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Abstract. Public transit systems in major urban areas usually operate under deficits and
therefore require significant subsidies. An important cause of this deficit, particularly in
the developing world, is the high fare evasion rate mainly due to an ineffective control
policy or the lack of it. In this paper we study new models for optimizing fare inspection
strategies in transit networks based on bilevel programming. In the first level, the leader
(the network operator) determines probabilities for inspecting passengers at different loca-
tions, while in the second level, the followers (the fare-evading passengers) respond by
optimizing their routes given the inspection probabilities and travel times. To model the
followers’ behavior we study both a nonadaptive variant, in which passengers select a path
a priori and continue along it throughout their journey, and an adaptive variant, in which
they gain information along the way and use it to update their route. For these problems,
which are interesting in their own right, we design exact and approximation algorithms,
and we prove a tight bound of 3/4 on the ratio of the optimal cost between adaptive and
nonadaptive strategies. For the leader’s optimization problem, we study a fixed-fare and
a flexible-fare variant, where ticket prices may or may not be set at the operator’s will. For
the latter variant, we design an LP-based approximation algorithm. Finally, employing a
local search procedure that shifts inspection probabilities within an initially determined
support set, we perform an extensive computational study for all variants of the prob-
lem on instances of the Dutch railway and the Amsterdam subway network. This study
reveals that our solutions are within 5% of theoretical upper bounds drawn from the LP
relaxation. We also derive exact nonlinear programming formulations for all variants of
the leader’s problem and use them to obtain exact solutions for small instance sizes.
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1. Introduction
Fare evasion in transit systems causes significant
operational deficits that have to be compensated by
large subsidies. The issue is particularly relevant in
the developing world where evasion rates are often
very high. In Santiago de Chile, for instance, eva-
sion rates of nearly 20% for the public transporta-
tion system, Transantiago, lead to an estimated annual
cost of 450 million dollars (Torres-Montoya 2014). This
accounts for a large fraction of the total deficit of
the system estimated at 700 million dollars each year
(Gómez-Lobo 2012, Chilean Subsecretary of Trans-
portation 2014). Although the situation is less dramatic
in the developed world, fare evasion is still a major
source of inefficiencies. For example, recent studies
revealed an annual loss of 70 million pounds for Lon-
don’s transit system (Transport for London 2010).
As the installation of physical ticket barriers is

not always possible, cost-efficient, or desirable, many

transit systems, such as the Dutch and German rail-
way and subway networks and the London and Santi-
ago bus systems, rely on the honesty of customers and
proper controlling by ticket inspectors on board. Trav-
elers who are caught without a valid proof of payment
have to pay a fine, which is significantly larger than the
ticket price.

In this paper we study the optimization of fare
inspection strategies in transit systems taking into
account realistic models for the passenger’s reaction.
Our models are based on a bilevel optimization problem
(or Stackelberg game) on the network. In the first level,
the leader, who strives to maximize the revenue from
ticket sales and collected fines, determines for each
edge the probability of controlling passing passengers,
representing the frequency of inspections on that edge.
In light of the limited number of inspectors available,
we assume a global budget constraint on the sum of
these probabilities. Given the inspection probabilities
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on edges, we assume passengers act strategically and
decide on whether or not to buy a ticket and along
which path to travel based solely on their perceived
cost. If a passenger chooses not to buy a ticket, her
cost is thus the sum of the path length (expressed in
monetary units) and the expected fine to be payed
(which depends on the inspection probabilities along
the path); on the other hand, if she buys a ticket, her
cost is defined as the cost of the cheapest path con-
sidering both ticket price and distance measured in
monetary units.
We perform a complete study differentiating be-

tween two possibilities for the passengers’ behavioral
assumption as well as two settings for the leader’s deci-
sion problem. From the followers’ side, we consider
both the case in which they are adaptive and nonadap-
tive. In the latter, each passenger chooses a path at the
beginning of her journey and continues along it, inde-
pendent of whether or not she encounters an inspector.
In the adaptive version, passengers adapt their behav-
ior and consequently, when caught without a ticket,
they continue on their shortest path only considering
distance (since the fine typically includes a ticket to
finish the trip). For the leader, we also study two dif-
ferent settings. In the fixed-fare setting, we assume that
ticket prices are fixed a priori, e.g., by governmen-
tal regulations, and the leader only sets the inspec-
tion probabilities subject to a budget constraint. In the
flexible-fare setting, we assume that the leader can addi-
tionally determine ticket prices.
Our Contribution and Structure of the Paper. Themain
goal of this work is to provide a comprehensive study
of fare evasion and fare inspection problems in transit
networks. As mentioned above, we consider four ver-
sions of the problem by varying onwhether the follow-
ers are adaptive or not, and whether the ticket prices
are fixed or flexible. From a methodological viewpoint
we tackle the problem from different angles, design-
ing polynomial time algorithms and approximation
schemes for the followers’ problems, studying approx-
imation algorithms and LP relaxations for the leader’s
problem, and using a local search heuristic to obtain
high quality solutions for real-world instances.
After establishing the precise model in Section 2, we

study the two variants of the followers’ minimization
problem in Section 3. These are natural extensions of
the classic shortest path problem and exhibit interest-
ing properties in their own right. For the nonadaptive
variant, we design a fully polynomial time approxima-
tion scheme for general network topologies, exploiting
similarities between this problem and the restricted
shortest path problem. We also establish a close con-
nection between the nonadaptive followers’ problem
and the parametric shortest path problem, showing
that the optimal solution to the former can be found by
enumerating all pieces of the optimal cost curve of the

parametric problem. Although for general graphs the
number of pieces can be superpolynomial in the size of
the network,we show that for series-parallel graphs the
number is bounded by the number of edges, support-
ing a conjecture by Nikolova (2009) claiming the same
bound for planar graphs. For adaptive followers, we
obtain an exact polynomial time algorithm for general
graphs using an optimal substructure property of the
problem, and we also present an exact LP formulation
that reveals an interesting relation between the adap-
tive follower’s problem and generalized flows. Surpris-
ingly, we further show that for arbitrary probability
distributions, the optimal solution to the nonadaptive
followers’ minimization problem is at most a factor 4/3
away from the optimal solution to the adaptive variant,
and we also show that this bound is tight.

In Section 4 we turn our attention to the leader’s
maximization problem and prove that all four vari-
ants of this problem are strongly NP-hard. We then
present an LP relaxation that yields a valid upper
bound on the achievable profit for all four variants,
andwe also obtain a (1−1/e)-approximation algorithm
for the variant involving flexible ticket prices and non-
adaptive followers. Combining this with theworst-case
gap from the preceding section yields a 3

4 (1 − 1/e)-
approximation for the variant with adaptive followers.
We further derive exact nonlinear formulations for all
four different versions of the leader’s problem, using
the generalized flow LP from the preceding section.
We then present a local search procedure that shifts
inspection probabilities within an initially determined
support set of edges. As candidate support sets, we
use solutions from an LP relaxation, a minimum mul-
ticut, and a related mixed integer program proposed
by Borndörfer et al. (2013). Finally, we discuss that all
results in this section also work in the presence of elas-
tic demands, i.e, when followers have an outside option
to avoid using the transit network if costs for doing so
are too high.

In Section 5 we demonstrate the applicability of our
local search approach for all four problem variants by
conducting a computational study comprising a total
of 5,600 instances based on the networks of the Dutch
railway system, the Amsterdam metro system, and
randomly generated graphs. Our study reveals that
the objective values of the computed solutions are, on
average, within 5% of the calculated upper bounds.
For several small instances, we even obtain exact solu-
tions (or improved upper bounds) by solving the exact
(but nonconvex) formulations from Section 4 using the
global optimization solver BARON (Tawarmalani and
Sahinidis 2005). It turns out that for those instances for
which BARON obtained provably optimal solutions,
our solutions (computed with the local search proce-
dure) are, in fact, within 2% of optimality.
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Related Work. Bilevel network pricing problems have
been considered extensively in the literature. In the
work of Brotcorne et al. (2001, 2008) and Labbé et al.
(1998) the leader prices edges of some subgraph and
the followers choose shortest paths with respect to
edge costs defined as the sum of travel costs and prices.
This problemwas proved to be NP-hard by Labbé et al.
(1998) and later several hardness of approximation and
approximability results have been obtained (Bouhtou
et al. 2007, Briest et al. 2012, Roch et al. 2005).
Borndörfer et al. (2013, 2012a) investigated a prob-

lem similar to our variant of nonadaptive followers
and fixed ticket prices. In contrast to our model, they
assume the cost of the followers to be given by the
sum of travel costs and probabilities, reducing the
followers’ minimization problem to a standard shortest
path problem. Based on this simplification, the authors
derive a compact mixed integer program (MIP) for
the leader’s optimization problem and solve it on sev-
eral test instances derived from the German motor-
way network. In addition, they also study the case
where the leader wants to minimize the number of fare
evaders. In contrast, we model the followers’ response
more precisely by considering the exact expected fine
along a path, leading to a nonlinear aggregation of
probabilities. In our computational study, we system-
atically compare the difference between both model-
ing approaches. We show that the quality of plain
MIP solutions is, on average, over all instances 5%
lower than our solutions when taking the exact follow-
ers’ response into account. For instances derived from
the Amsterdam metro network, our solution improves
even by 7.4% on average, with an improvement ofmore
than 20% on some instances.
There is a body of literature on so-called network

security games, where a defender can check a limited
number of edges in a graph and the attacker com-
putes from a given set of source and target nodes a
path connecting a source and a target (Jain et al. 2013,
Tambe 2012,Washburn andWood 1995). The payoff for
the attacker (and defender) has a binary characteristic
since it only depends on whether or not the attacker
has been caught. Lin et al. (2013) discuss a model in
which a single defender moves through the network
over time to detect attackers. The authors propose a lin-
ear program—which solves the problem to optimality
for small instances—and heuristics—which solve the
problem for larger instances within 1% of optimality.

Yin et al. (2012) study a fare inspection model simi-
lar to ours, although, in contrast to our work, passen-
gers are assumed to follow a fixed route through the
network. On the other hand, Borndörfer et al. (2012a)
consider the problem of computing tours of inspectors
for a given distribution of traffic flows. They derive an
integer programming formulation and conduct a com-
putational study on the German motorway network.

