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a b s t r a c t

We study the competitive structure of a market in which firms compete to provide various products
within a bundle. Firms adopt price functions proportional to their per-unit costs by selecting markups.
We consider two measures reflecting, respectively, the intensity of direct competition and the impact of
complementarity on each producer’s markup. We characterize the sensitivity of these terms to various
changes in the market structure and relate this to changes in producer profits and the social efficiency of
the market.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

We consider markets where products are encoded by links
in a series–parallel (SP) network. Customers purchase product
bundles, given by paths of the network, where parallel links
represent substitutes, while series links represent complements.
The resulting market conditions are captured by the model of
markup equilibrium discussed by Correa et al. [5] (hereafter CFLS).
In this paper, we extend their analysis to study the sensitivity of
prices, profits and welfare to changes in market conditions and
competitive structure. This enables comparisons of competition
across a broad set of alternative market configurations in which
both complements and substitutes are present.

The CFLS model considers producers that face linear marginal
costs and compete to provide all or some portion of the bundle
to customers, who in turn choose a set of producers offering the
lowest combined price (path in the network). The model relies on
a form of supply function equilibria [9], in which producers set
prices by choosing a markup to apply to production costs. This is
an attractive modeling choice in the bundled setting, as scheduled
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quantity-dependent price adjustments remove the ambiguity
around revenue-splitting that would result in a Cournot-type
model of complementary producers. Supply function models yield
a structure where bundle-level purchase quantities (i.e., path
flows) uniquely determine both the producer-level purchase
quantities (link flows) and the market price of each producer’s
output. In contrast, a pure quantity-commitment model lacks a
mechanism for setting individual prices.

Practically, bundling is important to many industries. In freight
shipping, point to point routes often involve multiple carriers,
each servicing a distinct geography and/or mode of transport. The
model also applies to decentralized assembly supply chains, where
amanufacturer contracts separately to purchase components from
various suppliers. Such outsourcing typically requires a modular
product structure that is amenable to an SP representation. Tak-
ing the assembler as a monopsonistic buyer, one could employ
ourmodel to understand themarket around individual component
suppliers (e.g., producers of processors, hard disks, and displays in
a computer system supply chain). The SP structure provides a gen-
eral framework to study markets where customers have a need
of a set of elements that compose the final product. The study
of markets arising from a network structure has drawn attention
from the business strategy community [17,3] and in the operations
literature surrounding transportation networks [10,12,15,16],
telecommunication and computing services [1,4,13] and decen-
tralized assembly supply chains [7,14,8,11].
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Fig. 1. (a) A series–parallel market with 6 producers. Boxes represent submarkets
ψa(G) and ψ2

a (G). (b) Competition for producer a at depth 3: SP networks GC , GS ,
and GL are the complement, local and substitute markets of a, respectively.

We use the equilibrium characterization provided by [5] to
derive a number of important structural insights within this
framework. Among our findings are that:

(i) an increase in any producer’s cost of production increases the
markups of all competitors in equilibrium.

(ii) an increase in a producer’s own costs can increase that
producer’s equilibrium profits.

(iii) an increase in the costs of production for complementary
items decreases bundle share for efficient producers, but their
less-efficient competitors may actually gain bundle share.

(iv) mergers that consolidate market power locally may in fact
improve social efficiency in the full market for bundles.

At an intuitive level, the relationships we observe depend on
whether certain producers interact more as competitors or as
complementors. As we will show, both elements are present in
most inter-producer relationships.

2. The SP markup equilibriummodel of competition

This section provides a quick overview of the markup equi-
librium model, as defined in CFLS; we refer the reader to [5] for
details. This model is a special form of supply function equilib-
rium [9] where producers specify price functions by committing
to a fixed percentage markup over per-unit production costs. The
market is encoded by an SP network G = (VG, AG), where each link
a ∈ AG represents a producer. SP graphs are created by sequen-
tially joining smaller SP graphs in series or in parallel, and capture
well the modularity of constructing bundles, which are given by
origin-to-destination paths. Indeed, the SP framework accommo-
dates complements, substitutes, and multiple layers thereof. Let
B := {B1 . . . Bm} represent a set of bundles, all equivalent in the
eyes of our customers. We say that a ∈ Bi if producer a contributes
to Bi. Producer amay contribute to multiple bundles so that its to-
tal production xa equals


Bi∋a fi where the vector f ∈ Rm describes

the allocation of consumption across bundles. A basic example is a
computer system, with the option to purchase CPU, keyboard and
monitor individually or in integrated bundles. A structure of this
type is shown in Fig. 1(a).

Each producer faces a marginally-increasing cost curve and
commits to an upward-sloping price function. For the analysis
below, we assume that costs are linear and equal to caxa per unit.
This leads to the price function pa(xa) = αacaxa per unit for the
firm’s chosen markup of αa ≥ 1. Demand for otherwise-identical
products will split into proportions that equalize price among
active producers. Complementarity arises from the decentralized
production of component productswithin some demanded bundle
of goods.

