2k−2+l.
GivenX(k+1) = wl, in order for τk+1 = w2k+2 to hold, it is necessary and sufficient
that all the elements in {wl+1, . . . , w2k+2} belong to S. We claim that this event
occurs with probability greater than 2−2k+l−2. To show that, we use the chain
rule for conditional probability:
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P({wl+1, . . . , w2k+2} ⊂ S|Xk+1 = wl) = P

 2k+2⋂
j=l+1

{wj ∈ S}

∣∣∣∣∣∣X(k+1) = wl


=

2k+2∏
l′=l+1

P

{wl′ ∈ S}|
l′−1⋂

j=l+1

{wj ∈ S}, X(k+1) = wl

 .

In order to establish the desired result, it is sufficient to verify that each factor
in the expression above is lower bounded by 1/2. The proof is therefore divided
into two steps:

Step 1: P(wl+1 ∈ S|X(k+1) = wl) ≥ 1/2.

If wl+1 is paired with an element smaller than wl+1, then the events {wl+1 ∈ S}
and

{
X(k+1) = wl

}
are independent, and therefore

P(wl+1 ∈ S|X(k+1) = wl) = 1/2.

Consider now the case where wl+1 is paired with some wa ≥ wl+1. Since wl is
not ill-paired, we have a ̸= l, and the probability that wl+1 lies in S is equal to the
probability that wa is one of the not-paired elements of {w1, . . . , wl} in X. Note
that the event {X(k+1) = wl} occurs if and only if wl ∈ X and there are exactly
k elements in X that are larger than wl. Therefore, if l ∈ {ξj , . . . , ξj+1 − 1}, then
among the l− 2j not-paired values in {w1, . . . , wl}, k + 1− j belong to X, while
l − k − 1 − j are in S. It follows that the probability of wa being among those
elements in X is higher than 1/2, since k+1− j > l−k−1− j due to l ≤ 2k+1.
We thus conclude that

P(wl+1 ∈ S|Xk+1 = wl) >
1

2
.

Step 2: For each l′ ∈ {l + 2, . . . , 2k + 2},

P

wl′ ∈ S|
l′−1⋂

j=l+1

{wj ∈ S}, X(k+1) = wl

 ≥ 1

2
.

Let wa such that wl′ is paired with wa, and assume that l′ ∈ {ξj +1, . . . , ξj+1}.
That is, there are j pairs that arrived before wl′ . Following the same argument
than in Step 1, if wa < wl′ , we have

P

wl′ ∈ S|
l′−1⋂

j=l+1

{wj ∈ S}, X(k+1) = wl

 =
1

2
.
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On the other hand, wa cannot belong to {wl+1, . . . , wl′−1} because wl is not
blocked.
Finally, let us assume wa ≤ wl. In this case, among the l′ − 1− 2j not-paired

values in {w1, . . . , wl′−1}, k+1−j belong to X, while l′−2−j−k are in S. Then,
it follows that the probability of wa being among those elements in X is higher
than 1/2, since k+1− j > l′−2− j−k due to l′ ≤ 2k+1. We thus conclude that

P

wl′ ∈ S|
l′−1⋂

j=l+1

{wj ∈ S}, X(k+1) = wl

 >
1

2
.

Combining Step 1 and Step 2 yields the result.

b) As in the proof of Case a), we have

P(MSAk+1 = wl ∩ {τk+1 = w2k+2} |X(k+1) = wl) = P(τk+1 = w2k+2|X(k+1) = wl),

and to obtain the result it is enough to show that

P(τk+1 = w2k+2|X(k+1) = wl) ≥ 2−2k−1+l. (B1)

Given that X(k+1) = wl, we know that wp is in S, since (wp, wl) is a pair. Then,
in order to get τk+1 = w2k+2, it is necessary and sufficient that all the elements
in {wl+1, . . . , w2k+2} \ {p} belong to S. This happens with probability at least
2−2k−1+l, by the same argument as in the proof of Case a). This proves (B1),
and the result follows.

B.1.2 Proof of Lemma 6

First, we decompose the left-hand-side term in Lemma 5 as follows:

E(MSAk+11τk+1≤w2k+3
) =

ξk+1∑
l=2k+3

E(MSAk+1|τk+1 = wl)P(τk+1 = wl)

Since each wl, for l ≥ 1, is equally likely to be in S or in X, the law of τk+1 is identical
to the law of X(k+1). We deduce that for all l ≥ 1, P(τk+1 = wl) = P(X(k+1) = wl).
Secondly, when τk+1 = wl, there are l−k−1 ≥ k+1 elements above wl that are in X.
Hence, MSAk+1 will pick one of them, and we deduce that E(MSAk+1|τk+1 = wl) ≥
wl−1. These two observations give

E(MSAk+11τk+1≤w2k+3
) ≥

ξk+1∑
l=2k+3

wl−1P(Xk+1 = wl)
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=

ξk+1−1∑
l=2(k+1)

wlP(X(k+1) = wl+1) (B2)

One of the main differences between the above inequality and the one we want to
prove in Lemma 6 is that the term inside the sum is P(X(k+1) = wl+1) instead of
P(X(k+1) = wl). In the sequel, we relate these two quantities. First, we compute
P(X(k+1) = wl).

Lemma 8. The probability distribution of X(k+1) is given by

P(X(k+1) = wl) =


(
l−1−2j
k−j

)
2l−2j

if l ∈ {ξj + 1, . . . , ξj+1 − 1}, for j ∈ {0, . . . , k}(
ξj−2j
k+1−j

)
2ξj−2j+1

if l = ξj , for j ∈ {1, . . . , k + 1}.

Proof of Lemma 8. We divide the proof into two cases, depending on whether l = ξj
for some j ∈ {0, . . . , k + 1} or not.

