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TSP TOURS IN CUBIC GRAPHS: BEYOND 4/3∗

JOSÉ CORREA† , OMAR LARRÉ† , AND JOSÉ A. SOTO‡

Abstract. After a sequence of improvements Boyd et al. [TSP on cubic and subcubic graphs, In-
teger Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6655, Springer,
Heidelberg, 2011, pp. 65–77] proved that any 2-connected graph whose n vertices have degree 3, i.e.,
a cubic 2-connected graph, has a Hamiltonian tour of length at most (4/3)n, establishing in particular
that the integrality gap of the subtour LP is at most 4/3 for cubic 2-connected graphs and matching
the conjectured value of the famous 4/3 conjecture. In this paper we improve upon this result by
designing an algorithm that finds a tour of length (4/3−1/61236)n, implying that cubic 2-connected
graphs are among the few interesting classes of graphs for which the integrality gap of the subtour
LP is strictly less than 4/3. With the previous result, and by considering an even smaller ε, we show
that the integrality gap of the TSP relaxation is at most 4/3− ε even if the graph is not 2-connected
(i.e., for cubic connected graphs), implying that the approximability threshold of the TSP in cubic
graphs is strictly below 4/3. Finally, using similar techniques we show, as an additional result, that
every Barnette graph admits a tour of length at most (4/3 − 1/18)n.
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1. Introduction. The traveling salesman problem (TSP) in metric graphs is a
landmark problem in combinatorial optimization and theoretical computer science.
Given a graph in which edge-distances form a metric the goal is to find a tour of
minimum length visiting each vertex exactly once. Alternatively, one can allow arbi-
trary nonnegative distances but the goal is to find a minimum length tour that visits
each vertex at least once. Understanding the approximability of the TSP has at-
tracted much attention since Christofides [7] designed a 3/2-approximation algorithm
for the problem. Despite great efforts, Christofides’ algorithm continues to be the
current champion, while the best known lower bound, recently obtained by Lampis
[13] states that the problem is NP-hard to approximate within a factor 185/184,
which improved upon the work of Papadimitriou and Vempala [17]. Very recently
Karpinski and Schmied [11] obtained explicit inapproximability bounds for the cases
of cubic and subcubic graphs. A key lower bound to study the approximability of
the problem is the so-called subtour elimination linear program which has long been
known to have an integrality gap of at most 3/2 [26]. A long-standing conjecture
(see, e.g., Goemans [9]) states that the integrality gap of the subtour elimination LP
is precisely 4/3.

There have been several improvements for important special cases of the metric
TSP in the last couple of years. Oveis Gharan, Saberi, and Singh [16] designed a
(3/2 − ε)-approximation algorithm for the case of graph metrics, while Mömke and
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Svensson [14] improved that to 1.461, using a different approach. Mucha [15] then
showed that the approximation guarantee of the Mömke and Svensson algorithm is
13/9. Finally, still in the shortest path metric case, Sebö and Vygen [21] found an
algorithm with a guarantee of 7/5. These results in particular show that the integrality
gap of the subtour LP is below 3/2 in case the metric comes from an unweighted graph.
Another notable direction of recent improvements concerns the s-t path version of
the TSP on arbitrary metrics, where the natural extension of Christofides’ heuristic
guarantees a solution within a factor of 5/3 of optimum. An, Shmoys, and Kleinberg
[2], found a (1 +

√
5)/2-approximation for this version of the TSP, while Sebö [20]

further improved this result obtaining a 8/5-approximation algorithm.

This renewed interest in designing algorithms for the TSP in graph metrics has
also reached the case when we further restrict ourselves to graph metrics induced by
special classes of graphs. Gamarnik, Lewenstein, and Sviridenko [8] showed that in
a 3-connected cubic graph on n vertices there is always a TSP tour—visiting each
vertex at least once—of length at most (3/2− 5/389)n, improving upon Christofides’
algorithm for this graph class. A few years later, Aggarwal, Garg, and Gupta [1]
improved the result obtaining a bound of (4/3)n while Boyd et al. [5] showed that
the (4/3)n bound holds even if only 2-connectivity assumed. Finally, Mömke and
Svensson’s [14] approach allows us to prove that the (4/3)n bound holds for subcubic
2-connected graphs. Interestingly, the latter bound happens to be tight and thus it
may be tempting to conjecture that there are cubic graphs on n vertices for which no
TSP tour shorter than (4/3)n exists. The main result in this paper, proved in sections
3 and 4, shows that this is not the case. Namely, we prove that any 2-connected cubic
graph on n vertices has a TSP tour of length (4/3− ε)n, for ε = 1/61236 > 0.000016.
In section 5, we use this result and establish that for cubic graphs, not necessarily
2-connected, there exists a 4/3 − ε′ approximation algorithm for the TSP, where
ε′ = ε/(3 + 3ε).

Qian et al. [18] showed that the integrality gap of the subtour LP is strictly less
than 4/3 for metrics where all the distances are either 1 or 2. Their result, based
on the work of Schalekamp, Williamson, and van Zuylen [19], constitutes the first
relevant special case of the TSP for which the integrality gap of the subtour LP is
strictly less than 4/3. Our result implies that the integrality gap of the subtour LP
is also strictly less than 4/3 in connected cubic graphs.

From a graph theoretic viewpoint, our result can also be viewed as a step towards
resolving Barnette’s [4] conjecture, stating that every bipartite, planar, 3-connected,
cubic graph is Hamiltonian (a similar conjecture was first formulated by Tait [22], then
refuted by Tutte [24], then reformulated by Tutte and refuted by Horton, see, e.g., [6],
and finally reformulated by Barnette more than 40 years ago). It is worth mentioning
that for Barnette’s graphs (i.e., those with the previous properties) on n vertices it is
straightforward to construct TSP tours of length at most (4/3)n; however, no better
bound was known. Our result improves upon this, and furthermore as we show in
section 2, in this class of graphs our bound improves to (4/3 − 1/18)n < 1.28n. In
a very recent work, Karp and Ravi [10] proved that for cubic bipartite connected
graphs there exists a TSP tour of length at most (9/7)n. This is slightly worse than
our (4/3 − 1/18)n bound but applies to a larger class of graphs, on the other hand
the Karp and Ravi result improves upon the bound of (4/3 − 1/108)n of Larré [12],
which applies to cubic bipartite 2-connected graphs.

1.1. Our approach. An Eulerian subgraph cover (or simply a cover) is a collec-
tion Γ = {γ1, . . . , γj} of connected multisubgraphs of G, called components, satisfying
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that (i) every vertex of G is covered by exactly one component, (ii) each component
is Eulerian, and (iii) no edge appears more than twice in the same component. Every
cover Γ can be transformed into a TSP tour T (Γ) of the entire graph by contracting
each component, adding a doubled spanning tree in the contracted graph (which is
connected) and then uncontracting the components. Boyd et al [5] defined the con-

tribution of a vertex v in a cover Γ, as zΓ(v) =
(�+2)

h , where � and h are the number
of edges and vertices, respectively, of the component of Γ in which v lies. The extra 2
in the numerator is added for the cost of the double edge used to connect the compo-
nent to the other in the spanning tree mentioned above, so that

∑
v∈V zΓ(v) equals

the number of edges in the final TSP tour T (Γ) plus 2. Let D = {(Γi, λi)}ki=1 be a
distribution over covers of a graph. This is, each Γi is a cover of G and each λi is a
positive number so that

∑k
i=1 λi = 1. The average contribution of a vertex v with

respect to distribution D is defined as zD(v) =
∑k

i=1 λizΓi(v).

As the starting point of our paper, we study short TSP tours on Barnette graphs
(bipartite, planar, cubic, and 3-connected). These types of graphs are very special as it
is possible to partition their set of faces into three cycle covers, i.e., Eulerian subgraph
covers in which every component is a cycle. By a simple counting argument, one of
these cycle covers is composed of less than n/6 cycles. By using the transformation
described on the previous paragraph, we can obtain a TSP tour of length at most
4n/3. To get shorter TSP tours we describe a simple procedure that performs local
operations to reduce the number of cycles in each of the three initial cycle covers. In
these local operations we replace the current cycle cover C by the symmetric difference
between C and the edges of a given face, provided that the resulting graph is a cycle
cover with fewer cycles. By repeating this process on the three initial cycle covers, it
is possible to reach a cover with fewer than 5n/36 cycles, which, in turn, implies the
existence of a TSP tour of length at most (4/3− 1/18)n. This result is described in
section 2.

The idea of applying local operations to decrease the number of components of
an Eulerian subgraph cover can still be applied on more general graph classes. Given
a 2-connected cubic graph G, Boyd et al. [5] found a TSP tour T of G with at
most 4

3 |V (G)| − 2 edges. Their approach has two phases. In the first phase, they
transform G into a simpler cubic 2-connected graph H not containing certain ill-
behaved structures (called p-rainbows, for p ≥ 1). In the second phase, they use a
linear programming approach to find a polynomial collection of perfect matchings for
H such that a convex combination of them gives every edge a weight of 1/3. Their
complements induce a distribution over cycle covers of H . By performing certain local
operations on each cover, they get a distribution of Eulerian subgraph covers having
average vertex contribution bounded above by 4/3. They use this to find a TSP tour
for H with at most 4

3 |V (H)| − 2 edges, which can be easily transformed into a TSP
tour of G having the desired guarantee. The local operations used by Boyd et al. [5]
consist of iterative alternation of 4-cycles and a special type of alternation of 5-cycles
(in which some edges get doubled).

