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a b s t r a c t

We consider the problem of partitioning a graph into cliques of bounded cardinality. The
goal is to find a partition that minimizes the sum of clique costs where the cost of a clique
is given by a set function on the nodes. We present a general algorithmic solution based on
solving the problem variant without the cardinality constraint. We obtain constant factor
approximations depending on the solvability of this relaxation for a large class of submod-
ular cost functions which we call value-monotone submodular functions. For special graph
classes we give optimal algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of partitioning a graph into cliques of bounded cardinality. Given is a simple graph G = (V , E),
a set function f : 2V

→ R+, and a bound B ∈ Z+. The task is to find a partition of G into cliques K1, . . . , Kℓ of cardinality at
most B. The cost of a clique Ki is given by the set function f (Ki) via an oracle. Our objective is to find a partition of minimum
total cost,

ℓ
i=1 f (Ki). We denote our problem as partition into cliques of bounded cardinality PCliq(G, f , B).

The problem PCliq(G, f , B) is a generalization of the classical graph partitioning problem and thus N P -hard [1]. For arbi-
trary graphs the problem is even N P -hard to approximate within a factor |V |

1−ε for all ε > 0 [2] since it contains vertex
coloring as a special case. Indeed, our problem can be formulated equivalently as finding a partition into independent sets
(coloring) of bounded cardinality and minimum total cost in G, the complement of G, where the cost of each independent
set (color class) is defined by some cost function f . In particular, PCliq(G, f , B) with B = ∞ and f (S) ≡ 1 is equivalent to
the classical vertex coloring problem in G. However, in the special case that the bound on the clique size B equals 2 then
PCliq(G, f , B) can be transformed into amatching problem inG and can be solved optimally in polynomial time. Since cliques
in a bipartite graph have size at most 2, the graph partitioning problem corresponds in this case to a matching problem.

Graph partitioning and coloring problems are among the fundamental problems in combinatorial optimization. Imposing
bounds on the size of the cliques or color classes is very natural in many applications. Such problems are often formulated
also in a scheduling context where compatibilities or conflicts between jobs are expressed in a graph, and the task is to
find a partition into cliques or independent sets of jobs that minimize the total cost with respect to some scheduling cost
function. The problems of partitioning or coloringwith a cardinality bound have beenmainly studied for two cost functions:
f (S) ≡ 1 and the max-function. The coloring problem with the objective to minimize the number of colors, i.e., f (S) ≡ 1, is
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known as mutual exclusion scheduling [3–6] or bounded vertex coloring [7], and when the cost function is the max-function
f (S) = maxv∈S w(v) for some weight function w: V → R+ then the coloring problem is also called bounded max-coloring
problem [8]. The complementary problem of partitioning a graph into cliques with a max-cost function has been studied
also asmax-batch scheduling with compatible jobs [9–12].

This body of previous work implies for our problem PCliq(G, f , B) that it is already for the simple cost function f (S) ≡

1N P -hard on cographs, co-bipartite and co-interval graphs [3], on comparability and co-comparability graphs even when
B is fixed (B ≥ 6) [6], and for the complements of line graphs also for any fixed B ≥ 3 [13]. However, there are polynomial-
time optimal algorithms for split graphs [3,14], interval graphs [3,9], as well as for the complements of forests [5] and of line
graphs [15].

The problem PCliq(G, f , B) with f being the max-function is strongly N P -hard even for B = ∞ for co-bipartite graphs
[16], co-interval graphs [17], split graphs [10,16], and interval graphs [12]. Interval graphs found particular interest in the
literature because of their wide applicability in practical applications, e.g., describing compatible processing intervals in
scheduling. For this graph class there is a polynomial-time approximation scheme (PTAS) for any fixed capacity bound B ≥ 3
[12]. A PTAS is also known for graphs that are complements of trees [8]; here the complexity status remains unsolved. And
for co-bipartite graphs there is a 17/11-approximation [8].

The relaxed variant of our problem PCliq(G, f , B) without bounds on the clique size, i.e., B = ∞, has been widely stud-
ied in different settings. Various complexity and approximability results are known for particular cost functions and graph
classes. Interestingly, many of these particular cost functions that appear in specific applications share the property of being
submodular. Examples for such special problems and submodular cost functions are the above-mentioned maximum func-
tion, the probabilistic cost function [18,19], partial q-coloring [20,21], (modified) chromatic entropy [22,23], andmore generally
non-decreasing weight-defined concave cost functions [24]. Definitions and details will be given in Section 2.

While most research focused on particular cost functions, recently more general set functions have been considered
in this context. Gijswijt, Jost, and Queyranne [25] introduce so-called value-polymatroidal set functions. They consider the
graph partitioning problem without capacity restrictions, PCliq(G, f , ∞), and derive a polynomial time algorithm for in-
terval graphs and circular arc graphs. Furthermore, Fukunaga, Halldórsson, and Nagamochi [24] assume a weight function
w: V → R+ and consider weight-definedmonotone concave cost functions. They provide a general algorithmic scheme that
yields a factor 4 approximation for clique partitioning without cardinality constraint, PCliq(G, f , ∞), in co-interval graphs,
comparability and co-comparability graphs, and a 6-approximation for perfect graphs. In fact, they obtain a robust result in
the sense that the solution they compute approximates all cost functions under consideration simultaneously.

Our results.We investigate the problem of partitioning a graph into cliques of bounded cardinality for a general class of cost
functions. We consider value-monotone submodular functions. This subclass of submodular functions is only slightly more
restricted than the class of value-polymatroidal functions introduced by Gijswijt et al. [25] in a similar context, and contains
well-known cost functions for coloring or partitioning problems such as the max-function, probabilistic function, partial
q-coloring, (modified) chromatic entropy, and more generally non-decreasing weight-defined concave cost functions.

