
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 34, No. 1, February 2009, pp. 238–248
issn 0364-765X �eissn 1526-5471 �09 �3401 �0238

informs ®

doi 10.1287/moor.1080.0356
©2009 INFORMS

Monotone Covering Problems with an Additional Covering Constraint

José R. Correa
Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile,

jcorrea@dii.uchile.cl, http://www.dii.uchile.cl/~jcorrea

Asaf Levin
Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel,

levinas@tx.technion.ac.il, http://mscc.huji.ac.il/~levinas

We provide preliminary results regarding the existence of a polynomial time approximation scheme (PTAS) for minimizing
a linear function over a 0/1 covering polytope which is integral, with one additional covering constraint. Our algorithm is
based on extending the methods of Goemans and Ravi for the constrained minimum spanning tree problem and, in particular,
implies the existence of a PTAS for several covering integer programming problems with a totally unimodular constraint
matrix. These include the cases when the columns of the constraint matrix either: have at most two nonzero elements; are
incidence vectors of a laminar family; or have consecutive ones and no column is contained in another.

Key words : Lagrangian relaxation; approximation algorithms; covering integer programs
MSC2000 subject classification : Primary: 90C27, 90C59; secondary: 90C90, 90C57
OR/MS subject classification : Primary: analysis of algorithms; secondary: suboptimal algorithms
History : Received July 23, 2007; revised April 29, 2008 and August 7, 2008. Published online in Articles in Advance
January 27, 2009.

1. Introduction. In this paper we consider covering optimization problems, which are a natural class of
integer programs arising in a wide variety of combinatorial problems. Specifically, we are given the following
basic optimization problem:

(BO) min
n∑

j=1
cjxj

s.t. Ax≥ �

xj ∈ �0�1� ∀ j = 1�2� 	 	 	 � n�
where all the components of � are 1, x is the vector of variables x =
x1� x2� 	 	 	 � xn�, cj is a nonnegative
integer for all j , and A is a 0/1 matrix. We further assume that the matrix A belongs to a class of matrices
such that (BO) can be solved in polynomial time for any nonnegative objective function, by solving the linear
programming relaxation resulting from replacing the integrality constraints with xj ≥ 0 for all j (observe that
the inequalities xj ≤ 1 turn out to be unnecessary in an optimal solution). A case in which this property holds
is when A is totally unimodular. Note that such covering problems possess the so-called monotone property.
Namely, if x is a feasible solution to the problem, and y is another binary vector such that y ≥ x, then y is also
a feasible solution. From now on, � will denote the convex hull of extreme points of �x Ax≥ �� 1≥ x≥ 0�.
We study the problem resulting from the basic optimization problem, when adding one additional covering

constraint. This problem arises naturally in several contexts including constrained shortest path, minimum knap-
sack, and minimum edge cover. We refer to this extra constraint as the complicating constraint. Specifically, we
consider the following problem where wj is a nonnegative coefficient for all j .

(IP) min
n∑

j=1
cjxj

s.t. Ax≥ �
n∑

j=1
wjxj ≥W�

xj ∈ �0�1� ∀ j = 1�2� 	 	 	 � n�
Without loss of generality, we assume that c1/w1 ≤ c2/w2 ≤ · · · ≤ cn/wn where cj/wj =� if wj = 0. Of course,
(IP) is NP-hard since it generalizes the knapsack problem.
Throughout this paper a �-approximation algorithm is a polynomial time algorithm that returns a feasible

solution with cost at most a factor � above the optimal cost. A polynomial time approximation scheme (PTAS)
is a family of
1+ ��-approximation algorithms over all �> 0.

238

mailto:jcorrea@dii.uchile.cl
http://www.dii.uchile.cl/~jcorrea
mailto:levinas@tx.technion.ac.il
http://mscc.huji.ac.il/~levinas

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS 239

Related work. Problem (IP) can be seen as a bicriteria optimization problem where the constraints are
Ax ≥ � and xj ∈ �0�1� ∀ j , and the two criteria are to minimize

∑n
j=1 cjxj , and to maximize

∑n
j=1wjxj . Since

these two goals may contradict each other, we follow the standard method, and add a lower bound on the value
of the second goal while maintaining the first goal as an objective function.
There is a rich literature on bicriteria problems in combinatorial optimization and in particular in graph

theoretic problems; see, e.g., Ravi [13] for a restricted survey. Interestingly, a large portion of the work in the
area relies on a Lagrangian relaxation technique. Indeed, Ravi and Goemans [14] present an algorithm that
yields a PTAS for the constrained minimum spanning tree problem which was further improved by Hassin
and Levin [4]. Their approach, based on Lagrangian relaxation, heavily exploits the adjacency structure of the
underlying matroid polytope.
The method of Ravi and Goemans [14] can be summarized as follows. First, guess the cost of the optimal

solution within a factor of 1+ �, and denote it by C∗. Second, guess the set of edges that belong to a fixed
optimal solution with cost at least �C∗. By contracting these edges, we are left with an instance of the constrained
minimum spanning tree problem such that the cost coefficient of each edge is at most �C∗. Then, we apply
Lagrangian relaxation on the complicating constraint and solve the resulting problem. By solving the Lagrangian
relaxation we obtain two optimal trees (to the Lagrangian relaxation problem after setting the Lagrangian
multiplier to be its optimal value), where one of them satisfies the complicating constraint, and the other does
not satisfy this constraint, and the two solutions differ by a single edge swap. The returned solution is the
feasible solution among the two solutions obtained as above. The analysis is based on the fact that the cost of the
infeasible solution is at most C∗, and since the returned solution differs from it by a single edge, the resulting
cost is at most
1+ ��C∗. This use of the Lagrangian relaxation can be easily extended to the case when each
edge direction of the underlying polytope (for the problem without the complicating constraint) has a fixed
number of entries in its support. This idea together with a different guessing step is the way in which Hassin
and Levin [4] obtained their PTAS with an improved time complexity for the constrained minimum spanning
tree. Furthermore, this situation also arises in the scheduling problem studied by Levin and Woeginger [9], and
their PTAS is also based on these ideas.
Note that the known adaptations of the Ravi and Goemans framework are all for the case where the support

of each edge direction of the underlying polytope (for the problem without the complicating constraint) has a
fixed size. To the best of our knowledge, the current work is the first one in applying these ideas to a case in
which there are edge directions (of the underlying polytope) with nonconstant size support.
Additionally, the use of the Lagrangian dual to find approximate solutions to bicriteria problems has been

extended to other areas such as partial covering problems (see, e.g., Könemann et al. [6]). Furthermore, this
approach has proved useful in developing approximation algorithms for a large number of classic combinatorial
problems, including facility location (Jain and Vazirani [5]), multi-commodity flows (Leighton et al. [8]), and
fractional packing and covering (Plotkin et al. [12]), among many others.