Notation is needed to describe the recursive structure of SP
networks. A submarket g refers to an SP subnetwork nested within
G. We denote the join of a collection G of submarkets using the
operators P(G) and S(G), respectively. Inversely, themappingψ(g)
returns the set of submarkets comprising g . A submarket is labeled
either series or parallel, as indicated by the type of join applied last
in its construction. We require when g is a series submarket that
all elements ofψ(g) be parallel submarkets, and vice versa, so that
ψ(g) represents the largest (by cardinality) set of submarkets from
which g can be formed in a single composition. For submarkets
g ′

⊆ g , the restricted mapping ψg ′(g) selects the submarket of g
that contains g ′. We let νg := (G, ψg(G), ψ2

g (G), . . . , ψ
hg
g (G) =

g) denote the unique sequence of submarkets starting with G
within which g is nested, where hg is the depth at which g is
nested. For example, the sequence of submarkets νa in Fig. 1(a) is
(G, ψa(G), ψ2

a (G), a). Finally, let νg,P = (g1, g2, . . .) (alternatively,
νg,S) be the subsequence of odd or even elements of νg obtained
when restricting to only parallel (series) submarkets. The sequence
νg,P provides the increasingly specific decisions that a customer
must make before purchasing from g . Lastly, given g ⊆ g ′, we use
g ′

\ g to denote the market in g ′ with producers from g removed
and α⃗−g to denote the markups vector of producers in G \ g .

The game has two phases: all producers choose markups
simultaneously, followed by the allocation of an inelastic unit
demand across the bundles. CFLS show that a unique markup
equilibrium α⃗, a unique production vector x⃗, and an aggregate
bundle price pG exist if and only if the network G is 3-edge-
connected. We henceforth assume that G satisfies this property.

Several results discussed in CFLS will be useful as preliminar-
ies. Fixing a markup vector α⃗, one can construct a price multi-
plier Rg(α⃗), used to compute the resulting price pg as dgRg(α⃗),
where dg is the demand for g . Price multipliers are constructed
recursively according to RS(G)(α⃗) =


g∈G Rg(α⃗) for a series mar-

ket, RP(G)(α⃗) = (


g∈G 1/Rg(α⃗))
−1 for a parallel submarket, and

Ra(αa) = αaca for a producer. Furthermore, the network can be
pivoted around any submarket g to produce a substitute network
G⊖ g that encodes the local view of competition from g . When the
full market is clear from the context we will omit it for brevity and
just write ⊖g . The optimal markups for producers in g depend on
producers outside g only through the aggregatemultiplier R⊖g . Us-
ing this, a best-response markup of producer a to its competitors’
markups α⃗−a is 2 + R⊖a(α⃗−a)/ca. This formula provides a system
of equations that is used by CFLS to characterize equilibria.

While pivot ⊖a redefines the network so that all paths act as
substitutes for a, an additional scaling factor is needed to adjust the
size of the relevantmarket to reflect the nature of complementarity
introduced by producer a’s competitors. The demand of a turns out
to be xa = µaR⊖a/(R⊖a + αaca), where the scaling factor is given
by µa :=


g∈νa,S

R⊖g/

R⊖g + Rg\ψa(g)


.

3. Sensitivity analysis of producer outcomes

Wenow study the effects of changingmarket parameters on the
outcome experienced by a producer a in equilibrium. The impact
of any perturbation manifests itself as a combination of its effects
on the multipliers R⊖a and µa. We analyze these effects for a
perturbation of a producer’s own efficiency parameter, as well as
for changes in the structure of its competition. In the latter case, we
distinguish between those competitors whose markups decrease
µa (net complements of a) and those whose markups increase µa
(net substitutes of a).

3.1. Sensitivity of markups

In this section we formalize the impact of a fixed submarket
gF on the competition in another submarket g . We make the
distinction between the full game and a local game on ⊖gF . In
the latter case, markups for producers in gF are fixed – and
aggregated together by RgF – while the game is played only among
producers outside it. Hence, the demand becomes elastic: a small
RgF indicates the existence of attractive options inside gF . As
RgF shrinks, the competition in ⊖gF becomes more intense. We
let the submarket response function φg|gF (RgF ) capture the value
corresponding to Rg that arises from the equilibrium of the local
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game and possibly the value of RgF . For brevity, when we write
φg(·), omitting the local submarket, we refer to φg|⊖g(·). The
following technical lemma will be useful in the sequel.

Lemma 1. Let g, gF be submarkets of G. If g ⊆ ⊖gF or gF ⊆ g,
then φ′

g|gF
(RgF ) < φg|gF (RgF )/RgF . Consequently, φg|gF (RgF )/RgF is

decreasing in RgF .

The perturbations we consider can be expressed generally as
a shift in the response function for either a single producer or
some subnetwork of producers. By a shift, we mean that φg(R⊖g)

is replaced by a function φ̂g(R⊖g) such that (for an upward shift)
φ̂g(R) ≥ φg(R) for all R in the domain. For a single producer, a shift
in φa(·) can result only from a change in ca, but for a submarket
g it can be the result of any number of structural or parametric
changes within g . For example, Section 4 shows that a merger of
direct competitors results in an upward shift, while a merger of
complements results in a downward shift.