We provide a very simple but general approximation algorithm for solving the graph partitioning problem for general
graphs based on a solution to the relaxed problem without cardinality constraints on the cliques. We show that adding the
bound on the cardinality does not diminish the solution quality too much. More precisely, if there is an α-approximate so-
lution for the unbounded problem, then a Greedy algorithm turns this solution into an (α + 1)-approximate solution that
obeys the cardinality constraint. This general result implies several new or improved results for special graph classes. In par-
ticular, we obtain a 2-approximation for interval graphs and circular arc graphs for arbitrary value-monotone submodular
cost functions. For special cost functions we obtain improved results such as, e.g., an (e + 1)-approximation for the general
class of perfect graphs when f is the max-function. More generally, we obtain a 5-approximation for co-interval, compara-
bility, and co-comparability graphs, and a 7-approximation for perfect graphs when f is a non-decreasing weight-defined
concave function.

As a subproblem,we investigate the problem variant of partitioning a complete graph into cliques of bounded cardinality.
We show that this seemingly simple problem is N P -hard for polymatroid rank functions, a subclass of submodular
functions. However, we also show that restricting to value-monotone cost functions allows a Greedy algorithm to solve
the problem optimally in polynomial time.

Finally, we consider the partitioning problem on proper interval graphs. This graph class plays an important role inmany
applications, e.g., as compatibility graphs in the above mentioned max-batch scheduling problem [9]. We derive a dynamic
programming algorithm that solves the problem optimally in running time that is exponential in the number w of different
node types with respect to the cost function f . Thus, this algorithm computes an optimal solution in polynomial time if w is
bounded by a constant. Moreover, using a recently shown technique to reduce the number w at the cost of a small increase
in the objective function when f is themax-function [12], the algorithm leads in this case to a PTAS. Thus, we give a PTAS for
max-batch schedulingwith compatibilities that form a proper interval graph. This contrasts the previously known PTAS [12]
which has polynomial running time only when the capacity bound B is constant. Note, however, that this result was actually
derived for general interval graphs.

Outline. In Section 2 we define value-monotone submodular set functions, give examples, and discuss important prop-
erties. In Section 3 we investigate the clique partitioning problem on complete graphs. We prove optimality of a Greedy
algorithm and show that the complexity status changes when allowing submodular cost functions that do not satisfy the
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value-monotonicity properties. We investigate the problem on general graphs in Section 4 and give an approximation guar-
antee as a function of the approximation factor for the relaxed problemwithout cardinality restrictions on the cliques. Finally
in Section 5, we consider proper interval graphs and provide a dynamic program that computes an optimal solution in poly-
nomial time if the number of different node types is bounded. This leads to a PTAS for arbitrary node types when the cost
function is the max-function.

2. Value-monotone submodular functions

2.1. Definition and examples

Let V be a finite set. The function f : 2V
→ R is called submodular if for all subsets A, B ⊆ V holds

f (A)+ f (B) ≥ f (A∪B)+ f (A∩B). We consider non-negative submodular functions with f (∅) = 0, that satisfy the following
two additional properties.

• Value-monotone exchange property. For all subsets A, B ⊆ V such that f (A) ≥ f (B) and u, v ∈ V \(A∪B)with f (u) ≥ f (v),
or v = ∅, it holds

f (A + u) + f (B + v) ≤ f (A + v) + f (B + u). (E1)

• Value-monotone enlargement. For all sets A, B ⊆ V such that f (A) ≥ f (B) and all elements u ∈ V \ (A ∪ B) holds that

f (A + u) ≥ f (B + u). (E2)

We denote non-negative submodular functions with f (∅) = 0 that satisfy the value-monotone exchange property (E1) and
the value-monotone enlargement (E2) as value-monotone submodular functions.

This class of set functions contains well-known cost functions that have been studied individually in the graph partition-
ing or coloring context. In the following we give some examples. The membership proofs can be found in the Appendix.
Maximum function: Let w: V → R+ and S ⊆ V . The max-function is defined as f (S) := maxv∈S w(v). The max-coloring
problem is a well-studied problem [8,16,17,26–29]. Here the task is to find a coloring of the graph (without restrictions
on the cardinality) of minimum total cost, where the cost of each color class is given by the max-function. The partition-
ing variant of this problem has been investigated mainly as max-batch scheduling problem with compatibilities [9–12].
These results imply (in addition to the results mentioned in the introduction) that the unbounded graph partitioning
problem PCliq(G, f , ∞) with f being the max-function is polynomial-time solvable for interval graphs [9,25], circular arc
graphs [25], and for the complements of P4-free graphs [16], whereas there is an e-approximation for perfect graphs [27].
Probabilistic cost function: Let q: V → [0, 1] and S ⊆ V . Then f (S) := 1 −


v∈S q(u) is called probabilistic cost function.

It has been studied particularly in the context of stochastic models for combinatorial optimization problems where uncer-
tain input is given with independent probabilities; see [18,19] for motivation and further references. When restricted to
probabilistic cost functions, PCliq(G, f , ∞) is strongly N P -hard for split graphs [19] and co-bipartite graphs [18], and it is
polynomial-time solvable in bipartite graphs [18] and interval graphs [25]. These results were actually obtained for prob-
abilistic coloring in the complement graphs, i.e., for finding a coloring of minimum total cost, where the cost of each color
class is determined by the probabilistic cost function.
Partial q-coloring: Let k ∈ N, S ⊆ V , and f (S) := min{k, |S|}. Finding a coloring of minimum total cost, where the cost for
each color class is given by f is called partial q-coloring [20,21]. The cost function f is a special case of the following class.
Non-decreasing weight-defined concave cost functions: Let w: V → R+, S ⊆ V , and let f (S) := h(