Case 1: Suppose that l ∈ {ξj + 1, . . . , ξj+1 − 1} for some j ∈ {0, . . . , k}. Note that
X(k+1) = wl if and only if wl ∈ X and there are exactly k values in X that are larger
than wl.

Since l ∈ {ξj + 1, . . . , ξj+1 − 1}, we have, conditioned on wl ∈ X, that there are
j+1 values in X and j in S with probability 1. Therefore, the probability that exactly
k values in X are among the l − 1 largest values is given by(

l − 2j − 1

k − j

)
1

2l−2j−1
.

On the other hand, P(wl ∈ X) = 1/2, and thus we conclude that in this case,

P(X(k+1) = wl) =

(
l − 2j − 1

k − j

)
1

2l−2j
. (B3)

Case 2: Suppose that l = ξj for some j ∈ {1, . . . , k + 1}. The analysis in this case
is similar to that of Case 1. However, the probability of having exactly k values in X
greater than wl is now given by (

l − 2j

k − (j − 1)

)
1

2l−2j
.

In effect, conditioned on wl ∈ X, there are j − 1 values in X greater than wl

and j values greater than wl in S, with probability one. Thus, we need to compute
the probability that exactly k − (j − 1) additional values in X come from the l − 2j
remaining elements. This probability is given by the expression above.
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Therefore, in this case,

P(X(k+1) = wl) =

(
l − 2j

k − (j − 1)

)
1

2l−2j+1
(B4)

Combining (B3) and (B4), we obtain the desired result.

We now use the previous lemma to lower bound P(X(k+1) = wl+1) in terms of
P(X(k+1) = wl). As suggested by the expression in Lemma 8, we will need to distin-
guish between the cases where l and l + 1 are some ξj or not.

Lemma 9. a) Let j ∈ {0, . . . , k} and l ∈ {ξj + 1, . . . , ξj+1 − 1}.

P(X(k+1) = wl+1) ≥


1

2
P(X(k+1) = wl) if l + 1 ∈ {ξj + 1, . . . , ξj+1 − 1}

P(X(k+1) = wl) if l + 1 = ξj+1.

b) Assume that 2k + 2 = ξj, for some j ∈ {1, . . . , k}. Then

P(X(k+1) = w2k+3) ≥


1

2
P(X(k+1) = w2k+2) if 2k + 3 ̸= ξj+1

P(X(k+1) = w2k+2) if 2k + 3 = ξj+1.

Proof of Lemma 9. a) Assume l + 1 ∈ {ξj + 1, . . . , ξj+1 − 1}. We have

P(X(k+1) = wl+1) =

(
l−2j
k−j

)
2l+1−2j

≥ 1

2
·
(
l−1−2j
k−j

)
2l−2j

=
1

2
· P(X(k+1) = wl)

Assume that l + 1 = ξj+1. We have

P(X(k+1) = wl+1) =

(
ξj+1−2j−2

k−j

)
2ξj+1−2j−1

= P(X(k+1) = wl)

b) Assume that 2k + 3 ̸= ξj+1. We have

P(X(k+1) = w2k+3) =

(
2k+2−2j

k−j

)
22k+3−2j

=

(
k + 1− j

k + 2− j

) (2k+2−2j
k+1−j

)
22k+3−2j
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≥ 1

2
P(X(k+1) = w2k+2)

Assume that 2k + 3 = ξj+1. We have

P(X(k+1) = w2k+3) =

(
2k+1−2j

k−j

)
22k+2−2j

=

1
2

(
2k+2−2j
k+1−j

)
22k+2−2j

= P(X(k+1) = w2k+2)

We are now ready to prove Lemma 6.

Proof of Lemma 6. By inequality (B2), it is enough to prove that

ξk+1−1∑
l=2(k+1)

wlP(X(k+1) = wl+1) ≥
1

2

ξk+1∑
l=2k+2

wlP(X(k+1) = wl).

Case 1. 2k + 3 = ξj , for some j ∈ {1, . . . , k}.
By Lemma 9 b), we have

P(X(k+1) = w2k+3) ≥
1

2
P(X(k+1) = w2k+2) +

1

2
P(X(k+1) = w2k+3) (B5)

We deduce that

ξk+1−1∑
l=2(k+1)

wlP(X(k+1) = wl+1) = w2k+2P(X(k+1) = w2k+3) +

ξk+1−1∑
l=2k+3

wlP(X(k+1) = wl+1)

≥ 1

2
w2k+2P(X(k+1) = w2k+2) +

1

2
w2k+3P(X(k+1) = w2k+3)

+

ξk+1−1∑
l=2k+3

wl+1P(X(k+1) = wl+1)

≥ 1

2

ξk+1∑
l=2k+2

wlP(X(k+1) = wl),

where in the second-to-last inequality, we used (B5) and the fact that w2k+2 ≥ w2k+3

and wl ≥ wl+1.

Case 2. 2k + 3 ∈ {ξj + 1, . . . , ξj+1 − 1} for some j ∈ {0, . . . , k}.
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The sum
∑ξk+1−1

l=2k+2 wlP(X(k+1) = wl+1) can be decomposed as

ξj+1−2∑
l=2k+2

wlP(X(k+1) = wl+1) +wξj+1−1P(X(k+1) = wξj+1) +

ξk+1−1∑
l=ξj+1

wlP(X(k+1) = wl+1).

By using Lemma 9 and the fact that wl ≥ wl+1, we can lower bound the expression
above by

1

2

ξj+1−2∑
l=2k+2

wlP(X(k+1) = wl)+wξj+1−1P(X(k+1) = wξj+1−1)+

ξk+1−1∑
l=ξj+1

wl+1P(X(k+1) = wl+1),

which is at least

1

2

ξk+1∑
l=2k+2

wlP(X(k+1) = wl),

as we wanted to see.