The next observation concerns the sensitivity of price multi-
pliers. As price multipliers of any producers are strategic comple-
ments, we are able to show that an upward (downward) shift in
φg(·) induces an increase (decrease) in the equilibrium price mul-
tipliers of all competitors in ⊖g . The conditions placed on g ′ in
the result exclude only those submarkets that overlap with g par-
tially, as their behavior is dependent on the nature of the structural
change that causes the shift.

Proposition 1. Fix g ⊆ G. For any submarket g ′
⊆ G satisfying

g ⊆ g ′ or g ′
⊆ ⊖g, an upward shift in φg(·) leads to an increase

in the equilibrium multiplier Rg ′ .

Note that this result also implies (see the proof) that the shift
increases Rg/Rg ′ , so the multiplier increase is greatest on Rg .
Below we expand the analysis to include producer outcomes
(i.e., demand, price, and profits) that depend on complementarity,
measured by µa, besides the overall magnitude of markups.

3.2. Own-cost perturbation

Consider an increase in ca, and the corresponding upward shift
in φa(·). In Proposition 1, we show that this drives up Rb for all
producers b. For b ≠ a, this implies an increase in markup αb.
On the other hand, producer a’s own markup can be shown to
decrease with the perturbation. Among direct competitors, this
implies the intuitive result that more efficient producers apply
larger markups. Proposition 2, below, summarizes the impact of
own-cost perturbations on equilibrium markups, market share,
and price.

While themarkup for producer a decreases, note that the size of
the producer’s absolute profit margin increases. Increasing ca by∆
makes Ra increase by∆a = 2∆+∆⊖a, where∆⊖a is the resulting
change in R⊖a. Since φ⊖a(·) is unchanged, R⊖a = φ⊖a(Ra) increases
so that ∆a > 2∆. So, for any fixed production quantity x, the
profit margin, (Ra − ca)x, increases. On the other hand, the market
share xa will decrease following the shift. This result follows from
the repeated application of Lemma 1, which indicates that each
subproduct containing a applies a proportionally larger increase in
its multiplier than do its competitors.

Turning to prices, the effect of a cost perturbation on the price pa
is dampened by the subsequent reduction of producer a’s markup,
aswell as the reallocation of demand toward competing producers.
However, some portion of the cost increase is ultimately reflected
in the new equilibrium price. Indeed, regardless of the overall
market structure, the price pa can only increase with ca.

Proposition 2. For any producer a, an increase in ca leads to a
decrease in the equilibrium markup αa, a decrease in the equilibrium
market share xa, and an increase in the equilibrium price pa.
Although markups, market share and prices are monotone, profits
πa := (Ra − ca)x2a can shift in either direction, depending on
the relative size of the effects on markups and market share. (The
numerical example in Table 3 illustrates both cases.) This in itself
is an intriguing phenomenon, as it suggests that it may in some
cases be to a producer’s advantage to be less efficient. We note
that this effect is not unique to models with complementarity.
The critical observation is that for sufficiently inelastic demand,
the overall level of profits may be higher in a market where
the aggregate cost is larger. Decreasing efficiency weakens a
producer’s competitive position, but may also increase the overall
profits, and this increase may dominate the individual effects.
The same effect can occur in a Cournot model, although the cost
shock must affect at least 3 producers [6]. In fact, the presence of
complementary markets makes a profit decrease more likely. As ca
increases, the corresponding increase in markups from producers
of complementary items contributes to a further decrease in
producer a’s market share.

3.3. Competitor perturbation

Also of interest is the effect of the producer’s position in relation
to a competitor who may alter its efficiency. Here, the impact on
profits will depend on the extent to which the producer provides
a substitute or a complement to the perturbed producer. There is
a substitutive aspect to each relationship, with the exact nature
captured by the producer’s substitute network structure. (As an
exception, when two full markets compete serially for a fixed
demand, producers in one market have no effect on demand
for producers in the other.) Any increase in a competitor’s cost
structure will relax competition from substitutes in the sense that
R⊖a increases. This increases (Ra − ca) as a result, and because
φ′
a(R⊖a) < Ra/R⊖a (see Lemma 1), the ‘unscaled’ market share,

xa/µa, also increases with any competitor’s shift upward. The
combined result is that profits πa must increase if the perturbation
increases µa (this follows since the ratio πa/µ

2
a always increases).

Despite these effects, profits πa may move in either direction,
with the determining factor being the direction of the change
in scaling factor µa and its size in relation to substitution-based
effects.With the exception of a producerwho spans the fullmarket,
all producers have some bearing on the complementarity faced by
each other producer. Hence, the effect of the perturbation on µa
can be either positive or negative. For more insight, we specialize
to producer a at depth 3 in the submarket tree. The general market
of this type is illustrated in Fig. 1(b). The producer faces some
direct competition in the local market, depicted as GL. In addition,
the competition outside of the localized market is divided into a
complementary section and a substitutive section (depicted by the
submarkets GC and GS , respectively). We allow generality in that
GL, GC , and GS can be arbitrary submarkets, but limit the depth of a
to 3 for simplicity.