v∈S w(v)) for some

concave, non-decreasing function h: R → R. Such functions are also known as submodular set utility function and appear,
e.g., when expressing decreasing marginal preferences in combinatorial auctions [30], as joint replenishment functions in
supply chain management [31], or setup cost in facility location [32]. In a coloring context, such functions were considered
by Fukunaga et al. [24] who derived the aforementioned robust constant-factor approximations for PCliq(G, f , ∞) in co-
interval graphs, (co-)comparability, and perfect graphs.
(Modified) Chromatic entropy: Let p : V → [0, 1],


v∈V p(v) = 1, and S ⊆ V . The chromatic entropy cost function is defined

as f (S) := −c(S) log c(S) where c(S) =


v∈S p(v). This function is concave but not non-decreasing and thus not value-
monotone. However, Gijswijt et al. [25] observed the following: the function g(S) := f (S)+ c(S) is non-decreasing concave
and any partition into cliques V = K1 ∪ · · · ∪ Kℓ has cost

ℓ
i=1 g(Ki) =

ℓ
i=1 f (Ki) + c(V ), which implies that both cost

functions f and g yield the same optimal solution.
The problem of partitioning a graph into independent sets minimizing the total chromatic entropy is called chromatic

entropy coloring. It finds applications in the field of data compression and zero-error coding theory [22,33]. Complexity and
(additive) approximation results were derived in [23,34]. When f is a chromatic entropy cost function, PCliq(G, f , ∞) is
strongly N P -hard on co-interval graphs [34] and (even unweighted) co-chordal graphs [23].

2.2. Basic properties

Proposition 1. A value-monotone submodular function f is non-decreasing, i.e., for any A ⊆ V and v ∈ A holds f (A) ≥ f (A−v).
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Proof. Since f is non-negative, we have f (v) ≥ f (∅). Adding one by one all u ∈ A − v on both sides proves the claim by
(E2). �

Proposition 2. Let f be a value-monotone submodular function. For any A, B ⊆ V such that f (A) ≥ f (B) and u, v ∈ V \ (A∪ B)
such that f (u) ≥ f (v), holds

f (A + u) ≥ f (B + v).

Proof. With Proposition 1, f is non-decreasing, and we have f (A \ B) ≥ f (∅). Adding element u on both sides gives with
(E2) f (A \ B + u) ≥ f (u) ≥ f (v). Now, adding B on both sides gives again with (E2) the desired result. �

Proposition 3. Let f be a value-monotone submodular function. Consider any two sets A, B ⊆ V with |A| ≥ |B|. If each element
v ∈ B can be mapped to a distinctive element u ∈ A such that f (v) ≤ f (u), then f (A) ≥ f (B).

Proof. Starting from two empty sets, iterative application of Proposition 2 gives the proof for two sets A and Bwith the same
cardinality. With f being non-decreasing (Proposition 1) the claim follows. �

Value-monotone submodular functions extend the definition of value-polymatroidal set functions introduced by
Gijswijt et al. [25]. A value-polymatroidal set function f is a polymatroid rank function (i.e., non-decreasing, submodular, and
f (∅) = 0) that satisfies a weaker property than the value-monotone exchange property (E1): for every A, B ⊆ V such that
f (A) ≥ f (B) and every u ∈ V \(A∪B), holds that f (A+u)+f (B) ≤ f (A)+f (B+u). Example 1 in the Appendix shows that there
are value-polymatroidal set functions which do not satisfy our properties, neither the value-monotone exchange property
(E1) nor the value-monotone enlargement property (E2). And wewill show that both properties are necessary to obtain our
results. However, we are not aware of any natural cost function that is value-polymatroidal but not value-monotone. The
following follows trivially from (E1).

Observation 1. A value-monotone submodular function is value-polymatroidal.

We remark that the name value-monotone submodular functions intentionally contains some redundancy. In fact, any
non-negative set function f : 2V

→ R that satisfies the value-monotonicity properties (E1) and (E2) is actually submodular.
This follows immediately from the following well-known characterization of submodular functions: f is submodular if for
all sets B ⊆ A ⊆ V and any element u ∈ V \ (A ∪ B) holds

f (A + u) + f (B) ≤ f (A) + f (B + u).

3. Complete graphs

In this section, we consider the problem of partitioning a complete graph K into sub-cliques, PCliq(K , f , B). First we
show, that the problem is generallyN P -hard for non-negative submodular functions evenwhen restricting to polymatroid
rank functions. Then we show that with the value-monotonicity properties (E1) and (E2), the problem becomes solvable in
polynomial time.

Theorem 4. The problem PCliq(K , f , B) on a clique K is N P -hard even if we restrict f to polymatroid rank functions.

Proof. We show the theorem by reduction from graph partitioning with unit node weights. Given is a graph G = (V , E)
with edge weights w(e) ∈ Z+, for all e ∈ E, and two positive integers B and L. The question is, if there is a partition of V into
disjoint sets V1, . . . , Vℓ such that |Vi| ≤ B for 1 ≤ i ≤ ℓ and such that


e∈Eδ

w(e) ≤ L, where Eδ denotes the set of edges
that have endpoints in two different sets Vi. This problem is known to be N P -hard [35].

Given an instance of graph partitioning, we build the complete graph K = (V , E ′) by complementing Gwith all edges in
the complement graph of G. We assign edge weights w(e) = 0, for e ∈ E ′

\ E. Abusing notation, let e ∈ δ(S) denote an edge
e that has one or both endpoints in the set S ⊆ K . We define the set function f : 2V

→ Z+ as

f (S) =


e∈δ(S)

w(e), for all S ⊆ 2V .

It can be easily verified that f is non-decreasing and submodular, and the empty set has value zero. Thus, f is a polymatroid
rank function. Notice, that in a partition each edge e ∈ E ′

δ with endpoints in two different sets contributes once to the value
of each of these sets. Thus, any partition S of K has a total value

S∈S

f (S) =


S∈S


e∈δ(S)

w(e) =


e∈E′

w(e) +


e∈E′

δ

w(e).