2. The Model
We are given a directed graph G � (V,E) with costs
c: E → �+ modeling the transit times on the edges
(as monetary cost incurred to the passengers travel-
ing along them). To prevent fare evasion, the network
operator (the leader) sets inspection probabilities pe ∈
[0, 1] on the edges subject to the budget constraint∑

e∈E pe 6 B, where B > 0 corresponds to a limited num-
ber of ticket inspectors. We first describe the passen-
gers’ reaction to the chosen inspection strategy and
then discuss the resulting revenue for the operator.

2.1. The Followers
Passengers (the followers) are modeled by a set of com-
modities K. For every commodity i ∈ K, a demand di > 0
is given that specifies the number of passengers with
origin si ∈V and destination ti ∈V . Passengers of com-
modity i can either buy a ticket at price Ti > 0 or
choose a path without paying the ticket. If a passen-
ger is caught without a valid ticket, he has to pay a
fine F > 0 satisfying F > Ti . As in most public transport
systems (e.g., the Dutch or German subway and rail-
way networks), the fine includes the ticket price and
enables the passenger to continue his trip. Passengers
are assumed to be rational, deciding purely based on
their personal costs, which is expressed as the sum
of travel times along the chosen path and the mon-
etary cost. In the following, we differentiate between
a nonadaptive and an adaptive variant of the followers’
response. In both settings, passengers of commodity i
can either choose to pay the ticket and follow the short-
est path w.r.t. c, or decide to evade the fare, choosing
a path P ∈ Pi that minimizes a variant-dependent cost
function (where Pi denotes the set of si–ti-paths).

Nonadaptive followers. In the nonadaptive variant,
passengers are assumed to choose a route before the
start of their trip and continue along it, independent of
whether or not they encounter an inspector. For a path
P, we denote its total travel time by c(P) :�∑

e∈P ce , and
we denote the probability that no inspector is encoun-
tered along P by π(P) :�∏

e∈P(1− pe). Given probabili-
ties p, the expected cost of path P for passenger i in the
nonadaptive setting is

fN, p , i(P) :� c(P)+ (1− π(P)) · F.

This variant is plausible under the assumption that
passengers have determined their route beforehand
(via checking the route and timetables). We denote the
corresponding optimization problem by FMPN.

Adaptive followers. In the adaptive variant, once a
passenger is caught, he will continue his trip along

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

9.
18

0]
 o

n 
03

 F
eb

ru
ar

y 
20

17
, a

t 0
6:

51
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Correa et al.: Fare Evasion in Transit Networks
168 Operations Research 65(1), pp. 165–183, ©2017 INFORMS

the shortest path (w.r.t. c). Letting SPc(v ,w) denote
the shortest path distance from v to w w.r.t. c, the
follower thus tries to find a path P � (e1 , . . . , el) ∈ Pi
with e j � (v j , v j+1)minimizing the expected cost

fA, p , i(P) :�
l∑

j�1

j−1∏
k�1
(1− pek

) ·
(
ce j

+ pe j
(F + SPc(v j+1 , ti))

)
.

Note that in this formula, the jth summand corre-
sponds to the event of v j being reachedwithout inspec-
tion, in which case e j is traversed next. This variant
assumes that passengers know the shortest paths from
all stations to their destination in a network, e.g.,
by calculating it using a portable computing device.
We denote the corresponding optimization problem
by FMPA.
Throughout the paper, we will make use of the fol-

lowing lower bounds on fA, p , i and fN, p , i . Intuitively,
these bounds follow from the fact that a passenger
always has to traverse a path that is at least as long as
the shortest path from si to ti .

Lemma 1. Let i ∈ K and P ∈ Pi . Then fA, p , i(P) >
π(P)c(P) + (1 − π(P)) · (SPc(si , ti) + F). Furthermore, if
c(P) � SPc(si , ti) then the above inequality holds with
equality.

Proof. Define π j :� ∏ j
k�1(1 − pek

). Note that π j−1pe j
�

π j−1(pe j
− 1+ 1)� π j−1 − π j . We obtain

fA, p , i(P)

�

l∑
j�1
π j−1 ·

(
ce j

+ pe j
(F + SPc(v j+1 , ti))

)
�

l∑
j�1
π j−1 ·

(
ce j
− pe j

j∑
k�1

cek

+ pe j

(
F + SPc(v j+1 , ti)+

j∑
k�1

cek︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
>SPc (si , ti )

))

>
l∑

j�1
π j−1

(
ce j
− pe j

j∑
k�1

cek

)
+

l∑
j�1
π j−1pe j

(F + SPc(si , ti))

�

l∑
j�1

(
π j−1 −

l∑
k� j

πk−1pek

)
ce j

+

l∑
j�1
(π j−1 − π j)

· (F + SPc(si , ti))

�

l∑
j�1

(
π j−1 −

l∑
k� j

(πk−1 − πk)
)

ce j

+ (1− πl)(F + SPc(si , ti))
� πl · c(P)+ (1− πl)(F + SPc(si , ti)).

Note that the only inequality used above is
SPc(v j+1 , ti) +

∑ j
k�1 cek

> SPc(si , ti), which holds with
equality for every j if P is a shortest path with respect
to c. �

Corollary 1. Let X ∈ {A,N}, i ∈ K, and P ∈ Pi . Then
fX, p , i(P) > SPc(si , ti)+ (1− π(P)) · F.

2.2. The Leader
The leader’s problem can be defined as a bilevel prob-
lem, where the leader sets probabilities on the edges
to which the followers respond by solving their indi-
vidual optimization problems. While we will always
assume the fine F to be fixed in the problem input (fines
are commonly determined by the legislation (Gĳsbers
2013)), we will consider both the scenario where ticket
prices are fixed a priori and the scenario where they
are flexible and can be determined by the leader as
part of his optimization problem. Combining this with
the two different models for the followers’ reaction,
we obtain four different versions of the leader’s maxi-
mization problem, which we will denote by LMPL

X , with
L ∈ {fix,flex} and X ∈ {N,A} specifying the ticket pric-
ing variant and the behaviour of the followers, respec-
tively. Accordingly, we denote by ΓL

X, i(p) the leader’s
revenue per passenger received from commodity i
when choosing inspection probabilities p. Thus, the
leader wants to maximize ∑

i∈K diΓ
L
X, i(p).

Fixed Fares. In the fixed-fare setting, the revenue
received from passenger i is either the ticket price or
the expected revenue from collecting fines, i.e.,

ΓfixX, i(p)

:� max
{

F · (1− π(P∗)) : P∗ ∈ argmin
P∈Pi∪{PT

i }
fX, p , i(P)

}
,

where PT
i denotes a special path representing

the option of paying the ticket with fX, p , i(PT
i ) :�

SPc(si , ti)+Ti and π(PT
i ) :� 1−Ti/F.

Flexible Fares. When the leader is allowed to deter-
mine the ticket prices, the optimal choice given the
probabilities p is to set Ti � min{ fX, p , i(P) :P ∈Pi}−
SPc(si , ti) for every i ∈ K. To see this, observe that
this is the maximum ticket price that follower i is
willing to pay, because for this choice of Ti the cost
of paying the ticket and traveling along the short-
est path is equal to the expected cost of the best
fare evasion option. Thus, decreasing the ticket price
would not change the follower’s decision to pay the
ticket and only lower the leader’s revenue. Increas-
ing the ticket price would result in the follower not
paying the ticket but choosing a fare evasion route
P∗ ∈ Pi with fX, p , i(P∗) � minP∈Pi

fX, p , i(P). Note that
fX, p , i(P∗) > (1 − π(P∗))F + SPc(si , ti) by Corollary 1.
Hence, the revenue received from the fare evading pas-
senger is (1− π(P∗))F 6 fX, p , i(P∗) − SPc(si , ti)� Ti in this
case. We conclude that the optimal revenue received
from passenger i in the flexible fare setting is indeed
achieved by setting the tickets prices as described
above; thus, we define

ΓflexX, i (p) :� min{ fX, p , i(P) : P ∈Pi} − SPc(si , ti).
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3. The Followers’ Minimization Problem
In this section we design efficient algorithms of
both variants of the followers’ minimization problem.
Throughout this section we assume we are given the
graph G � (V,E), the start s ∈V and destination t ∈V of
a given follower, costs c, probabilities p, and the fine F.

3.1. Nonadaptive Followers’ Minimization Problem
We first turn our attention to the nonadaptive ver-
sion of the followers’ minimization problem FMPN and
derive a fully polynomial-time approximation scheme
(FPTAS), a polynomial time exact algorithm for series-
parallel graphs, and a nonpolynomial exact algorithm
for general graphs.

A Fully Polynomial Time Approximation Scheme. The
nonadaptive version of the followers’ minimization
problem is related to the restricted shortest path prob-
lem (RSP): If P∗ is an s-t-path minimizing fN, then P∗

also maximizes π(P∗) among all paths with c(P)6 C∗ :�
c(P∗). By discretizing the set of possible values for C∗,
this relation can be used to derive an FPTAS for FMPN.

Theorem 1. There is an algorithm for FMPN that computes
a (1 + ε)-approximate solution in time polynomial in 1/ε,
log cmax, |V |, and |E |, where cmax :� maxe∈E ce .

Proof. Define k :� dlog1+ε |V |cmaxe, and Ci :� (1+ ε)i for
i ∈ [k]. For each i ∈ [k], we use the restricted short-
est path algorithm by Lorenz and Raz (2001) to com-
pute a path Pi with c(Pi) 6 (1 + ε)Ci and π(Pi) >
π(P) for all P with c(P) 6 Ci . Choose a path P′

from P0 , . . . ,Pk minimizing fN(P′) among all si–ti-
paths of the graph. Let P∗ be an s–t-pathminimizing fN
and define i∗ :� min{i ∈ [k] : c(P∗) 6 Ci |}. Then c(Pi∗) 6
(1+ ε)2c(P∗) and π(Pi∗) > π(P∗) and thus fN(P′) 6
fN(Pi∗) 6 (1+ ε)2 fN(P∗). �

Exact Algorithms Using Parametric Shortest Paths. In
the parametric shortest path problem, the cost of each arc e
is specified by an affine linear function ce(λ)� aeλ+ be
of a parameter λ. The goal is to find a set of paths that
contains an optimal path for each choice of λ. Given
an instance of FMPN, we will construct an instance of
the parametric shortest path problem with the prop-
erty that there exists a value λ∗ of the parameter such
that any path that is optimal for λ∗ is also an optimal
solution to the original FMPN instance.
First note that without loss of generality, we can

assume pe < 1 for all e ∈ E: If an optimal path P∗ con-
tains an arc e with pe � 1, then π(P∗) � 0 and, thus,
fN(P∗)� c(P∗)+F. Optimality of P∗ then implies c(P∗) 6
fN(P)−F � c(P)−π(P)F for all P ∈P, and hence P∗must
be a shortest path with respect to c. We can, therefore,
solve the problem separately for the graph in which
all arcs with pe � 1 are removed and later compare the
solution to a shortest path with respect to c.