B.2 Proof of Lemma 2

Before proving Lemma 2, we introduce one technical lemma that gives a lower bound
for the probability of MSAi picking a value wl conditional on wl being the (k + 1)-
largest value in the set X.

Lemma 10. Let l ∈ {1, . . . , 2k + 1}.
a) If wl is not blocked and not ill-paired, for all i ∈ {l − k, . . . , k} it holds

P(MSAi = wl|X(k+1) = wl) ≥ 2−k−i+l−1.

b) If wl is blocked, and that either wl is not ill-paired, or it is ill-paired and ml < p,
we have

P(MSAi = wl|X(k+1) = wl) ≥

2−k−i+l−1 if i ∈ {l − k, . . . ,ml − k − 3},

2−k−i+l if i = ml − k − 2.

c) If wl is not blocked and ill-paired. Then,

P(MSAi = wl|X(k+1) = wl) ≥

2−k−i+l−1 if i ∈ {l − k, . . . , p− k − 2},

2−k−i+l if i ∈ {p− k, . . . , k}.
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d) If wl is blocked and ill-paired, and that ml > p. Then,

P(MSAi = wl|X(k+1) = wl) ≥


2−k−i+l−1 if i ∈ {l − k, . . . , p− k − 2},

2−k−i+l if i ∈ {p− k, . . . ,ml − k − 3},

2−k−i+l+1 if i = ml − k − 2.

Proof of Lemma 10. Let l ∈ {1, . . . , 2k + 1}.
a) The proof is very similar to the one of Lemma 7 a), up to replacing k+1 by i. For

sake of completeness, we draw the main lines. Take i ∈ {l − k, . . . , k}. We want
to analyze P(MSAi = wl|X(k+1) = wl). First, note that since l is not ill-paired,
wl is not paired with wk+i+1. Then,

P(MSAi = wl|X(k+1) = wl) ≥ P(
{
MSAi = wl

}
∩ {τi = wk+i+1} |X(k+1) = wl)

= P(τi = wk+i+1|X(k+1) = wl),

where the equality stems from the fact that, when X(k+1) = wl and τi = wk+i+1,

all the elements in {wl+1, . . . , wk+i} must be in S, and then MSAi picks wl,
because it is not paired with the threshold τi.
Therefore, it is enough to prove that P(τi = wk+i+1|X(k+1) = wl) ≥ 2−k−i+l−1.

Given X(k+1) = wl, in order for τi = wk+i+1 to hold, it is necessary and sufficient
that all the elements in {wl+1, . . . , wk+i+1} belong to S. This event occurs with
probability greater than 2−k−i+l−1, by a similar computation as in the proof of
Lemma 7 a).

b) Take i ∈ {l − k, . . . ,ml − k − 3}. In this case, k + i + 1 < ml, hence the pair
that blocks wl is smaller than wk+i+1. Moreover, since either wl is not ill-paired
or ml < p, wl is not paired with wk+i+1. We can therefore replicate the same
computations as in a), and thus obtain the claimed inequality.

If i = ml − k − 2, we can replicate the same computations as in a) too, which
yields:

P(MSAi = wl ∩ {τi = wk+i+1} |X(k+1) = wl) ≥ 2−k−i+l−1.

To obtain the desired lower bound, we will consider in addition the case where
τi = wml

. Indeed, whenever X(k+1) = wl and τi = wml
, the only element in

X that is below wl and above the threshold τi is wml
’s pair, namely wm′ . By

definition of MSAi, such an element is not selected, and therefore MSAi selects
wl. We deduce that

P(
{
MSAi = wl

}
∩ {τi = wml

} |X(k+1) = wl) = P(τi = wml
|X(k+1) = wl)

Knowing X(k+1) = wl, in order to get τi = wml
= wk+i+2, it is necessary and

sufficient that all the elements in {wl+1, . . . , wk+i+2} \ {m′} belong to S, which
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happens with probability higher than 2−k−i+l−1, by a similar computation as in
the proof of Lemma 7 a). Then, we have

P(MSAi = wl ∩ {τi = wk+i+2} |X(k+1) = wl) ≥ 2−k−i+l−1.

We conclude that

P(MSAi = wl|Xk+1 = wl) ≥ P(MSAi = wl ∩ {τi = wk+i+2} |X(k+1) = wl)

+ P(MSAi = wl ∩ {τi = wk+i+1} |X(k+1) = wl)

≥ 2−k−i+l,

which is the desired result.

c) If i ∈ {l − k, . . . , p− k − 2}, the argument proceeds as in part a).
Take i ∈ {p− k, . . . , k}. In this case, k + i + 1 > p, and then wl is not paired

with wk+i+1. We therefore have

P(MSAi = wl|X(k+1) = wl) ≥ P(MSAi = wl ∩ {τi = wk+i+1} |X(k+1) = wl)

= P(τi = wk+i+1|X(k+1) = wl),

and to obtain the result it is enough to show that

P(τi = wk+i+1|X(k+1) = wl) ≥ 2−k−i+l.

Given that X(k+1) = wl, we know that wp is in S, since (wp, wl) is a pair. Then,
in order to get τi = wk+i+1, it is necessary and sufficient that all the elements
in {wl+1, . . . , wk+i+1} \ {p} belong to S, which happens with probability at least
2−k−i+l, by a similar computation as in the proof of Lemma 7 a). We deduce that

P(MSAi = wl|X(k+1) = wl) ≥ 2−k−i+l,

which is what we wanted to show.

d) The first two cases can be proved as in a) and c). Let i = ml − k − 2; that is
k + i+ 2 = ml. We call wm′ to the pair of wml

.
First, we can replicate the computations of Case c), and obtain:

P(MSAi = wl ∩ {τi = wk+i+1} |X(k+1) = wl) ≥ 2−k−i+l.