By the choice of edge weights, there exists a partition S of clique K into sets of size at most B with total value


S∈S f (S) −
e∈E′ w(e) ≤ L if and only if there exists a graph partition for G with value


e∈Eδ

w(e) ≤ L. �

In case that f is a value-monotone submodular function, we can solve the problem optimally in polynomial time. In that
case, an optimal solution can be characterized as follows.
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Lemma 5. Consider the problem PCliq(K , f , B) for a clique K , and let f : 2V
→ R+ be a value-monotone submodular function.

There is an optimal partition S in which at most one set S ∈ S has cardinality less than B. If such a set S exists, then it has value
f (S) = min{f (T ) | T ∈ S}.
Proof. Let the set family S∗ be an optimal solution for the problem PCliq(K , f , B) with more than one set with cardinality
less than B. We show how to transform it into an optimal partition where no set or only the set with minimum value has
cardinality less than B.

Let T ∈ S∗ be a set with |T | < Bwithmaximum value, and let S ∈ S∗ denote the set withminimum value. If |T |+|S| ≤ B,
then by submodularity of f it holds f (T ∪ S) ≤ f (T ) + f (S). Therefore, merging sets T and S yields a new feasible solution
of value no more than the optimal value.

Assume that |T | + |S| > B. Since f is non-decreasing, f (T ) ≥ f (S) ≥ f (S − u) for any u ∈ S. Such an element must exist,
because otherwise f (T ) < f (S). It follows from Observation 1 that f (T + u) + f (S − u) ≤ f (T ) + f (S). Therefore, moving
elements u ∈ S from S to T will not increase the total value of the partition. Repeat this procedure until all sets T ∈ S∗ have
reached cardinality B. Notice that the value f (S) will not increase and therefore, S will be the set of minimum value at any
step in the procedure. �

Using this lemma, we show that the problem PCliq(K , f , B,) on a clique K can be solved optimally in polynomial time by
the following the Greedy algorithm.

Algorithm 1: Greedy algorithm for partitioning a clique K
1 Order elements u ∈ K in non-increasing order of f (u) and group them greedily into sub-cliques of
cardinality B beginning with the elements of largest value.

Theorem 6. Algorithm 1 solves the problem PCliq(K , f , B) of partitioning a clique K into sub-cliques of cardinality at most B for
value-monotone submodular functions to optimality.
Proof. Let S∗ be an optimal solution. We show how to transform it such that it coincides with the solution obtained by
Algorithm 1. Order all sets in S∗ in non-increasing order of set values. By Lemma 5 we can assume that at most one set in S,
namely the last set in this order, has cardinality less than B. If S∗ does not coincide with the solution of the algorithm, then
there exist two sets S, T ∈ S∗ with f (S) ≤ f (T ) that contain two elements u ∈ S and v ∈ T with f (u) > f (v). Let S and
T be the first such sets in the order. In case f (S) = f (T ), we simply exchange u and v without increasing the total value as
property (E1) guarantees. Suppose now that f (S) ≠ f (T ).

If f (S − u) ≥ f (T − v), then by Proposition 2 holds f (S) ≥ f (T ) which is a contradiction. Therefore, we can assume that
f (S−u) < f (T−v). In that case the value-monotone exchange property (E1) implies f (S)+f (T ) ≥ f (S−u+v)+f (T−v+u).
Thus, exchanging elements u and v will not increase the objective function. Repeat this exchange procedure until no two
sets S and T with elements u ∈ S and v ∈ T exist such that f (u) > f (v) and f (S) ≥ f (T ). This set partition coincides with
the solution of Algorithm 1. �

For the interested reader we provide an example in which the Greedy algorithm fails for a value-polymatroidal function
that does not satisfy properties (E1) and (E2) in the Appendix.

4. General graphs

Consider the following polynomial time algorithm for the problem of partitioning an arbitrary graph into cliques of
bounded cardinality.

Algorithm 2: Partitioning into cliques of bounded cardinality
1 Find a partition into cliques K1, K2 . . . for the relaxed problem PCliq(G,f,∞) without
cardinality restrictions.

2 forall the Ki do
3 Solve the problem PCliq(Ki,f,B) on the clique Ki.
4 end

Theorem 7. Let f : 2V
→ R+ be a value-monotone submodular function. If there exists an α-approximation algorithm for the

problem PCliq(G, f , ∞) with set function f , then Algorithm 2 with Algorithm 1 as a subroutine is an (α + 1)-approximation for
problem PCliq(G, f , B).
Proof. Let K1, . . . , Kℓ be the solution of the relaxed problem PCliq(G, f , ∞) in Step 1 of the algorithm. For each of the cliques
Ki let K 1

i , . . . , K ℓi
i denote the partition into sub-cliques of bounded cardinality in Step 2. Assume that all sets are indexed

such that f (K j
i ) ≥ f (K j+1

i ) for j = 1, . . . , ℓi − 1. Then the value of the algorithms solution is

Alg =

ℓ
i=1

ℓi
j=1

f (K j
i ) =

ℓ
i=1

f (K 1
i ) +

ℓ
i=1

ℓi
j=2

f (K j
i ) ≤ α Opt(G, ∞) +

ℓ
i=1

ℓi
j=2

f (K j
i ). (1)
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Here, Opt(G, ∞) denotes the optimal solution of the relaxed problem PCliq(G, f , ∞) without cardinality constraints. The
inequality holds true since the set function f is non-decreasing (Proposition 1), and thus, f (Ki) ≥ f (K j

i ) for any j = 1, . . . , ℓi.
Webound the second term in (1) by the optimal solutionOpt(Kn, B)of the relaxedproblemPCliq(Kn, f , B) on the complete

graph Kn on node set V . To that end, let π denote a permutation of all nodes in which all u ∈ V appear in non-increasing
order of their values f (u). Ties are broken by giving preference to the node with the smaller index. By Theorem 6, an optimal
partition Opt(Kn, B) consists of the sets S∗

k = {π((k − 1)B + 1), π((k − 1)B + 2), . . . , π(kB)}, for k = 1, . . . , ⌊|V |/B⌋ and
the set S⌊|V |/B⌋+1 of remaining nodes, if any.