Our main result is an improvement on Boyd et al.’s technique that allows us
to show that every 2-connected cubic graph G admits a TSP tour with at most
(4/3 − ε)|V (G)| − 2 edges. The first difference between the approaches, described
in section 3, is that our simplification phase is more aggressive. Specifically, we set
up a framework to eliminate large families of structures that we use to get rid of all
chorded 6-cycles. This clean-up step can very likely be extended to larger families
and may ultimately lead to improved results when combined with an appropriate
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second phase. The second difference, described in section 4, is that we extend the
set of local operations of the second phase by allowing the alternation of 6-cycles of a
Eulerian subgraph cover. Again, it is likely that one can further exploit this idea to
get improved guarantees. Mixing these new ideas appropriately requires significant
work but ultimately leads us to find a distribution D of covers of the simplified graph
H for which

∑
v∈V (H) zD(v) ≤ (43 − ε)n− 2. From there, we obtain a TSP tour of G

with the improved guarantee.

Our analysis allows us to set ε as 1/61236 > 0.000016 for cubic 2-connected
graphs. It is worth noting here that by adding extra hypothesis it is possible to
improve this constant. For instance, the case of cubic 2-connected bipartite graphs
is interesting. This type of graphs is actually 3-edge colorable; therefore, by taking
the complements of the three perfect matchings induced by the coloring, we obtain
a cycle cover distribution whose support has only 3 cycle covers making the problem
much easier to analyze. In fact, by slightly relaxing the simplification phase we can
impose that the resulting graph is still bipartite (but allowing a certain type of chorded
hexagons) and thus, the operation consisting on the alternation of 5-cycles will never
occur. It is possible to show (see Larré’s master’s thesis [12]) that this modified
algorithm yields a tour of length at most (4/3−1/108)n−2 for any cubic 2-connected
bipartite graph.

2. Barnette graphs. Barnette [4] conjectured that every cubic, bipartite, 3-
connected planar graph is Hamiltonian. More than 40 years later and despite consid-
erable effort, Barnette’s conjecture is still not settled. This motivates the definition
of a Barnette graph as a cubic, bipartite, 3-connected planar graph. Even though we
are not able to prove or disprove Barnette’s conjecture, in this section we show that
these graphs admit short tours.

Recall that a tour of a graph G is simply a spanning Eulerian subgraph where
every edge appears at most twice. The main idea for obtaining short tours is to find a
cycle cover C of G having small number of cycles. The tour T (C) obtained by taking
the union of the edges of C and a doubled spanning tree of the multigraph obtained
by contracting each cycle of C in G has length n + 2|C| − 2, where |C| is the number
of cycles in C.

Let G be a Barnette graph on n vertices. By 3-connectedness, G has a unique
embedding on the sphere up to isomorphism [25]; therefore, its set of faces is well-
determined. Furthermore, it has a unique planar dual G∗, which is an Eulerian planar
triangulation. As Eulerian planar triangulations are known to be 3-colorable (see, e.g.,
[23]), Barnette graphs are 3-face colorable. Furthermore, finding such coloring can be
done in polynomial time.

We can use this to easily get a tour of G of length at most 4n/3 as follows.
Denote the vertex, edge, and face sets of G as V = V (G), E = E(G), and F = F (G),
respectively, and let c : F → {1, 2, 3} be a proper 3-face coloring of G. Let F (i) be
the set of faces of color i. Since the graph is cubic, |E| = 3n/2, and by Euler’s
formula, |F | = 2+ |E| − |V | = (n+4)/2. This means that there is a color i such that
|F (i)| ≤ (n + 4)/6. Since F (i) is a cycle cover, the tour T (F (i)) obtained as before
has length n+ 2|F (i)| − 2 ≤ (4n− 2)/3.

We will devise an algorithm that finds a short cycle covers of Barnette graphs by
performing certain local operations to reduce the number of cycles of the three cycle
covers given by F (1), F (2), and F (3). Recall that an even cycle C0 is alternating for
a cycle cycle cover C of G if the edges of C0 alternate between edges inside C and
edges outside C. If C0 is an alternating cycle of C, we can define a new cycle cover
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C�C0 whose edge set is the symmetric difference between the edges of C and those of
C0.

The next procedure constructs cycle covers C(i), for each i ∈ {1, 2, 3}. Initialize
C(i) as F (j) for some j �= i; for example, j = i + 1 (mod 3). As we will see later,
each face of F (i) is alternating for C(i) at every moment of the procedure. Iteratively,
check if there is a face f in F (i) such that C(i)�f has fewer cycles than C(i). If so,
replace C(i) by the improved cover. Do this step until no improvement is possible to
obtain the desired cover. Let C be the cycle cover of fewer cycles among the three
covers found. By returning the tour associated to C we obtain Algorithm 1 below.

Algorithm 1 To find a tour on a Barnette graph G = (V,E).

1: Find a 3-face coloring of G with colors in {1, 2, 3}.
2: for each i ∈ {1, 2, 3} do
3: C(i)← F (j), for j = (i+ 1) (mod 3).
4: while there is a face f ∈ F (i) such that |C(i)�f | < |C(i)| do
5: C(i)← C(i)�f .
6: end while
7: end for
8: Let C be the cycle cover of smallest cardinality among all C(i).
9: Return the tour associated to C.

To analyze the algorithm it will be useful to extend the initial face-coloring to
an edge-coloring of G, by assigning to each edge e the color in {1, 2, 3} that is not
present in both incident faces of e. Denote as E(i) the set of edges of color i. Then
E(1), E(2), and E(3) are disjoint perfect matchings and, furthermore, E(i) ∪ E(j)
are exactly the edges of F (k), for {i, j, k} = {1, 2, 3}. Lemma 1 below implies, in
particular, that the algorithm is correct.

Lemma 1. In every iteration of Algorithm 1, C(i) is a cycle cover of G containing
E(i) and every face f ∈ F (i) is alternating for C(i).

Proof. We proceed by induction. Observe that C(i) equals F (j) for j �= i in
the beginning so it contains E(i). Suppose this lemma holds at the beginning of an
iteration and let f be a face of F (i), so f has no edges of color i. As C(i) contains
E(i), and every vertex v of f has degree 2 in C(i), we conclude that f is alternating
for C(i) and thus, C(i)�f is a cover containing E(i).

Lemma 2. Let C(i) be the cycle cover obtained at the end of the while-loop in
Algorithm 1 and let f be a face of length 2k in F (i), then f intersects at most �k+1

2 �
cycles of C(i).

+

+

+

+

−

−

−

Fig. 1. The graph H in the proof of Lemma 2.

Proof. Let C′ be the collection of cycles in C(i) intersecting f and let H be the
subgraph of G whose edge set is the union of the edges of C′ and those of f . Using the
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planar embedding of G having f as the outer face, we can see that H consists of the
outer cycle f and a collection of noncrossing paths on the inside connecting vertices
of f as in Figure 1.

Label with a plus (+) sign the regions of H bounded by cycles in C(i) and by a
minus (−) sign the rest of the regions except for the outer face, thus |C′| equals the
number of + regions. Furthermore, it is easy to see that the cycle cover C(i)Δf has
size equal to |C(i)| minus the number of + regions plus the number of − regions. By
our algorithm’s specification, |C(i)Δf | ≥ |C(i)|, and therefore the number of + regions
must be at most that of − regions. But since f has length 2k, the total number of
regions labeled + and − is k+1. Since |C′| is an integer, we get |C′| ≤ �(k+1)/2�.

With this lemma we can bound the size of the tour returned. For i ∈ {1, 2, 3}
and k ∈ N define Fk(i) as the set of faces of color i and length k, and Fk as the total
number of faces of length k.

Lemma 3. Let C(i) be the cycle cover obtained at the end of the while-loop in
Algorithm 1. Then

|C(i)| ≤ 1 +

∞∑
k=2

⌊k − 1

2

⌋
|F2k(i)| = 1 + |F6(i)|+ |F8(i)|+ 2|F10(i)|+ 2|F12(i)|+ · · · .

Proof. Let G′ be the graph G restricted to the edges of C(i). Let H be the
connected Eulerian multigraph obtained by contracting in G′ all the faces in F (i) to
vertices. Observe that the edge set of H is exactly E(i). One by one, uncontract
each face f in H . In each step we obtain an Eulerian graph which may have more
connected components than before. We can estimate the number of cycles in C(i)
as 1 (the original component in H) plus the increase in the number of connected
components on each step of this procedure.

Consider the graph H immediately before expanding a face f . Let Hf be the
connected component of H containing the vertex associated to f . If f has length 2k,
then, after expanding f , Hf splits into at most �k+1

2 � connected components. This
follows since after expanding all the cycles of F (i), Hf is split into at most that many
components by Lemma 2. But then, expanding f increases the number of connected
components of H by at most �k+1

2 � − 1 = �k−1
2 �.

The previous bound is not enough to conclude the analysis. Fortunately, we can
find another bound that will be useful.

Lemma 4. Let C(i) be the cycle cover obtained at the end of the while-loop in
Algorithm 1. If |C(i)| �= 1, then

3|C(i)| ≤ |C(i) ∩ F4|+
∞∑
k=2

⌊k + 1

2

⌋
|F2k(i)|

= |C(i) ∩ F4|+ |F4(i)|+ 2|F6(i)|+ 2|F8(i)|+ 3|F10(i)|+ · · · .

Proof. Since C(i) contain E(i), every cycle C ∈ C(i) must intersect at least two
faces in F(i). In particular, every 4-cycle in C(i) intersects exactly two faces in F(i).
Consider now a cycle C ∈ C(i) of length at least 6.

