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a b s t r a c t

In this work we prove that designing PPMs is equivalent to finding stopping rules for prophets. This
extends the connection that any prophet type inequality can be turned into a PPM with the same
approximation guarantee (Hajiaghayi et al. 2007; Chawla et al. 2010). Our reduction is robust under
multiple settings includingmatroid feasibility constraints, or different arrival orderings. One fundamental
observation implied by this result is that designing PPMs in general is equally hard from an approximation
perspective to designing PPMs when the valuations are regular.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years online sales have beenmoving froman auc-
tion format, to posted price formats [15] and the basic reason for
this trend switch seems to be that posted price mechanisms (PPM)
are much simpler than optimal auctions, yet efficient enough. The
way these mechanisms work is as follows. Suppose a seller has an
item to sell. Customers arrive one at a time and the seller proposes
to each customer a take-it-or-leave-it price. The first customer
accepting the offer pays the price and takes the item. These types
of mechanisms are flexible and adapt well to different scenarios;
their simplicity and the fact that strategic behavior vanishes make
them quite suitable for many applications [9]. Of course, PPMs
are suboptimal and therefore the study of their approximation
guarantees – where the benchmark is that given by the optimal
Myerson’s auction [28] – has been an extremely active area in the
last decade, in particular in the computer science community.

Hajiaghayi et al. [20] and Chawla et al. [9] establish an in-
teresting connection between (revenue maximizing) PPMs and
prophet inequalities, a problem arising in optimal stopping theory.
Here a gambler is faced to a sequence of random variables and
has to pick a stopping time so that the expected value he gets
is as close as possible to the expectation of the maximum of all
random variables, interpreted as what a prophet, who knows the
realizations in advance, could get. They implicitly show that any
prophet type inequality can be turned into a PPM with the same
approximation guarantee. This is obtained by noting that a PPM for
revenue maximization can be seen as a (threshold) stopping rule
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for the gambler, but on the virtual values space, and later identify
these virtual thresholds with prices. As a consequence, the follow
up work in the field concentrated on prophet inequities and then
applied the obtained results to sequential PPMs.

In this work we fill a gap in this line of research by proving
the converse of the latter result, namely, that any posted price
mechanism can be turned into a prophet type inequality with the
same approximation guarantee. The core of the result is a method
to go back from virtual values to arbitrary distributions which
may find applications beyond the scope of this paper. This result
amounts not only to apply approximation guarantees fromprophet
inequalities to PPMs, but also to carry over the lower bounds.
We observe that through our reduction we can improve the best
known lower bound for sequential PPMs (inwhich the arrival order
is either random or selected by the seller) in the single item case,
the k-uniform matroid case, the general matroid case, and the
general downward-closed family case.

Posted price mechanisms. The recent survey by Lucier [26] is an
excellent starting point in the area, where many variants of PPMs
are described. For the specific scenario where only one item must
be allocated, some pricing setting studied include anonymous (the
offered price is the same for all customers) [2,9,13], static (the
possibly different prices to offer do not evolve as the mecha-
nism progresses) [11,16], and Order-Oblivious (the order in which
agents arrive can be chosen by an adaptive adversary) [9].

Furthermore, PPMs may be used when selling multiple items
or with constraints on the subsets of served customers. Typical
side constraints include matroids constraints [23,33], downward-
closed systems [5,29], combinatorial prophet inequalities [8,30],
combinatorial auctions [1,17], and polymatroids constraints [14].
Attention has also been payed to settings with limited information
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or prior-independent, where the designer must learn the distribu-
tion in order to run the mechanism [3,4,7,10,12,27].

Prophet-inequalities. For fixed n > 1, let X1, . . . , Xn be non-
negative, independent random variables and Tn their set of stop-
ping rules. A classic result of Krengel and Sucheston, and Gairing
[24,25] asserts that E(max{X1, . . . , Xn}) ≤ 2 sup{E(Xt ) : t ∈ Tn},
and that 2 is the best possible bound. The study of this type of
inequalities, known as prophet inequalities, was initiated by Gilbert
and Mosteller [18] and attracted a lot of attention in the eight-
ies [21–23,31,32]. In particular Samuel-Cahn [32] noted that rather
than looking at the set of all stopping rules one can (quite naturally)
only look at threshold stopping rules in which the decision to stop
depends on whether the value of the currently observed random
variable is above a certain threshold.