Consider now the partial solution of the algorithm K j
i for i = 1, . . . , ℓ, j = 2, . . . , ℓi. Recall that the algorithm sorts the

setsKi in non-increasing function value yielding setsK j
i such that |K j

i | = B, for j ≠ ℓi, and |K ℓi
i | ≤ B (and note that this implies

that B
ℓ

i=1(ℓi−1) < |V |). Consider nowall these setsK j
i for i = 1, . . . , ℓ, j = 2, . . . , ℓi sorted in non-increasing order of the

function value of their first element. We argue that the kth set in this order, say K j
i , satisfies that f (K

j
i ) ≤ f ({π((k−1)B+1),

π((k − 1)B + 2), . . . , π(kB)}) = f (S∗

k ). Indeed, let v be the first element in K j
i . Let τs(v) be the total number of elements

in sets K j
s with j ∈ {2, . . . , ℓs}, with larger or equal f -value (excluding equal-value elements with larger index) and let

S(v) := {s | τs(v) > 0}. Hence, in Ks there are at most ⌈τs(v)/B⌉ sets K j
s with first element having larger or equal

function value when discarding the first set, K 1
s . As v is the first element in the k-th set in the partial solution, we have

s∈S(v)⌈τs(v)/B⌉ ≥ k. To conclude we note that the total number of elements with larger function value than v appearing
in π before v (including those in K 1

s ) is
s∈S(v)

(τs(v) + B) = B

s∈S(v)

(τs(v)/B + 1) ≥ B

s∈S(v)

⌈τs(v)/B⌉ ≥ kB.

Using Proposition 3 we can finally bound the second term in (1) as follows:

ℓ
i=1

ℓi
j=2

f (K j
i ) ≤

ℓ
i=1

(ℓi−1)
k=1

f (S∗

k ) ≤

⌊|V |/B⌋+1
k=1

f (S∗

k ) ≤ Opt(Kn, B) ≤ Opt ,

obtaining the desired approximation guarantee of α + 1. �

Theorem 7 gives a general approximation guarantee as a function of the approximability of the relaxed problem setting
with unbounded clique cardinality. Certainly, this implies several approximation results for specific graph classes and cost
functions that have been considered in the unbounded setting.Wemention in the following a fewquite general implications.

Gijswijt et al. [25] provide a dynamic programming algorithm that solves the problem PCliq(G, f ′, ∞) for G being an
interval graph or a circular arc graph to optimality if f ′ is a value-polymatroidal set function. By Observation 1 a value-
monotone submodular function is value-polymatroidal. Thus, combining the results in [25] with Theorem 7 implies the
following result.

Corollary 8. Algorithm 2 yields a 2-approximation for PCliq(G, f , B) for value-monotone submodular functions f if G is an
interval graph or a circular arc graph.

Epstein and Levin [27] gave an e-approximate algorithm for the max-coloring problem in perfect graphs. Since the
complement of a perfect graph is perfect, this implies together with Theorem 7 the following result.

Corollary 9. Algorithm 2 yields an approximation factor of e + 1 ≈ 3.72 for PCliq(G,max, B) in a perfect graph.

Furthermore, Fukunaga, Halldórsson, and Nagamochi [24] consider generalized cost functions for coloring graphs that
are monotone and concave in the total sum of node weights of the class. If non-decreasing, then such functions are value-
monotone submodular and Theorem 7 implies the following result.

Corollary 10. Algorithm 2 yields an approximation factor of 5 for PCliq(G, f , B) for non-decreasing weight-defined concave
functions f if G is a co-interval, comparability, or co-comparability graph. And it is a 7-approximation for perfect graphs.

5. Proper interval graphs

In this section we consider proper interval graphs. It is a well-studied subclass of interval graphs withmany practical ap-
plications. In Section 5.1wedesign a dynamic programming algorithm for the clique partitioning problemwith bounded car-
dinality. It runs in polynomial timewhen the number of different node types is bounded. Here we define that two nodes u, v
are of the same node typewith respect to the cost function f if f (S+u) = f (S+v) for any set S. In Section 5.2we apply recent
results for the special case of themaximum-function to our dynamic program and obtain a PTAS for PCliq(G,max, B) when G
being a proper interval graph.We remark that the complexity status of our problem remains open for proper interval graphs.
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An interval graph G = (V , E) is a graphwhere a continuous interval can be assigned to each node such that two nodes are
adjacent if and only if their intervals intersect. The set of intervals assigned to the nodes in G is called interval representation
of G. Numerous algorithms are known which recognize interval graphs in linear time. The first one was presented in [36];
this algorithm – as well as the majority of subsequent algorithms – utilizes the following characterization of interval graphs
provided in [37].

Theorem 11 ([37]). A graph is an interval graph if and only if its maximal cliques can be linearly ordered in such a way that for
every vertex the maximal cliques to which it belongs occur consecutively in the linear order.

Such a linear order of maximal cliques (C1, C2, . . . , Ck) of a graph G is called clique path of G.
A proper interval graph is an interval graph with an interval representation in which no interval is properly contained in

another. Any connected proper interval graph has a unique clique path [38] and the number of maximal cliques is at most
|V | = n.