An upward shift in φGS (·), positioned as a substitute to bundles
containing a, leads to an increase in RGS that is proportionally larger
than the increase in RGC . This implies an increase in µa and thus in
πa.

Proposition 3. Using the notation of Fig. 1(b), any upward shift in
φGS (·) increases the equilibriummarket share xa, prices pa, and profits
πa for the producer a.

Similarly, an upward shift in φGC (·), positioned in complement
to producer a, leads to a decrease in µa. Here, the conclusions
in terms of market share and profits for the producer a are
not clear a priori and will depend on the structure of the
individual submarkets. For instance, an efficient producer will lose
market share when the cost of complementary items increases
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Table 1
Sensitivity analysis of model’s outputs for producer a caused by perturbations in
a submarket. The rows refer to an increase in ca and in the complementary and
substitute markets, respectively. Arrows point to the possible directions of change
of each of the outputs.

Submarket Cost
(c)

Price mult.
(R)

Markup
(α)

Demand
(x)

Price
(p)

Profit
(π )

a ↑ ↑ ↓ ↓ ↑ ↕

GC – ↑ ↑ ↕ ↕ ↕

GS – ↑ ↑ ↑ ↑ ↑

(see Proposition 4, below). However, we observe that the most
inefficient producers of a component may stand to gain market
share, as this relaxes local competition. Furthermore, in a market
for small-enough components, all producers lose market share
when the cost of complements increases, as effects on µa tend to
dominate.

Proposition 4. Using the notation of Fig. 1(b), when ca is small
enough, an upward shift in φGC (·) decreases the equilibrium market
share xa.

Table 1 summarizes this section’s sensitivity analysis by point-
ing out the direction of change of each output of the model for
producer a. Rows a, GC , and GS indicate the location of the pertur-
bation. To interpret with the example of Section 1, the last entry
for GC indicates that a CPU manufacturer may gain or lose profits
from additional inefficiencies in the market for monitors. Indeed,
both outcomes may occur under specific conditions. The last row
shows that a cost increase for a producer of integrated comput-
ers allows a CPUmanufacturer, modeled by a, to increase markups
while gaining demand, and so increase its prices and profits. In the
case of a producer’s own price, this quantity moves in the same
direction as the cost perturbation, although market share and in
some cases profits move in the opposite direction. Note that the
directional changes for perturbations within GC or GS apply for any
type of shift.

4. Effect of mergers on market outcomes

Here we will focus on the effect of changes to a network
structure that leave the overall production capacity fixed. Thus,
we see how the network structure dictates the intensity of
competition, as measured by the effect on total producer profits
(i.e., industrymarkup) and the social cost of production.We start in
Section 4.1 by looking at the overall markup applied to a bundle.
Recalling Proposition 1, structural changes that either intensify
or relax competition locally within a particular submarket have
the corresponding effect on the overall bundle price, and so we
analyze these local effects. In Section 4.2, we observe that the
connection between local and global effects does not extend to the
social cost criterion. In this case, the full market structure should
be considered to assess the impact of a structural change.

For this analysis, recall that RG is themarket price in equilibrium
for a given network, and note that COPT

= RG|α⃗=1 is the total cost
of satisfying demand in a socially optimalmanner. A comparison of
these terms gives a measure of the extent to which bundles have
been marked up. In particular, RG/(RG|α⃗=1)measures the ‘average’
markup, and RG − RG|α⃗=1 is equal to the total producer profit.
In terms of social cost, let C(α⃗) represent the total production
cost resulting from an equilibrium markup vector α⃗, and the ratio
C(α⃗)/(RG|α⃗=1) determines the inefficiency of that vector. As such,
we are particularly interested in ‘mergers’, i.e., changes to the
market structure for which RG|α⃗=1 remain constant. In this case,
the effects on profits and efficiency can be observed through RG
and C(α⃗) alone.

We define amerger as a change in the network structure where
multiple producers are combined in a way that preserves the
aggregate cost structure. The cost of the new link shouldmatch the
cost of using the subnetwork that it replaces, assuming that flow is
allocated optimallywithin the original subnetwork.We denote the
optimally aggregated cost of a submarket g by cg . The procedure
for aggregating costs optimally is identical to that for aggregating
price multipliers: cS(G) =


g∈G cg , and cP(G) = (


g∈G 1/cg)−1.

Any changes in market outcomes result entirely from changes in
the way the producers interact.

4.1. Industry markups

Proposition 1 illustrates a consistency between the local
competitiveness of subproducts and the markups of the market
as a whole. A change in the network structure that causes an
upward shift in a local response function will increase RG as well.
In the case of a merger, this implies an increase in the overall
industry markups. In this section, we highlight the local effect of
both parallel mergers between direct competitors and integrated
production of complementary components.

We first look at parallel mergers, where two parallel links, a1
and a2 are combined to form aP . We denote the cost of the merged
producer by c . Letting θ = ca2/(ca1 + ca2), we have ca1 = c/θ
and ca2 = c/(1 − θ). Any parallel merger can be described in this
way for some θ ∈ (0, 1). We show that any such merger results
in an upward shifted response function, φaP (·) relative to the
aggregated response function φgP (·), where gP = P(a1, a2). This is
consistent with intuition since a merger reduces the competition
in the market.