As in Case b), in order to obtain the claimed bound of the lemma, we need to
consider the event {τi = wk+i+2}. We have

P(MSAi = wl|X(k+1) = wl) ≥ P(MSAi = wl ∩ {τi = wk+i+2} |X(k+1) = wl)

= P(τi = wk+i+2|X(k+1) = wl),
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where the equality stems from the fact that, when X(k+1) = wl and τi = wk+i+2,

all the elements in {wl+1, . . . , wk+i+1} \ {wm′} must be in S and then MSAi

picks wl, because wl is not paired with wk+i+2. Since wl and wp are paired, given
that X(k+1) = wl, we have that wp lies in S. Moreover, since wk+i+2 and wm′

are paired, if wk+i+2 lies in S, then wm′ lies in X. Hence, in order to get τi =
wk+i+2, it is necessary and sufficient that all the elements in {wl+1, . . . , wk+i+2}\
{wm′ , wp} belong to S, which happens with probability at least 2−k−i+l, by a
similar computation as in the proof of Lemma 7 a). We deduce that

P(MSAi = wl ∩ {τi = wk+i+2} |X(k+1) = wl) ≥ 2−k−i+l.

We conclude that

P(MSAi = wl|X(k+1) = wl) ≥ P(MSAi = wl ∩ {τi = wk+i+2} |X(k+1) = wl)

+ P(MSAi = wl ∩ {τi = wk+i+1} |X(k+1) = wl)

≥ 2−k−i+l+1.

Proof of Lema 2. Note that

k∑
i=1

E(MSAi) ≥
k∑

i=1

2k+1∑
l=1

P(MSAi = wl|X(k+1) = wl)wlP(X(k+1) = wl)

=

2k+1∑
l=1

wlP(X(k+1) = wl)

k∑
i=1

P(MSAi = wl|X(k+1) = wl).

In the remainder of the proof we show that for each l ∈ {1, . . . , 2k + 1},

k∑
i=1

P(MSAi = wl|X(k+1) = wl) = 1− δl,

where

δl =

 2−2k+l−1 if wl is not blocked and not ill-paired
2−2k+l if wl is not blocked and ill-paired
0 otherwise.

Case 1. wl is not blocked and not ill-paired.
In this case, by Lemma 10

k∑
i=1

P(MSAi = wl|X(k+1) = wl) =

k∑
i=l−k

2−k−i+l−1 = 1− 2−2k+l−1.
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Case 2. wl is not blocked and ill-paired.

k∑
i=1

P(MSAi = wl|X(k+1) = wl) =

p−k−2∑
i=l−k

2−k−i+l−1 +

k∑
i=p−k

2−k−i+l = 1− 2−2k+l.

Case 3. wl is blocked, and that either wl is not ill-paired, or it is ill-paired and ml < p.
In this case,

k∑
i=1

P(MSAi = wl|X(k+1) = wl) =

ml−k−3∑
i=l−k

2−k−i+l−1 + 2l−ml+2 = 1.

Case 4. wl is blocked and ill-paired, and that ml > p. In this case,

k∑
i=1

P(MSAi = wl|X(k+1) = wl) =

p−k−2∑
i=l−k

2−k−i+l−1+

ml−k−3∑
i=p−k

2−k−i+l+2−ml+l+3 = 1.

Putting everything together, we obtain the desired result.

B.3 Proof of Proposition 1

We want to prove that E(MSARAND) ≥ 1
2(k+1)E(X(k+1)).

First, note that

(k + 1)E(MSARAND) =

k+1∑
i=1

E(MSAi)

=

k∑
i=1

E(MSAi|X(k+1) = wk+i)P(X(k+1) = wk+i) + E(MSAk+1).

Now, using that for each i ∈ {1, . . . , k}

E(MSAi|X(k+1) = wk+i) ≥ wk+iP(MSAi = wk+i|X(k+1) = wk+i),

we have that (k + 1)E(MSARAND) is at least

k∑
i=1

wk+iP(MSAi = wk+i|X(k+1) = wk+i)P(X(k+1) = wk+i) + E(MSAk+1).
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In the remainder of the proof we bound P(MSAi = wk+i|X(k+1) = wk+i) for each
i ∈ {1, . . . , k}, and E(MSAk+1).

Step 1. For each i ∈ {1, . . . , k},

P(MSAi = wk+i|X(k+1) = wk+i) ≥ 1/2.

On one hand,

P(MSAi = wk+i|X(k+1) = wk+i) ≥ P({MSAi = wk+i} ∩ {τi = wk+i+1} |X(k+1) = wk+i)

= P(τi = wk+i+1|X(k+1) = wk+i),

where the equality stems from the fact that, when X(k+1) = wk+i and τi = wk+i+1,
MSAi picks wk+i.

On the other hand, it is easy to see that P(τi = wk+i+1|X(k+1) = wl) is 1 if wk+i

and wk+i+1 are paired, and 1/2, otherwise.
Therefore, we obtain P(τi = wk+i+1|X(k+1) = wl) ≥ 2−1, and the first step is

completed.

Step 2. E(MSAk+1) ≥ 1/2
∑ξk+1

l=2k+1 wlP(X(k+1) = wl).

If 2k + 2 = ξk+1, the elements of {w1, . . . , w2k+2} form k + 1 pairs. Hence, if
w2k+2 ∈ S, which happens with probability 1/2, there are exactly k+1 elements larger
than w2k+2 that are in X. In that case, MSAk+1 picks X(k+1). It follows that

E(MSAk+1) ≥
1

2
E(X(k+1)) ≥

1

2

ξk+1∑
l=2k+1

wlP(X(k+1) = wl).

If 2k + 2 ̸= ξk+1,

E(MSAk+1) = E(MSAk+11τk+1=w2k+2
) + E(MSAk+11τk+1≤w2k+3

).