Now for every e ∈ E, define qe :� − log(1 − pe) and
gλ(P) :� c(P)+λq(P).Wewillmake use of the following
observation, which is a variation of a lemma proven by
Nikolova et al. (2006).

Lemma 2. There is a λ∗ > 0 such that any P ∈P that min-
imizes gλ∗(P) also minimizes fN(P).

Proof. Consider the polyhedron Y :� conv{(c(P),
q(P)) : P ∈P}+�2

+
and the function h: �2→� defined

by h(c , q) :� c+ (1−2−q)F. Observe that h is concave and
component-wise nondecreasing. Therefore, h attains
its minimum over Y at a vertex (c∗ , q∗) of Y. Let λ∗ > 0
be such that (c∗ , q∗) is the unique optimal solution to
min(c , q)∈Y c + λ∗q. Let P∗ be a path minimizing gλ∗(P).
This implies c(P∗)� c∗ and q(P∗)� q∗. Therefore, P∗ also
minimizes h(c(P), q(P))� fN(P). �

Although we do not know the correct value of
λ∗ a priori, Lemma 2 implies that we can find an
optimal solution to FMPN by constructing the com-
plete optimal cost curve of the parametric shortest
path problem. This curve is a piecewise linear func-
tion that can be constructed by parametric search
solving at most O(k) standard shortest path prob-
lems (Carstensen 1983), where k is number of break-
points of the curve. For completeness, we list a simple
algorithm for constructing the curve and computing
the optimal path as Algorithm 1. For general graphs,
it is known that the number of pieces is bounded by
|V |log |V |+1 and that this bound is tight; see the original
result by Carstensen (1983) and the simplified proof
by Nikolova (2009). We can, therefore, solve FMPN in
quasi-polynomial time.

Algorithm 1 (Algorithm for FMPN using the parametric
shortest path problem)
Let P1 be a path minimizing q�P1�.
Let P2 be a path minimizing c�P2�.
if q�P1�= q�P2� then
return P2

else
� ← �P1� P2�∪findBreakpoints�P1� P2�
Choose P ′ ∈ argminP∈� fN�P�.
return P ′

procedure findBreakpoints(P1� P2)

�← c�P1�− c�P2�

q�P2�− q�P1�
Let P be a path minimizing g��P�.
if g��P�= g��P1� then
return �

else
return findBreakpoints�P1� P�∪ �P�
∪ findBreakpoints(P�P2)

Theorem 2. There is an algorithm that solves FMPN in
time O(|V |log |V |).
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Nikolova (2009) conjectured that for the case of pla-
nar graphs the number of breakpoints is polynomial in
the number of edges. We show that this conjecture is
true for series-parallel graphs. This class of graphs is
of particular interest as most hardness reductions for
shortest paths problems with two types of cost, such
as the restricted shortest path problem, are based on a
special subclass of series-parallel graphs; see, e.g., the
reduction by Klinz andWoeginger (2004) for minimum
cost flows over time in series-parallel graphs.

Theorem 3. For series-parallel graphs, the optimal cost
curve of the parametric shortest path problem has at most |E |
pieces.

Proof. We proof the statement via induction over the
construction of a series-parallel graph as the series
or parallel composition of two smaller series-parallel
graphs. The base case is a graph consisting of a single
arc, in which case the claim is trivially true.

Now consider the case that G is the series com-
position of two series-parallel graphs G1 � (V1 ,E1),
G2 � (V2 ,E2) joined at a vertex v. Then for every value
of λ, the path minimizing cλ(P) is the concatenation
of an s–v-path P1 in G1 and a v–t-path P2 in G2, each
minimizing cλ. Therefore, each breakpoint of the opti-
mal cost curve for G is also a breakpoint of the curve
for G1 or G2. By induction hypothesis, there are at most
|E1 | − 1 breakpoints for G1 and at most |E2 | − 1 break-
points for G2. This implies that there are at most |E1 | +
|E2 | − 2 � |E | − 2 breakpoints and thus at most |E | − 1
pieces in the optimal cost function for G.

Finally, consider the case that G is the parallel com-
position of two series-parallel graphs G1 � (V1 ,E1),
G2 � (V2 ,E2). Then the optimal cost curve for G is the
minimum of the optimal cost curves for G1 and G2.
Therefore, the number of its pieces is bounded by the
sum of the number of pieces of the curves for G1
and G2, which by induction hypothesis is at most
|E1 | + |E2 | � |E |. �
Corollary 2. There is an algorithm that solves FMPN for
series-parallel graphs in time O(|E |2).
Proof. By Theorem 3, the complete optimal cost curve
for the parametric shortest path problem with cost
function gλ can be constructed by O(|E |) shortest path
computations. Using the linear time shortest path algo-
rithm for planar graphs by Henzinger et al. (1997), the
curve can be constructed in time O(|E |2). �

3.2. Adaptive Followers’ Minimization Problem
The adaptive version of the followers’ minimization
problem can be solved in polynomial time using a
label-setting algorithm. The algorithm makes use of
the following observation on the structure of the cost
function fA, with P[v ,w] denoting the v–w-subpath
of P.

Lemma 3. fA(P)� fA(P[s , v])+ π(P[s , v]) · fA(P[v , t]).

Proof. Let P � (e1 , . . . , ek)with ei � (vi , vi+1) and assume
v � vk′ for some k′ with 1 6 k′ 6 k + 1. Observe that

fA(P) �
k∑

i�1

i−1∏
j�1
(1− pe j

) ·
(
cei

+ pei
(F + SPc(vi+1 , t))

)
�

k′−1∑
i�1

i−1∏
j�1
(1− pe j

) ·
(
cei

+ pei
(F + SPc(vi+1 , t))

)
+

k′−1∏
j�1
(1− pe j

)
k∑

i�k′

i−1∏
j�k′
(1− pe j

)

·
(
cei

+ pei
(F + SPc(vi+1 , t))

)
� fA(P[s , v]) +

∏
e∈P[s , v]

(1− pe) · fA(P[v , t]). �

As an immediate consequence of Lemma 3, we can
deduce that every suffix of an optimal path must also
be an optimal path. Note, however, that the same is
not true for prefixes of the optimal path, as the arcs of
P[s , v] also appear in the second summand.

Corollary 3. Let P∗ be an s-t-path minimizing fA and let
v ∈V(P∗). Then P∗[v , t] is a v-t-path minimizing fA.

In the spirit of Dĳkstra’s (1959) shortest path algo-
rithm, our algorithm iteratively computes the cost of
an optimal v–t-path for some vertex v. It maintains the
set S of vertices for which an optimal path has been
computed and a value φ(v) for every vertex v ∈ V ,
denoting the cost of the cheapest v–t-path found so
far. In every iteration, a vertex w ∈V\S with minimum
value φ(w) is added to S, and the labels φ(v) of vertices
v with (v ,w) ∈ E are updated if a v–t-path consisting
of (v ,w) and an optimal w–t-path is cheaper than the
current value of φ(v). A complete listing is given as
Algorithm 2.

Algorithm 2 (Algorithm for FMPA)
��t�← 0
��v�←� for all v ∈ V \�t�
S ←�
while s � S do
Choose w ∈ V \S minimizing �.
S ← S ∪ �w�
for all e= �v�w� ∈Ein�w� do
�′ ← ce +pe�SPc�w� t�+ F �+ �1−pe���w�
if �′ <��v� then
��v�←�′

next�v�← e

w← s; P ←�
while w 	= t do
e← next�w�; w← head�e�
Add e to P .

return P

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

9.
18

0]
 o

n 
03

 F
eb

ru
ar

y 
20

17
, a

t 0
6:

51
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Correa et al.: Fare Evasion in Transit Networks
Operations Research 65(1), pp. 165–183, ©2017 INFORMS 171

Lemma 4. When vertex v ∈V is added to the set S in Algo-
rithm 2, then there is an optimal v–t-path Pv with fA(Pv) �
φ(v) starting with the edge next(v).

Proof. By contradiction assume the lemma is not true.
Without loss of generality, let v be the first vertex added
to S that does not fulfill the statement of the lemma and
consider the moment when v is added to S. Note that
v , t, as t fulfills the requirements with φ(t) � 0 and
Pt � �. Let next(v) � e � (v ,w) for some w ∈ S. As v is
the first vertex violating the lemma, there is a w–t-path
Pw with fA(Pw)�φ(w). Thus, Pv :� (e)◦Pw is a v–t-path
with cost

fA(Pv)� ce + pe(SPc(w , t)+ F)+ (1− pe)φ(w)� φ(v).

Let P′ be any v–t-path, let e′ � (v′,w′) be the last edge
on P′ with v′ ∈V\S and w′ ∈ S. Note that

fA(P′[v′, t]) > ce′ + pe′(SPc(w′, t)+ F)+ (1− pe′)φ(w′)
> φ(v′) > φ(v)

where the first inequality follows from the fact that
φ(w′) denotes the cost of an optimal w′–t-path by
induction hypothesis, the second inequality follows
from the fact that φ(v′) was updated when w was
added to S, and the last inequality follows from the
choice of v. In particular, this implies SPc(v , t) + F >
fA(P′[v′, t]) > φ(v) when choosing P′ as a shortest v-t-
path with respect to c. Thus, for any arbitrary P′ again,

fA(P′) > (1− π(P′[v , v′])) · (SPc(v , t)+ F)
+ π(P′[v , v′]) · fA(P′[v′, t]) > φ(v),

which proves that Pv is optimal. �

Theorem 4. Algorithm 2 solves FMPA in time O(|E | +
|V | log |V |).

Proof. The optimality of the path computed by Algo-
rithm 2 follows immediately from Lemma 4. Shortest
path distances from every vertex to t can be pre-
computed using Dĳkstra’s algorithm in time O(|E | +
|V | log |V |). The remainder of the algorithm can be
implemented using a Fibonacci heap for computing the
vertex minimizing φ(v), guaranteeing the claimed run-
ning time. �

A Linear Programming Formulation. We conclude our
discussion of the adaptive followers’ minimization
problem by presenting a pair of primal and dual lin-
ear programs that describe FMPA. This formulation
will prove useful for constructing exact mixed integer
nonlinear programming formulations of the leader’s
problem in Section 4.3. Let Ae :� ce + pe(SPc(w , t) + F)
denote the expected cost of being caught on an edge
e � (v ,w) ∈ E and consequently traversing the shortest

path to t. Consider the following pair of primal and
dual linear programs.