Our results. Problem (IP) generalizes the knapsack problem, and hence it is clearly NP-hard (since knapsack
is NP-hard; see, e.g., problem [MP9] in Garey and Johnson [2]). Since there is a PTAS for the knapsack problem
(there is also an FPTAS for the knapsack problem; see, e.g., Gens and Levner [3]), we would like to find out
whether there is a PTAS for (IP) as well. In §3 we present a PTAS for a special case of (IP), described in §2,
which in particular contains the case of bipartite edge cover with additional covering constraint and the case
of minimum cost connected subgraphs with additional covering constraint also (note that these problems are
NP-hard by a reduction from the knapsack problem). Specifically, this case covers three important classes of
totally unimodular matrices A:

(i) Matrices with at most two nonzero elements per column (which contains a bipartite edge cover).
(ii) Matrices with the consecutive ones property such that no column is contained in another column.
(iii) Matrices whose columns are incidence vectors of a laminar family, where a laminar family � is a family

of sets such that if S�S ′ ∈�, then either S\S ′ = or S ′\S =, or both.
Furthermore, we also show how to extend our result to an arbitrary right-hand side. Our scheme is based

on several guessing steps, an application of the Lagrangian relaxation method, and a new rounding mechanism
for the special case of problem (IP). In §4 we discuss possible extensions of our result. Indeed, it would be
interesting to extend our result for any type of totally unimodular matrix. Moreover, there is not enough evidence
to rule out the existence of a PTAS for (IP) with the assumption that (BO) can be solved in polynomial time
for any nonnegative objective function, by solving the linear programming relaxation resulting from replacing
the integrality constraints with xj ≥ 0 for all j .

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
240 Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS

Computational complexity. As we have already pointed out, problem (IP) generalizes the knapsack prob-
lem, and hence it is NP-hard. Although we do not know whether (IP) is strongly NP-hard, it is not hard to
see that (IP) generalizes the exact matching problem (Papadimitriou and Yannakakis [11]), whose complexity
is a longstanding open question. In this problem we are given a graph with some edges colored red, and a
number k. The goal is to find a perfect matching consisting of exactly k red edges. In §4, we point out several
open problems along these lines.

2. The framework. We now describe the special case of (IP) that we focus on. Consider the polytope � of
the feasible solutions to the basic optimization problem. Let e=
u� v� be an edge of �. Along e when we move
from u to v there is a set of variables X
u�v�

1→0 that change value from 1 to 0, and there is another set of variables
X

u�v�
0→1 that change value from 0 to 1 (note that X

u�v�
1→0 = X

v�u�
0→1). So e connects two extreme points u and v of

the polytope �, such that in u all variables of X

u�v�
1→0 equal 1 and all variables of X

u�v�
0→1 equal 0 and in the other

endpoint v it is the opposite. We construct a bipartite undirected graph G
e� =
X

u�v�
1→0 �X

u�v�
0→1 �E

e�� whose vertex
set is X

u�v�
0→1 ∪ X

u�v�
0→1 and we define the edge set as follows. Let x

u� and x
v� be the solutions defined by the
extreme points u and v, respectively. For every constraint of (BO) that is not satisfied by the solution x defined
by xi = min�x
u�

i � x

v�
i �, we add an edge to G
e� between the smallest index variable in X

u�v�
1→0 that appears in

this constraint (with coefficient 1) and the smallest index variable in X

u�v�
0→1 that appears in this constraint (with

coefficient 1).
In our scheme we will use the graph G
e� for the edge e connecting the two optimal solutions for the

Lagrangian relaxation problem. In the graph G
e� we will find a vertex cover, and the vertices of this vertex
cover will correspond to variables that are set to 1 (besides, the variables that in both solutions are set to 1).
Then, the fact that we find a vertex cover in G
e� will ensure that the resulting solution will satisfy all the
constraints of (BO). This use is the motivation for our definition of G
e�.

Lemma 2.1. For each edge e of �, the graph G
e� is connected.

Proof. Assume otherwise that G
e� has (at least) two disjoint connected components. Let C be the vertex
set of one of the connected components and let D =
X

u�v�
0→1 ∪X

u�v�
1→0 �\C be the remaining vertices of G
e�. We

next argue that if we set the variables as in x
u� and then change the value of the variables of C (i.e., a variable
in C ∩X

u�v�
0→1 is changed to 1, and a variable in C ∩X

u�v�
1→0 is changed to 0), then the resulting vector denoted

by y is feasible in (BO). Assume that this claim does not hold. Then there is a constraint that is not satisfied
by y. However, this constraint is satisfied by x
u�, and therefore this constraint corresponds to an edge of G
e�.
Therefore, both end vertices of this edge belong to a common connected component of G
e�. Hence, we either
change the value of both of this edge’s end-vertices (with respect to their value in x
u�) or we leave the value
of both its end-vertices as it was in x
u�. Since exactly one of the end-vertices of the edge has value 1 in x
u�,
we conclude that this constraint has (with nonzero coefficient) at least one variable set to 1, and therefore this
constraint is satisfied contradicting our assumption. Thus, y is feasible.
Similarly, if we set the variables as in x
u�, and then change the value of the variables of D, then the resulting

vector z is a feasible solution. We next argue that because y and z are feasible solutions, e cannot be an edge
of the polytope �, and this will be the desired contradiction. Assume otherwise that e is an edge of �. Then
there is a goal function vector ce such that the set of maximizers of

∑n
j=1 c

e
j xj over � is exactly e. Denote by

!C =∑
j∈C∩X
u�v�

0→1
ce
j −

∑
j∈C∩X
u�v�

1→0
ce
j . Then !C denotes the difference in the value of the goal function of y and u.

Similarly, denote !D =∑
j∈D∩X
u�v�

0→1
ce
j −

∑
j∈D∩X
u�v�

1→0
ce
j . Then !D denotes the difference in the value of the goal

function of z and u. Note that !C +!D is the difference in the value of the goal function in u and v, and hence
it equals zero. Thus, at least one of !C and !D is nonpositive, and hence at least one of y and z is optimal with
respect to the goal function ce. Since y and z do not belong to e, we get a contradiction to the definition of ce. �

We are now ready to define the special case of (IP) that admits a PTAS.
Definition 2.1. We say that (IP) is easy if for every edge e of the polytope � the graph G
e� is either a

star or a path or a cycle.
We next describe special cases of easy polytopes. Note that if the constraint matrix A satisfies the property

that in each column of A there are at most two ones, then for every edge e of the polytope � the graph G
e� is
either a path or a cycle. Indeed, by Lemma 2.1 we know that G
e� is connected, and furthermore, the structure
of the matrix implies that every vertex in G
e� has degree at most 2. It is immediate to observe that such a case
contains a bipartite edge cover. Hence, we have established the following lemma.