Theorem 1. Parallel mergers increase the price of a bundle.

With respect to any fixed R⊖gP , the two producers prior to
merging behave equivalently to the elastic duopoly studied in [2].
There, the equilibrium for the duopoly is derived in a closed-form,
from which it can be shown that both φgP (R⊖gP ) and φ′

gP (R⊖gP )
increase as θ gets further from 1/2. In a series–parallel setting,
we can apply Proposition 1 to extend this parametric relationship
to the market price RG. We conclude that not only does any
parallel merger increase the equilibrium price, but the size of the
price increase is increasing in the symmetry of the merging firms.
That is, for two parallel links with a given aggregate cost, c , the
configuration leading to the lowest prices (equivalently, the largest
upward shift in φgP upon merging) is that of c1 = c2 = 2c .
Prices increase as the distribution becomes less symmetric, with
the highest prices coming from complete asymmetry in which one
link is eliminated altogether.

We next discuss the case of mergers involving complementary
producers. Two producers in series are an unstable configuration
because the network would not be 3-connected, so we will not
analyze mergers originating from this structure. Rather, we look
at the case of a single producer in series with a set of parallel
producers who compete with each other directly, i.e., the simplest
configuration involving complementarity. We consider the effect
of consolidating all of these producers to a single one.We interpret
this as a scenario where the production being offered by the direct
competitors is carried out in-house by the producer occupying a
single link. In this waywe study the effect of integrated production.

Let c be the cost of the integrated producer aS . We consider
parallel links a1 and a2, forming gP . The submarket gP is connected
in series with a third producer aM to form gS = S(aM , gP). We
require cgS = c , and in particular, for θP , θM ∈ (0, 1), let ca1 = (1−

θM)c/θP , ca2 = (1 − θM)c/(1 − θP), and caM = θMc. For any choice
of θP and θM , φaS (·) is a downward shift of φgS (·) so that integrated
production results in a lower price than the subcontracting setup.

Theorem 2. Integrated production decreases the equilibrium price of
a bundle. The size of the effect is decreasing in θM .
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Table 2
Social cost comparison between the social optimum (top) and equilibria with symmetric (medium) and asymmetric (bottom) costs in g .

Social optimum Pr. 1 Pr. 2 g Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 4.5 2 2 0.833
Market share (x) 0.083 0.083 0.167 0.417 0.417 1
Cost (cx2) 0.007 0.007 0.126 0.347 0.347 0.833

Symmetric producers Pr. 1 Pr. 2 Pr. 3 Pr. 4 Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 9 9 2 2 0.833
Markup (α) 6.96 6.96 2.70 2.70 5.08 5.08 4.60
Market share (x) 0.123 0.123 0.123 0.123 0.377 0.377 1
Cost (cx2) 0.015 0.015 0.135 0.135 0.285 0.285 0.870

Merged producer Pr. 1 Pr. 2 g Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 4.5 2 2 0.833
Markup (α) 8.12 8.12 4.21 5.90 5.90 5.64
Market share (x) 0.102 0.102 0.204 0.398 0.398 1
Cost (cx2) 0.010 0.010 0.187 0.317 0.317 0.842
Fig. 2. Total production cost in this market is smaller when producers 3 and 4 are
merged.

The theorem establishes that the markup of an integrated
producer aS provides a lower bound on φgS (R⊖gS ). In the limit as
θM nears 1, the behavior of gS resembles that of the integrated
producer. The response function then shifts up monotonically as
θV is decreased. Looking at the competitive portion of the network,
gP , the competition among these producers is most intense when
this local market is relatively small. As gP grows larger relative to
its substitutes, the sensitivity φ′

gP (R⊖gP ) to competitor markups,
notably those of the monopolist aM , increases so that the dynamic
of competition within gS begins to resemble more closely that
of serial monopolies. The implication is then that integrated
production produces the largest decrease in a bundle price when
the local monopolist, aM , incurs a small portion of the production
costs in the market gS .

4.2. Social cost of production

In contrast to industry markups, the social cost of production
may decrease following a parallel merger that consolidates market
power locally. Relative to total profit, social cost depends on the
symmetry, rather than the size of markups. So, when a bundle
consisting of product g is inherently more expensive to produce
than substitute bundles, likely leading to high markups on those
substitutes, what is perceived locally as an inefficiency in the
market for g maybe a force that drivesmarkups on g closer to those
on substitutes. In effect, this reduces the degree of distortion in the
overall market. We proceed with an example to demonstrate this
possibility.

Consider the market G in Fig. 2, where the submarket for
product g = ψ2

4 (G) is a duopoly. For a fixed multiplier R⊖g ,
the two producers face an elastic combined demand. Considering
this market for g alone, the most efficient configuration would
appear to be the symmetric one (indeed, this is shown for an elastic
duopoly model in [2]). For comparison, we consider the efficiency
that results in G when producers 3 and 4 are merged into a single
producer with efficiency parameter cg = [1/c3 + 1/c4]−1 so that
the aggregate cost structure is maintained.