5.1. Dynamic programming

Let G = (V , E) be a proper interval graph. We may assume that it is connected, otherwise we consider each connected
component separately. We denote by (C1, C2, . . . , Ck) the unique clique path of G which can be computed in linear time;
e.g. [36]. In our further explanations, we consider the interval representation of the graph in connection to the clique path.
We say an interval starts (ends) in the maximal clique Ci, if the corresponding node v satisfies v ∈ Ci and v ∉ Cℓ, for ℓ < i
(ℓ > i). An interval with nodes v ∈ Ci which neither starts nor ends in Ci is said to pass Ci. Moreover, we say that an interval
corresponding to node v has an endpoint left of the endpoint of another interval corresponding to node u, if and only if there
exists some i < ℓ such that v ∈ Ci, v ∉ Cℓ and u ∈ Cℓ. The phrase endpoint right of is used accordingly. Since we consider
proper interval graphs, an ordering of intervals according to start points is equivalent to an ordering by endpoints.

Let w be the number of different node types in graph G with respect to the cost function f . For each maximal clique Ci,
i = 1, . . . , k, and each node type j = 1, . . . , w we determine the three parameters start ij, pass

i
j, and endij which denote the

number of intervals of type j that start in, pass, and end in clique Ci, respectively.
A state in our dynamic program is defined as Si = [i, openi

1, open
i
2, . . . , open

i
w] which specifies a maximal clique Ci and

a w-tuple of positive integers. A state defines a sub-solution Ki, that is, a set of cliques of cardinality at most B, with the
following properties:

(i) All intervals ending in cliques C1, C2, . . . , Ci in the clique path are assigned to solution cliques in Ki.
(ii) The number of intervals of node type j = 1, . . . , w that are not assigned in Ki, we say they are open, equals the value

openi
j with 0 ≤ openi

j ≤
i

ℓ=1 start
ℓ
j − endℓ

j .
(iii) The open intervals of type j, j = 1, . . . , w, are those with the most right endpoints among all intervals of type j

passing Ci.

Notice that the number of states associated with a maximal clique Ci is at most nw . We define an additional state S0 =

[0, 0, . . . , 0] as start state. Now, we establish a state graph F by linking two states Si and Si+1, 0 ≤ i ≤ k − 1, by an edge if

openi+1
j ≤ start i+1

j + min{openi
j, passi+1

j }, for all 1 ≤ j ≤ w. (L)

Lemma 12. If a feasible solution K corresponding to state Si can be augmented to a feasible solution K ′ to state Si+1 such that
K ⊆ K ′, then there is an edge between states Si and Si+1.

Proof. Given the states Si and Si+1 and numbers of open intervals openi
j and openi+1

j for each node type j, we compute the
number of intervals fixj that must be assigned to augmenting solution cliques K ′

\ K . This value equals the difference
between the number of intervals that is available in clique Ci+1 and the number of intervals that must be kept open:

fixj = openi
j + start i+1

j − openi+1
j .

The values fix1, fix2, . . . , fixw and property (iii) define precisely the set V ′ of intervals that has to be assigned to solution
cliques K ′

\ K .
Given a feasible solution to Si then by Proposition (i) all intervals ending in cliques C1, . . . , Ci are assigned to solution

cliques in K . To yield a feasible solution for Si+1 we need to assign all open intervals from state Si that end in Si+1 to solution
cliques in K ′

\ K (and possibly additional open intervals). Using Property (L) we have that

fixj ≥ openi
j + start i+1

j −

start i+1

j + min{openi
j, passi+1

j }


= openi
j − min{openi

j, passi+1
j }.

Thus, by property (ii) it is ensured that fixj is non-negative. And moreover, fixj is at least as large as the number of intervals
ending in Ci+1 which are not assigned in K . To see that, recall that Si satisfies property (iii), that is, if intervals are left open
in Si then these are the ones with the most right endpoints. In case that openi

j > passi+1
j , there exist open intervals of type j,
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that end in Ci+1. They certainlymust be assigned now, and in fact their number is openi
j−passi+1

j , which equals theminimum
number of intervals we request to assign to reach the state Si+1. �

Let the cost of an edge (Si, Si+1) be theminimum cost for augmenting a feasible solutionK for Si to a feasible solutionK ′

for Si+1. From the previous lemma we know how to determine a set V ′ of intervals that constitute the new solution cliques
K ′

\K . Clearly, the set V ′ itself forms a clique, andwe can run the Greedy Algorithm 1. By Theorem 6Greedy finds a solution
of minimum total cost for V ′, and thus, it directly implies the following corollary.

Corollary 13. For two given states Si and Si+1 that have an edge in the state graph, the minimum cost augmentation is K ′
\ K ,

and thus the cost of the edge, can be computed in O(n log n) by the Greedy Algorithm 1.

Lemma 14. An optimal solution can be represented as a path in the state graph from the start state S0 to a state Sk = [k, 0,
0, . . . , 0], and the cost of the solution is the sum of the edge cost on that path.

Proof. Given an optimal solution K we construct a feasible solution K ′ of the same total cost such that we can partition it
into subsets that can be associated with maximal cliques in the clique path and thus with states in our state graph.

Let v1 be the node with the most left ending point over all nodes. Consider the solution clique K1 that contains v1. We
want to rearrange the interval-to-clique assignment such that for each node type appearing inK1, the intervalswith themost
left endpoints of this type are assigned. Suppose that there are two intervals of the same type associated with nodes v ∈ K1
and v′

∈ Kℓ, ℓ ≠ 1, where v has an endpoint more to the right than v′. Choose the interval with most left endpoint among
such v′. We can interchange the node-to-clique assignments of v and v′, because the order of endpoints and start points of
intervals in a proper interval is equal, and thus, v′ forms a clique with the remaining intervals in K1 if v did, and vice versa
for v and Kℓ. The total cost of the solution does not change, since we exchanged intervals of the same type. We repeat this
interchange argument for all types appearing in K1 and then remove the transformed K1 from the sets under consideration.
Repeating the procedure for any clique and node type transforms the optimal solution to another optimal solution K ′.