[P-FMPA] min
∑
e∈E

Ae xe

s.t.
∑

e∈Eout(v)
xe −

∑
e∈Ein(v)

(1− pe)xe

�

{
1, if v � s ,
0, otherwise,

∀v ∈V\{t},

xe > 0, ∀ e ∈E;
[D-FMPA] max φs

s.t. φv −(1− pe)φw 6Ae , ∀ e � (v ,w) ∈E;
φt �0.

These LPs exhibit strong similarities to the primal and
dual of the shortest path problem. In fact, [P-FMPA]
corresponds to a generalized flow version of the standard
shortest path problem, where xe denotes the flow on
edge e ∈ E and (1− pe) denotes the loss factor; see the
thesis of Wayne (1999) for an introduction to general-
ized flows.
In the same way as standard network flows can be

decomposed into flows on paths and cycles, general-
ized flows can be decomposed into several types of
elementary flows. An elementary flow f � (x ,P,C) con-
sists of a vector x ∈ �E

+
, a path P, and a cycle C (either

of which could be empty), such that xe > 0 only if e ∈
P∪C. We will write x f , P f , and C f for the vector, path,
and cycle associated with elementary flow f . We dis-
tinguish three types of elementary flows.

• Type 1 (path): An elementary flow f of type 1 is
associated with an s–t-path P f � (e1 , . . . , ek) ∈ P, while
C f ��. Its flow vector x f is defined by x f

e1 � 1 and x f
ei
�

(1− pei−1
)x f

ei−1 for i ∈ {2, . . . , k}.
• Type 2 (path-cycle): An elementary flow f of type 2

is associated with an s–v-path P f � (e1 , . . . , ek) for some
v ∈ V and a cycle C f � (e′1 , . . . , e′l ) with e′i � (vi , vi+1)
for i ∈ {1, . . . , l} such that v1 � vl+1 � v, P f and C f are
edge disjoint, and π(C f ) :� ∏l

i�1(1 − pe′i
) < 1. Its flow

vector x f is defined by x f
e1 � 1, and x f

ei
� (1 − pei−1

)x f
ei−1

for i ∈ {2, . . . , k}, x f
e′1

� π(P f )/(1 − π(C f )), and x f
e′i

� (1− pe′i−1
)x f

e′i−1
for i ∈ {2, . . . , l}.

• Type 3 (loss-less cycle): An elementary flow f of
type 3 is associated with a cycle C f such that pe � 0 for
all e ∈ C f , while P f ��. Its flow vector x f is defined by
x f

e � 1 for all e ∈ C f .
We denote by Fi the set of elementary flows of type i,

and let F � F1 ∪ F2 ∪ F3. It is easy to see that every
elementary flow of type 1 or 2 corresponds to a feasible
solution to [P-FMPA].

Lemma 5. Let f ∈ F1∪F2. Then x f is a feasible solution to
[P-FMPA].
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Proof. For w ∈ V , define ex(w) :� ∑
e∈Eout(w) x

f
e −∑

e∈Ein(w)(1 − pe)x
f
e . Note that ex(s) � x f

e1 � 1, regardless
of the type of f . It remains to show that ex(w) � 0 for
all w ∈ V\{s , t}. If f is of type 1, or if f is of type 2
and v ,w, this is immediately obvious by construction
of f . If f is of type 2 and w � v, observe that ex(v) �
x f

e′1
− (1− pek

)x f
ek
− (1− pel

)x f
e′l
, where (1− pek

)x f
ek
� π(P f )

and (1− pel
)x f

e′l
� π(C)x f

e′1
by construction of f . Insert-

ing the definition of x f
e′1
yields ex(v) � 0, and hence x f

is a feasible solution to [P-FMPA]. �
Conversely, any feasible solution to [P-FMPA] can be

written as a convex combination of elementary flows of
types 1 and 2, plus possibly a conic combination of ele-
mentary flows of type 3. A decomposition of a general-
ized flow x is a vector µ f ∈�F

+
such that xe �

∑
f ∈F µ

f x f
e .

Note that ∑
f ∈F1∪F2

µ f corresponds to the net outflow
of the source s. The following lemma is an immediate
consequence of the classic decomposition theorem for
generalized flows (Gondran et al. 1984).

Lemma 6. Let x be a feasible solution to [P-FMPA]. Then
there is a decomposition µ of x with ∑

f ∈F1∪F2
µ f � 1.

Proof. We apply the decomposition theorem for gen-
eralized flows in the version given as in the thesis of
(Wayne 1999, Theorem 2.3.3). Note that, because 1 −
pe 6 1 for all e ∈E, there are no flow-generating cycles in
the network. Hence, the theorem decomposes the gen-
eralized flow into elementary flows of types I, II, and
IV in the notation of Wayne (1999), corresponding to
types 1, 3, and 2 in our notation, respectively. Although
the flow values on the arcs of the elementary flows
are not explicitly stated by Wayne (1999), it is easy to
see that the values given in our definition above are
the unique values fulfilling flow conservation w.r.t. the
gain factors 1− pe when normalizing the flow value of
the first arc to 1. As every elementary flow of type 1 or
2 creates a deficit of 1 at the source s, and also x has a
deficit of 1 at s, we conclude that ∑ f ∈F1∪F2

µ f � 1. �

Furthermore, we can also relate the cost of any ele-
mentary flow to fA(P) for some s–t-path P ∈P.

Lemma 7. If f ∈ F1, then fA(P f ) �∑
e∈P f Ae x f

e . If f ∈ F2,
then there is an s–t-path P ∈ P with fA(P) 6

∑
e∈E Ae x f

e . If
the latter holds with equality, then π(P)� 0.

Proof. If f is of type 1, by definition of Ae and x f
e , we

see that∑
e∈P f

Ae x f
e �

k∑
j�1
(ce j

+ pe j
(SPc(v j+1 , t)+ F))

j−1∏
i�1
(1− pei

)

� fA(P f ).

Now suppose that f is of type 2. Recall that f cor-
responds to an s–v-path P f � (e1 , . . . , ek) that meets a

cycle C f � (e′1 , . . . , e′l ) at a node v. Define π j :� ∏ j
i�1 ·

(1− pe′i
). Using exactly the same transformations as in

the proof of Lemma 1, we obtain
l∑

j�1
π j−1

(
ce′j

+ pe′j
(F + SPc(v j+1 , t))

)
> πl

l∑
j�1

ce′j
+ (1− πl)(F + SPc(v , t)).

Multiplying the above inequality with π(P f )/(1 − πl),
using the identity xe′j

� (π(P f )/(1− πl))π j−1, and drop-
ping the first term on the right-hand side yields∑l

i�1 Ae′i
xe′i
> π(P f )(F + SPc(v , t)). Now let P̄ be a short-

est v–t-path with respect to c. Note that fA(P̄) �
SPc(v , t)+ (1− π(P̄))F by Lemma 1. Consider the con-
catenation P :� P f ◦ P̄. Using Lemma 3, we obtain

fA(P)
� fA(P f )+π(P f ) fA(P̄)

�

k∑
i�1

Aei

i−1∏
j�1
(1− pe j

)︸¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨︸
�xei

+π(P f ) ·
(
SPc(v , t)+ (1−π(P̄))F

)
�

∑
e∈P f

Ae xe +π(P f )(F+SPc(v , t))−π(P f )π(P̄)F

6
∑
e∈P f

Ae xe +
∑
e∈C f

Ae xe −π(P)F. �

Theorem 5. For every s–t-path P, there is a feasible
solution x to [P-FMPA] with fA(P) �

∑
e∈E Ae xe and

π(P) � ∑
e∈Ein(t)(1 − pe)xe . For every optimal solution x to

[P-FMPA], there is an s–t-path P with fA(P) �
∑

e∈E Ae xe
and π(P) 6∑

e∈Ein(t)(1− pe)xe .

Proof. The first statement of the theorem follows im-
mediately from Lemma 7, using the elementary flow
f of type 1 with P f � P. The second part follows by
applying Lemma 6 to obtain a decomposition µ of x
and noting that ∑

e∈E Ae xe �
∑

f ∈F µ
f ∑

e∈E Ae x f
e with

µ f > 0 for all f ∈ F and ∑
f ∈F1∪F2

µ f � 1 implies that∑
e∈E Ae xe �

∑
e∈E Ae x f

e for all f ∈ F1 ∪F2 with µ f > 0.
Choose f ∈ F1 ∪F2 such that ∑

e∈Ein(t)(1− pe)x
f
e is min-

imal. If f is of type 1, then fA(P f ) � ∑
e∈E Ae x f

e by
Lemma 7, and π(P f ) � ∏k

i�1(1 − pei
) � (1 − pek

)x f
ek
6∑

e∈Ein(t)(1 − pe)xe , where the last inequality is due to
the minimality assumption and the fact that ek is the
only incoming arc of t in the support of x f . If f is of
type 2, then, again by Lemma 7 there is a path P ∈
P with fA(P) 6

∑
e∈E Ae x f

e . As, by optimality of x, this
inequality must actually hold with equality, and thus
Lemma 7 guarantees π(P)� 0 6∑

e∈Ein(t)(1− pe)xe . �

3.3. The Impact of Adaptivity
We now prove a tight upper bound of 4/3 on the ratio
of the optimal cost between nonadaptive and adaptive
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strategies. In fact, we prove a slightly stronger bound,
stated in the following lemma, which we will also use
in later sections.
Lemma 8. Let OPTN be the cost of an optimal nonadap-
tive solution and OPTA be the cost of an optimal adaptive
solution. Then OPTN − SPc(s , t) 6 4

3 (OPTA − SPc(s , t)).
Proof. Let P be a path that minimizes fA. Observe that

OPTA � fA(P) > π(P)c(P)+(1−π(P))(SPc(s , t)+F) (1)
by Lemma 1. Furthermore,

OPTN 6min{c(P)+ (1− π(P))F, SPc(s , t)+ F}, (2)

as both P and a shortest path from s to t are feasi-
ble nonadaptive solutions. Note that we can assume
π(P) < 1 and F > 0 as otherwise OPTA � OPTN. Thus,
introducing variables C and S and x corresponding
to c(P), SPc(s , t), and 1 − π(P), respectively, in Equa-
tions (1) and (2), we obtain
OPTN − SPc(s , t)
OPTA − SPc(s , t)

6 max
x∈(0, 1], F>0

06S6C

min{C + xF, S + F} − S
(1− x)C + x(S + F) − S

� max
x∈(0, 1], F>0

06S6C

min{C − S + xF, F}
(1− x)(C − S)+ xF

,

where the first inequality follows from the fact that set-
ting C � c(P), S � SPc(s , t), and x � 1−π(P) is a feasible
solution to the maximization problem. We now argue
that, in an optimal solution to the maximization prob-
lem, C− S + xF � F. If C− S + xF > F, then increasing S
also increases the value of the right-hand side function.
If C− S + xF < F, then decreasing F increases the value
of the right-hand side function. Thus, if the right-hand
side is maximized, then C − S + xF � F. Therefore,

OPTN − SPc(s , t)
OPTA − SPc(s , t)

6 max
x∈(0, 1]

F>0

F
F(1− x + x2) 6

4
3 ,

which concludes the proof. �
Theorem 6. Let OPTN be the cost of an optimal nonadap-
tive solution and OPTA be the cost of an optimal adaptive
solution. Then OPTN 6

4
3OPTA.