We start with the symmetric scenario where costs in g are
c3 = c4 = 9. According to Table 2, in an optimal allocation,
83.3% of customers purchase products 5 and 6, and the average
bundle cost under the optimum is 0.83. Regarding the equilibrium
allocation, producers 5 and 6, each being more efficient than the
other purchase combinations, apply relatively large markups of
α5 = α6 = 5.08 to their products. In comparison, the price of a
combination purchase from the other producers is only 3.1 times
larger than the cost (of 10x for x units). This distortion encourages a
larger proportion of costly combination purchases, and the average
cost of a bundle in equilibrium is 0.87.

Now, we merge producers 3 and 4 into a single producer with
combined cost cg = 4.5. Studying g in isolationwould suggest that
this arrangement is inefficient. Yet, the merged producer applies a
largermarkup that raises the price of a combination purchase to 4.9
times the cost. This shifts some demand back to producers 5 and 6
so that the average cost of a bundle falls to 0.84, despite themarket
power of the merged producer. Although the difference in social
cost between these two scenarios is rather small, the direction of
change is surprising as it goes contrary to what a local model of
market g suggests.

5. Effect of ignoring complementary markets

We close by looking at the impact of model misspecification
that ignores complementarity. For a producer a competing in a
parallel submarket g of G (that is, g = P(G) with a ∈ G), a likely
alternative to modeling G fully is to estimate only the parameters
µg and R⊖g . This is equivalent to estimating the demand function
for submarket g , while treating g as a market of direct competitors
subject to an elastic demand. To illustrate the misspecification,
consider a CPU manufacturer evaluating a decision to invest in
more efficient capacity. This investment will likely trigger smaller
markups from producers of other components (e.g. monitors) and
integrated computer models. If, however, the producer restricts
analysis to the CPU submarket, then these markups are implicitly
assumed to remain at their pre-investment levels, neglecting the
competitors’ responses. We show that a localized approach of
this type can yield misleading conclusions about the sensitivity of
producer profits to changes in model primitives.

Consider a perturbation of producer a’s own efficiency param-
eter by∆, as described in Section 3.2, for a network as in Fig. 1(b).
By altering φ′

GC
(·) and φ′

GS
(·) we can demonstrate estimation er-

rors in both directions that arise from a localized view (the local-
izedmodel treats both of these sensitivities as zero). Fig. 3 provides
two specific examples: a bundle with a sensitive substitute market
in (a) and with a sensitive complement market in (b). In both, we
fix cGS = cGC = 2. However, in (a), GS contains a single link, while
GC is a symmetric pair (note that a single link ismore sensitive than
any parallel pair), and in (b) wemodel the reverse. Table 3 summa-
rizes the original equilibrium in eachmarket, aswell as the equilib-
rium when ca is increased by ∆ = 1. Lastly, we look at a localized
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Table 3
Summary of perturbed equilibria.

Market (a)
ca Ra R⊖a RV RH µa xa πa

Initial 2 13.1 9.1 9.6 20.1 0.678 0.278 0.854
Perturbed 3 16.0 10.0 9.9 21.5 0.685 0.263 0.898
Localized pert. 3 15.6 9.6 – – 0.678 0.258 0.842

Market (b)
Initial 2 13.1 9.1 20.1 9.6 0.322 0.132 0.193
Perturbed 3 16.0 10.0 21.5 9.9 0.315 0.121 0.190
Localized pert. 3 15.6 9.6 – – 0.322 0.123 0.191
(a) A sensitive substitute
market.

(b) A sensitive complement
market.

Fig. 3. A localized model underestimates profits in (a) and overestimates profits
in (b).

model of competition in the market L+ = P(GL, a), wherein R⊖GL+
remains fixed to RGC +RGS as computedwith the original costs. The
table includes equilibrium values for this localized model when ca
is perturbed.

We observe that the profits estimated by the localized model
are too low when the substitute market is sensitive and too
high when the complement market is sensitive. In both cases,
the localized model ignores a shift in µa, and the difference in
outcomes reflects a difference in the true direction of this effect. In
(a), the localizedmodel ignores a positive shift fromµa = 0.678 to
0.685. In (b), the localizedmodel ignores a negative shift fromµa =

0.322 to 0.315. Furthermore, the example in (a) demonstrates that
even the direction of the change in profitsmaydiffer in the localized
model. These flaws are problematic for a producer evaluating a
decision to invest in more efficient technology (i.e., decreasing
the efficiency parameter). As such, they provide producers with
motivation to explicitly model their complementary markets.
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Appendix. Proof of results

Proof of Lemma 1. We must first provide a definition of the local
game underlying the function φg|gF (RgF ). As α⃗ captures the deci-
sions of all producers in the first-stage game, we let α⃗⊖gF |gF (RgF )
represent the decisions of producers in G \ gF in a markup game
playedwith RgF held fixed. For a submarket g ⊆ ⊖gF , Rg|gF (α⃗g , RgF )
is defined analogously to Rg(α⃗) and computed in the same induc-
tive manner. For producer a ∈ G \ gF , the best-response function
in the local market game becomes Γa|gF (α⃗{⊖gF \a}|gF , RgF ) = 2 +

R⊖a|gF (α⃗{⊖gF \a}|gF , RgF )/ca. The first-stage decisions, α⃗⊖gF |gF (RgF ),
then satisfy

αa = Γa|gF (α⃗{⊖gF \a}|gF , RgF ) for all a ∈ G \ gF .