Now, we partition K ′ into disjoint subsets K ′

1, . . . , K ′

k such that K ′

i consists of all cliques whose interval with the most
left ending point ends in the maximal clique Ci. Observe that in any sub-solution

i
ℓ=1 K ′

ℓ, all intervals that end in maximal
cliques C1, . . . , Ci are assigned, which satisfies Proposition (i). Due to the interchange procedure the open intervals of a
type j, j = 1, . . . , w, are those with the most right endpoints among all intervals of type j passing Ci, which satisfies
Proposition (iii). Moreover, the number of open intervals by definition satisfies Proposition (ii). Thus, any sub-solutioni

ℓ=1 K ′

ℓ satisfies Properties (i)–(iii), and is therefore, represented by a valid state Si in the state graph. By construction
and Lemma 12, any two such states Si and Si+1 are connected by an edge since the sub-solution

i
ℓ=1 Kℓ corresponding to

Si can be augmented by Ki+1 to an optimal sub-solution encoded in Si+1, and the edge cost corresponds by Corollary 13 to
the cost of Ki. Thus, there is a minimum cost path from the start node to the state Sk representing the total optimal solution
and its cost. �

Theorem 15. Let G = (V , E) be a proper interval graph, and let f be a value-monotone submodular function. There is a dynamic
program that solves the problem PCliq(G, f , B) optimally in time O(n2w+1), where w is the number of different node types in V
with respect to f .

Proof. By Lemma14,we find anoptimal solution as follows:we construct the state graphwith atmostnw states permaximal
clique Ci, 0 ≤ i ≤ k ≤ n, which gives O(nw+1) nodes. This can be done in running time O(n2w+1). Then we find a minimum
cost path from state S0 to a state [k, 0, . . . , 0]; we may use, e.g., Dijkstra’s algorithm [39] since we have non-negative cost,
which gives a total computation time of O(n2w+1). After choosing the minimum cost final solution we find the actual clique
partitioning solution by backtracking. �

Corollary 16. Let G = (V , E) be a proper interval graph, let f be a value-monotone submodular function, and let the number
w of different node types in V with respect to f be constant. A dynamic program solves the problem PCliq(G, f , B) optimally in
polynomial time.

We remark that this dynamic programming construction has significantly larger running time for general interval
graphs. In that case, we cannot restrict the sub-solutions for a state to those that leave open the intervals with right most
endpoints.

5.2. A polynomial time approximation scheme for the max-function

Let now f be the max-function. In this case, the number of different node types, w, is the number of distinct node values
f (u), u ∈ V . It has been shown by Nonner [12,28] that wemay assume this is constant by losing atmost a factor 1+ε, for any
ε > 0. The procedure to achieve this runs in polynomial time. First, we geometrically round node values to powers of 1+ δ,
for some δ > 0. Then we apply an adaptation of the Hochbaum and Maass’ shifting technique [40]. We consider partitions
of the total range of different node values into subranges [(1 + δ)z+(j−1)/ε, (1 + δ)z+j/ε), with j ∈ N0 and shift parameter
1 ≤ z ≤ 1/ε, each containing at most 1/ε different node values. These partitions induce a decomposition of the graph into
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polynomiallymany disjoint subgraphs each having constantlymany different node values. Of course, any such subgraph of a
proper interval graph is again a proper interval graph, so that on each of these subgraphs we run an algorithm for constantly
many node values and output the union of all solution cliques. The value of this solution is within a factor 1 + εδ of the
optimal clique partitioning solution for the instance after rounding the node values. Choosing δ and ε appropriately, the
approximation ratio is arbitrarily close to 1. This leads to the following result.

Lemma 17 ([12,28]). Consider the problem PCliq(G,max, B), where G is proper interval graph. For any ε > 0, we may assume
that the number of different node types is bounded by a constant losing at most a factor 1 + ε in the approximation ratio.

Combining Lemma 17 with the dynamic program in Theorem 15 gives directly a PTAS for the problem with arbitrary
node types and the max-function. Notice that this holds for arbitrary capacity bounds B, which is in contrast to a previous
PTAS (for general interval graphs) [12] that requires constant B.

Corollary 18. There is a polynomial-time approximation scheme for solving the problem PCliq(G,max, B) when G is a proper
interval graph.

6. Conclusion

Our contribution is twofold: On the one hand, we solve traditional cost coloring problems with an additional size bound,
which is a very relevant constraint in many practical applications. And on the other hand, we continue a line of research
that started recently [24,25] on developing unifying solutions for larger classes of cost functions. Motivated by different
applications, various cost functions have been considered for partitioning or coloring problems. It is not only of theoretical
but also practical interest, to provide an algorithmic framework that yields provably good solutions for a large class of cost
functions with similar properties.

As a far reaching goal, it is desirable to develop methods with provably good performance for more general cost func-
tions as in our setting, e.g., submodular functions with weaker or without additional constraints. As a first step, we raise the
following specific open questions related to our simple, but very general two-phase algorithm: is there a factor β approx-
imation, for some constant β , for the clique partitioning problem on a complete graph for submodular functions (concerns
Step 2 of our algorithm)? In case of a positive answer: can this algorithm be used to turn an α-approximate solution for
the unbounded clique partitioning problem into a g(α, β)-approximate solution for the bounded problem variant for some
reasonable function g?
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Appendix

A.1. Special cases of value-monotone submodular functions

In this section we give the proofs showing that several above-mentioned and well-studied cost functions f belong to
the class of value-monotone submodular functions. We show for each f under consideration that it satisfies for all subsets
A, B ⊆ V with f (A) ≥ f (B) and elements u, v ∈ V \ (A ∪ B) with f (u) ≥ f (v) the two properties

(E1) f (A + u) + f (B + v) ≤ f (A + v) + f (B + u), and
(E2) f (A + u) ≥ f (B + u).