Our results and techniques. The main insight we derive is a valu-
ation mapping lemma stating that for any distribution F there is
another distribution Gwhose virtual value distributes according to
F . It is surprising that this basic resultwasmissing from the auction
theory literature andwe believe that itmay prove useful in settings
beyond PPMs.

Our result is robust to different settings. It applies to random,
adversarial, or best possible orders, as well as when there are
multiple items and constraints on the allowed allocation sets. As
alreadymentioned before, the sufficiency condition of the theorem
is a known fact and although it has never appeared explicitly, it is
implicit in previouswork [9,20]. The necessary condition, however,
is novel and not obvious. The main difficulty comes from taking an
arbitrary distribution in the prophet inequality problem and map-
ping it back to a PPM. Here is where the valuationmapping lemma,
that holds for arbitrary distributions, comes into play. Consider the
operator that picks an arbitrary probability distribution over the
nonnegative reals and returns the distribution of the ironed virtual
valuation function. The Valuation Mapping Lemma states that this
operator is surjective over the space of distributions. Interestingly,
the lemma gives an explicit construction so we can easily interpret
the thresholds as prices in the PPM.

A remarkable feature of the Valuation Mapping Lemma is that
when mapping a distribution F into another distribution G whose
virtual value follows F , G turns out to be regular (i.e., it has a
monotone non-decreasing virtual value). Although in principle
there may be many functions G satisfying the statement of the
lemma,we can identify one explicitlywith this appealing property.
Together with our main theorem these imply that the posted price
problem can be reduced to a prophet inequality problem, which
can in turn be reduced to a posted price problem with regular
distributions. Therefore, designing PPMs in general is equally hard
from an approximation perspective to designing PPMs when the
valuations are regular.

Another consequence of our results is that we can translate
all known upper and lower bounds from PPMs into prophet in-
equalities and back. One example which we will further analyze
in Section 4 is the case of sequential posted price mechanisms
(SPM, [9]). The current best known lower bound for this setting is√

π/2 ≈ 1.253 [6]. This is also the best knownwhen the feasibility
constraint is a general matroid, and even the intersection of two
matroids. Our result implies an improvement on this bound to
1.341 by using the lower bound for the i.i.d. prophet inequality
designed by Hill and Kertz [21]. Although our results are presented
in the context of single-parameter mechanism design, they can be
generalized to multi-parameter settings [9].

Organization. In Section 2 we introduce formally the online se-
lection problem and the auction problem. In Section 3 we prove
our main result – formally stated in Theorem 9 –, that is, the
reduction from PPM to prophet inequalities. In Section 4 we show
the improved lower bound for SPMs in more detail.

2. Preliminaries

Online selection problem. An instance of this problem corre-
sponds to a tuple (X,F, T ), where X is the ground set of n elements
and each set in T ⊆ 2X is called feasible selection. For each x ∈ X
there is a random variable wx, called weight, distributed according
to Fx with compact support contained in R+, and F = {Fx : x ∈
X}. We assume them to be independent. The random variables
are presented in an order σ : [n] → X , and an algorithm for
the problem has to decide whether to select or not an element
of X when arrived. An algorithm is correct if it outputs a feasible
selection.

An algorithm is an α-approximation if the expected weight of
the output selection is at least α · E

(
maxA∈T

∑
x∈A wx

)
, that is, an

α fraction of the expectation of the maximumweight over feasible
selections. In the latter, the expectation is taken over F and the
(possibly) algorithm internal randomness.

Multi-itemmechanism design. Consider a single seller who provides
a set of n items given by I. For each item i ∈ I, there exists a
buyer having a random valuation vi for that item. We denote by
Gi the distribution of the valuation vi, and we assume this to have
a compact support contained in R+. We denote by G = {Gi : i ∈ I}
the set of valuation distributions. There exists a set of feasibility
constraints for the seller, T ⊆ 2I , and every set in T is called a
feasible allocation. Therefore, an instance for this problem is given
by a tuple (I, G, T ).

This setting is known to be the single-parameter domain. We
assume the valuation distributions to be independent, and they are
known by the seller. Buyers arrive in an arbitrary order σ : [n]
→ I.

Distributions. Throughout this work we only consider distribu-
tions with bounded support. In general, a distribution F is not in-
vertible butweworkwith its generalized inverse, given by F−1(y) =
inf{t ∈ R : F (t) ≥ y}. In particular, the derivative F ′ exists almost
everywhere and it is called the density function. Inwhat followswe
consider distributions with strictly positive density.