Lemma 2.2. If in each column of A there are at most two ones, then problem (IP) is easy.

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS 241

Another interesting case in our framework is when A has the consecutive ones property (i.e., A is a 0/1 matrix
and all ones appear consecutively in each column) and no column is contained in another column (i.e., the
difference between any two columns always has at least one negative entry). Interestingly, in this situation the
resulting polyhedron is also easy. Indeed, we can add repeated rows so that in the resulting matrix all columns
have the same number of ones (and of course the polyhedral structure is not changed). This is so because it is
well known (see, e.g., Roberts [15]) that a proper-interval graph is also a unit-interval graph. This means that if
we are given an intersection graph of intervals such that no interval is strictly contained in another interval, then
there is another representation of the intervals with equal length such that the same graph is the intersection
graph of the new intervals. We note that we can see each column in the input matrix as an interval (of the
one entries) and then the graph G
e� is a proper-interval graph. Therefore, there are equal length intervals such
that G
e� is their intersection graph.
With this, we next show that for every edge of the polyhedron the graph G
e� is a path. We have the following

result.

Lemma 2.3. If in each column of A the ones appear consecutively and no column is contained in another
column, then problem (IP) is easy.

Proof. Consider an edge e of the polytope � connecting two extreme points u and v. By Lemma 2.1, it
suffices to show that the degree of each vertex in G
e� is at most two. Consider a vertex a (we denote by a the
index of this column) corresponding to a variable in X

u�v�
0→1 and assume that it has at least three neighbors in G
e�.

Denote by j� k� l, the three indices of the columns corresponding to the neighbors of a. Also let ta� tj � tk� tl and
ba� bj� bk� bl denote the indices of the topmost and bottommost rows of a� j� k� l, respectively. Without loss of
generality we can assume tj < tk < tl which, by our assumption on A, in turn implies that bj < bk < bl. Since
u is an extreme point we know that bj < tl, as otherwise we could decrease the kth component of u to 0 and
would obtain a feasible solution satisfying more equality constraints.
Note that since a is adjacent to all three j� k� l, we have that tj ≤ ta ≤ bj < tl ≤ ba ≤ bl. With this, we can now

define y� z feasible solutions as follows: In y we set each component yi = x

u�
i for all i such that the topmost

nonzero element of column i is strictly less than ta, and yi = x

v�
i otherwise. Similarly in z we set zi = x

v�
i for

all i such that the topmost nonzero element of column i is strictly less than ta, and zi = x

u�
i otherwise. Clearly,

y and z are feasible, and furthermore y� z �= x
u� and y� z �= x
v�. Similar to the proof of Lemma 2.1, we can
conclude that e cannot be an edge of �. �

Finally, we show that if the columns of A are incidence vectors of a laminar family of sets, then for any edge
e of �, G
e� is a star.

Lemma 2.4. If the columns of A are incidence vectors of a laminar family of sets, then problem (IP) is easy.

Proof. Fix an edge e of the polytope �. Consider two columns whose variables belong to X

u�v�
0→1 . Consider

the cost vector c
e� whose minimizer set in � is e. Since the two columns are incidence vectors of two members
in a laminar family, we argue that these two sets are disjoint because if the k1� k2 ∈X

u�v�
0→1 and the k1th column

is not larger (component-wise) than the k2 column, then setting xk1
= 0 and xk2

= 1 instead of xk1
= xk2

= 1
does not affect the feasibility of the solution and decrease its cost (if c
e�

k1
≥ 0� and otherwise in both solutions

corresponding to the end-points of e, xk1
= 1). Similarly, such a claim holds for columns of variables in X

u�v�
1→0

also.
Let S0 be a set whose incidence vector is a column corresponding to a vertex of X

u�v�
0→1 , and let S1 be a set

whose incidence vector is a column corresponding to a vertex of X
u�v�
1→0 and it is a neighbor of S0 in G
e�. Since

S0 and S1 belong to a laminar family, we conclude that either S0 ⊆ S1 or S1 ⊆ S0 (they cannot be disjoint because
their vertices are adjacent in G
e�). Without loss of generality assume that S0 ⊆ S1. Then, S0 is not adjacent in
G
e� to other vertices. This applies to all neighbors of S1, and by Lemma 2.1 we conclude that the graph G
e� is
indeed a star. �

3. A polynomial time approximation scheme for an easy (IP). We now turn to developing a PTAS for an
easy (IP). Our scheme is based on several guessing steps, an application of the Lagrangian relaxation method,
and a new rounding mechanism for problem (IP) that is easy. In the remainder of this section we say that we
guess some information on the optimal solution. Such a guessing step can be implemented by an exhaustive
enumeration of all possibilities (for the guess) and for each feasible solution obtained (for one or more values of
the guess) we compute its goal value, and at the end of the scheme we return the best feasible solution. When
we analyze the scheme it suffices to consider the iteration (of the exhaustive enumeration) where the value of
the guess is the right value (regarding a fixed optimal solution).

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
242 Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS

3.1. The algorithm.
(1) The first step of the algorithm is to guess the cost of an optimal solution to (IP) within a multiplicative

factor of 1+ �. We denote the value of the guess by C∗. We also guess the variables that are set to 1 in such a
fixed optimal solution and that their coefficient in the goal function is at least �C∗.
(2) Set all the variables with cost at least �C∗ to their right value (according to the guess). Remove the

constraints of (BO) that are already satisfied. Also, change the value of W according to the contribution of the
variables set to 1.
(3) Guess an index i such that there is a feasible solution to (IP), x̄, that is nice (i.e., such that x̄1 = x̄2 =

· · · = x̄i = 1, and after we set these variables to 1 and remove from (BO) all the constraints that are satisfied,
then the vector
x̄i+1� 	 	 	 � x̄n� is a basic solution of the resulting problem) whose cost is at most
1+ ��C∗.
(See Example 3.1 for motivation.)
(4) Remove from (BO) all the constraints that are already satisfied by the variables x1� 	 	 	 � xi, and in (IP)

modify the value of W accordingly (i.e., replace it with W −∑i
j=1wj). We delete the i first columns from the

constraint matrix of (IP) and from the goal function.
Denote by (IP′) the resulting problem from (IP) and by (BO′) the resulting problem from (IP′) when we delete

the additional constraint. With slight abuse of notation, let �1�2� 	 	 	 � n� be the indices of variables in (IP′) and
let � be the polytope of the feasible solutions to (BO′).
We will argue in the sequel that the polytope of the new problem is easy, and in the reminder of the algorithm

we show how to find a feasible solution to (IP′) whose cost is at most
1+ �� times the cost of the cheapest
solution among the basic solutions to (BO′) that are feasible to (IP′).
(5) Solve the Lagrangian relaxation problem:

max
'≥0

LR
'�=max
'≥0

min
Ax≥�* x∈�0�1�n

n∑
j=1

cjxj −' ·
(n∑

j=1
wjxj −W

)
�

We denote by '∗ the optimal value of '. Since this problem is that of maximizing the minimum of linear
functions, its optimal solution is attained simultaneously at two vertices of �, xa, and xb (which are such that∑n

j=1wjx
a
j ≤W and

∑n
j=1wjx

b
j ≥W).