We claim that C must intersect three of more faces of F(i). If this was not
the case, then C intersects exactly two faces f1 and f2. Then the edges of C must
alternate as one edge of f1, then one edge in E(i) crossing between the faces, then
one edge in f2, and one edge in E(i) crossing between the faces. In particular, the
length of C must be divisible by 4. Let v0, v1, . . . , v4k−1 be the vertices of C. By
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v4�+2f2

f1 v4� v4�+1 v4�+4 v4�+5

v4�+3

Fig. 2. A cycle C intersecting two faces f1 and f2.

the previous observation we can assume that for every 1 ≤ � ≤ k, v4�v4�+1 is an edge
of f1, v4�+2v4�+3 is an edge of f2, and the rest of the edges of C are crossing between
faces, as depicted in Figure 2.

Suppose that there exists a vertex in f1 not contained in C, then there must be
an index � such that v is in the path P from v4�+1 to v4�+4 in f1, that is internally
disjoint with C. Since f1 is a face of G, we deduce that removing v4�+1 and v4�+4 from
G disconnects the graph. But this contradicts the 3-connectedness of G. Therefore,
C contains all of the vertices in f1 and, by an analogous argument, all of the vertices
of f2. Since the graph is cubic and connected, the only possibility is that C contains
all of the vertices of G. But then |C(i)| = 1 which contradicts the hypothesis of
the lemma. Therefore, we have proved the every cycle in C(i) of length at least six
intersects at least 3 faces.

Define the set

J(i) = {(C,H) ∈ C(i)×F(i) : cycle C intersects face H }.
By the previous discussion we have

|J(i)| ≥ 2|C(i) ∩ F4|+ 3|C(i) \ F4| = 3|C(i)| − |C(i) ∩ F4|.
By Lemma 2 we have

|J(i)| ≤
∞∑
k=2

⌊k + 1

2

⌋
|F2k(i)|.

Combining the last two inequalities we get the desired result.
Now we have all of the ingredients to bound the size of the cycle cover returned

by the algorithm.
Lemma 5. Let C be the cycle cover computed by Algorithm 1. Then

|C| ≤ min

{
n+ 4

6
− |F4|

6
,
(n+ 1)

9
+
|F4|
6

}
.

Proof. First, we need a bound on a quantity related to previous lemmas. Let α
be

∑∞
k=2

⌊
k−1
2

⌋|F2k|. We claim that α ≤ 1
2 (n− 2− |F4|) .

Since |F | = (n+4)/2, the claim above is equivalent to proving that 2|F4|+2|F |+
4α ≤ 3n. Note that 2|F4|+ 2|F |+ 4α equals

2|F4|
+ 2|F4|+ 2|F6|+ 2|F8|+ 2|F10|+ 2|F12|+ 2|F14|+ · · ·

+ 4|F6|+ 4|F8|+ 8|F10|+ 8|F12|+ 12|F14|+ · · ·
= 4|F4|+ 6|F6|+ 6|F8|+ 8|F10|+ 8|F12|+ 10|F14|+ · · · ,
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which is upper bounded by
∑∞

k=2 2k|F2k|. This quantity is the sum of the length of
all the faces in G. As each vertex is in three faces, this quantity is at most 3n, which
proves the claim.

By Lemma 3 we have

|C| ≤ 1

3

3∑
i=1

|C(i)| ≤ 1 +
α

3
≤ 1 +

1

6
(n− 2− |F4|) = n+ 4

6
− |F4|

6
.

On the other hand, using that |F | = (n+ 4)/2 and Lemma 4, we get

9|C| ≤ 3

3∑
i=1

|C(i)| ≤
3∑

i=1

|C(i) ∩ F4|+ α+ |F | ≤
3∑

i=1

|C(i) ∩ F4|+ 1

2
(2n+ 2− |F4|).

Note that each cycle in F4 avoids one color; therefore, it can only appear in two cycle
covers C(i), i.e., ∑3

i=1 |C(i) ∩ F4| ≤ 2|F4|. From here we get that

|C| ≤ 1

9
(2|F4|+ n+ 1− |F4|/2) = n+ 1

9
+
|F4|
6

.

The previous lemma implies the main result of this section.
Theorem 1. Let C be the cycle cover computed by Algorithm 1 and let T be

the tour returned. Then |C| ≤ 5n+14
36 , and the length of T is at most 23n−22

18 =(
4
3 − 1

18

)
n− 11

9 . In particular, every Barnette graph admits a tour of length at most(
4
3 − 1

18

)
n− 11

9 .
Proof. The expression on the right-hand side of Lemma 5 is maximized when

|F4| = n+10
6 , for which it attains a value of 5n+14

36 . Therefore, for every value of |F4|,
this quantity is an upper bound of |C|. To conclude, we just use that the length of T
is n+ 2(|C| − 1).

3. 2-connected cubic graphs: Simplification phase. We now go back to
general 2-connected cubic graphs. Our algorithm starts by reducing the input graph
G to a simpler 2-connected cubic graph H which does not contain a cycle of length
six with one or more chords as subgraph. In addition our reduction satisfies that if
H has a TSP tour of length at most (4/3− ε)|V (H)| − 2, then G has a TSP tour of
length at most (4/3− ε)|V (G)| − 2, where V (H) and V (G) denote the vertex sets of
H and G, respectively. We will use the notation χF ∈ {0, 1}E of F ⊂ E to denote
the incidence vector of F (χF

e = 1 if e ∈ F , and 0 otherwise).

Reduction 1. Let γ be a 6-cycle having two chords and let G[V (γ)] be the subgraph
induced by the set of vertices contained in γ Also, let v1 and v2 be the two vertices
connecting γ to the rest of G. Our reduction replaces G[V (γ)] by a 4-cycle with
a chord (shown in Figure 3), identifying v1 and v2 with the vertices of degree 2 in
the chorded 4-cycle. This procedure in particular removes the p-rainbow structure in
Boyd et al. [5].

The second step is to consider 6-cycles having only one chord. Let γ be such a
cycle and let G[V (γ)] be the subgraph induced by the set of vertices contained in γ.
Consider the four edges e1, e2, e3, and e4 connecting γ to the rest of G. Letting wi be
the endpoint of ei outside γ, we distinguish the following three reductions according
to three different cases.

Reduction 2. If only two of the wi’s are distinct, we proceed as in the previous
case (Reduction 1); that is, replacing G[V (γ)] by a chorded 4-cycle.
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Fig. 3. A 4-cycle with a chord.

Reduction 3. If three of the wi’s are distinct we replace the 7 vertex structure
formed by γ and the wi adjacent to two vertices in γ by a triangle (3-cycle), iden-
tifying the degree two vertices in the structure with those in the triangle. Figure 4
shows an example of this reduction in the specific case that γ has a chord connecting
symmetrically opposite vertices.

Fig. 4. Reduction 3 in the case that γ has a chord connecting symmetrically opposite vertices.

Reduction 4. The final case is when all four wi’s are distinct. Assume, without
loss of generality, that the w′

is are indexed in the cyclic order induced by γ. In this
case we replace γ by an edge e and we either connect w1, w2 to one endpoint of e
and w3, w4 to the other, or we connect w1, w4 to one endpoint and w2, w3 to the
other. The previous choice can always be made so that in the reduced graph e is not
a bridge, as the following lemma shows.

Lemma 6. Let γ be a chorded 6-cycle considered in Reduction 4. Then, the edges
in G[V (γ)] do not simultaneously contain a cut of G separating the vertex sets {w1, w2}
and {w3, w4}, and a second cut separating the vertex sets {w2, w3} and {w1, w4}.

Proof. By contradiction, suppose that the edge set of G[V (γ)] contains two cuts
of G such that the first cut separates the vertex sets {w1, w2} and {w3, w4}, and the
second cut separates the vertex sets {w2, w3} and {w1, w4}. By deleting the vertices
and edges of γ, we split G into four connected components, one containing each wi;
thus all paths connecting w1 and w3 in G must use the edge e1, contradicting the
2-connectivity of G.

Note that all of the above reduction steps strictly decrease the number of vertices
in the graph while keeping the graph cubic and 2-connected, and that each step
requires only polynomial time. Thus only a linear number of polynomial time steps
are needed to obtain a cubic and 2-connected reduced graphH which does not contain
6-cycles with one or more chords. The following result shows that any TSP tour in
the reduced graph H of length at most (4/3− ε)|V (H)| − 2 can be turned into a TSP
tour in the original graph G of length at most (4/3− ε)|V (G)| − 2.

Proposition 1. Let T ′ a TSP tour in the reduced graph H of length at most
α|V (H)| − 2, with 5/4 ≤ α ≤ 4/3. Then, a TSP tour T can be constructed in the
original graph G in polynomial time, such that the length of T is at most α|V (G)|−2.

Proof. We distinguish certain cases, depending on what reduction was performed
over the graph.

• Case of Reduction 1 or 2: in this case the result is a consequence of the following
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lemma.
Lemma 7. Let G = (V,E) be a graph and let U ⊂ V be such that the cut δ(U)

has only two elements, say δ(U) = {e1, e2}. Let v, w ∈ U be the two end vertices of e1
and e2 in U , respectively. Let us suppose that the subgraph G[U ] is Hamiltonian and
contains a Hamiltonian path connecting v and w. Let H be the graph resulted from
replacing the subgraph G[U ] by a chorded 4-cycle D and let T ′ be a TSP tour in H.
Then, there exists a TSP tour T in G with length |T | ≤ |T ′|+ |U | − 4.