Proof. This follows immediately from Lemma 8 by
observing that if OPTA � SPc(s , t) then also OPTN �

SPc(s , t) and that otherwise OPTN/OPTA 6 (OPTN −
SPc(s , t))/(OPTA − SPc(s , t)). �
The following example shows that the bound given

in Theorem 6 is tight.
Example 1. LetV � {s , v , t} and E� {e0 , e1 , e2}where e0
goes from s to v and e1 and e2 are two parallel arcs
from v to t. The travel costs are ce0

� ce1
� 0 and ce2

� 1,
the inspection probabilities are pe0

� 1/2, pe1
� 1, and

pe2
� 0, and F � 2. Observe that there are only two

s–t-paths P1 � (e0 , e1) and P2 � (e0 , e2) and that fN(P1)�
fN(P2) � 2 and fA(P2) � 3

2 , yielding a ratio of 4
3 between

optimal nonadaptive and adaptive strategies.

Remark 1. Note that in the proof of Theorem 6, we did
not make use of the fact that the probability π(P) is
determined by individual probabilities on the arcs of
the network. Therefore, the bound of 4

3 given by the
theorem is still true for arbitrary probability distribu-
tions specified by a probability π(P) for each path P. In
particular, the result still holds if the inspections at the
arcs are not independent events.

4. The Leader’s Maximization Problem
In this section we discuss algorithms and complexity
results for the leader’s maximization problem. On the
theoretical side, we derive NP-hardness for a restricted
special case of the problem and an LP relaxation, which
yields upper bounds on the profit for all four model
variants. For the flexible-fare setting, we also obtain a
constant factor approximation. On the practical side,
we propose a local search procedure that, combined
with initial solutions from the LP relaxation computes
close-to-optimal solutions for all four variants of the
problem.

4.1. Complexity of the Leader’s Problem
All four variants of the leader’s maximization prob-
lem are NP-hard even in very restricted cases, as can
be seen from a simple reduction from the minimum
directed multicut problem.
Theorem 7. LMPL

X for L ∈ {fix,flex} and X ∈ {A,N} is
strongly NP-hard, even when restricted to instances with
|K | � 2 and c ≡ 0.
Proof. Consider an instance I � (G, (si , ti)i�1,...,k , q) of
the directed multicut problem with G � (V,E), k � 2,
and q ∈ �+. We will construct an instance Î � (G, c ,K,
F,T,B) of the leader’s maximization problem as fol-
lows. We introduce two commodities, one for each pair
(si , ti)with i ∈K :� {1, 2}. We set ce � 0 for all e ∈E, B � q
and T1 � T2 � F � 1. We denote by OPTL

X the value of
an optimal solution to LMPL

X . Note that since the travel
costs are all zero, fN, p , i � fA, p , i for all i ∈ K and any set-
ting of probabilities p ∈ [0, 1]E. Furthermore, ΓfixN, i(p) �
minP∈Pi

{ fN, p , i(P),Ti} � ΓflexN, i(P) as SPc(si , ti) � 0 for all
i ∈K. Therefore, OPTfix

N �OPTflex
N �OPTflex

N �OPTflex
A . We

show that OPTL
X > 2 if and only if there exists a feasible

multicut of cardinality q, proving the theorem.
Suppose that there is a multicut M with |M | 6 q. We

then define pe �1 for all e ∈M and pe �0 for all e ∈E\M.
Note that∑e∈E pe � |M | 6 q, implying that p is a feasible
solution. Furthermore, every passenger encounters an
inspector with probability 1 because his path has to
cross the multicut. Thus, we obtain OPTL

X > 2.
Conversely, assume p ∈ [0, 1]E is a solution with

profit 2. This implies that fX, i , p(P) � 1 for i ∈ K and
every path P ∈ Pi . This is only possible if, for every
P ∈ Pi , there is an e ∈ P with pe � 1. Therefore, the
set M � {e ∈ E : pe � 1} is a multicut with cardinality
|M | 6∑

e∈M pe 6 q. �
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4.2. LP Relaxation and Approximation
Let OPTL

X denote the value of an optimal solution to
the corresponding version of the leader’smaximization
problem for L ∈ {flex,fix} and X ∈ {A,N}. The follow-
ing lemmas relate these values to one another.

Lemma 9. OPTflex
N >OPTfix

N and OPTflex
A >OPTfix

A .

Proof. Let X ∈ {A,N}. Note that fX, p , i(P) − SPc(si , ti) >
(1− π(P))F for all p ∈ [0, 1]E, i ∈ K and any path P ∈ Pi
by Corollary 1. Therefore OPTflex

X >OPTfix
X . �

Lemma 10. 4
3OPTflex

A >OPTflex
N >OPTflex

A .

Proof. Let p ∈ [0, 1]E be any solution to the LMP
instance. Note that Lemma 8 implies 4

3Γ
flex
A, i (p) >

ΓflexN, i(p) > ΓflexA, i (p) for all i ∈ K, and therefore 4
3OPTflex

A >

OPTflex
N >OPTflex

A . �

To obtain an LP relaxation, we will make use of a lin-
earization approach, which is based on the following
classic approximation.

Lemma 11. 1 − π(P) 6 min{∑e∈P pe , 1} 6 1/(1− e−1) ·
(1− π(P)).

Proof. We prove π(P) � ∏
e∈P(1 − pe) > 1 −∑

e∈P pe by
induction on |P |. This is trivial for |P | � 1. For |P | > 1,
observe that for any e′ ∈ P by induction hypothesis∏

e∈P
(1− pe) >

(
1−

∑
e∈P\{e′}

pe

)
(1− pe′)

� 1−
∑
e∈P

pe + pe′
∑

e∈P\{e′}
pe > 1−

∑
e∈P

pe .

This immediately implies the first inequality stated in
the lemma.
The second inequality of the lemma is trivially

true if ∑
e∈P pe � 0. Thus, we assume the sum to be

strictly positive without loss of generality. Define σ :�
min{∑e∈P pe , 1} and observe that

∏
e∈P
(1− pe) 6

(
1− σ
|P |

) |P |
6 e−σ .

Therefore,

1− π(P)
σ

>
1− e−σ

σ
> min

x∈(0, 1]

1− e−x

x
.

The right-hand side is decreasing in x and therefore
minimized for x � 1. �

Using Lemma 11, we replace the term 1−π(P) in the
followers’ objective function by ∑

e∈P pe . Note that after
this replacement, the nonadaptive version of FMP cor-
responds to a classic shortest path problem. Using the

dual of the shortest path LP, we derive the following
LP relaxation for LMPflex

N .

[LP] max
∑
i∈K

di(yi(ti)− yi(si)−SPc(si , ti))

s.t.
∑
e∈E

pe 6 B;

yi(w)− yi(v)6 ce +Fpe ,

∀ i ∈K, e � (v ,w) ∈E;
yi(v)− yi(si)6 F+SPc(si , v),

∀ i ∈K, v ∈V ;
pe ∈ [0,1], ∀ e ∈E.

The value OPTLP of an optimal solution to [LP] yields
an upper bound to all four variants of the leader’s max-
imization problem.
Lemma 12. OPTLP > OPTL

X for all L ∈ {flex,fix} and
X ∈ {A,N}.
Proof. Let p ∈ [0, 1]E be an optimal solution to
LMPflex

N . For every i ∈ K, set yi(si) � 0 and yi(v) �
min{SPc+Fp(si , v), SPc(si , v)+ F} for all v ∈ V\{si}. It is
easy to check that (p , y) is a feasible solution to [LP] and
that yi(ti)− yi(si) >min{SPc+pF(si , ti), F+SPc(si , ti)} for
every i ∈ K. Therefore,

yi(ti) − yi(si) − SPc(si , ti)

> min
{∑

e∈P
(ce + Fpe), F + SPc(si , ti) : P ∈ Pi

}
− SPc(si , ti)

> min
{∑

e∈P
ce + (1 − π(P))F : P ∈ Pi

}
− SPc(si , ti)

� min{ fN, i , p(P) − SPc(si , ti) : P ∈ Pi} � ΓflexN, i(p),
where the second inequality follows from Lemma 11
and the equality from the observation that
min{ fN, i , p(P) : P ∈ Pi} 6 SPc(si , ti) + F. This implies
that the optimal value of the LP is at least OPTflex

N . By
Lemmas 9 and 10, OPTflex

N is as least as large as the
optimal solution value of any of the other versions. �
Using Lemmas 10 and 11, we can also derive that

using an optimal solution to [LP] yields approximation
algorithms for LMPflex

N and LMPflex
A .