To find xa and xb, we pick + > 0 small enough and compute the optimal solutions for LR
'∗ − +� (xa) and
for LR
'∗ + +� (xb). The value of + is used as a symbol in a symbolic execution of the algorithm for solving
LR
'∗ − +� and LR
'∗ + +� and it is used by this algorithm as a tie-breaking rule. Hence one can run the
algorithm without an exact (numerical) definition of +. Note that if one of these solutions (i.e., either xa or xb)
satisfies the complicating constraint with equality, then this solution is an optimal solution to problem (IP′) and
we are done. Therefore, we assume that

∑n
j=1wjx

a
j < W and

∑n
j=1wjx

b
j > W and that e = ,xa� xb- is an edge

of � (by using a small perturbation of �wj 1≤ j ≤ n�). Thus G
e� is either a star or a path or a cycle.
(6) Our algorithm constructs the returned solution using xa and xb, depending on the structure of G
e�.

Case 1 (G
e� is a star). Denote the variable corresponding to the center of the star by s. There are two
possibilities, xb

s = 1 (and xa
s = 0) or xa

s = 1 (and xb
s = 0). If the first holds, we return the solution that differs from

xa by setting xa
s = 1. In the second case, assume that the neighbors of s in the graph G
e� are j1 < j2 < · · ·< jk.

Then, we find the minimum index l such that if we change xa by setting xa
jr
= 1 for r = 1�2� 	 	 	 � l, the resulting

solution satisfies the complicating constraint, and we return this solution.
Case 2 (G
e� is a cycle). Fix an orientation of the cycle G
e�. Define a directed graph H =
VH�EH� over

the vertices of G
e� corresponding to variables xt such that x
a
t = 1 (G
e� is a bipartite graph and H is defined over

one of its color classes, over the the subset of the vertices of G
e� where xa = 1). For a pair of vertices xs and xt

in VH , there is an arc directed from xs to xt if the following solution yst satisfies the complicating constraint.
In yst every variable corresponding to an inner vertex of the subpath of G
e� from xs to xt is set according to its
value in xb, and every other variable (variables that do not correspond to inner vertices of this subpath) is set to
be its value in xa. Choose the cheapest yst thus constructed.

Case 3 (G
e� is a path). We reduce the case where G
e� is a path to the case where G
e� is a cycle: Either
add an edge between the two end vertices (of the path) or add a two-edge path between the two end vertices (of
the path) where the inner vertex is a new vertex corresponding to a vertex with zero cost and zero w coefficient,
so the resulting graph is bipartite. In such a graph we apply the previous case. If the resulting sub-path contains
the new added edges, then we add to the solution both end vertices of the path (in the original G
e�) and set
their corresponding variables to 1.

3.2. Analysis of the running time. All steps of the algorithm clearly run in polynomial time except for
steps (1), (3), and (5). Let us indeed prove that these steps are also polynomial. That is, we will show that the
number of possible values for the guesses carried throughout the algorithm is polynomial.

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS 243

Lemma 3.1. The algorithm runs in polynomial time.

Proof. The value of C∗ is an integer between 0 and
∑n

j=1 cj and therefore there are O
log1+�

∑n
j=1 cj� values

for C∗ that need to be tested. In fact the value of C∗ affects the algorithm only in the definition of the set of
variables with cost coefficient at least �C∗. Therefore, there are at most n+ 1 such threshold values that need
to be tested (that is, a strongly polynomial number of values). Since the cost of each variable is nonnegative, an
optimal solution may contain at most 1/� variables (set to one) each of them with cost coefficient at least �C∗

(for the correct guess of C∗). Therefore, for each guess value of C∗ we try all subsets with cardinality at most
1/� of the set of variables with cost coefficient at least �C∗. Therefore, for each value of C∗ the number of
guesses for the set of variables with cost coefficient at least �C∗ that belong to the optimal solution is at most
O
nO
1/���. Also, note that the number of possibilities for the guessing in step (3) is the number of values in the
set �0�1� 	 	 	 � n�, and therefore it is polynomial.
Finally, observe that step (5) (i.e., solving the Lagragian relaxation) can be performed in polynomial time (see

e.g., Schrijver [16, Theorem 24.3]). Moreover, we note that for a fixed value of ', problem LR
'� is equivalent
to the problem of minimizing

∑n
j=1
cj − 'wj�xj for all vectors x that are feasible for (BO′). Therefore, for a

fixed value of ', problem LR
'� can be solved in polynomial time, and in fact in strongly polynomial time. �

We next argue that in our particular case this Lagrangian relaxation problem can be solved in strongly
polynomial time and thus the whole algorithm is strongly polynomial. To this end we can use Megiddo’s
parametric search method (Megiddo [10]), which essentially requires that there is a combinatorial algorithm to
solve (BO) that applies only comparisons and additions. For the case of integral 0/1 polytopes such an algorithm
was obtained by Schulz et al. [17]. The algorithm of Schulz et al. [17] applies comparisons and additions,
as well as bit scaling operations and the preprocessing algorithm of Frank and Tardos [1]. These bit scaling
operations can be executed using a series of addition and comparison operations. So getting the most significant
bit (assuming k bits) of f
'� is equivalent to solving the comparison of f
'� ≥ 2k−1. Once we have the l
most significant bits of f
'�, the next bit is obtained by deleting the l most significant bits (using subtraction)
and then applying the above method of getting the most significant bit. Since the bit scaling operations of
Schulz et al. [17] apply only to numbers of a strongly polynomial number of bits, we conclude that each of
these operations can be performed using a strongly polynomial number of comparison and addition operations.
Moreover, we note that the same argument can be applied for a bit scaling operation of a rational function
where both its numerator and its denominator are linear functions of '. This is so because each comparison
in the bit scaling emulation compares f
'� to a constant (independent of ') and each addition is an addition
of a constant to f
'�. Hence, throughout the application of the bit scaling operation, f remains a rational
function where both its numerator and its denominator are linear functions of '. Thus, following the notation
of Frank and Tardos [1], in the preprocessing algorithm w′