Proof of Lemma 7. Let χP be the incidence vector of some Hamiltonian path P
connecting v and w, and let χC be the incidence vector of some Hamiltonian cycle
C in G[U ]. Let us denote by x′ the vector χT ′

(the incidence vector of T ′). We are
going to extend the TSP tour T ′ to the original graph G depending on the value of
x′ on edges e1 and e2. We know that x′({e1, e2}) := x′(e1) + x′(e2) must be an even
number, since T ′ is a TSP tour. Considering that x′ takes values over {0, 1, 2}, we
have that all of the possible cases for the values of x′(e1) and x′(e2) are as follows.

• Case (x′(e1), x′(e2)) = (1, 1): in this case there is a path in the chorded 4-
cycle D and in T ′ of length 3 connecting v and w. Then, we define the vector
x as

x(e) =

{
χP (e) if e ∈ E(G[U ]),

x′(e) if e ∈ E(G) \ E(G[U ]]).

• Case (x′(e1), x′(e2)) ∈ {(2, 0), (0, 2)}: in this case there is a 4-cycle in D and
in T ′. Then, we define the vector x as

x(e) =

{
χC(e) if e ∈ E(G[U ]),

x′(e) if e ∈ E(G) \ E(G[U ]).

• Case (x′(e1), x′(e2)) = (2, 2): in this case we redefine x′(e2) = 0 and then we
define the vector x as the previous case.

In any case x is the incidence vector of a TSP tour T in G, of length |T | ≤
|T ′|+ |U | − 4.

It is straightforward to verify that both Reduction 1 and 2 satisfy the hypothesis
of Lemma 7. In the case of Reduction 1, the vertex set of the replaced structure has
size |U | = 6, and in the case of Reduction 2, the vertex set of the replaced structure
has size |U | = 8. Whatever the case, we have that |V (G)| = |V (H)| + |U | − 4, and
then

|T | ≤ |T ′|+ |U | − 4

≤ α|V (H)| − 2 + |U | − 4

= α|V (G)| − 2− (α− 1)(|V (G)| − |V (H)|)
≤ α|V (G)| − 2,

where the first inequality holds by Lemma 7.
• Case of Reduction 3: in this case the result is a consequence of the following lemma.

Lemma 8. Let G = (V,E) a graph and let U ⊂ V be such that |U | = 7 and
the cut δ(U) has only three elements, say δ(U) = {e1, e2, e3}. Let v1, v2, v3 ∈ U be
the three end vertices of e1, e2, and e3 in U , respectively. Let us suppose that the
subgraph G[U ] contains a (not necessarily simple) cycle C of length at most 8 which
visits every vertex of U , and for every pair of vertices v, w ∈ {v1, v2, v3} there exists
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a (not necessarily simple) path P (v, w) of length at most 7 which visits every vertex
of U . Let H be the graph resulted from replacing the subgraph G[U ] by a triangle
and let T ′ be a TSP tour in H. Then, there exists a TSP tour T in G with length
|T | ≤ |T ′|+ 5.

Proof of Lemma 8. Let χP (v, w) be the incidence vector of path P (v,W ) and
χC be the incidence vector of C. Let us denote by x′ the vector χT ′

(the incidence
vector of T ′). We are going to extend the TSP tour T ′ to the original graph G
depending on the value of x′ on edges e1, e2, and e3. We know that x′({e1, e2, e3}) :=
x′(e1) + x′(e2) + x′(e3) must be an even number, since T ′ is a TSP tour. Considering
that x′ takes values over {0, 1, 2}, we have that all of the possible cases for the values
of x′(e1), x′(e2), and x′(e3) are as follows.

• Case (x′(e1), x′(e2), x′(e3)) = (2, 0, 0) (or another possible permutation): in
this case we define the vector x as

x(e) =

{
χC(e) if e ∈ E(G[U ]),

x′(e) if e ∈ E(G) \ E(G[U ]).

• Case (x′(e1), x′(e2), x′(e3)) ∈ {(2, 2, 0), (2, 2, 2)} (or another possible permu-
tation): first we redefine x′(e2) = x′(e3) = 0 and then we define the vector x
as the previous case.
• Case (x′(e1), x′(e2), x′(e3)) = (1, 1, 0) (or another possible permutation): in
this case we define the vector x as

x(e) =

{
χP (v1,v2)(e) if e ∈ E(G[U ]),

x′(e) if e ∈ E(G) \ E(G[U ]).

• Case (x′(e1), x′(e2), x′(e3)) = (1, 1, 2) (or another possible permutation): first
we redefine x′(e3) = 0 and then we define the vector x as the previous case.

In any case x is the incidence vector of a TSP tour T in G. Note that x was
constructed from x′, by adding edges from the original graph and removing edges
from the triangle. In the first and second case we added at most eight edges and
deleted at least 3. In the third and fourth cases we added at most seven edges and
deleted at least 2. In any case, we have that |T | ≤ |T ′|+ 5.

To see that all possible structures that are considered in Reduction 3 satisfy the
hypothesis of Lemma 8, we need only check by inspection that there exist a cycle C
of length at most 8 and paths of length at most 7 connecting every pair of vertices,
which visit every vertex of the structures of Figure 5.

Then, applying Reduction 3, we can define a TSP tour T in the original graph
with length

|T | ≤ |T ′|+ 5

≤ α|V (H)| − 2 + 5

= α|V (G)| − 2 + 5 + α(|V (H)| − |V (G)|)
= α|V (G)| − 2 + (5− α4)

≤ α|V (G)| − 2,

where the first inequality holds by Lemma 8 and the last one since 5/4 ≤ α.
• Case of Reduction 4: it is easy to construct a TSP tour T in the original graph G
with length |T | ≤ |T ′| + 4. The detailed case analysis is omitted since it is very
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Fig. 5. All possible structures that are considered in Reduction 3. The three figures on the top
consider the situations in which γ has a chord dividing the cycle into two 4-cycles and the extra
vertex connects two vertices in γ at distance 1, 2, and 3. The next four cases correspond to the
situations in which γ has a chord dividing the cycle into a 3-cycle and a 5-cycle and the extra vertex
connects two vertices in γ at distance 1 (middle right), at distance 2 (left and right) and at distance
3 (middle left). Symmetric cases are displayed only once.

similar to the previous ones. Then

|T | ≤ |T ′|+ 4

≤ α|V (H)| − 2 + 4

= α|V (G)| − 2 + 4 + α(|V (H)| − |V (G)|)
= α|V (G)| − 2 + (4 − α4)

≤ α|V (G)| − 2,

where the last inequality holds since α ≥ 1.
Considering this latter case, we finish the proof of Proposition 1.
Finally, note that—as mentioned above—only a linear number of reduction steps

are needed, and each step requires only polynomial time, not only to find the desired
structure, but also to recover the TSP tour in the original graph. Thus this graph
simplification phase runs in polynomial time.

4. 2-connected cubic graphs: Eulerian subgraph cover phase. We say
that a matching M is 3-cut perfect if M is a perfect matching intersecting every 3-cut
in exactly one edge. Boyd et al. [5] have shown the following lemma.

Lemma 9 (see [5]). Let G = (V,E) be a 2-connected cubic graph. Then, the vector
1
3χ

E can be expressed as a convex combination of incidence vectors of 3-cut perfect
matchings of G. This is, there are 3-cut perfect matchings {Mi}ki=1 and positive real
numbers λ1, λ2, . . . , λk such that

(4.1)

k∑
i=1

λi = 1

and

(4.2)
1

3
χE =

k∑
i=1

λiχ
Mi .
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Fig. 6. Operation (U1).

Furthermore, Barahona [3] provides an algorithm to find a convex combination of
1
3χ

E having k ≤ 7n/2− 1 in O(n6) time.
Consider a graph G that is cubic, 2-connected, and reduced. That is, no 6-cycle

in G has chords. We also assume that n ≥ 10 as every cubic 2-connected graph on
less than ten vertices is Hamiltonian.

Let {Mi}ki=1 and {λi}ki=1 be the 3-cut matchings and coefficients guaranteed by
Lemma 9. Let {Ci}ki=1 be the family of cycle covers associated to the matchings
{Mi}ki=1. This is, Ci is the collection of cycles induced by E \Mi. Since each match-
ing Mi is 3-cut perfect, the corresponding cycle cover Ci does not contain 3-cycles.
Furthermore, every 5-cycle in Ci is induced (i.e., it has no chord in G).

In what follows we define three local operations, (U1), (U2), and (U3), that will be
applied iteratively to the current family of covers. Each operation is aimed to reduce
the contribution of each component of the family. We stress here that operations (U2)
and (U3) are exactly those used by Boyd et al. [5], but for the reader’s convenience
we explain them here. We start with operation (U1).

(U1) Consider a cycle cover C of the current family. If C1, C2, and C3 are three
disjoint cycles of C that intersect a fixed 6-cycle C of G (which, because of
the graph simplification phase, has no chords), then we merge them into the
simple cycle obtained by taking their symmetric difference with C. This is,
the new cycle in V (C1) ∪ V (C2) ∪ V (C3) having edge set (E(C1) ∪ E(C2) ∪
E(C3))ΔE(C).

An example of (U1) is depicted in Figure 6. We apply (U1) as many times as
possible to get a new cycle cover {CU1

i }ki=1. Then we apply the next operation.
(U2) Consider a cycle cover C of the current family. If C1 and C2 are two disjoint

cycles of C that intersect a fixed 4-cycle C of G, then we merge them into a
simple cycle obtained by taking their symmetric difference with C. This is,
the new cycle in V (C1) ∪ V (C2) having edge set (E(C1) ∪ E(C2))ΔE(C).