Theorem 8. There is a (1 − 1/e)-approximation algorithm
for LMPflex

N .
Proof. Let (p , y) be an optimal solution to [LP]. Note
that yi(ti) − yi(si) 6 min{SPc+Fp(si , ti), F + SPc(si , ti)}
and define λi :� yi(ti) − yi(si) − SPc(si , ti). Then

λi 6 min
{∑

e∈P
(ce + Fpe) − SPc(si , ti), F

}
6

∑
e∈P

ce − SPc(si , ti)+min
{∑

e∈P
pe , 1

}
· F

6
1

1− e−1

(∑
e∈P

ce − SPc(si , ti)+
(
1−

∏
e∈P
(1− pe)

)
· F

)
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for every P ∈Pi by Lemma 11. Thus, setting the proba-
bilities according to p yields a solution to LMPflex

N with
profit∑

i∈K
diΓ

flex
N, i(p) > (1− 1/e)

∑
i∈K

diλi > (1− 1/e)OPTflex
N . �

By Lemma 8 this result also translates to LMPflex
A ,

with a loss of a factor of 3/4 in the approximation
guarantee.

Corollary 4. There is a 3
4 (1−1/e)-approximation algorithm

for LMPflex
A .

Remark 2. The analysis of the algorithmgiven in Theo-
rem 8 is tight. To see this, consider the following exam-
ple instance of LMPflex

N . Let G be a directed cycle of
length n, i.e., V � {v1 , . . . , vn} and E � {e1 , . . . , en} with
ei � (vi , vi+1) for i ∈ {1, . . . , n − 1} and en � (vn , v1). Let
K consist of n commodities with unit demand, such
that si � vi and ti � vi−1 for i ∈ {2, . . . , n} and s1 � v1
and t1 � vn . Note Pi consists of a unique path of length
n − 1 for every i ∈ K. Finally, let c � 0, F � Ti � 1 for
every i ∈ K and B � n/(n − 1). Observe that the opti-
mal solution of [LP] sets pe � 1/(n − 1) for every e ∈ E.
Using these probabilities as a solution to LMPflex

N yields
a profit of n · (1− (1− 1/(n − 1))n−1). On the other hand,
setting pe1

� 1 and pen
� 1/(n − 1) yields a profit of

n − 1 + 1/(n − 1). Note that by choosing n sufficiently
large the ratio between these two values can be brought
arbitrarily close to 1− 1/e.

Remark 3. Unfortunately, [LP] does not yield an
approximation guarantee for the fixed-fare setting. To
see this, consider the following instance of LMPfix

X .
There are four nodes s1 , t1 , s2 , t2, together with edges
from s1 to s2, s2 to t2, and t2 to t1, each with zero cost.
In addition, there are L parallel edges from s1 to t1,
each with cost 1. Commodity 1 has origin s1 and des-
tination t1 with a total demand of L. Commodity 2
has origin s2 and destination t2 with a total demand
of 1. The budget is 1/2 + ε, and the fine is 2. Observe
that the optimal solution of the corresponding instance
of [LP] sets p(s2 ,t2) � 1/2 + ε and pe � 0 for all other
edges. Interpreting these probabilities as a solution of
LMPfix

X results in a profit of 1+ 2ε, as the followers rep-
resented by commodity 1 will prefer one of the edges
from s1 to t1 over the three-edge path. However, setting
p(s2 ,t2) � 1/2 instead yields a profit of L + 1.

4.3. Exact Nonlinear Formulations
Based on the LP formulation of FMPA, we can con-
struct exact nonlinear formulations for LMPL

A for all
L ∈ {flex,fix}. Furthermore, using a path formulation to
model the followers’ problem, we can construct exact

mixed integer nonlinear formulations for LMPL
N for all

L ∈ {flex,fix}.
4.3.1. A Nonlinear Formulation for LMPflex

A . In Sec-
tion 8 we presented a compact linear program,
[P-FMPA], and its dual, [D-FMPA], describing the adap-
tive follower’s objective. Observe that for the flexible
ticket prices setting, the value of the leader’s objec-
tive function only depends on fX, p , i , and not the actual
routing decisions of the followers. Therefore, it suffices
to turn the probabilities in the formulation into deci-
sion variables and maximize over the difference of the
node potentials, φi(v), for each node v ∈ V and com-
modity i ∈ K, subject to the budget constraint. Apply-
ing this transformation to the linear program yields the
following nonlinear, compact formulation for LMPflex

A .
Let Aie(p) :� ce + pe(SPc(w , ti)+ F) denote the expected
cost of being caught on an edge e � (v ,w) ∈ E and con-
sequently traversing the shortest path to ti .

[NLPflex
A ] max

∑
i∈K

di(φi(si) − SPc(si , ti))

s.t. φi(v) − (1− pe)φi(w) 6 Aie(p)
∀ i ∈ K, e � (v ,w) ∈ E

φi(ti)� 0 ∀ i ∈ K∑
e∈E

pe 6 B

pe ∈ [0, 1], ∀ e ∈ E.

Lemma 13. Let OPT[NLPflexA ] denote the value of an optimal
solution to [NLPflex

A ]. Then OPT[NLPflexA ] �OPTflex
A .

Proof. Let p ∈ [0, 1]E with ∑
e∈E pe 6 B. Let φ be such

that it maximizes the objective of [NLPflex
A ]when keep-

ing p fixed. Note that for i , j ∈ K with i , j, the values
of φi and φ j can be optimized independently. Thus, for
each i ∈ K the value of φi is an optimal solution to an
instance of [D-FMPA] for the given value of p. There-
fore, by Theorem 5 and LP duality, φi(si) � fA, p , i(Pi),
where Pi is an optimal si–ti-path for follower i given
probabilities p. Hence, the LP objective value of the
solution (p , φ) is∑

i∈K
di(φi(si) − SPc(si , ti)) �

∑
i∈K

di( fA, p , i(Pi) − SPc(si , ti))

�
∑
i∈K

diΓ
flex
A, i (p).

Therefore, any optimal solution to [NLPflex
A ] corre-

sponds to an optimal solution of LMPflex
A . �

4.3.2. A Nonlinear Formulation for LMPfix
A . Since for

LMPfix
A , the leader maximizes over the revenue gained

from expected fines (which depends on the paths tra-
versed by the commodities), the above transformation
to a nonlinear formulation for the leader’s problem
does not work for the fixed setting. However, using
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the decomposition lemma from Section 8, we can write
down a single level nonlinear programming formula-
tion for LMPfix

A , following the general idea of Labbé
et al. (1998). Taking the natural bilevel mathematical
program for the problem, we replace the lower level
program by the constraints appearing in [D-FMPA] and
[P-FMPA], and a constraint ensuring that the objective
function of the primal is equal to that of the dual. Fur-
thermore, the expected fines in the objective function
are calculated based on the flow on the paths from the
generalized flow decomposition.

[NLPfix
A ] max

∑
i∈K

di

(
1−

∑
e∈Ein(ti )

(1− pe)xie

)
F

s.t. φi(si)�
∑

e�(v ,w)∈E

xie Aie , ∀ i ∈ K;

φi(v) − (1− pe)φi(w) 6 Aie ,

∀ i ∈ K, e � (v ,w) ∈ E;∑
e∈Eout (v)

xie −
∑

e∈Ein (v)
(1− pe)xie

�

{
1, if v � si ,

0, otherwise,
∀ i ∈ K, v ∈V ;∑

e∈E
pe 6 B;

φi(ti)� 0, ∀ i ∈ K;
xie > 0, ∀ i ∈ K, e ∈ E;
pe ∈ [0, 1], ∀ e ∈ E.

Lemma 14. Let OPT[NLPfixA ]
denote the value of an optimal

solution to [NLPfix
A ]. Then OPT[NLPfixA ]

�OPTfix
A .

Proof. Let p ∈ [0, 1]E with ∑
e∈E pe 6 B. Let (x , φ) be

an optimal solution to [NLPfix
A ] when keeping p fixed.

By LP duality, xi is an optimal solution to [P-FMPA]
and φi is an optimal solution to [D-FMPA] for each
i ∈ K. Thus, by Theorem 5, for each i ∈ K there exists
an si–ti-path Pi with fA, p , i(Pi) � minP∈Pi

fA, p , i(P) and
π(Pi) 6

∑
e∈Ein(ti )(1 − pe)xie . Since the objective is maxi-

mized, ∑e∈Ein(ti )(1− pe)xie is minimum among all opti-
mal solutions to [P-FMPA] for follower i. The first
part of Theorem 5, therefore, guarantees that π(Pi) >∑

e∈Ein(ti )(1− pe)xie . Hence, we obtain

∑
i∈K

di

(
1−

∑
e∈Ein(ti )

(1− pe)xie

)
F �

∑
i∈K

di(1− π(P))F

�
∑
i∈K

diΓ
flex
A, i (p).

As p ∈ [0, 1]E can be chosen freely within the budget
constraints, an optimal solution to [NLPfix

A ] corresponds
to an optimal solution of LMPfix

A and vice versa. �

4.3.3. A Mixed Integer Nonlinear Model for LMPL
N. We

cannot straightforwardly apply the same techniques as
above for LMPL

N, since it is unclear how to formulate
optimality conditions for FMPN. Therefore, we intro-
duce a path-based formulation of LMPL

N in which there
is a binary variable xP for every path P ∈ Pi and every
i ∈ K, encoding which path follower i takes in the net-
work. This modeling step allows to replace the lower
level program by linear constraints encoding the fol-
lowers’ optimality conditions. To encode the leader’s
objective (with either fixed or flexible ticket prices), we
define Cflex

i (p , x) :� ∑
P∈Pi
( fN, p , i(P) − SPc(si , ti))xP and

Cfix
i (p , x) :� ∑

P∈Pi
(1 − π(P))FxP for every i ∈ K. We

also let Pfix
i :� Pi ∪ {PT

i } (with PT
i as described in Sec-

tion 2.2) and Pflex
i :�Pi . We obtain the following (single

level) mixed integer nonlinear program (MINLP) for
L ∈ {fix,flex}.

[MINLPL
N] max

∑
i∈K

diC
L
i (p , x)

s.t.
∑

P′∈PL
i

fN, p , i(P′)xP′ 6 fN, p , i(P),

∀ i ∈ K, P ∈PL
i ;∑

P∈PL
i

xP � 1, ∀ i ∈ K;∑
e∈E

pe 6 B;

xP ∈ {0, 1}, ∀ i ∈ K, P ∈Pi ;
pe ∈ [0, 1], ∀ e ∈ E.

Lemma 15. Let OPT[MINLPfixN ]
and OPT[MINLPflexN ]

denote
the value of an optimal solution to [MINLPfix

N ] and
[MINLPflex

N ], respectively. Then OPT[MINLPfixN ]
�OPTfix

N and
OPT[MINLPflexN ]

�OPTflex
N .