i = wi/�wi�� is a vector of rational functions of '
where both the numerator and the denominator are linear functions of ' (note that �wi�� can be computed via a
strongly polynomial number of comparisons). Hence, one can apply a strongly polynomial number of bit scaling
operations in strongly polynomial time. This is exactly the first step of the revised simultaneous approximation
algorithm, and the remainder of this algorithm applies to a vector of constants and therefore can also be executed
in strongly polynomial time by the results of Frank and Tardos [1]. With the latter, we can compute the vector vi

whose components pi
j� are constants and the number qi (which is also a constant). Implying that the vector
corresponding to the next iteration wi+1 = wi −
�wi��/qi� is again a vector of linear functions of '. Since
�w =∑k

i=1M
k−ivi can be computed in strongly polynomial time, we can apply the preprocessing algorithm in

strongly polynomial time.
We conclude that we can emulate the algorithm of Schulz et al. [17] using a strongly polynomial number

of operations consisting only of comparisons and additions. This type of algorithm is the one that can be used
in the parametric search method, resulting in a strongly polynomial time algorithm that solves the Lagrangian
relaxation problem.

3.3. Analysis of correctness. Our first guessing step (step (1)) is to guess the cost of the optimal solution
to (IP) within a multiplicative factor of 1+ �. In the remainder of this section we will show that the resulting
solution has cost at most
1+ O
���C∗ and hence the resulting scheme is a polynomial time approximation
scheme (where the guessing of C∗ introduces another factor of
1+ �� on the performance guarantee). After
making the first guessing step, we set all the variables with cost at least �C∗ to their right value (according to
the guess).

Lemma 3.2. Consider the problem resulting from (IP) by setting some of the variables to 1 and some of the
variables to 0, then removing the constraints that are already satisfied and updating the value of W accordingly.
Then, this problem is easy.

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
244 Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS

Proof. This claim holds because the polytope � of the resulting problem is a face of the original polytope.
Since the polytope of the original problem was easy, it implies that � of the new problem is also easy. �

By Lemma 3.2, the resulting problem after step (1) has the same structure as problem (IP). In this instance
the cost of each variable is at most �C∗, so without loss of generality, we can assume for the analysis that our
original instance satisfies this property, and therefore we assume that each cost coefficient cj is at most �C

∗. To
motivate step (3), we present the following example.
Example 3.1. Consider the following problem (IP) where there are 3n/2 variables and T � 2 is a (large)

positive constant.

min
n∑

j=1
xj + T ·

n/2∑
j=1

yj

s.t. xj + yj ≥ 1 ∀ j = 1�2� 	 	 	 � n/2�
n∑

j=1
xj +

n/2∑
j=1

3
2
· yj ≥

3n
4

�

xj ∈ �0�1� ∀ j = 1�2� 	 	 	 � n�
yj ∈ �0�1� ∀ j = 1�2� 	 	 	 � n/2�

An optimal (nonbasic) solution for this problem is given by x1 = · · · = x3n/4 = 1 and x3n/4+1 = · · · = xn = y1 =
y2 = · · · = yn/2 = 0 whose cost is 3n/4. When we consider the Lagrangian relaxation of this problem obtained
by relaxing the constraint

∑n
j=1 xj +

∑n/2
j=1
3/2� · yj ≥ 3n/4, then for all values of the Lagrangian multiplier the

number of (strictly) positive variables in an optimal basic solution is exactly n/2, and the unique such feasible
solution that satisfies the complicating constraint is y1 = y2 = · · · = yn/2 = 1 and x1 = x2 = · · · = xn = 0, whose
cost is nT /2. When T approaches infinity, the ratio between the cost of this solution and the optimal solution
for (IP) becomes arbitrarily high. The common practice for using the Lagrangian relaxation can be summarized
as follows (see Ravi and Goemans [14]). First, use our first guessing step. Then use the Lagrangian relaxation to
find two neighboring solutions that are optimal with respect to the maximizer value of the Lagrangian multiplier
to the Lagrangian relaxation. Finally, return the feasible solution among the last two solutions. Observe that in
this example this last common practice fails since the returned solution will be y1 = y2 = · · · = yn/2 = 1 and
x1 = x2 = · · · = xn = 0, whose cost is nT /2.
Example 3.1 shows that in the general case the optimal solution to problem (IP) is not a basic solution to

(BO) (i.e., the number of tight constraints in this solution does not equal the number of independent constraints
in (BO)). This phenomenon causes problems when we consider applying the Lagrangian relaxation because such
a framework gives us basic solutions to (BO). Step (3) in the algorithm is designed to bypass this difficulty,
and is obtained as follows: Consider an optimal solution x∗ to problem (IP). We modify x∗ to x̄ so that x̄ will
have a special structure. As in the algorithm, we say that x̄ is nice if it is a feasible solution such that there
exists an index i (1≤ i≤ n) such that x̄1 = x̄2 = · · · = x̄i = 1, and after we set these variables to one and remove
from (BO) all the constraints that are already satisfied, then the vector
x̄i+1� 	 	 	 � x̄n� is a basic solution to the
resulting basic optimization problem.

Lemma 3.3. Given a feasible solution x to problem (IP) whose cost is C, there is a nice feasible solution x̄
to problem (IP) whose cost is at most C + �C∗.

Proof. We start with x̄= x and apply the following procedure. At each step we maintain a maximal prefix
x̄1 = x̄2 = · · · = x̄i = 1 (initially i = 0). We pick a variable x̄k that currently equals one such that k > i and the
solution obtained from x̄ by changing x̄k to 0 is still feasible to (BO). If the solution resulting from setting x̄k

to 0 is feasible to problem (IP), then we apply this change and reduce the cost of the current solution. Otherwise,
we find the minimum index j > i such that the following solution is feasible to (IP):

x̃t =

1 if t ≤ j�

x̄t if t > j and t �= k�

0 if t = k�

We replace x̄ with x̃ and continue. Clearly, at the end of this procedure (when such an index k does not exist)
the resulting solution x̄ is nice.