We apply operation (U2) as many times as possible to obtain a new cycle cover
{CU2

i }ki=1 of G. The next operation we define may transform a cycle cover C of the
current family into a Eulerian subgraph cover Γ, having components that are not
necessarily cycles.

(U3) Let Γ be an Eulerian subgraph cover of the current family. If γ1 and γ2 are
two components of Γ, each one having at least five vertices, whose vertex set
intersect a fixed 5-cycle C of G, then combine them into a single component,
by adding at most one extra edge.

To explain how we combine the components in operation (U3) we need the fol-
lowing two lemmas.

Lemma 10 (see [5]). Let H1 and H2 be two connected Eulerian multisubgraphs of
a cubic graph G having at least two vertices in common and let H3 be the sum of H1

and H2, i.e., the union of their vertices and the sum of their edges (allowing multiple
parallel edges). Then we can remove (at least) two edges from H3 such that it stays
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Fig. 7. Sketch of operation (U3).

connected and Eulerian.
Proof. Let u and v be in both H1 and H2. The edge set of H3 can be partitioned

into edge-disjoint (u, v)-walks P1, P2, P3, and P4. Since u has degree 3 in G, there
must be two parallel edges incident to u that are on different paths, say e1 ∈ P1 and
e2 ∈ P2. If we remove e1 and e2, then the graph stays Eulerian. Moreover, it stays
connected since u and v are still connected by P3 and P4 and every vertex of P1 and
P2 is still connected to one of u and v.

Lemma 11 (similar to an observation in [5]). If v belongs to a component γ of
any of the covers Γ considered by the algorithm, then at least two of its three neighbors
are in the same component.

Proof. The above lemma holds trivially when γ is a cycle. In particular, the lemma
holds before the application of operation (U3). As the vertex set of a component
created by operation (U3) is the union of the vertex set of two previous components,
the above lemma also holds after operation (U3).

Observe that if γ is a component of a cover in the current family, and C is
an arbitrary cycle of G containing a vertex of γ, then, by the cubicity of G and
Lemma 11, C and γ must share at least two vertices. In particular, if γ1 and γ2 are
the two components intersecting a 5-cycle C considered by operation (U3), then one of
them, say γ1, must contain exactly two vertices of C and the other one must contain
the other three vertices (note that they cannot each share two vertices, since then
a vertex of C would not be included in the cover). To perform (U3) we first merge
γ1 and C using Lemma 10 removing two edges, and then we merge the resulting
component with γ2, again removing two edges. Altogether, we added the five edges
of C and removed four edges. Finally, we remove two edges from each group of triple
or quadruple edges that may remain, so that each edge appears at most twice in each
component. Figure 7 shows an example of (U3).

Remark 1. Operation (U3) generates components having at least ten vertices.
Therefore, any component having nine or fewer vertices must be a cycle. Furthermore,
all the cycles generated by (U1) or (U2) contain at least ten vertices (this follows from
the fact that G is reduced, and so operation (U2) always involves combining two cycles
of length at least 5). From here we observe that any component having nine or fewer
vertices must be in the original cycle cover {Ci}ki=1.

We say that a 4-cycle C with a chord is isolated if the two edges incident to it
are not incident to another chorded 4-cycle. The following is the main result of this
section. Before proving it we show it implies the main result of this paper.

Proposition 2 (main proposition). Let {Γi}ki=1 be the family of Eulerian sub-
graph covers at the end of the algorithm (that is, after applying all operations),
and let z(v) = zD(v) be the average contribution of vertex v for the distribution
D = {(Γi, λi)}ki=1. Furthermore, let γi be the component containing v in Γi and
Γ(v) = {γi}ki=1. We have the following.

(P1) If v is in an isolated chorded 4-cycle, then z(v) ≤ 4/3.
(P2) If v is in a nonisolated chorded 4-cycle of G, then z(v) ≤ 13/10.
(P3) Else, if there is an induced 4-cycle γ ∈ Γ(v), then z(v) ≤ 4/3− 1/60.
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(P4) Else, if there is an induced 5-cycle γ ∈ Γ(v), then z(v) ≤ 4/3− 1/60.
(P5) Else, if there is an induced 6-cycle γ ∈ Γ(v), then we have both z(v) ≤ 4/3

and
∑

w∈V (γ) z(w) ≤ 6 · (4/3− 1/729).

(P6) In any other case z(v) ≤ 13/10.
Theorem 2. Every 2-connected cubic graph G = (V,E) admits a TSP tour of

length at most (4/3 − ε)|V | − 2, where ε = 1/61236. This tour can be computed in
polynomial time.

Proof of Theorem 2. From section 3, we can assume that G is also reduced and
so the main proposition holds. Let B be the union of the vertex sets of all isolated
chorded 4-cycles of G. We say a vertex is bad if it is in B, and good otherwise. We
claim that the proportion of bad vertices in G is bounded above by 6/7. To see this,
construct the auxiliary graph G′ from G by replacing every isolated chorded 4-cycle
with an edge between its two neighboring vertices. Since G′ is cubic, it contains
exactly 2|E(G′)|/3 vertices, which are good in G. Hence, for every bad vertex there
are at least (1/4) · (2/3) = 1/6 good ones, proving the claim.

The Main proposition guarantees that every bad vertex v contributes a quantity
z(v) ≤ 4/3. Now we show that the average contribution of all the good vertices
is at most (4/3 − δ) for some δ to be determined. To do this, define H = {γ ∈⋃

i Γi : |V (γ)| = 6} as the collection of all 6-cycles appearing in some cover of the
final family, and let H =

⋃
γ∈H V (γ) be the vertices included in some 6-cycle of

H. It is easy to check that B and H are disjoint. Furthermore, the Main proposition
guarantees that if v ∈ V \(B∪H), then z(v) ≤ (4/3−1/60). So we focus on bounding
the contribution of the vertices in H .

For every v ∈ H , let f(v) be the number of distinct 6-cycles in H containing v.
Since G is cubic, there is an absolute constant K, such that f(v) ≤ K. By the Main
proposition, z(v) ≤ 4/3 for v ∈ H and for every γ ∈ H, ∑v∈V (γ) z(v) ≤ 6 · (4/3− ε′),
where ε′ = 1/729. Putting this all together we have that

K ·
∑
v∈H

[
z(v)−

(
4

3
− ε′

K

)]
= |H |ε′ +K

∑
v∈H

(
z(v)− 4

3

)

≤ 6|H|ε′ +
∑
v∈H

f(v)

(
z(v)− 4

3

)
= 6|H|ε′ +

∑
γ∈H

∑
v∈V (γ)

(
z(v)− 4

3

)

≤ 6|H|ε′ −
∑
γ∈H

6ε′ = 0.

It follows that 1
|H|

∑
v∈H z(v) ≤ (4/3− ε′/K). Since ε′/K ≤ 1/60, we get

∑
v∈V

z(v) ≤
∑
v∈B

z(v) +
∑
v∈H

z(v) +
∑

v∈V \(B∪H)

z(v)

≤ 4

3
|B|+

(
4

3
− ε′

K

)
(|V | − |B|) = |V |

(
4

3
− ε′

7K

)
.

We conclude that there is an index i such that
∑

v∈V zi(v) ≤ |V | (4/3− ε′/(7K)).
By adding a double spanning tree of G/E(Γi) we transform Γi into a TSP tour T of
length |V | (4/3− ε′/(7K)) − 2. Noting that K ≤ 12 and ε′ = 1/729 we obtain the
desired bound.1 Clearly, all operations can be done in polynomial time.

1Consider two edges, e1 and e2, adjacent to v. Since there is no chorded 6-cycle, if e1 and e2
are contained in a 4-cycle, then v must be contained in at most one 6-cycle. Otherwise, there are at
most four 6-cycles which may contain e1 and e2. Because there are three possible pairs of edges, we
have K = 12.
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4.1. Proof of the main proposition. We start by a lemma, whose proof is
the same as that of [5, Observation 1].

Lemma 12 ([5]). For each vertex v ∈ V , and each i ∈ {1, . . . , k}, the contribution
zi(v) := zΓi(v) is

(a) at most h+2
h , where h = min{t, 10} and v is on a t-cycle belonging to one of

the cycle covers Ci, CU1
i , and CU2

i .
(b) at most 13

10 if operation (U3) modified the component containing v.

We will also use the following notation in our proof. For any subset J of indices
in [k] := {1, . . . , k}, define λ(J) =

∑
i∈J λi.

The proofs of parts (P1) through (P4) are similar to the arguments used by Boyd
et al. [5] to show that z(v) ≤ 4/3 when v is a 4-cycle or 5-cycle. By using the fact that
G is reduced (i.e., it contains no chorded 6-cycles) we obtain a better guarantee in
(P2), (P3) and (P4). To prove part (P5) we heavily use the fact that operation (U1)
is applied to the initial cycle cover (recall that this operation was not used in [5]).

4.1.1. Proof of part (P1) of the main proposition. Let v be in some isolated
chorded 4-cycle C with V (C) = {a, b, u0, u1} as in Figure 8.

Fig. 8. A chorded 4-cycle.

For every index i, let Ci be the cycle containing v in the initial cycle cover Ci,
and let C(v) = {Ci}ki=1. Consider a cycle C′ ∈ C(v), and recall that C′ cannot be a
triangle. If C′ does not contain the edge u0u1, then C′ = C. Consider now the case
in which C′ contains u0u1. Then we must also have ab ∈ E(C′) and v0v1 ∈ E(C′).
Since the graph is reduced, v1u1 /∈ E as otherwise u1 − u0 − a − b − v0 − v1 would
induce a chorded 6-cycle. Hence, the cycle C′ cannot be of length 6. It also cannot be
of length 7 since then there would be a 3-cut with three matching edges. Therefore,
it must be of length at least 8. Using that

∑
{i : u1u2∈Mi} λi =

1
3 and applying Lemma

12, we conclude that z(v) ≤ (1/3 · 6/4 + 2/3 · 10/8) = 4/3.