By Lemma 5,

E(MSAk+11τk+1=w2k+2
) ≥ P(X(k+1) = w2k+1)w2k+1

δ2k+1

2
,

where δ2k+1 is equal to 1 since by definition w2k+1 cannot be blocked nor ill-pared.
On the other hand, by Lemma 6, the second term is lower bounded by

1

2

ξk+1∑
l=2(k+1)

P(X(k+1) = wl)wl.

Putting all together, we obtain the step 2.
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Combining Step 1 and Step 2, we conclude that

(k + 1)E(MSARAND) ≥ 1

2

ξk+1∑
l=k+1

wlP(X(k+1) = wl) = E(X(k+1)),

and the proof is completed.

Appendix C Missing Proofs From Section 5

C.1 Proof of Proposition 2

The probability of reaching i + 1 is the same as not observing a value at least u
among the first i trials, which is given by P(X1, . . . , Xi < u | E), while the reward
at i + 1 is the expected value when Xi+1 ≥ u. For the sake of notation, we define
Ei,u = {X1, . . . , Xi < u} for i = 0, . . . , n − 2. We need to compute P(Ei,u | E) and
P(Xi+1 < u′ | Ei,u, E) for u′ ≥ u.

Clearly P(X1 < u, . . . ,Xi < u | E) = 1 for i = 0 so let’s assume that i > 0. Then,

P(Ei,u | E) = n

∫ ∞

0

P(X1, . . . , Xi < u,X1, . . . , Xn−1 < x) dF (x)

= n

∫ u

0

F (x)n−1 dF (x) + n

∫ ∞

u

F (u)iF (x)n−i−1 dF (x)

= F (u)n + nF (u)i
(
1− F (u)n−i

n− i

)
Note that if we assume that 00 = 1, then the formula above also work in the case i = 0.

Now, for u′ ≥ u,

P(Xi+1 < u′ | Ei,u, E) = n
P(Xi+1 < u′, Ei,u, E)

P(Ei,u | E)

we already computed the denominator; hence, we focus on computing the numerator.

nP(Xi+1 < u′, Ei,u, E) = n

∫ ∞

0

P(Xi+1 < u′, X1, . . . , Xi < u,X1, . . . , Xn−1 < x) dF (x)

= n

∫ u

0

F (x)n−1 dF (x) + n

∫ u′

u

F (u)iF (x)n−i−1 dF (x)

+ nF (u)iF (u′)

∫ ∞

u′
F (x)n−i−2 dF (x)

= F (u)n + nF (u)i
(
F (u′)n−i − F (u)n−i

n− i

)
+ nF (u)iF (u)′

(
1− F (u′)n−i−1

n− i− 1

)
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= F (u)n − n

n− i
F (u)n +

n

n− i
F (u)iF (u′)n−i

+
n

n− i− 1
F (u)iF (u′)− n

n− i− 1
F (u)iF (u′)n−i

Then,

d

dx
P(Xi+1 < x | Ei,u, E) = F (u)i

(
n

n− i− 1

)
1− F (x)n−i−1

P(Ei,u | E)

dF

dx
(x)

and

E
[
Xi+11{Xi+1≥u} | Ei,u, E

]
=

1

P(Ei,u | E)
F (u)i

n

n− i− 1

∫ ∞

u

x
(
1− F (x)n−i−1

)
dF (x).

Then,

E(ALG) =

n−2∑
i=0

n

n− i− 1
F (u)i

∫ ∞

u

x
(
1− F (x)n−i−1

)
dF (x)

=

n−2∑
i=0

n

n− i− 1
(1− q)i

∫ q

0

F−1(1− w)(1− (1− w)n−i−1) dw

(Change of variable 1− q = F (u))

=

n−2∑
i=0

n

n− i− 1
(1− q)i

∫ q

0

∫ 1

w

r(v) dv(1− (1− w)n−i−1) dw

(Using that F−1(1− w) is strictly decreasing and differentiable)

=

∫ 1

0

r(v)

n−2∑
i=0

n

n− i− 1
(1− q)i

(
min{q, v} −

(
1− (1−min{q, v})n−i

n− i

))
dv

C.2 Proof of Proposition 3

Proof of Proposition 3. For v > q, we have

An,q(v) =

∑n−2
i=0

n
n−i−1 (1− q)i

(
q −

(
1−(1−q)n−i

n−i

))
P(Binom(n, v) ≥ 2)

=
1− (1− q)n−1(1 + (n− 1)q)

P(Binom(n, v) ≥ 2)

This last function is decreasing in v attaining its minimum at v = 1.
For v ≤ q, we have

An,q(v) =

∑n−2
i=0

n
n−i−1 (1− q)i

(
v −

(
1−(1−v)n−i

n−i

))
P(Binom(n, v) ≥ 2)

=

n−2∑
i=0

n

(n− i− 1)(n− i)
(1− q)i

(
(1− v)n−i − (1− (n− i)v)

P(Binom(n, v) ≥ 2)

)
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=

n∑
i=2

n

i(i− 1)
(1− q)iGn,n−i(v),

where Gn,i(v) =
(1−v)i−(1−iv)

P(Binom(n,v)≥2) for i ∈ {2, . . . , n}. To conclude that An,q(v) is increas-

ing in v, it is enough to show that Gn,i(v) is increasing in v for all i ∈ {2, . . . , n}.
Then,

G′
n,i(v) =

gn,i(v)

P(Binom(n, v) ≥ 2)2
,

where gn,i(v) = (−i(1 − v)i−1 + i)P(Binom(n, v) ≥ 2) − ((1 − v)i − (1 − iv))n(n −
1)v(1− v)n−2. To conclude the proof, it is enough to show that gn,i(v) ≥ 0. We note
that gn,i(0) = 0, so we only need to prove that g′n,i(v) ≥ 0. Now,

g′n,i(v) = i(i− 1)(1− v)i−2P(Binom(n, v) ≥ 2)− ((1− v)i − (1− iv))n(n− 1)(1− v)n−2