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS 245

It remains to bound the cost of x̄. Denote by S the index set S = �j xj = 1 and x̄j = 0� and by S ′ the
index set S ′ = �j xj = 0 and x̄j = 1�. Then,

∑
j∈S′ wj −wi ≤

∑
j∈S wj ≤

∑
j∈S′ wj . By our ordering of the indices

1�2� 	 	 	 � n, we conclude that wk/ck ≥ wt/ct for all t ≤ j . Hence, if we say that the solution x pays wk/ck for
each unit of weight (which is used for satisfying the complicating constraint) and we say that x̄ pays at most
wj/cj for each unit of weight, then x pays more than x̄ for each unit of weight. Applying this consideration
in all iterations of the construction of x̄, we conclude that the total payment used by x is not smaller than the
total payment used by x̄ (except perhaps for the cost of xj which may pay for units of weights that may exceed
the lower bound W). Therefore, the cost of the vector resulting from x̄ by setting x̄j to 0 is at most C. Since
cj ≤ �C∗, the claim follows. �

Therefore the restriction that we make after step (3) of requiring a basic optimal solution on the resulting
instance adds another factor of
1+ �� to the approximation ratio. The previous lemma guarantees the success
of the guessing in step (3).
Thus, we can again assume that we guess the correct value of the index i. Next, in step (4), we remove from

(BO) all the constraints that are already satisfied by the variables x1� 	 	 	 � xi, and in (IP) we also modify the
value of W accordingly (i.e., replace it with W −∑i

j=1wj). We delete the first i columns from the constraint
matrix of (IP) and from the goal function. Recall that we denote by (IP′) the resulting problem from (IP) and
by (BO′) the problem resulting from (IP′) when we delete the additional covering constraint (i.e., the basic
optimization problem corresponding to the new instance), and the index set of the variables in (IP′) is denoted
by �1�2� 	 	 	 � n�. By Lemma 3.2, the polytope of the new problem is easy and it is denoted by �. By the above
argument the remaining goal is to show how to find a feasible solution to (IP′) whose cost is at most
1+ ��
times the cost of the cheapest solution among the basic solutions to (BO′) that are feasible for (IP′) (we need to
consider only basic solutions by step (3)).
To this end we next construct the Lagrangian relaxation max'≥0 LR
'� in step (5). We note that for all values

of ' the cost of the optimal solution to LR
'� is a lower bound on the optimal cost of (IP′), since every feasible
solution to (IP′) is also feasible for LR
'�, and its cost in (IP′) is at least its cost in LR
'� (see, e.g., §24.3 in
Schrijver [16]). The Lagrangian relaxation problem denoted as LR is to find the maximizer '∗ of LR
'�. Recall
that we denote by '∗ a value of ' such that LR= LR
'∗�.
In addition to the computation of '∗ we also compute two solutions xa and xb that are both optimal solutions

to LR
'∗� such that
∑n

j=1wjx
a
j ≤W and

∑n
j=1wjx

b
j ≥W (step (5)). For small enough values of + these solutions

are well defined, and they are both also optimal for LR
'∗�. First note that if one of these solutions (i.e., either xa

or xb) satisfies the complicating constraint with equality, then this solution is an optimal solution to problem (IP′)
because such solutions have the same cost for LR
'� as they cost for (IP′), and we are done. Therefore, in the
remainder of this section we assume that

∑n
j=1wjx

a
j <W and

∑n
j=1wjx

b
j >W .

We note that both xa and xb are basic solutions, and hence correspond to extreme vertices of the polytope �.
By using small perturbations of the set �wj 1≤ j ≤ n�, we may assume that the two solutions xa and xb are
two extreme vertices of an edge e of the polytope � (a similar use of the perturbation was carried by Levin and
Woeginger [9]). This perturbation is carried out as follows. We let 1� �1 � �2 � · · ·� �n > 0 and we change
the value of wj to be wj + �j . By picking �i small enough for all i (i.e., we can take �i = +i for infinitesimally
small values of +), we can force that for each value of the Lagrangian multiplier there will be at most two
optimal solutions for LR
'�. Since we assume that � is easy, we control the structure of the graph G
e�. That is,
we know that G
e� is either a path or a cycle or a star. Recall that the cost of xa (as a solution for LR
'∗�)
is a lower bound on the optimal cost for (IP′) (i.e.,

∑n
j=1 cjx

a
j ≤ C∗). In step (6), our algorithm constructs the

returned solution using xa and xb. The construction is different for the different structures of G
e�.
Case 1 (G
e� is a star). Denote the variable corresponding to the center of the star by s. Then, there are two

possibilities: either xb
s = 1 (and xa

s = 0) or xa
s = 1 (and xb

s = 0). In the first possibility, we return the solution that
differs from xa by setting xa

s = 1. This is clearly a feasible solution to (IP′) as xb is a feasible solution to (IP′)
and xb is component-wise smaller than the returned solution. Moreover, the cost of the returned solution is the
cost of xa plus cs . However, by assumption cs ≤ �C∗, and as stated above, the cost of xa is at most C∗, and
therefore the cost of the returned solution is at most
1+ ��C∗.
It remains to consider the second possibility. Assume that the neighbors of s in the graph G
e� are j1 < j2 <

· · ·< jk. By our ordering of the variables, we conclude that cjr /wjr
≤ cjr+1/wjr+1 for all r = 1�2� 	 	 	 � k− 1. l is

the minimum index such that if we change xa by setting xa
jr
= 1 for r = 1�2� 	 	 	 � l, then the resulting solution

satisfies the complicating constraint (there is such a value of l because if we change xa by setting xa
jr
= 1 for

all r , then we reach a vector that is component-wise not smaller than xb which is feasible), and we return this
solution. Since xa is a feasible solution to (BO′) and by the definition of l, the returned solution satisfies the
complicating constraint as well, and hence the returned solution is feasible for (IP′).

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
246 Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS

We now bound the cost. By our assumption, cs ≤ �C∗ and cjl ≤ �C∗. We let y be the vector resulting from the
returned solution if we change the value of xs and xjl

to 0. We next argue that the cost of y is at most C∗. To see
this claim let 8 ∈
0�1� be such that z = 8xa +
1− 8�xb is a fractional solution to the linear programming
relaxation of (BO′) that satisfies the complicating constraint with equality. This fractional solution is optimal
to LR
'∗� (though it is fractional), and therefore its cost is at most C∗. Note that zt = xa

t for all t that do not
have a corresponding vertex in G
e�. By the greedy ordering of the variables, we conclude that y is an optimal
solution (even among fractional solutions) to the following knapsack problem where we want to find a minimum
cost cover of a knapsack of size

∑l−1
r=1wjr

using items from a set of k items where item r has size wjr
and

cost cjr . We note that z is a feasible fractional solution to this knapsack problem, and therefore the cost of z
is at least the cost of y. Therefore, in this case the cost of the returned solution is at most
1+ 2��C∗, and we
conclude the following.

Proposition 3.1. If G
e� is a star, then the returned solution is feasible and costs at most
1+ 2��C∗.