4.1.2. Proof of part (P2) of the main proposition. Let v be in some non-
isolated chorded 4-cycle C with V (C) = {a, b, u0, u1} as in Figure 8 and recall that
v1u1 �∈ E. Without loss of generality, we can assume that u1 is in a different chorded
4-cycle D. Furthermore, assume that v1 is not connected by an edge to D, as this
would imply the existence of a bridge in G.

Consider, as in the proof of part (P1) a cycle C′ ∈ C(v). If C′ does not contain
the edge u0u1, then C′ = C. If on the other hand the edge v0v1 is in C′, then C′

must contain all the vertices of both C and D. It must also contain v1 and one of its
neighbors outside C ∪ D. In particular, C′ has at least ten vertices. By Lemma 12,
we have that z(v) ≤ (1/3 · 6/4 + 2/3 · 12/10) = 13/10.

4.1.3. Proof of part (P3) of the main proposition. Let γ ∈ Γ(v) be an
induced 4-cycle containing v. By Remark 1, γ is in some initial cycle cover Ci. Since
the cycle γ has no chord, then the four edges incident to it (i.e., those sharing one
vertex with γ) belong to matching Mi. This observation holds not only for γ but for
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Fig. 9. 4-cycle γ intersecting an 8-cycle.

any cycle C∗ in some initial cycle cover Ci, so we have the following remark.
Remark 2. Let P be a path not sharing edges with a cycle C∗ belonging to some

initial cycle cover Ci. If P connects any two vertices of C∗, then P has length at
least 3.

Furthermore, as the graph is reduced, γ does not share exactly one edge with any
other 4-cycle (as this would induce a 6-cycle with a chord). In other words we have
the following property.

Remark 3. Let P be a path not sharing edges with γ. If P connects any pair of
consecutive edges of γ, then P has length at least 4.

Define the setsXp = {i : |C∩Mi| = p}, for p = 0, 1, 2 and note thatX0∪X1∪X2 =
[k]. Define also xp = λ(Xp), for p = 0, 1, 2.

By (4.1), we have x0 + x1 + x2 = 1. Also, by applying (4.2) to the set of four
edges incident to γ we obtain 4x0 + 2x1 = 4/3, which implies that x0 = 1/3− x1/2.
Finally, by applying (4.2) to the four edges inside γ, we obtain x1 +2x2 = 4/3, which
implies that x2 = 2/3− x1/2.

For every i ∈ X0, the cycle containing v in Ci is equal to γ. By Lemma 12 we
obtain zi(v) ≤ 6/4 = 3/2.

Using Remark 3 we deduce that for every i ∈ X1, the cycle containing v in Ci has
length at least 7; therefore, by Lemma 12, we have zi(v) ≤ 9/7.

Consider now an index i ∈ X2. Suppose that γ intersects two different cycles of
Ci. As each of them has length at least 5 and they both share one edge with a 4-cycle
of G we conclude that both cycles are modified by operation (U1) or (U2). Remark 1
implies that v is in a cycle of length at least 10 in CU2

i . Using Lemma 12 we have
zi(v) ≤ 12/10 = 6/5.

The only remaining case is if γ is intersected by a single cycle C of Ci. Then, by
Remark 3, C has length at least 8. This cycle has length exactly 8 if and only if γ
belongs to the structure depicted in Figure 9.

Assume for now that no 8-cycle of an initial cover contains the four vertices of
γ. Then, the cycle C in our previous discussion must be of length at least 9, and by
Lemma 12, zi(v) ≤ max{11/9, 6/5} = 11/9. Putting this all together, we obtain

z(v) ≤ x03/2 + x19/7 + x211/9

= (1/3− x1/2)3/2 + x19/7 + (2/3− x1/2)11/9

= 71/54 + x1(9/7− 3/4− 11/18)

≤ 71/54 = 4/3− 1/54.

Now consider the case in which there is an 8-cycle Cj of an initial cover Cj con-
taining V (γ). Then v belongs to the structure depicted in Figure 9, where e1 �= e3,
e2 �= e4, and e1, e2, e3, e4 are in some matching Mj. As we assumed that |V (G)| ≥ 10,
we cannot simultaneously have e1 = e4 and e2 = e3. Let f and g be the leftmost and
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rightmost edges in the figure. Also, let Y = {i : f ∈ Mi} and Z = {i : g ∈ Mi}. It is
easy to check that Y ∪ Z ⊆ X2.

Consider an index i ∈ X2. If i ∈ Y ∪Z (i.e., if at least one of f and g are in Mi),
then the cycle containing v in CU2

i has at least ten vertices, and so zi(v) ≤ 12/10 = 6/5.
If i ∈ X2 \ (Y ∪ Z), then the cycle containing v in Ci is either the 8-cycle Cj of the
structure, or the 8-cycle with edge set E(Cj)ΔE(γ). In any case zi(v) ≤ 10/8 = 5/4.

Let y1 = λ(Y ∪ Z) and y2 = λ(X2 \ (Y ∪ Z), so that y1 + y2 = x2. Noting that
y1 ≥ λ(Y ) = 1/3, we have

z(v) ≤ x03/2 + x19/7 + y16/5 + (x2 − y1)5/4

= (1/3− x1/2)3/2 + x19/7 + (2/3− x1/2)5/4 + y1(6/5− 5/4)

= 4/3− x1(9/7− 3/4− 5/8)− y1/20 ≤ 4/3− 1/60.

4.1.4. Proof of part (P4) of the main proposition. Let γ ∈ Γ(v) be an
induced 5-cycle containing v. By Remark 1, γ is in some initial cycle cover Ci. We
can assume that no 4-cycle shares exactly one edge with γ, as otherwise operation
(U2), or operation (U1) before that, would have modified γ.

The proof for this part is similar to that of part (P3). Define Xp = {i : |γ ∩Mi| =
p}, for p = 0, 1, 2, so that X0 ∪X1 ∪X2 = [k], and let xp = λ(Xp), for p = 0, 1, 2.

By (4.1) we have x0 + x1 + x2 = 1. Applying (4.2) to the five edges incident
to γ, we obtain 5x0 + 3x1 + x2 = 5/3. This implies that x0 = 1/2(1/3 − x1) and
x2 = 1/2(5/3− x1).

For every i ∈ X0, we have v ∈ V (γ) and γ ∈ Ci. By Lemma 12, zi(v) ≤ 7/5. For
i ∈ X1, the fact that γ does not share an edge with a 4-cycle implies that v is in a
cycle of Ci having length at least 8, and therefore zi(v) ≤ 10/8 = 5/4.

For i ∈ X2, we have two cases. If γ is intersected by a single cycle C of Ci, then,
by Remark 2, C must be of length at least 9, and so, zi(v) ≤ 11/9.

The second case is that γ is intersected by two cycles of Ci. One of them, say
C′, shares exactly one edge with γ (and so, C′ cannot be a 4-cycle), and the second
one, C′′, shares exactly two consecutive edges with γ (by Remark 2, C′ cannot be a
4-cycle either). Let C ∈ {C′, C′′} be the cycle containing vertex v. If C is merged
with another cycle during operations (U1) and (U2), then by Remark 1 the resulting
cycle containing v in CU2

i is of length at least ten, and so zi(v) ≤ 12/10. On the other
hand, if C is not modified by operations (U1) and (U2), then it must be modified by
operation (U3) (this is because C intersects the 5-cycle γ, which in turn intersects
two components of CU2

i of length at least 5). Lemma 12 guarantees in this case that
zi(v) ≤ 13/10.

Summarizing, if i ∈ X2, then zi(v) ≤ max{12/10, 11/9, 13/10}= 13/10. Then,

z(v) ≤ x07/5 + x15/4 + x213/10

= 1/2(1/3− x1) · 7/5 + x15/4 + 1/2(5/3− x1) · 13/10
= 7/30 + 13/12− x1/10

≤ 79/60 = 4/3− 1/60.

4.1.5. Proof of part (P5) of the main proposition. Let γ ∈ Γ(v) be an
induced 6-cycle containing v. By Remark 1, γ is in some initial cycle cover Ci. We
can assume that no 4-cycle shares exactly one edge with γ, as otherwise operations
(U1) or (U2) would have modified γ and so, by the end of the algorithm γ would not
be a 6-cycle.
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Fig. 10. Induced 6-cycle γ.

Fig. 11. The different ways in which a matching can intersect γ. We use the same orientation
as that of Figure 10.

We can also assume that γ does not intersect the 5-cycles contained in an initial
cycle cover. Indeed, if this was not the case, define S5 = {w ∈ V (γ) : w is in
some 5-cycle C of an initial cycle cover}. If w /∈ S5, then in every initial cover,
the cycle containing w is of length at least 6; using Lemma 12, part (P4) of the
Main proposition, and the fact that S5 �= ∅ implies |S5| ≥ 2, we conclude that∑

w∈V (γ) z(w) ≤ |S5|
(
4
3 − 1

60

)
+ |V (C)\S5| 43 ≤ 6

(
4
3 − 1

180

)
, and also that z(w) ≤ 4/3

for all w ∈ V .
Under the assumptions above, all of the components containing v in the final

family of covers have length at least 6. Using Lemma 12 we conclude not only that
z(v) ≤ max{13/10, 8/6}= 4/3 (which proves the first statement of P5) but also that
z(w) ≤ 4/3 for the six vertices w ∈ V (γ).