+ ((1− v)i − (1− iv))n(n− 1)(n− 2)v(1− v)n−3

= i(i− 1)(1− v)i−2P(Binom(n, v) ≥ 2)

− n(n− 1)(1− (n− 1)v)(1− v)n−3((1− v)i − (1− iv))

Using the second equality it is easy to verify that g′n,i(v) ≥ 0 for v ≥ 1/(n−1). Hence,
from now, we assume that v < 1/(n − 1). Furthermore, by inspection, we can verify
that g′n,i(v) ≥ 0 for n ∈ {3, 4} and i ∈ {2, . . . , n}; hence, from now on, we assume that
n ≥ 5. The following claim allows us to focus only on lower bounding g′n,2(v).

Claim 1. For n ≥ 5, v ≤ 1/(n− 1) and for all i ∈ {2, . . . , n− 1}, we have g′n,i(v) ≤
g′n,i+1(v).

This proof requires lower bounding several polynomials and various case analysis;
hence, we defer it to the end. Now, note that

g′n,2(v) = 2P(Binom(n, v) ≥ 2)− n(n− 1)(1− (n− 1)v)(1− v)n−3v2

≥ n(n− 1)v2(1− v)n−2 − n(n− 1)(1− (n− 1)v)v2(1− v)n−3

= n(n− 1)v2(1− v)n−3(1− (1− v)(1− (n− 1)v))

= n(n− 1)v2(1− v)n−3(v + (n− 1)v(1− v))

where in the first inequality we use the lower bound P(Binom(n, v) ≥ 2) ≥
P(Binom(n, v) = 2). From here, we obtain that g′n,2(v) ≥ 0 with equality at v = 0.
Using Claim 1, we conclude that G′

n,i(v) ≥ 0 for all i ∈ {2, . . . , n}.

Proof of Claim 1. Indeed,

g′n,i(v)− g′n,i+1(v) = −P(Binom(n, v) ≥ 2) (2− (i+ 1)v) i(1− v)i−2 (C6)

+ v(1− (1− v)i)(1− (n− 1)v)n(n− 1)(1− v)n−3

≤ (1− v)i−3
(
− i (2− (i+ 1)v) (1− v)P(Binom(n, v) ≥ 2)
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+ v(1− (1− v)i)(1− (n− 1)v)n(n− 1)
)

(C7)

where in the inequality we use that (1 − v)n−3 ≤ (1 − v)i−3. Now, let ϕn,i(v) be the
term in the big parenthesis in (C7), so g′n,i(v)− g′n,i+1(v) ≤ (1− v)i−3ϕn,i(v). We now
focus on proving that ϕn,i(v) ≤ 0. For this, we will reduce the problem to bounding
only ϕn,2(v) ≤ 0 by proving that ϕn,2(v) ≥ ϕn,i(v) for all i = 2, . . . , n − 1. To prove
this last inequality, we analyze the difference ϕn,i(v)−ϕn,i+1(v) for i ∈ {2, . . . , n−2}:

ϕn,i(v)− ϕn,i+1(v)

= 2(1− v)(1− (i+ 1)v)P(Binom(n, v) ≥ 2)− v2(1− v)i(1− (n− 1)v)n(n− 1)

≥ v2(1− v)i(n− 1)n

(
(1− (i+ 1)v)(1− v)n−i−2

(
1 +

n− 5

3
v

)
− (1− v(n− 1))

)
= v2(1− v)i(n− 1)n · θn,i(v).

Note that the function (1− (i+ 1)v)(1− v)n−i−2 is decreasing in i; hence, for n ≥ 5,
we have θn,i(v) ≥ θn,n−2(v). From here, we obtain

ϕn,i(v)− ϕn,i+1(v) ≥ v2(1− v)i(n− 1)n · θn,n−2(v).

On the other hand, we have θn,n−2(v) = (1 − (n − 1)v)
(
n−5
3

)
v ≥ 0. From here, we

obtain that ϕn,i(v) ≥ ϕn,i+1(v) for all i ∈ {2, . . . , n − 2} and so ϕn,2(v) ≥ ϕn,i(v) for
all i ∈ {2, . . . , n− 2}. Now,

ϕn,2(v) = −2(2− 3v)(1− v)P(Binom(n, v) ≥ 2) + v2(2− v)(1− (n− 1)v)n(n− 1)

≤ −2(2− 3v)(1− v)

((
n

2

)
v2(1− v)n−2 +

(
n

3

)
v3(1− v)n−3

)
+ v2(2− v)(1− (n− 1)v)n(n− 1)

= n(n− 1)v2
(
−(2− 3v)

(
(1− v)n−1 +

n− 2

3
v(1− v)n−2

)
+ (2− v)(1− (n− 1)v)

)
= n(n− 1)v2

(
(2− v)(1− (n− 1)v)− (2− 3v)(1− v)n−2

(
1 +

n− 5

3
v

))
We analyze this last bound for the case n = 5 and case n ≥ 6 separately. For n = 5,
we have

ϕ5,2(v) ≤ 20v2
(
(2− v)(1− 4v)− (2− 3v)(1− v)3

)
.