Case 2 (G
e� is a cycle). Recall that yst satisfies the complicating constraint for every pair s� t such that
s� t�
is an arc in H . For such an arc
s� t� we define a solution zst8�9 to be equal to yst except for the value of xs and xt

where we set
zst8�9�s = 8 and
zst8�9�t = 9, and we define such a solution only if it satisfies the complicating
constraint as an equality. By the definition of G
e�, the solution yst is also feasible for (BO′). In the sequel we
will argue that there is at least one solution zst8�9 among the solutions corresponding to the arcs of H whose
cost is at most C∗. Since yst differs from zst8�9 in exactly two components, and by our assumption that each cost
coefficient is at most �C∗, we conclude that the resulting solution costs at most
1+ 2��C∗.
Denote by Wa =

∑
j wjx

a
j and Wb =

∑
j wjx

b
j . Then,
W −Wa�/
Wb −Wa� is a rational number of the form

p/q where p and q are positive integers. Let us first demonstrate that the vector
xb −xa� ·
W −Wa�/
Wb −Wa�
is a convex combination of vectors of the form zst8�9 −xa (for some values of s� t� 8� 9). To do so, consider the
circuit R traversing G
e� exactly q times starting from an arbitrary vertex v0 of H , and let :0 = 0. For every i we
let
vi� :i� be defined as follows: vi� :i is such that if we let Si be the set of vertices in G
e� up to vi and assume
that vi appears in the kth copy of the cycle G
e� (in R), then
k− 1� ·
Wb −Wa�+

∑
v∈Si wv
x

b
v − xa

v �+ :iwvi
=

i ·
W − Wa�, and among the different possibilities of choosing vi we choose the one such that
k� �Si�� is
maximized lexicographically. Then by definition, vp = v0 and :p = :0 = 0. Letting si = vi−1, ti = vi, 8i = :i−1,
and 9i = :i, by definition, z

siti
8i9i

is a solution considered in the above set of solutions, and
∑p

i=1 z
siti
8i9i

/p− xa is
exactly the vector
xb − xa� ·
W −Wa�/
Wb −Wa�.
Therefore, there are s� t such that
s� t� is an arc of H such that the resulting solution costs at most
1+2��C∗

as we claimed. We conclude the following.

Proposition 3.2. If G
e� is a cycle, then the returned solution is feasible and costs at most
1+ 2��C∗.

Case 3 (G
e� is a path). We show how to reduce the case where G
e� is a path to the case where G
e� is a
cycle. To do so, we either add an edge between the two end vertices (of the path) or we add a two-edge path
between the two end vertices (of the path) where the inner vertex is a new vertex corresponding to a vertex
with zero cost and zero w coefficient. The choice between the two cases is carried so that the resulting graph
is bipartite. In the resulting graph we apply the method of the previous case (where G
e� is a cycle). If the
resulting sub-path contains the new added edges, then we add to the solution both end vertices of the path (the
original G
e�) and set the corresponding variables to 1. This modification adds at most 2�C∗ to the cost of the
resulting solution. By the correctness of the cycle case, and using the fact that the resulting solution does not
use the new variable to satisfy the constraints of (BO′), we conclude that the resulting solution is feasible to
(IP′), and hence we establish the following.

Proposition 3.3. If G
e� is a path, then the returned solution is feasible and costs at most
1+ 4��C∗.

In all cases the resulting solution is feasible and costs at most
1+ 4��C∗, implying our main result:

Theorem 3.1. If the polytope � is easy, then problem (IP) has a polynomial time approximation scheme.

Note that our scheme uses the following properties of (IP): first, there is a polynomial time algorithm that
optimizes any linear objective function over (BO); and second, the graph G
e� can be constructed in polynomial
time for every edge of the polytope �, and G
e� has the required structure (i.e., it is either a star or a path or a
cycle). Hence, if there is a polytope satisfying these two properties, then our algorithm provides a polynomial
time approximation scheme even if the polytope is not described by the list of constraints (so there may be
an exponential number of constraints). For example, we provide a polynomial time approximation scheme for
the problem of finding a minimum cost connected subgraph (of a given input graph) such that the edges of

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS 247

the subgraph satisfy a certain additional covering constraint. To see that this problem fits our scheme, note that
we can use the covering representation of finding a connected subgraph by having a constraint for each cut
asking for at least one edge in the cut. Then, the number of constraints is exponential, but we can always find
in polynomial time a constraint that is not satisfied (by computing a min-cut). Moreover, the graph G
e� always
contains at most two vertices corresponding to (at most) two swapped edges in the solutions (and if there are
two vertices in G
e� they are connected by an edge). Therefore, we can construct it in polynomial time, obtaining
a PTAS for this problem.
Remark 3.1. We note that our definition of the graph G
e� is with respect to the permutation of the variables

according to the ratios of cj/wj , and the property of being an easy polytope depends on this permutation.
However, a polytope might be easy if we are using a different permutation to define the graph G
e�. For such
cases our scheme also holds (as our proof extends easily to this case as well) after we modify the definition
of G
e� according to the permutation that guarantees that the polytope is easy.

3.4. Extending the PTAS for (IP) with an arbitrary right-hand side. We next show how to extend our
result to obtain a PTAS for the modification of (IP) where the vector � is replaced by a general positive integer
vector b. We denote the resulting integer program by (IPb). For such a problem, we modify the definition of
the graph G
e� for an edge e =
u� v� of � that connects u and v, as follows: Assume that the ith constraint
has 8i variables that are set to one in both x
u� and in x
v�. Then we add to G
e� exactly max�0� bi −8i� edges
where the kth such new edge of G
e� connects the kth smallest index variable from X

u�v�
1→0 (that has a nonzero

coefficient in this constraint) to the kth smallest index variable from X

u�v�
0→1 (that has a nonzero coefficient in this

constraint). Then, if for every edge of the polytope the resulting graph G
e� is either a star or a cycle or a path,
then we say that the problem is easy. Then, our PTAS for easy problems (IP), returns a feasible solution to the
instance of (IPb). To see this last claim, note that for every edge in G
e� where e is the edge that maximizes the
Lagrangian relaxation, we set at least one end vertex of the edge to 1; i.e., we always find a vertex cover of G
e�.
When applied to (IPb) this clearly returns a solution that satisfies all the constraints of the basic optimization
problem, and it satisfies the complicating constraint as well because our solution to (IP) satisfies it. Therefore,
our analysis shows that the resulting algorithm is a PTAS.

Proposition 3.4. If the polytope � is easy, then problem (IPb) has a polynomial time approximation scheme.

4. Open problems. In summary, we can conclude that there are wide classes of problems that lie in our
framework. However, all classes presented in this paper correspond to totally unimodular (TU) matrices. Unfor-
tunately, not every TU matrix leads to an easy polytope �. It would thus be interesting to generalize the approach
of this paper to make it work for any polytope � with a totally unimodular constraint matrix.
We have also shown that, under some conditions on the set �x Ax ≥ b� x ∈ �0�1�n� (namely, the polytope

being easy), the problem min�cx Ax≥ b� wx≥W� x ∈ �0�1�n� admits a polynomial time approximation scheme
for any nonnegative c� w� W . However, we did not succeed in proving several generalizations that may hold.
We formulate these as conjectures. Assume A ∈�m×n

+ , b ∈�m
+, and c ∈�n

+.