Let us continue with the proof. Denote the edges of γ as a1, . . . , a6 and the six
edges incident to γ as e1, . . . , e6, as in Figure 10.

We now define some sets of indices according on how γ intersects the matchings
M1, . . . ,Mk. For every symbol Z ∈ {X0}∪{Xq

1}6q=1∪{Xq
2}3q=1 ∪{Y q

2 }6q=1 ∪{Xq
3}2q=1,

we define Z as the set of indices i for which the matching Mi contains the bold
edges indicated in Figure 11. For example, X0 = {i : {e1, . . . , e6} ∈ Mi}, X1

3 =
{i : {a1, a3, a5} ∈ Mi}, and so on. Let also x0 = λ(X0), x

q
i = λ(Xq

i ), and yq2 = λ(Y q
i )

for every i and q define

x1 =

6∑
q=1

xq
1, x2 =

3∑
q=1

xq
2, y2 =

6∑
q=1

yq2 , x3 =

2∑
q=1

xq
3, x2 = x2 + y2.

Equation (4.1) implies that x0 + x1 + x2 + x3 = 1. Equation (4.2) applied to the
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set {a1, . . . , a6} of edges incident to γ implies that 6x0 + 4x1 + 2x2 = 6/3. Hence,
3x0 + 2x1 + x2 = 1. It follows that

2x0 + x1 = x3.(4.3)

Recall that there are no 4-cycles in G and no 5-cycles in an initial cycle cover inter-
secting γ in exactly one edge. Consider w ∈ V (γ) and i ∈ [k].

If i ∈ X0 (i.e., Mi shares no edge with γ), then w ∈ V (γ) and γ ∈ Ci. By
Lemma 12 we have, zi(w) ≤ 8/6. If i ∈ X1 := ∪6q=1X

q
1 (i.e., Mi contains exactly

one edge of γ), then as no 4-cycle shares exactly one edge with γ, w must be in a
cycle C ∈ Ci of length at least 9; therefore, zi(w) ≤ 11/9. If i ∈ X3 := ∪2q=1X

q
3 (i.e.,

Mi contains three edges of γ), then we have two cases. The first case is that γ is
intersected by one or three cycles of Ci. Then, by the end of operation (U1), w must
be in a cycle of CU1

i of length at least 9 and so zi(w) ≤ 11/9. The second case is that
γ is intersected by two cycles of Ci. One of them shares exactly two edges with γ,
thence it must be of length at least 8. The other cycle shares exactly one edge with
γ and so it must be of length at least 6. Therefore, in this case, four of the vertices w
of γ satisfy zi(w) ≤ 10/8 and the remaining two satisfy zi(w) ≤ 8/6.

We still need to analyze the indices i ∈ X2 := ∪3q=1X
q
2 and i ∈ Y2 := ∪6q=1Y

q
2

(i.e., those for which Mi shares two edges with γ). Let 0 < δ ≤ 1 be a constant to be
determined. We divide the rest of the proof in two scenarios.

Scenario 1. If x3 (which equals max{x0, x1, x3} by (4.3)) is at least δ.
If i ∈ X2 ∪ Y2, then every vertex w ∈ γ is in a cycle C ∈ Ci of length at least 6;

therefore zi(w) ≤ 8/6 and

∑
w∈V (γ)

z(w) ≤ 6 · (x08/6 + x111/9 + x28/6) + x3

(
2 · 8

6
+ 4 · 10

8

)

≤ 6 ·
(
(1− x3)4/3 + x3

(
4

3
− 1

18

))
≤ 6 · (4/3− δ/18) .(4.4)

Scenario 2. If x3 (which equals max{x0, x1, x3} by (4.3)) is at most δ.
We start by stating the following technical lemma.
Lemma 13. Define β := 1/9− δ. Then at least one of the following cases hold:

• Case 1: x1
2, x

2
2, x

3
2 ≥ β.

• Case 2: x1
2, y

2
2 , y

5
2 ≥ β.

• Case 3: x2
2, y

3
2 , y

6
2 ≥ β.

• Case 4: x3
2, y

1
2 , y

4
2 ≥ β.

• Case 5: y12 , y
4
2, y

2
2 , y

5
2 ≥ β.

• Case 6: y22 , y
5
2, y

3
2 , y

6
2 ≥ β.

• Case 7: y12 , y
4
2, y

3
2 , y

6
2 ≥ β.

Proof. By applying (4.2) on edges e1 and a2, respectively (see Figure 10), we get

x0 + x1
1 + x4

1 + x5
1 + x6

1 + x1
2 + y12 + y62 =

1

3
,(4.5)

x4
1 + x1

2 + y42 + y62 + x2
3 =

1

3
.(4.6)

Subtracting (4.5) and (4.6), using max{x0, x1, x3} ≤ δ and (4.3), we obtain

|y12 − y42 | ≤ δ.(4.7)

Analogously, we also have

|y22 − y52 | ≤ δ,(4.8)

|y32 − y62 | ≤ δ.(4.9)
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Using max{x0, x1, x3} ≤ δ, (4.3) and applying (4.2) on edge ej, for j ∈ {1, . . . , 6},
we have

x1
2 + y12 + y62 ≥ 1/3− δ,(4.10)

x2
2 + y22 + y12 ≥ 1/3− δ,(4.11)

x3
2 + y32 + y22 ≥ 1/3− δ,(4.12)

x1
2 + y42 + y32 ≥ 1/3− δ,(4.13)

x2
2 + y52 + y42 ≥ 1/3− δ,(4.14)

x3
2 + y62 + y52 ≥ 1/3− δ.(4.15)

Now we are ready to prove the lemma. Assume, by sake of contradiction, that
none of the cases in the lemma holds. As Case 1 does not hold, we can assume,
without loss of generality, that one of the following is true:

(i) x1
2 < β, x2

2, x
3
2 ≥ β,

(ii) x1
2, x

2
2 < β, x3

2 ≥ β,
(iii) x1

2, x
2
2, x

3
2 < β.

Consider the case that (i) is true. Since Case 3 does not hold and x2
2 ≥ β,

we conclude that min{y32 , y62} < β. Using inequality (4.9) we get y32 , y
6
2 < β + δ.

Analogously, since Case 4 does not hold and x3
2 ≥ β, we conclude that min{y12, y42} <

β. Using inequality (4.7) we get y12 , y
4
2 < β + δ. Then we have

x1
2 + y12 + y62 < 3β + 2δ = 1/3− δ,

which contradicts inequality (4.10).
Consider the case that (ii) is true. Similar as above, since x3

2 ≥ β and Case 4
does not hold, we conclude that y12 , y

4
2 < β + δ. Furthermore, using inequality (4.8)

and that Case 6 does not hold, we have at least one of the following inequalities
y22 , y

5
2 < β + δ or y32 , y

6
2 < β + δ. If the first one is true, then

x2
2 + y22 + y12 < 3β + 2δ = 1/3− δ,

which contradicts inequality (4.11). If the second one is true, then

x2
1 + y22 + y62 < 3β + 2δ = 1/3− δ,

which contradicts inequality (4.10).
Finally, consider the case that (iii) is true. As Cases 5, 6, and 7 do not hold, we

have that min{y12, y42 , y22 , y52} < β, min{y22, y52 , y32 , y62} < β, and min{y12, y42 , y32 , y62} <
β. Without loss of generality, we can assume that y12 , y

2
2 < β. Using inequalities

(4.7) and (4.8) we conclude that y12, y
4
2 < β + δ and y22 , y

5
2 < β + δ. Therefore,

x2
2 + y22 + y12 < 3β + 2δ = 1/3− δ,

which contradicts inequality (4.11).
Denote an index i ∈ X2 ∪ Y2 as long if there are at least two vertices of V (γ)

contained in a single cycle of CU1
i of length at least 7, otherwise denote it as short. A

set Z ⊆ [k] is called long if Z contains only long indices.
Consider a short index i ∈ X2 ∪ Y2. Since the matching Mi contains two edges

of γ, we must be in the case where γ intersects exactly two cycles of CU1
i and both

of them are 6-cycles (we assumed at the beginning of the proof of this part that no
cycle in Ci of length at most five intersects γ). The next lemma complements what
happens in each of the cases introduced in Lemma 13.
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Fig. 12. 6-cycle γ for the case in which X1
2 ,

X2
2 , and X3

2 are nonempty and not long.
Fig. 13. Operation (U1) applied to cycles

in Ci1 , where i1 is a short index of X1
2 .

Lemma 14.

(1) If X1
2 , X

2
2 , and X3

2 are nonempty, then at least one of them is long.
(2) If X1

2 , Y
2
2 , and Y 5

2 are nonempty, then at least one of them is long.
(3) If X2

2 , Y
1
2 , and Y 4

2 are nonempty, then at least one of them is long.
(4) If X3

2 , Y
3
2 , and Y 6

2 are nonempty, then at least one of them is long.
(5) If Y 1

2 , Y
4
2 , Y

2
2 , and Y 5

2 are nonempty, then at least one of them is long.
(6) If Y 2

2 , Y
5
2 , Y

3
2 , and Y 6

2 are nonempty, then at least one of them is long.
(7) If Y 1

2 , Y
4
2 , Y

3
2 , and Y 6

2 are nonempty, then at least one of them is long.

Proof. We prove only items 1, 2, and 5, since the proofs for the rest are analogous.