Now, let g be composed of two component submarkets gI and gO,
and hold RgI fixed to induce RgO|gI = φgO|gI (RgI ) and R⊖g|gI =

φ⊖g|gI (RgI ). It was shown in Theorem 6.3 of CFLS that φ′

g ′(R⊖g ′)
< φg ′(R⊖g ′)/R⊖g ′ and furthermore, φ′

gO|gI
(RgI ) < RgO|gI /RgI . As,

φ′

gI |gI
(RgI ) = 1, it follows that φ′

g|gI
(RgI ) < φg|gI (RgI )/(RgI ).

For gF nested deeper within g , φ′

g|gF
(RgF ) = φ′

g|ψgF (g)
(RψgF (g)|gF

)

φ′

ψgF (g)|ψ
2
gF (g)

(Rψ2
gF (g)|gF

) · · ·φ′

ψ−1(gF )|gF
(RgF ) < (Rg|gF /RψgF (g)|gF

) · · ·

(Rψ−1(gF )|gF /RgF ) = φg|gF (RgF )/(RgF ). Then, for g ⊆ ⊖gF , dis-
joint from gF , φ′

g|gF
(RgF ) = φ′

g(R⊖g|gF )φ
′

⊖g|gF
(RgF ) < (Rg|gF /R⊖g|gF )

(R⊖g|gF /RgF ) = φg|gF (RgF )/(RgF ). �

Proof of Proposition 1. Let ḡ = ψ−1
g (g) be a composition of

the submarkets g and g ′′. We will show that an upward shift
in φg(R⊖g) implies upward shifts in φḡ(R⊖ḡ) and in φg ′′|⊖ḡ(R⊖ḡ).
The result then follows by induction up the submarket tree. The
response φḡ(R⊖ḡ) is an increasing function of Rg|⊖ḡ and Rg ′′|⊖ḡ . If
ḡ is series then Rg ′′|⊖ḡ = φg ′′|⊖ḡ(R⊖ḡ) = φg ′′(R⊖ḡ + Rg|⊖ḡ), and
Rg|⊖ḡ is the unique fixed point of hg|⊖ḡ : hg|⊖ḡ(R) → φg(R⊖ḡ +

φg ′′(R⊖ḡ + R)). If ḡ is parallel then Rg ′′|⊖ḡ = φg ′′|⊖ḡ(R⊖ḡ) =

φg ′′([1/R⊖ḡ + 1/Rg|⊖ḡ ]
−1), and Rg|⊖ḡ is the unique fixed point of

hg|⊖ḡ : hg|⊖ḡ(R) → φg([1/R⊖ḡ + 1/φg ′′([1/R⊖ḡ + 1/R]−1)]−1).
In either case, Rg ′′|⊖ḡ is increasing in Rg|⊖ḡ . Furthermore, the inner
function of the composition hg|⊖ḡ is unaffected by the shift inφg(·),
while the outer function is shifted upward. Thus, hg|⊖ḡ(R) is shifted
upward. The function hg|⊖ḡ(R) is continuous and hg|⊖ḡ(0) > 0 so
that hg|⊖ḡ(R) intersects with the 45° line once and from above. The
upward shift pushes this point to a larger value of R, thus increasing
Rg|⊖ḡ for any fixed value of R⊖ḡ . As a result, Rg ′′|⊖ḡ and φḡ(R⊖ḡ)
increase as well. �

Proof of Proposition 2. In equilibrium, Ra is a fixed point of ha :

ha(Ra) → φa(φ⊖a(Ra)). Perturbing ca by a small ∆ increases Ra
by ∆R = 2∆/(1 − h′

a(Ra)) = 2∆/(1 − φ′
⊖a(R⊖a)). By Lemma 1,

φ′
⊖a(R⊖a) < R−a/Ra = 1 − 2/αa, and so ∆R < αa∆. The effect on
αa, denoted by∆α , satisfies∆R = ca∆α + αa∆ and so∆α < 0. For
market shares, recall that xa can be written as


g∈νP (a)

Rg/Rψa(g),
where νP(a) = (G1,G2, . . . ,Gd) is the sequence of parallel sub-
markets within which producer a is nested. Each term Rg/Rψa(g) in
this product is equivalently written as Rg\ψa(g)/(Rψa(g) + Rg\ψa(g)).
For any g ∈ νP(a), Rψa(g) increases with ca by Proposition 1. We
note that φg\ψa(g)(·) remains unchanged, and applying Lemma 1,
φ′