Conjecture 4.1. If �x Ax≥ �� x≥ 0� is integral, then the problem min�cx Ax≥ �� wx≥W� x ∈ �0�1�n�
admits a polynomial time approximation scheme for any nonnegative c� w� W .

Conjecture 4.2. The result of Conjecture 4.1 holds for any arbitrary right-hand side.

Furthermore, the previous conjectures may even hold in an approximate setting.

Conjecture 4.3. Suppose that there is an 8-approximation algorithm for min�cx Ax ≥ �� x ∈ �0�1�n�
for any nonnegative c. Then, for any < > 0, there is an
8+ <�-approximation algorithm for min�cx Ax ≥ ��
wx≥W� x ∈ �0�1�n� for any nonnegative c� w� W .

Conjecture 4.4. The result of Conjecture 4.3 holds for any arbitrary right-hand side.

Note that the last conjecture does not hold if the extra constraint is a packing one. Indeed, take, for instance,
the minimum two-edge connected subgraph problem, which admits a two-approximation algorithm (Khuller and
Vishkin [7]). If we add a constraint that the sum of the variables associated to edges is at most the number of
vertices in the graph, the problem becomes (nonmetric) TSP, which is NP-hard to approximate within any factor
(see, e.g., Garey and Johnson [2]).
To finish we observe that the nonnegativity requirement on c is also needed. Consider the problem:

min
{ n∑

i=1
cixi x ∈ �0�1�n

}
�

Correa and Levin: Monotone Covering Problems with an Additional Covering Constraint
248 Mathematics of Operations Research 34(1), pp. 238–248, © 2009 INFORMS

whose optimal solution is trivially obtained by setting xi = 0 if ci ≥ 0, and xi = 1 if ci < 0. If we now add an
extra covering inequality, the problem becomes minimum knapsack with general costs:

(MK) min
{ n∑

i=1
cixi

n∑
i=1

dixi ≥D� x ∈ �0�1�n
}
�

Let us see that (MK) is NP-hard to approximate within any factor. In fact, in an optimal solution to (MK)
we have that xi = 1 for all i such that ci < 0. Therefore, letting C =−∑

j cj<0
cj and assuming ci ≥ 0 if and only

if 1≤ i≤m, the following problem can be seen as a special case of (MK):

min
{ m∑

i=1
cixi −C

m∑
i=1

cixi ≥C� x ∈ �0�1�m
}
�

Note that the optimal value to the previous problem is always nonnegative, and it is 0 if and only if there
exists a set S ⊂ �1� � � � �m� such that

∑
j∈S cj =C. Hence, deciding whether the optimal value of the problem is 0

is NP-complete (as it is the same as the subset sum problem; see, e.g., Garey and Johnson [2]). Furthermore if
we had an 8-approximation algorithm for the problem (with constant 8), we would have that such an algorithm
returns a solution whose value is at most 8 times the optimal value. Thus, the algorithm would return 0 if and
only if the optimal solution has value 0, a contradiction.

Acknowledgments. The authors would like to thank Refael Hassin, Dorit Hochbaum, R. Ravi, Mohit Singh,
and Arie Tamir for their useful comments and stimulating discussions. The authors also thank Andreas Schulz
for pointing out Schulz et al. [17] and the results implicitly contained in that paper. The research of the first
author was partially supported by CONICYT through Grant Anillo en Redes, ACT08, and by the Instituto
Milenio Sistemas Complejos de Ingenieria. Finally, the authors thank two anonymous referees whose comments
greatly improved the presentation of the paper.

References

[1] Frank, A., E. Tardos. 1987. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica
7 49–65.

[2] Garey, M. R., D. S. Johnson. 1979. Computers and Intractability. W. H. Freeman and Company, New York.
[3] Gens, G. V., E. V. Levner. 1979. Computational complexity of approximation algorithms for combinatorial problems. Proc. 8th Internat.

Sympos. Math. Foundations Comput. Sci.
MFCS�, Vol. 74. LNCS, Springer-Verlag, Berlin, 292–300.
[4] Hassin, R., A. Levin. 2004. An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem

using matroid intersection. SIAM J. Comput. 33 261–268.
[5] Jain, K., V. Vazirani. 2001. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema

and Lagrangian relaxation. J. ACM 48 274–296.
[6] Könemann, J., O. Parekh, D. Segev. 2006. A unified approach to approximating partial covering problems. Proc. 14th Eur. Sympos.

Algorithms
ESA�, LNCS 4168. Springer Verlag, Berlin, 468–479.
[7] Khuller, S., U. Vishkin. 1994. Biconnectivity approximations and graph carvings. J. ACM 41 214–235.
[8] Leighton, T., F. Makedon, S. Plotkin, C. Stein, E. Tardos, S. Tragoudas. 1995. Fast approximation algorithms for multicommodity flow

problems. J. Comput. System Sci. 50 228–243.
[9] Levin, A., G. J. Woeginger. 2006. The constrained minimum weighted sum of job completion times problem. Math. Programming 108

115–126.
[10] Megiddo, N. 1979. Combinatorial optimization with rational objective functions. Math. Oper. Res. 4 414–424.
[11] Papadimitriou, C. H., M. Yannakakis. 1982. The complexity of restricted spanning tree problems. J. ACM 29 285–309.
[12] Plotkin, S., D. Shmoys, E. Tardos. 1995. Fast approximation algorithms for fractional packing and covering problems. Math. Oper.

Res. 20 257–301.
[13] Ravi, R. 2002. Bicriteria spanning tree problems. Proc. 5th Workshop on Approximation Algorithms Combin. Optim.
APPROX�, LNCS

2462. Springer Verlag, Berlin, 3–4.
[14] Ravi, R., M. X. Goemans. 1996. The constrained minimum spanning tree problem. Proc. 5th Scandinavian Workshop on Algorithm

Theory
SWAT’1996�, LNCS 1097. Springer Verlag, Berlin, 66–75.
[15] Roberts, F. S. 1969. Indifference graphs. F. Harary, ed. Proof Techniques in Graph Theory. Academic Press, New York.
[16] Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons, New York.
[17] Schulz, A. S., R. Weismantel, G. M. Ziegler. 1995. 0/1-integer programming: Optimization and augmentation are equivalent. Proc. 3rd

Eur. Sympos. Algorithms
ESA�, LNCS 979. Springer-Verlag, Berlin, 473–483.

	Introduction.
	The framework.
	A polynomial time approximation scheme for an easy (IP).
	The algorithm.
	Analysis of the running time.
	Analysis of correctness.
	Extending the PTAS for (IP) with an arbitrary right-hand side.

	Open problems.