(1) Assume for contradiction that there are short indices i1 ∈ X1
2 , i2 ∈ X2

2 , and
i3 ∈ X3

3 . In particular, every vertex of γ is in a 6-cycle of CU1
ip (and thus, of

Cip) for p = 1, 2, 3. From this, we deduce that the neighborhood of γ in G is
exactly as depicted in Figure 12.
Now focus on the short index i1 ∈ X1

2 . Since G is as in Figure 12, there are
three cycles of Ci1 sharing each one edge with a 6-cycle of G. But then, as
Figure 13 shows, operation (U1) would merge them into a unique cycle C in
CU1
i1

of length at least 16, contradicting the fact that i1 is short.
(2) Assume for contradiction that there are short cycles i1 ∈ X i

2 i2 ∈ Y 2
2 and

i3 ∈ Y 5
2 . In particular, every vertex of γ is in a 6-cycle of CU1

ip (and thus, of

Cip) for p = 1, 2, 3. From this, we deduce that the neighborhood of γ in G is
exactly as depicted in Figure 14,
Focus on the short index i1 ∈ X1

2 . Since G is as in Figure 14, there are three
cycles of Ci1 that share one edge each with a 6-cycle of G. But in this case,
as Figure 15 shows, operation (U1) would merge them into a unique cycle C
in CU1

i1
of length at least 16, contradicting the fact that i1 is short.

(5) Assume for contradiction that there are short indices i1 ∈ Y 1
2 , i2 ∈ Y 4

2 ,
i3 ∈ Y 2

2 , and i4 ∈ Y 5
2 . In particular, every vertex of γ is in a 6-cycle of CU1

ip

(and thus, of Cip), for p = 1, 2, 3, 4. Then, the neighborhood of γ in G is
exactly as depicted in Figure 16. But this structure shows a contradiction,
as matching Mi1 cannot be completed to the entire graph.

Using Lemmas 13 and 14 we conclude that there is a long set of indices Z ⊆ X2∪Y2

for which λ(Z) ≥ β. In particular, using Lemma 12, we conclude that for every i ∈ Z,
there are two vertices w in γ with zi(w) ≤ 9/7, and for the remaining four vertices of
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Fig. 14. 6-cycle γ for
the cases X1

2 , Y 2
2 , Y 5

2 are
nonempty and not long.

Fig. 15. Operation (U1) ap-
plied to cycles in Ci1 , where i1 is a
short index of X1

2 .

Fig. 16. 6-cycle γ for
the cases Y 1

2 , Y 4
2 , Y 2

2 , Y 5
2 are

nonempty and not long.

γ, zi(w) ≤ 4/3. Altogether,
∑

w∈V (γ) z(w) is at most

6 ·
(
x0

8

6
+ x1

11

9
+ (x2 − β)

8

6

)
+ β

(
2· 9

7
+ 4· 8

6

)
+ x3

(
2· 8

6
+ 4· 10

8

)

≤ 6(1− β)
4

3
+ β

(
2 · 9

7
+ 4 · 8

6

)
= 6 ·

(
4

3
− 1/9− δ

63

)
.(4.16)

To end the proof, we set δ = 2/81, so that (1/9 − δ)/63 = δ/18 = 1/729. From
inequalities (4.4) and (4.16) we conclude that in any scenario,

∑
w∈V (γ)

z(w) ≤ 6 · (4/3− 1/729).(4.17)

4.1.6. Proof of part (P6) of the main proposition. If none of the cases
indicated by the previous parts hold, then there are no 4, 5, and 6-cycles in Γ(v). In
other words, all components containing v in the final family of covers have length at
least 7. By Lemma 12 we conclude that z(v) ≤ max{13/10, 9/7}= 13/10.

5. General connected cubic graphs. In this section we give a 4/3−ε′ approx-
imation algorithm for the TSP of a connected cubic graph G, where ε′ = 1/183711.
Additionally, our algorithm shows that the integrality gap of the subtour LP for gen-
eral cubic graphs is also at most 4/3− ε′.

Observe that if G is not 2-connected, then the number n of vertices is no longer
the optimum value of the subtour LP. In order to get the desired approximation, we
need to consider separately the bridges of G, since every feasible tour uses them at
twice.

Let F be the set of bridges of G, and let b = |F |. Since G is connected, the
graph G\F is formed by exactly (b+1) subcubic, 2-edge-connected components. Let
C = {G1, . . . , Gb+1} be the collection of components of G \ F . Let C0 ⊆ C be the
collection of singleton-components: they are the ones corresponding to cut-vertices of
G (if G is 2-connected, then |C0| = 0). Also, let ni be the number of vertices in Gi

and let n0 = |C0| be the total number of singleton components.

Let SUB be the optimal subtour LP value of G and SUBi be the optimal subtour
LP value of component Gi. Clearly, if e is a bridge, then the corresponding subtour
LP variable has to be set to 2 in an optimal solution. Also, for every Gi, SUBi ≥ ni
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and if Gi is a singleton, then SUB(i) = 0. Therefore,

(5.1) OPT ≥ SUB ≥ 2b+

b+1∑
i=1

SUB(i) ≥ 2b+ n− n0,

where OPT is the optimal tour value.
The idea of our algorithm is to find a short tour in each Gi and then glue the

solutions into a single tour by doubling the bridges. Since each nonsingleton com-
ponent is bridgeless and has only vertices of degree 2 and 3, we can apply Mömke
and Svensson’s algorithm [14] to get tour of length at most (4/3)ni on each of them.
Unfortunately, that is not enough to get an overall (4/3 − ε′)-approximation for G.
Instead, on each nonsingleton component we apply algorithms A and B below and
choose the solution using the fewer edges. Afterwards, we output the union of all the
returned solution together with the doubled bridges.

A: Return the tour given by Mömke and Svensson’s algorithm on the component.
B: Replace each vertex of degree 2 by a chorded 4-cycle, so that the resulting

graph is cubic. Apply the (4/3− ε)-algorithm of Theorem 2 to the expanded
cubic 2-connected component to get a tour. Output the tour obtained by
contracting the chorded 4-cycles.

Theorem 3. The previous algorithm returns a tour of length at most (4/3 −
ε′)SUB, where ε′ = ε/(3 + 3ε) = 1/183711.

Proof. Let A(i) and B(i) be the length of the tour returned by algorithms A
and B on component Gi, respectively, and let L(A) (respectively, L(B)) be the total
length of the tour resulting by putting together all tours A(i) (respectively, B(i)) and
twice the collection of bridges.

Using that A(i) ≤ (4/3)ni, for all nonsingleton Gi,

L(A) = 2b+

b+1∑
i=1

A(i) ≤ 2b+ (4/3)(n− n0).

To analyze the second algorithm we need a little more of work. Let D(i) be the
number of vertices of degree 2 in component Gi before expanding it. The expanded
components has ni+3D(i) vertices. Clearly, the tour of length B(i) is obtained from
the tour of length B∗(i) (in the expanded component) by contracting the chorded
4-cycles. Using that B∗(i) contains at least three edges in each chorded 4-cycle, and
Theorem 2,

B(i) ≤ B∗(i)− 3D(i)

≤
(4
3
− ε

)
(ni + 3D(i))− 3D(i) ≤

(4
3
− ε

)
ni +D(i).

Therefore,

L(B) ≤ 2b+ (4/3− ε)(n− n0) +
b+1∑
i=1

D(i) ≤ 4b+ (4/3− ε)(n− n0).

Then, the tour we return has length at most min(L(A), L(B)), which can be checked
to be at most (

1 +
1

3(1 + ε)

)
(n− n0 + 2b) ≤

(
1 +

1

3(1 + ε)

)
SUB,

where the last inequality follows from (5.1).



TSP TOURS IN CUBIC GRAPHS: BEYOND 4/3 939

REFERENCES

[1] N. Aggarwal, N. Garg, and S. Gupta, A 4/3-approximation for TSP on cubic 3-edge-
connected graphs, arXiv:1101.5586v1, 2011.

[2] H.-C. An, R. Kleinberg, and D. B. Shmoys, Improving Christofides’ algorithm for the s-t
path TSP, in Proceedings of the 2012 ACM Symposium on Theory of Computing, ACM,
New York, 2012, pp. 875–885.

[3] F. Barahona, Fractional packing of T-joins, SIAM J. Discrete Math., 17 (2004), pp. 661–669.
[4] D. Barnette, Conjecture 5, in Recent Progress in Combinatorics: Proceedings of the Third

Waterloo Conference on Combinatorics, W. T. Tutte, ed., Academic Press, New York,
1968.

[5] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie, TSP on cubic and subcubic graphs,
Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci.
6655, Springer, Heidelberg, 2011, pp. 65–77.

[6] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications, Elsevier, New York,
1976.

[7] N. Christofides, Worst-Case Analysis of a New Heuristic for The Travelling Salesman Prob-
lem, Report 388, Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1976.

[8] D. Gamarnik, M. Lewenstein, and M. Sviridenko, An improved upper bound for the TSP
in cubic 3-edge-connected graphs, Oper. Res. Lett., 33 (2005), pp. 467–474.

[9] M. X. Goemans, Worst-case comparison of valid inequalities for the TSP, Math. Programming
69 (1995), pp. 335–349.

[10] J. A. Karp and R. Ravi, A 9/7-approximation algorithm of graphic TSP in cubic bipartite
graphs, arXiv:1311.3640, 2013.

[11] M. Karpinski and R. Schmied, Approximation hardness of graphic TSP on cubic graphs,
arXiv:1304.6800v2, 2013.
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