{g\ψa(g)}|ψa(g)(Rψa(g)) < Rg\ψa(g)/Rψa(g), so that Rg\ψa(g)/Rψa(g) de-
creases. This is true for each g ∈ νP(a), causing Rg/Rψa(g) to de-
crease, and so xa decreases. For prices, rewrite the above product
as xa = RG1


l∈{2...d} RGl/Rψ−1

a (Gl)


R−1
ψa(Gd)

. RG1 increaseswith ca by
Proposition 1. Applying Lemma1andProposition 1 for each term in
the brackets ensures that this product is increasing as well, leaving
only R−1

ψa(Gd)
to decreasewith ca. Now looking at pa = Raxa, we need

only show that Ra/Rψa(Gd) is nondecreasing with ca. If a has direct
competition, i.e., a ∈ ψ(Gd), then this term cancels out of pa. Oth-
erwise, Ra/Rψa(Gd) = Ra/Rψ−1

a (a) is increasing in ca by Lemma 1. �

Proof of Proposition 3. By Proposition 1, RGS increases with the
upward shift in φGS (·). Considering that GS ⊆ R⊖a and µa =

RGS/(RGC + RGS ), Lemma 1 implies an increase in both µa and
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xa/µa = R⊖a/(R⊖a + Ra) so that xa increases. Proposition 1 also
implies an increase in Ra and Ra − ca so that pa and πa increase as
well. �

Proof of Proposition 4. Define a sequence {c ja} of efficiency pa-
rameters for producer a, and the corresponding sequence {α⃗j

} of
equilibria. To specify from among the sequence {α⃗j

} of equilibria,
we reintroduce the explicit dependence of Rg(α⃗g) on α⃗g . Let {c

j
a} be

such that c ja → 0 as j → ∞. We note that the response functions
φGC (·), φGS (·), and φGL(·) are unaffected by c ja so that the equilib-
rium α⃗j is dictated entirely by the function φj

a(R⊖a) = 2c ja + R⊖a.
Furthermore, the smoothness of response functions and ofφj

a(R⊖a)

with respect to c ja ensures that {α⃗j
} → α⃗ as j → ∞, where

α⃗ is the equilibrium corresponding to φa(R⊖a) := R⊖a, and that
φ

′j
g (Rg(α⃗

j
g)) → φ′

g(Rg(α⃗g)) for g ⊆ G. As a result, letting∆j
x repre-

sent the change in xa(α⃗j) resulting from a particular upward shift
in φGC (·), we see that ∆j

x → ∆x, where ∆x is the change in xa
when ca = 0. When ca = 0, producer a’s market share is given
by xa(α⃗) = µa(α⃗)R⊖a(α⃗)/(R⊖a(α⃗) + αaca) = µa(α⃗)/2. Applying
Lemma 1 to µa(α⃗) = RGS (α⃗)/(RGS (α⃗) + RGC (α⃗)), we see that xa
decreases with a shift in φGC (·) and that ∆x < 0. So, for ca near
enough to zero, producer a loses market share. �

Proof of Theorem 1. We first look at the pre-merger response
function for gP . Here,φgP (R⊖gP ) = [1/Ra1|⊖gP +1/Ra2|⊖gP ]

−1, where
Ra1|⊖gP = φa1(R⊖a1|⊖gP ) = 2c/θ + [1/R⊖gP + 1/Ra2|⊖gP ]

−1 and
Ra2|⊖gP = φa2(R⊖a2|⊖gP ) = 2c/(1 − θ) + [1/R⊖gP + 1/Ra1|⊖gP ]

−1.
We observe that Ra1|⊖gP < (2c + R⊖gP )/θ and Ra2|⊖gP < (2c +

R⊖gP )/(1−θ). Combining gives φgP (R⊖gP ) < 2c+R⊖gP for all R⊖gP .
Of course, when aP is replaced with a single link with cost c , the
response function is φaP (R⊖aP ) = 2c + R⊖aP . �

Proof of Theorem 2. As always, φaS (R⊖aS ) = 2c + R⊖aS . We show
that φgS (R⊖gS ) ≥ φaS (R⊖aS ) for fixed R⊖gS = R⊖aS . Because
markups are bounded below by 2, RgP |⊖gS ≥ 2(1 − θV )c. We know
that RaV |⊖gS is equal to 2θV c + R⊖aS + RgP |⊖gS . Thus, φgS (R⊖gS ) =

RgP |⊖gS +RaV |⊖gS ≥ 2c+R⊖aS +RgP |⊖gS ≥ φaS (R⊖aS ). For the second
statement, see that as θV decreases, φgP (·) is shifted upward, while
φaV (·) shifts downward, leading to a decrease in RaV |⊖gS , and so
in R⊖gP |⊖gS . Similarly, the sensitivity φ′

gP (R⊖gP |⊖gS ) increases (this
effect is derived from closed-form expressions of [2] for equilibria
in an elastic duopoly). For a fixed value of R⊖gS , φ

′
gS (R⊖gS ) =

(1+ 3φ′
gP (R⊖gP |⊖gS ))/(1− φ′

gP (R⊖gP |⊖gS )) and so is also increasing.
Integrating φ′

gS (R) over [0, R⊖gS ] shows that φgS (R⊖gS ) increase
with a decrease in θV . �
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