Proof. Let p ∈ [0, 1]E with ∑
e∈E pe 6 B. Let x be an

optimal solution to [MINLPL
N] for L ∈ {fix,flex} when

keeping p fixed. Observe that for each i ∈ K there is
a unique path Pi with xPi

� 1. By the first constraint,
Pi minimizes the follower i’s objective fN, p , i , i.e., Pi ∈
arg minP∈PL

i
fN, p , i(P). As the objective of [MINLPL

N] is
maximized, Pi is chosen such that it maximizes the
leader’s profit among all paths in arg minP∈PL

i
fN, p , i(P).

Therefore, CL
i (p , x) � ΓL

N, i(p). As p can be chosen freely
within the budget constraints, the statement of the the-
orem follows. �

4.4. Local Search Framework
We conclude this section by presenting a general
local search framework to compute close-to-optimal
solutions to the leader’s maximization problem. The
approach can be applied to all four model variants
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by using the corresponding followers’ response and
leader’s objective function.

Algorithm 3 (Local search).

The Algorithm. In addition to an instance of LMPL
X , the

input for the algorithm consists of a candidate subset
S ⊆ E of the graph edges and an initial setting of proba-
bilities on these edges. An improving move of the local
search chooses two disjoint subsets E+ ,E− ⊂ S with
|E+ |, |E− | 6 k for an input parameter k. The probabili-
ties on the edges in E− are uniformly decreased up to
a total decrease of ∆′ � min{∆,∑e∈E− pe ,

∑
e∈E+ ·1− pe},

where ∆ > 0 is an exponentially decreasing step size.
Then, the probabilities on the edges in E+ are uniformly
increased up to a total increase of ∆′. The framework
then recomputes the followers’ response, and accepts
the move, if the leader’s profit increases or reverts it,
otherwise. The algorithm terminates if the improve-
ment in the objective is below a given threshold for a
given number of consecutive iterations.

Initial Solutions. The performance of the local search
framework depends crucially on the choice of candi-
date edges and the corresponding initial solution. We
tested several methods for generating such solutions.
The first is solving the LP relaxation [LP] and using the
support of the resulting solutions as candidate edge
set. The second is computing a minimum cardinality
directed multicut in the graph separating all termi-
nal pairs, and then distributing the budget uniformly
among the arcs in the cut. In addition, we also used the
solutions from the MIP formulation given by Borndör-
fer et al. (2013) for the fixed price setting.

4.5. Elastic Demands
The models discussed so far assume that passenger
demand is a fixed quantity, independent of the deci-
sions of the leader. In reality, however, passengers are
usually not confined to use public transit and might
resort to an outside option if costs for traveling within
the transit network are too high. In this section we
show how to incorporate such elastic demands (Cole
et al. 2006) into our model.

To extend our model, we suppose there is a value
Hi > 0 for each commodity i ∈ K indicating the total
cost of using a different mode of transportation, e.g.,
a car. A passenger of commodity i will make use of
this outside option whenever the cheapest option to
travel within the transit network exceeds that of the
outside option, i.e., if minP∈Pi

fX, p , i(P) > Hi . In particu-
lar, we obtain the following revenue functions for the
fixed and flexible fare variants of our model with elas-
tic demands, respectively:

Γ
fix, elastic
X, i (p) :�

{
ΓfixX, i(p) if minP∈Pi

fX, p , i(P)6Hi

0 otherwise
and

Γ
flex, elastic
X, i (p) :� min{ΓflexX, i (p), Hi −SPc(si , ti)}.

Note that we assume the cost of the outside option
to be constant, i.e., the underlying utility function of a
passenger exhibits the constant reservation utility struc-
ture (Acemoglu and Ozdaglar 2007). At the end of the
paper, we comment on the possibility of nonconstant
reservation utilities that take into account congestion
effects occurring for the outside option. We now show
that all results presented so far still hold in the presence
of elastic demands.

First note that adding elastic demands does not affect
the complexity of the followers’ problem: It is still suf-
ficient to compute the cheapest fare evasion option, i.e.,
a path P ∈ Pi minimizing fX, p , i(P), which is then com-
pared with the option of buying a ticket and, now in
addition, to the cost of the outside option Hi .

For the leader’s problem, we can add a special
path PH

i to the set of paths Pi in the same fashion
as we used PT

i to describe the option of buying a
ticket in Section 2.2. In this case, we define fX, p , i(PH

i )
:� Hi and π(PH

i ) :� 1. With this change, the proofs
for Lemma 12 and Theorem 8 remain intact. There-
fore, OPTLP still constitutes an upper bound for all
variants of our model and the approximation guaran-
tees for the flexible fare variants are preserved. The
same holds for the exact formulations discussed in Sec-
tion 4.3. Finally, since the complexity of computing the
followers’ response does not change, the local search
procedure can easily be adapted to the elastic demand
setting by introducing the additional special path.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

9.
18

0]
 o

n 
03

 F
eb

ru
ar

y 
20

17
, a

t 0
6:

51
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Correa et al.: Fare Evasion in Transit Networks
178 Operations Research 65(1), pp. 165–183, ©2017 INFORMS

5. Computational Study
In this section we present an extensive computational
study on a broad set of realistic instances, assessing
the solution quality of our local search approach and
the impact of our new modeling approach compared
to existing models. The source code of our algorithm
and the test instances are available as part of the online
companion to this paper.

5.1. Test Instances
Real-World Networks. Experiments were performed
on two different instance sets. The first set comprises
the complete networks of the Amsterdam subway sys-
tem and the Dutch railway system, as well as a sub-
network of the latter restricted to major transport
hubs. The data was acquired from Dutch Railways
(2014). Due to privacy regulations, no real-world pas-
senger data was available. Therefore, for each net-
work, we generated 10 instances each with 25, 50, 100,
and 200 commodities by choosing pairs of vertices
uniformly at random and drawing the correspond-
ing demands uniformly at random from the interval
[1, 50]. The costs representing travel time (in monetary
units) were calculated from actual transit times with
a conversion rate of 0.132 euro per minute travel time
(Dutch Railways 2014).
Randomly Generated Instances. The second instance
set comprises randomly generated planar graphs
exhibiting characteristics similar to those of real-world
networks (Von Ferber et al. 2009). The graphswere gen-
erated using an approach similar to the one described
by Denise et al. (1996). Vertices are distributed uni-
formly at random in the plane; iteratively, a vertex is
chosen uniformly at random and connected to the clos-
est neighbor that can be connected without violating
planarity. This is repeated 3|V | − 6 times, after which
disjoint connected components are connected using
nearest Euclidean neighbours to ensure that the entire
graph is connected. All arcs are present in both direc-
tions, as common in transit networks. For the randomly
generated instances, ticket prices were set to

Ti � b + m · SPc(si , ti)
maxv ,w∈V SPc(v ,w)

,

where b is a base price and b + m the maximum
ticket price allowed in the network. This linear for-
mula is a simplification of the formula used for official
regulations regarding ticket prices in public transport
networks (Gĳsbers 2013, Dutch Railways 2014). We
generated 10 graphs for each possible combination of
|V |, |K | ∈ {25, 50, 100, 200}.
For all instances, we tested 20 different values of

budgets from the range of 0.2 to 25. This setup yields
800 instances for each of three real-world networks and
each of the four graph size classes of the randomized

set, leading to a total of 5,600 instances. Our study con-
sists of seven graph sets, three based on real-world
transit networks and four generated using the random-
ization procedure described above. Each set contains
40 different combinations of graphs, customers, and
demands. For each of these combinations, 20 differ-
ent budget values were tested, leading to 800 different
instances in each graph set; see Table 3 in Section 5.4
for average graph sizes.

5.2. Computational Setup
Algorithms. As algorithms for computing start solu-
tions of the local search, we tested the LP relaxation
(LP) and a minimum cardinality multicut computed
using a standard MIP formulation (MC). To assess the
impact of the more precise followers’ objective func-
tion in our model as compared to existing approaches,
we additionally computed the mixed integer program-
ming solutions from Borndörfer et al. (2013) (MIP). The
followers’ response in the local search procedure was
computed using the exact algorithms for the respec-
tive variants presented in Section 3. After initial experi-
ments for fine-tuning the parameters of the framework,
it turned out that restricting to k � 1, i.e., probabil-
ity shifts from one edge to another, is already suffi-
cient for obtaining close-to-optimal solutions within 30
iterations. We also set the initial step length ∆ to 0.1,
decreasing it by a factor of 0.9 in every iteration.
Implementation Details. All algorithms have been im-
plemented in Java and compiled using jre7 on Win-
dows 7 Enterprise. Computations have been performed
on a machine with Intel Core 2 Duo CPU (GHz, 64 bit)
and 4 GB of memory using CPLEX 12.4 API for Java
for the mathematical programs.

5.3. Results
Solution Quality. Table 1 and Figure 1 show aver-
age gaps for all models on the test instances. With
the exception of few instances with very high bud-
get, results from LPLS consistently dominated those of
MCLS. Therefore, we omitted stating the results of the
latter. Solutions for the fixed-fare variant are within
95 % of the upper bounds on average, while solutions
for the flexible-fare variant are within 97.5 %. This
slight difference can be explained by the fact that the
same upper bound was used for all four variants.
Computation Times. Table 2 shows average compu-
tation times for the various algorithms. Using the
LP for computing start solutions, a local optimum
was reached within less than a minute for most
instances, with the only exception being very large
graphs combined with the (nonpolynomial) nonadap-
tive followers’ response. Furthermore, note that for
large instances with many commodities, and for bud-
gets higher than 6, the mixed integer programming
formulation could not be solved in reasonable time.
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Table 1. Average ratios between solutions and upper bounds in percent.

LMPfix
N LMPfix

A LMPflex
N LMPflex

A

Graph set Best LP LPLS ∆MIP Best LP LPLS LP LPLS LP LPLS

Nlmajor 97.4 94.8 97.3 2.09 97.4 94.1 97.2 96.4 98.0 96.4 98.0
Nlcomplete 94.6 91.6 93.2 1.28 93.8 90.9 92.6 97.8 97.9 97.7 97.9
Adammetro 98.2 94.7 97.7 7.09 98.2 94.7 97.8 94.7 97.8 94.7 97.8
Small 97.0 92.1 96.3 4.54 96.8 88.1 96.0 95.3 97.5 95.3 97.4
Medium 96.3 90.7 95.2 4.79 96.0 88.9 95.0 95.5 97.5 95.4 97.3
Large 95.7 90.4 95.1 4.82 95.3 88.6 94.5 96.6 98.0 96.5 97.8
Huge 95.6 89.1 94.1 4.03 94.6 85.2 92.7 96.5 97.9 96.4 97.7

Notes. “Best” denotes the average over the best solutions found for each instance, LP denotes the solutions found by [LP], LPLS denotes the
solution found by performing the local search heuristic on the LP solution, and ∆MIP denotes the improvement of “best” compared to the
solution found by using the MIP of Borndörfer et al. (2013).