The polynomial (2−v)(1−4v)− (2−3v)(1−v)3 has roots v ∈ {0, (11− i
√
11)/6, (11+

i
√
11)/6} with 0 having multiplicity 2. Since, the polynomial tends to −∞ when

v → ∞ and its only 0 when v = 0, we deduce that ϕ5,2(v) ≤ 0.
Now, assume that n ≥ 6, then

ϕn,2(v) ≤ n(n− 1)v2
(
(2− v)(1− v)n−1 − (2− 3v)(1− v)n−2

(
1 +

n− 5

3
v

))
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= n(n− 1)v2
(
(1− v)n−2 · v ·

(
−2(n− 5)

3
+ (n− 4)v

))
where in the first inequality we use Bernoulli’s inequality on 1− (n− 1)v ≤ (1− v)n−1

and in the equality we simply reorder the big parenthesis from the previous line. Now,
the polynomial v(−2(n− 5)/3 + (n− 4)v) has 2 roots at v ∈ {0, 2(n− 5)/(3(n− 4)).
Hence, for v ≤ 1/(n− 1), we must have that ϕn,2(v) ≤ 0.

Going back to the function g′n,i, all our calculations give us

g′n,i(v)− g′n,i+1(v) ≤ (1− v)i−3ϕn,2(v) ≤ 0,

which finishes the proof of Claim 1.

C.3 An Upper Bound for Single-Threshold Solutions

We present an instance that shows that no strategy in the class of single-threshold
(including randomization) can obtain a competitive ratio larger than 0.5463. We use a
counterexample motivated by [41]. For n ≥ 1, we consider the following function from
(0, 1] to R+

f(u) =
a · cn
u

1(0,1/n10)(u) + b · 1[1/n10,β/n](u)

where 1X is the indicator function that is 1 for u ∈ X and 0 for u /∈ X, a, b > 0 and β >

1/n are positive constants to be optimized and cn =
(
n ·
(
1−

(
1− 1/n10

)n−1
))−1

.

We are going to assume that a + b ≤ 1. For n large enough, we have that f is
nonincreasing.

Now, we can construct a random variable from f as follows. First, we add a small
perturbation to f so f is smooth and strictly decreasing. This can be done by taking
a convolution with a smooth function. Let’s call fε the resulting function, with small
error ε > 0; hence, when ε → 0, we have fε(u) → f(u), except for a set of measure
0. Note that fε is surjective in R+. Now, for x ≥ 0, let Fε(x) = 1− f−

ε (x). Note that
F is increasing, Fε(0) = 0 and Fε(+∞) = 1; hence, Fε is a valid CDF. We define
the random variable Xε to be the random variable following Fε. By construction,
F−1
ε (1 − u) = fε(u). For ε → 0, we have F−1

ε (1 − u) → f(u), except for a set of
measure 0 in [0, 1]. To avoid notational clutter, from now on, we simply work with
f(u) instead of fε. By abusing notation, we will write F−1(1− u) = f(u), but it has
to be understood that this equality occurs except for the points 1/n10 and β/n.

We now consider a sequence of n independent random variables following F (the
limit of Fε when ε → 0). We assume that n is large. The result now follows from the
following two Lemmas.

Lemma 11. We have E(X(2)) → a+ b(1− e−β(1 + β)) when n → ∞.
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Lemma 12. There is n0 ≥ 0 such that for any algorithm ALG, if the input is of
length n ≥ n0, the value collected by the algorithm is bounded as

E(ALG) ≤ p(a, b, β) + 5
β(1 + β)2

n− β
,

where p(a, b, β) = maxλ∈[0,β]

{
a(1− e−λ)/λ+ b

(
1− e−λ(1 + λ)

)}
.

We first provide the tight upper bound and then we prove the lemmas. Using these
two lemma, for any algorithm and n ≥ n0, we have

E(ALG)

E(X(2))
≤ p(a, b, β) + 5β(1 + β)2/(n− β)

E(X(2))

Using numerical optimization to minimize p(a, b, β), we found a ≈ 0.5463, b ≈ 0.4537
and β ≈ 109.131, we obtain p(a, b, β) ≈ 0.5463. Hence, for n large, we obtain that
E(ALG)/E(X(2)) ≤ 0.5463 + o(n). This shows that with one threshold, we cannot
recover the approximation of 1− 1/e ≈ 0.6321 in the standard prophet inequality.

In the remainder of the subsection, we present the proof of Lemma 11 and 12.

Proof of Lemma 11. We have

E(X(2)) = n(n− 1)

∫ 1

0

F−1(1− u)q(1− q)n−2 dq

= n(n− 1)

∫ 1/n10

0

a · cn(1− q)n−2 dq + n(n− 1)

∫ β/n

1/n10

bq(1− q)n−2 dq

= acnn

(
1−

(
1− 1

n10

))
+ b

(
1

n9

(
1− 1

n10

)n−1

− β

(
1− β

n

)n−1

+

(
1− 1

n10

)n

−
(
1− β

n

)n
)

The conclusion now follows by taking limit in the last equality.

Proof of Lemma 12. We can parametrize every single-threshold algorithm via the
quantile chosen by it. If ALGq denotes the value obtained by a single-threshold algo-
rithm that always uses quantile q, we have ALG ≤ maxq∈[0,1] ALGq. We analyze this
last maximum for q ≤ 1/n10, q ∈ [1/n10, β/n] and q ≥ β/n.

For q ≤ 1/n10, we have

E(ALGq) =

n−1∑
k=1

n

k
(1− q)n−k−1

∫ q

0

acn
w

(
1− (1− w)k

)
dw

≤ a · cn
n−1∑
k=1

n

k

k−1∑
ℓ=0

∫ 1/n10

0

(1− w)ℓ dw
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= acn

n−1∑
k=1

k−1∑
ℓ=0

1− (1− 1/n10)ℓ+1

ℓ+ 1

≤ acn

n−1∑
k=1

n

k

k

n10

= a · 1/n9

1− (1− 1/n10)n−1
≤ a

(
1 +

3

n− 1

)
where in the first inequality we upper bounded the integral for q = 1/n10 and we also
upper bounded (1−q)n−k−1 ≤ 1; in the second equality we performed the integration;
in the second inequality we used Bernoulli’s inequality: (1−1/n10)ℓ+1 ≥ 1−(ℓ+1)/n10,
and in the last inequality we used the following claim.