Myerson’s optimal mechanism. In his seminal work, Myerson [28]
characterizes the mechanism maximizing the revenue for single-
parameter domains. In order to analyze the optimization problem,
he introduces a quantity called virtual valuation, that allows to
solve the problem in an equivalent and simpler maximization
setting.

Definition 1. For a random variable v with distribution G and
density g , the virtual valuation of v is the function φG(t) = t −
(1 − G(t))/g(t). We say that G is regular if φG is monotone non-
decreasing.

In the regular case, the optimal mechanism computes the vir-
tual valuation for each buyer and then it allocates to a subset of
them maximizing its total virtual value. Recall that a mechanism
is called incentive-compatible if each player has a weakly dominant
strategy of truthful reporting.

Theorem 2 ([28]). If the distributions in G are regular, the expected
revenue of any incentive-compatible single-parameter mechanismM
is equal to its expected virtual surplus, E

(∑
x∈M φ+x (vx)

)
, where M is

the allocation provided by the mechanism, and φ+x = max{0, φx}.

In particular, when the distributions are regular, Myerson’s
optimal mechanism is incentive-compatible and so it satisfies the
above conditions in the theorem. We introduce a technical lemma
about virtual valuations that is used along the reductions. When
the distributions are not regular, Myerson considered an ironed
virtual valuation for its analysis [28], denoted by φ̄G when the
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valuation distribution isG.More specifically, takeQ (θ ) = θG−1(1−
θ ) and let R be the concave hull of Q , namely, R(θ ) is given by

min
x,θ1,θ2∈[0,1]

{xQ (θ1)+ (1− x)Q (θ2) : xθ1 + (1− x)θ2 = θ} .

The ironed virtual valuation is φ̄G(t) = R′(1 − G(t)). In partic-
ular, when the valuation is regular, the ironed virtual valuation
corresponds to the virtual valuation, φ̄G = φG. If the context is
clear, we omit the subscript on the notation for the (ironed) virtual
valuation.

Lemma 3. Let v be a random variable with distribution G. Let τ ≥ 0
and q = P(φ̄(v) ≥ τ ). Then, there exist q1, q2, x ∈ [0, 1] such that
xq1 + (1− x)q2 = q and

E(φ̄(v) | φ̄(v) ≥ τ )

=
1
q

(
xq1G−1(1− q1)+ (1− x)q2G−1(1− q2)

)
.

In particular, when the distribution G is regular we have E(φ(v) |
φ(v) ≥ τ ) = G−1(1− q).

Proof of Lemma 3. By expanding the conditional expectation and
changing the integration domain,

E(φ̄(v) | φ̄(v) ≥ τ )P(φ̄(v) ≥ τ )

=

∫
∞

φ̄−1(τ )
φ̄(u)dG(u) =

∫ q

0
R′(θ )dθ = R(q),

where φ̄−1 corresponds to the generalized inverse of φ̄. Since R is
the concave-hull of Q (θ ) = θG−1(1 − θ ), there exists x, q1, q2 ∈
[0, 1] such that xq1 + (1 − x)q2 = q and R(q) = xQ (q1) + (1 −
x)Q (q2) = q1G−1(1−q1)+ (1−x)q2G−1(1−q2). When G is regular,
Q is a concave function and therefore R(q) = q · G−1(1− q). □

Posted-price mechanisms. In a posted-price mechanism (PPM), once
a buyer arrives the seller offers a price in a take-it-or-leave-it
fashion. The posted price mechanism, M, upon arrival of a buyer
preferring item i ∈ I, computes a price pi. This price is a function
of the history Ht = (σt , At−1,Vt−1) at time t , where σt is the order
in which the buyers arrived up to time t , At−1 denotes the current
allocation and Vt−1 = {vσ (j) : j ∈ {1, . . . , t − 1}} is the set of
valuation realizations for the buyers so far arrived. The expected
revenue of the mechanism is just E(

∑
i∈I pi(1− Gi(pi))).

From prophets to pricing. The idea of constructing PPM from ex-
isting prophet inequalities has been exploited extensively the last
decade starting with the work of Hajiaghayi et al. [20] and that
of Chawla et al. [9]. An algorithm for an online selection problem
is based on thresholds if every time that an element arrives, it is
included to the current solution if its weight is above a certain
threshold.