Table 2. Average computation time in seconds.

Graph set LP LPLS
N LPLS

A MIP MIPLS
N MIPLS

A

Nlmajor 0.11 20.3 3.12 47.9 20.4 3.97
Nlcomplete 1.69 100 9.3 651 98 9.3
Adammetro 0.17 13.7 3.0 1.59 11.8 2.5
Small 0.15 3.2 0.34 18.7 3.55 0.38
Medium 0.18 9.2 0.85 30.6 10.0 0.93
Large 0.47 37.9 3.16 190 39.0 3.35
Huge 1.7 91.8 7.98 700 102.3 8.83

Notes. LP and MIP denote the solutions found by the corresponding
mathematical program, and AlgLS

X with Alg ∈ {LP,MIP} and X ∈
{A,N} denotes the solution found by performing the local search
heuristic on the solution found by algorithmAlg, using the followers’
response X.

Impact of the Budget Size. We also investigated the
impact of budget sizes on the optimality gap and the
achieved profit; a visualization is shown in Figure 2. In
the range of B ∈ [1, 4], the ratio of obtained profit and
upper bound exhibits a bathtub curve behavior until

Figure 1. (Color online) Ratio of profits to upper bounds.
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Notes. The diagrams show the distribution of the ratios for instances in the respective test sets. The mark inside each box denotes the median,
boxes represent lower and upper quartiles, and the whisker ends show the minimum and maximum, respectively, apart from possible outliers
marked by a cycle.

it stabilizes at a ratio of 1 for larger budgets (which is
expected as for a large enough budget, all passengers
can be forced to buy a ticket). The achievable profit as
a function of the budget is concave in all investigated
examples, which might be a universal property of the
optimal value function (as a function of the budget).
Comparison with Existing Models. For the fixed-fare
variant with nonadaptive followers, we can compare
our modeling approach to that of Borndörfer et al.
(2013). We solved the MIP formulation proposed
in Borndörfer et al. (2013) and computed the leader’s
profit resulting from the realistic response of follow-
ers (i.e., without linearization of their objective func-
tion). Comparing these solutions to the ones derived
from our local search procedure, we observed that our
approach yields an increase in profit of about 5% on
average on the randomly generated instances, about
7.5% on the metro, and about 2% on the railway net-
work. In fact, for some of the metro instances, the
increase exceeds 20%; see Table 1 and Figure 1.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

9.
18

0]
 o

n 
03

 F
eb

ru
ar

y 
20

17
, a

t 0
6:

51
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Correa et al.: Fare Evasion in Transit Networks
180 Operations Research 65(1), pp. 165–183, ©2017 INFORMS

Figure 2. (Color online) Graphs illustrating the influence of the budget on the solution quality.
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“Best” denotes the best solution found, LPLS and MCLS denote the solutions found by performing the local search heuristic on the LP solution
resp. MultiCut solution, and MIP denotes the solution found by the corresponding mathematical program of Borndörfer et al. (2013).

5.4. Computation of Exact Solutions
In the following we present some (limited) results
regarding exact approaches for the four variants of the
problem.

Globally Optimal Solutions Using BARON. To find
globally optimal solutions for small instances, we
use the exact branch-and-bound-based nonlinear
mixed integer global optimization solver BARON
(Tawarmalani and Sahinidis 2005) to solve the corre-
sponding nonlinear formulations [NLPflex

A ], [NLPfix
A ],

[MINLPflex
N ], and [MINLPfix

N ] described in Section 4.3.

Note that all these formulations are nonconvex
and therefore not easily solvable by (standard) mixed
integer convex programming solvers. Secondly, for
[MINLPL

N], the modeling step of moving to a path for-
mulation comes with a possibly exponential growth in
the number of decision variables, since the number of
paths can be exponential in the size of the network. To
reduce this possibly large number, for every commod-
ity i ∈ K, we can prune all paths P ∈Pi for which c(P)>
SPc(si , ti) + Ti , since these paths will never be cho-
sen in an optimal solution. Furthermore, calculating
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Table 3. Average instance sizes and gaps to exact solutions.

Graph set |V | |E | Ti F P[MINLPL
N]

GAPflex
N GAPflex

A GAPfix
N GAPfix

A

Nlmajor 23 60 219 423 342 98.7 98.7 98.1 98.0
Nlcomplete 341 864 753 1,630 — (97.8) (97.7) (94.6) (93.8)
Adammetro 45 88 289 591 25 99.2 99.6 98.8 98.3
Small 25 95 218 440 23,438 97.6 98.0 (97.0) (96.8)
Medium 50 195 302 623 — (96.3) (96.0) (97.5) (97.3)
Large 100 399 404 881 — (95.7) (95.3) (98.0) (97.8)
Huge 200 806 581 1,248 — (95.6) (94.6) (97.9) (97.7)

Notes. We report average values for instances with 25 commodities only. P[MINLPL
N]

provides the number of path variables created for [MINLPL
N]

after pruning. A dash indicates that the instances in the set were too large in terms of number of paths to fit into memory. GAPL
X denotes the

gap between our solutions for LMPL
X and the minimum of our upper bounds and the results from the BARON computations. All values in

brackets in the right set of columns indicate known gaps for those instances for which BARON could not get improved values due to memory
and/or time limitations.

a minimum multicut provides a lower bound on the
budget for which we obtain maximum possible rev-
enue: setting pe � 1 for every edge e in the multicut
guarantees the maximum obtainable profit of ∑i∈K Ti .

Computations were performed using BARON
v.15.6.5 on the same machine as the other algorithms,
and interaction with the BARON software was per-
formed using Java. The solver was allowed 600 seconds
to process each instance. If an optimal solution could
not be found, the upper bound found by the solver up
to that point was compared to our upper bound, and
used to compare our results if this gave an improve-
ment. The results are listed in Table 3, where the gaps
for instances which were not solved using BARON are
provided between brackets for completeness.
In Table 3 the average instance sizes for each graph

set are presented in the left set of columns, as well
as the number of path variables in [MINLPL

N] after
pruning. Even though the network sizes of nlmajor,
ADAMmetro and the small random graphs are rela-
tively the similar in the number of arcs and nodes, the
number of paths after pruning shows a huge differ-
ence. This difference is easily explained by observing
the structure of the graphs. Both small real-life net-
works are star-like in structure: There is a single cen-
ter of clustered nodes (forming an almost-clique), and
terminals are connected to the center via possibly par-
allel paths. On the other hand, for the randomly gen-
erated graphs there is no single center, but nodes are
evenly distributed, e.g., resembling the graph struc-
ture of the network of the Deutsche Bahn. It turned
out that, using BARON, we were not able to compute
any exact solution or useful upper bounds for the ran-
dom instances using our exact formulations and the
time limits as stated above.
For the graph sets nlmajor and ADAMmetro, we

obtained exact solutions for many instances, and in
some cases improved upper bounds as shown in
Table 3. Comparing our results with the solutions
provided by BARON shows that the solutions found

by the local search algorithm for instances derived
from nlmajor and ADAMmetro are consistently near-
optimal (within 2% of optimality). This can be seen as
an indication that, in general, our solutions are even
slightly closer to the optimum than suggested by the
data in Table 1.

6. Conclusions
In this paper we introduced and studied models for
the optimization of fare inspection strategies in tran-
sit systems taking into account realistic passenger
behavior. We developed efficient algorithms for the
passengers’ reaction (given a distribution of control
probabilities) as well as for the overall bilevel optimiza-
tion problem of computing control probabilities and
ticket prices. We demonstrated in an extensive compu-
tational involving a total of 5,600 instances generated
from real-world networks as well as randomly gener-
ated instances that our algorithmic approach leads to
high quality solutions that are within 5% of the calcu-
lated upper bounds on average.

From a theoretical and practical point of view, our
work raises several interesting questions:
Complexity of the nonadaptive followers’ minimization
problem. The nonadaptive followers’ problem FMPN
discussed in Section 3 constitutes a natural general-
ization of the classic shortest path problem, which
is of interest beyond the concrete application in the
present work. While the quasi-polynomial bound on
the number of breakpoints for the parametric shortest
path problem used in this paper is tight, a polynomial
time algorithm for FMPN still could be achieved using
a different approach.
Complexity of the parametric shortest path problem
in planar graphs. As most real-world transit networks
are based on planar or almost planar graphs, find-
ing efficient algorithms for this type of network is an
important task of research in this area. In this context,
Nikolova’s (2009) conjecture on the polynomiality of
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the parametric shortest path problem in planar graphs
is of particular interest, as it implies polynomial time
algorithms for a broad class of shortest path problems
in planar graphs, including FMPN. While we proved
the conjecture for the special case of series-parallel
graphs, the case of arbitrary planar graphs remains
open and is an interesting subject of future research.

Approximation complexity of the leader’s problem.
We have shown strong NP-hardness of all variants of
the leader’s optimization problems, even in restricted
special cases. It remains a challenging open problem
to either improve upon our approximation guarantees,
or to prove APX-hardness results closing the gap with
our approximation guarantees.

Robustness against suboptimal followers’ reaction. If
passengers only have incomplete information about
the distribution of control probabilities, they might
respond suboptimally. Thus, it would be interesting to
derive more general models that yield solutions that
are robust to suboptimal behavior.

Operational planning of inspection routes. In the
model presented in this paper, average control frequen-
cies are specified by assigning control probabilities to
the edges. This is a suitable assumption in the con-
text of tactical planning of network control, i.e., over a
longer time horizon. It would be interesting to also con-
sider amore fine-grainedmodel for operational day-to-
day planning that involves the dynamic route planning
of inspectors moving at different points in time to dif-
ferent checking spots.

Multimodal transportation model. In the model de-
scribed in Section 4.5, restricting reservation utilities to
be constant assumes that alternative modes of trans-
portation are not affected, e.g., by congestion. Remov-
ing this restriction gives rise to a bilevel multimodal
transportationmodel, about which notmuch is known.
Taking into account that this setting is not uncommon
in real-life applications, it would be interesting to fur-
ther investigate these types of models.
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