Claim 2. We have cn/n
8 ≤ (1 + 3/(n− 1)).

Proof. First, note that(
1− 1

n10

)n−1

≤ e−(n−1)/n10

≤ 1− n− 1

n10
+

(n− 1)2

2n20
(C8)

Then,

cn
n8

=
1/n9

1− (1− 1/n10)n−1

≤ n

(n− 1) (1− (n− 1)/(2n10))

≤
(
1 +

1

n− 1

)(
1 +

1

2n

)
≤ 1 +

3

n− 1

where in the first inequality we used inequality (C8), the second inequality follows by
1 ≤ (1− (n− 1)/2n10)(1 + 1/2n) and the last inequality follows simply by expanding
the multiplication and bounding 1/2n, 1/(2n(n− 1)) ≤ 1/(n− 1).

Therefore, for any q ≤ 1/n10, we have that the value of the algorithm is upper
bounded by a · (1 + 3/(n− 1)).

For q = λ/n ∈ [1/n10, β], we have

E(ALGq) =

n−1∑
k=1

n

k
(1− q)n−k−1

∫ 1/n10

0

acn
w

(
1− (1− w)k

)
dw

+

n−1∑
k=1

n

k
(1− q)n−k−1

∫ q

1/n10

b
(
1− (1− w)k

)
dw
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≤ acn

n−1∑
k=1

n

k
(1− q)n−k−1 k

n10

+ b

n−1∑
k=1

n

k
(1− q)n−k−1

(
(1− q)k+1 − ((1− 1/n10)k+1 − (q − 1/n10)(k + 1))

k + 1

)

where in the first inequality we upper bounded the first term in the first line in a
manner similar to the case q ≤ 1/n10 and we integrated the second term. The following
two claims allow us to upper bound this last inequality by controlling the error.

Claim 3. We have cn
(
1− (1− q)n−1

)
/(qn9) ≤ (1− e−λ)/λ+ β(1 + β)/(n− β)

Proof. In the proof, we use that λ ≤ β ≤ 2. First, we note that

1−
(
1− λ

n

)n−1

= 1− e−λ + e−λ −
(
1− λ

n

)n−1

≤ 1− e−λ + e−λ − e−λ( n−1
n−λ )

= 1− e−λ + e−λ
(
1− eλ(

1−λ
n−λ )

)
≤ 1− e−λ +

|λ(1− λ)|
n− λ

≤ 1− e−λ +
β(1 + β)

n− β

where in the first inequality we used that 1/(1− λ/n) ≤ eλ/(n−λ) using the standard
inequality 1+x ≤ ex, in the second inequality we used that e−λ ≤ 1 and 1−|x| ≤ e−x,
and in the last inequality, we simply used that λ ≤ β.

Claim 4. We have

n−1∑
k=1

n

k
(1− q)n−k−1

(
(1− q)k+1 − ((1− 1/n10)k+1 − (q − 1/n10)(k + 1))

k + 1

)
≤ 1− e−λ(1 + λ) + 3

β(1 + β)2

n
.

Proof. First, we have

n−1∑
k=1

n

k(k + 1)
(1− q)n−k−1

(
(1− q)k+1 − (1− q(k + 1))

)
=

n−1∑
k=1

nq2(1− q)n−k−1

− (1− q)n + (1− qn)

= 1− (1− q)n−1(1− q + qn)
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where in the first equality we simply rearranged the sum and in the next line we
computed the sum. Then,

n−1∑
k=1

n

k
(1− q)n−k−1

(
(1− q)k+1 − ((1− 1/n10)k+1 − (q − 1/n10)(k + 1))

k + 1

)

≤
n−1∑
k=1

n

k(k + 1)
(1− q)n−k−1

(
(1− q)k+1 − (1− q(k + 1))

)
+

n−1∑
k=1

n

k(k + 1)
(1− q)n−k−1

(
1− (1− 1/n10)k+1

)
≤ 1− (1− q)n−1(1− q + qn) +

n−1∑
k=1

1

k

1

n9

≤ 1− (1− q)n−1(1− q + qn) +
ln(n)

n9

where in the second inequality, we added and subtracted 1 to the parenthesis to form
the term studied at the beginning of the proof, in the second inequality, we used
Bernoulli’s inequality and in the last inequality, we used the standard Harmonic sum
bound. Finally,

−(1− q)n−1(1− q + qn) = −(1 + λ)

(
1− λ

n

)n−1

+
λ

n

(
1− λ

n

)n−1

≤ −(1 + λ)e−λ( n−1
n−λ ) +

β

n

=
(
e−λ − e−λ( n−1

n−λ )
)
(1 + λ)− e−λ(1 + λ) +

β

n

≤ −e−λ(1 + λ) +
β(1 + β)2

n− β
+

β

n

where in the second and last inequalities, we used the same bounds used in the analysis
of Claim 3. From here, the inequality of the claim follows.

Therefore,

E(ALGq) ≤ a ·
(
1− e−λ

λ

)
+ b(1− e−λ(1 + λ)) + 4

β(1 + β)2

n− β

For q ≥ β/n, we have

E(ALGq) =

n−1∑
k=1

n

k
(1− q)n−k−1

∫ 1/n10

0

acn
w

(
1− (1− w)k

)
dw
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+

n−1∑
k=1

n

k
(1− q)n−k−1

∫ β/n

1/n10

b
(
1− (1− w)k

)
dw.

This last term is decreasing in q; hence it attains its maximum at q = β/n.
The conclusion of the lemma follows by putting together the three bounds that we

found. Additionally, the bound for λ ∈ [1/n9, β] supersedes the bound for q ≤ 1/n10

and q ≥ β/n.
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