Maximum function. Let w: V → R+, S ⊆ V , and f (S) := maxs∈S w(s). The max-function f satisfies (E2) since maxs∈A w(s)
= f (A) ≥ f (B) = maxs∈B w(s) implies f (A + u) = max{maxs∈A w(s), w(u)} ≥ max{maxs∈B w(s), w(u)} = f (B + u). To see
that f satisfies (E1) consider two cases:

(i) If maxs∈A w(s) ≥ w(u), then f (A+ u) = maxs∈A w(s) ≤ max{maxs∈A w(s), w(v)} = f (A+ v). Furthermore, f (B+ v) ≤

f (B+u)which follows from f (v) ≤ f (u) and adding all elements in B one by one using (E2). Thus, f (A+u)+ f (B+v) ≤

f (A + v) + f (B + u).
(ii) In case that maxs∈A w(s) < w(u), we have f (A + u) = w(u) ≤ max{w(u),maxs∈B w(s)} = f (B + u) and f (B + v) ≤

f (A + v) by (E2), which implies that f satisfies (E1).
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Probabilistic cost function. Let q: V → [0, 1] and for S ⊆ V , f (S) := 1 −


s∈S q(s). Notice that f (u) ≥ f (v) implies
q(u) − q(v) ≤ 0. Then f satisfies (E1) because

f (A + u) − f (A + v) = 1 −


s∈A

q(s) · q(u) −


1 −


s∈A

q(s) · q(v)



=


1 −


s∈A

q(s)


· q(u) − q(u) + 1 −


1 −


s∈A

q(s)


· q(v) − q(v) + 1


= f (A) · (q(u) − q(v)) − q(u) + 1 − (−q(v) + 1)
≤ f (B) · (q(u) − q(v)) − q(u) + 1 − (−q(v) + 1)
= f (B + u) − f (B + v).

The argument that f satisfies (E2) is similar. With f (A) ≥ f (B) ≥ 0 and q(u) ≥ 0 we have

f (A + u) = 1 −


s∈A

q(s) · q(u) =


1 −


s∈A

q(s)


· q(u) − q(u) + 1 = f (A) · q(u) − q(u) + 1

≥ f (B) · q(u) − q(u) + 1 =


1 −


s∈B

q(s)


· q(u) − q(u) + 1 = 1 −


s∈B

q(s) · q(u)

= f (B + u).
Non-decreasing weight-defined concave function. Let w: V → R+, S ⊆ V , and let f (S) := h(


v∈S w(v)) for some con-

cave, non-decreasing function h: R → R. The f satisfies (E2) since it is non-decreasing. To see that f satisfies (E1) we use the
property that the marginal increase of concave functions h is decreasing, i.e., for x < x′ and t ≥ 0 holds h(x′

+ t) − h(x′) ≤

h(x + t) − h(x). Set x = w(B) + w(v), x′
= w(A) + w(v), and t = w(u) − w(v). Then we can conclude that

f (A + u) − f (A + v) = h(w(A) + w(u)) − h(w(A) + w(v)) = h(x′
+ t) − h(x′)

≤ h(x + t) − h(x) = h(w(B) + w(u)) − h(w(B) + w(v))

= f (B + u) − f (B + v).

Partial q-coloring andmodified chromatic entropy cost functions are special cases of non-decreasingweight-defined con-
cave functions and thus value-monotone submodular functions.

A.2. Value-polymatroidal vs. value-monotonicity

Anatural question is to ask if the restriction of value-polymatroidal functions to value-monotone ones that satisfy the two
value-monotonicity properties (E1) and (E2) is (i) a true restriction and (ii) indeed necessary, e.g., for the Greedy algorithm in
Section 3 to be optimal. We give an example that answers both questions affirmatively. We give an (artificial) cost function
that is value-polymatroidal but violates both properties. Furthermore, the Greedy algorithm for partitioning a complete
graph into cliques fails to be optimal on this example. This shows that for optimality Greedy indeed requires that the cost
function satisfies both additional value-monotonicity properties.

To simplify notation, we denote f ({x, y}) by f (xy).

Example 1. The function f is defined on 4 elements a, b, c and d. The function values are as follows f (∅) = 0, f (a) = 4,
f (b) = 5, f (c) = 6, f (d) = 7, f (ab) = 9, f (ac) = 10, f (ad) = 9, f (bc) = 9, f (bd) = 10, f (cd) = 10, and all remaining
values for sets of three or four nodes equal 11.
• Value-polymatroidal. It is easy to verify that f is value-polymatroidal, i.e., non-decreasing, submodular, f (∅) = 0, and for

every A, B ⊆ V such that f (A) ≥ f (B) and every u ∈ V \ (A ∪ B) holds that f (A + u) + f (B) ≤ f (A) + f (B + u).
• Property (E1) is violated. Since f (a) < f (b) and f (c) < f (d), it must hold that f (ac) + f (bd) ≤ f (ad) + f (bc) to satisfy

(E1). However, f (ac) + f (bd) = 20 while f (ad) + f (bc) = 18.
• Property (E2) is violated. Since f (a) < f (b), adding element c on both sides must yield f (ac) < f (bc) to satisfy (E2).

However, f (ac) = 10, while f (bc) = 9.
• Greedy is not optimal. Suppose the capacity is B = 2. Then the algorithm yields the solution sets {c, d} and {a, b} with

cost 10 + 9 = 19. On the other hand, the solution {ad}, {bc} has cost 9 + 9 = 18 and is thus optimal.
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