Theorem 4 ([9,20]). Suppose there exists an online selection algo-
rithm based on thresholds that is an α-approximation for (I, Gφ, T )
presented in order σ . Then, there exists a posted-pricemechanism that
is an α-approximation for (I, G, T ) presented in order σ .

3. From pricing to prophets

Reduction overview. Consider an instance (X,F, T ) for the opti-
mal stopping problem, and suppose we have access to a single-
parameter PPM M that provides a guarantee over the ground set
X and feasibility constraints T . If we were able to find valuation
distributions G = {Gx : x ∈ X} such that φ+Gx (vx) has distribution Fx,
where vx has distribution Gx, then we could feed the mechanism
M with the instance (X, G, T ) of a multi-item auction problem,
using the same order σ in which the elements of the ground set

X are output in the optimal stopping problem. In particular, since
the weight of x is distributed according to φ+Gx (vx), and they are all
independent, by Theorem 2, the revenue of the mechanism on the
instance (X, G, T ) equals the sum of the weights of the elements
selected, and so our online stopping algorithm provides a prophet
inequality that preserves the approximation given by mechanism
M in the multi-item auction instance.

3.1. Valuation mapping lemma

In this section we introduce the key lemma that allows us to
map from aweight distribution F to a valuation distribution Gwith
virtual valuation distributed according to F . W.l.o.g. we restrict
ourselves to the casewhere F has support [0, 1]. The result extends
to compact support in R+ via an affine transformation. Formally,
we prove the following lemma.

Lemma 5 (Valuation Mapping Lemma). Let w be a random variable
with distribution F and support in [0, 1]. Then, there exists a distribu-
tionGwith non-negative support such that if v is distributed according
to G, then φ+G (v) is distributed according to F .

The proof is constructive and we provide an explicit expression
for the distribution G: we define G to be the generalized inverse of
H , where

H(q) =
1

1− q

∫ 1

q
F−1(y)dy (1)

if q ∈ [0, 1), H ≡ 0 in (−∞, 0) and H ≡ 1 in [1,+∞). Observe
that H(0) = E(w), where w follows distribution F , and therefore H
might be discontinuous in 0.

We now present two intermediate results that will be of use in
the proof of Lemma 5.

Proposition 6. H is continuous in (0, 1]. Furthermore, there exists
T ∈ [0, 1] such that H is strictly increasing in the interval [0, T ),
and is constant equal to 1 in the interval [T , 1]. In particular, H is a
distribution.

In fact, we show that T = 1 if F is continuous by the left in
t = 1. Otherwise, if F is discontinuous in t = 1 then T < 1. This
behavior of H in the interval (0, 1] translates to G, in the sense that
H is invertible in the whole (0, 1] except when T < 1 and so G has
a discontinuity at t = 1. In other words, G is also strictly increasing
and continuous in (H(0), 1).

Proof of Proposition 6. The continuity of H in (0, 1] comes from
the fundamental theorem of calculus. To study the monotonicity
of H let us compute the first derivative of H and analyze its sign.
Observe that

H ′(q) =
1

(1− q)2

(
−F−1(q)(1− q)+

∫ 1

q
F−1(y)dy

)
=

1
(1− q)2

∫ 1

q
(F−1(y)− F−1(q))dy,

and F−1(y) − F−1(q) ≥ 0, since F−1 is non-decreasing, and y is
at least q. Therefore, H ′(q) = 0 if and only if F−1 equals F−1(q)
almost everywhere in [q, 1], which in turn happens if and only if
lims→F−1(q)− F (s) = q and F (F−1(q)) = 1. Taking T = q the proof
follows. □

Proposition 7. Let G be defined as in (1). Then:

1. G is a distribution with support [E(w), 1], wherew is a random
variable with distribution F .

2. For all t in the support of G, φG(t) = F−1(G(t)).
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3. The virtual valuation φG is non-decreasing. In particular, φG is
non-negative and therefore φ+G = φG.

Proof of Proposition 7.

1. By Proposition 6, G is a distribution. The result for the sup-
port comes from H(0) =

∫ 1
0 F−1(y)dy = E(w) and H(1) = 1,

and G being strictly increasing in the interior of the interval.
2. Let t be in [E(w), 1). By Proposition 6, G is strictly increasing

and continuous on this interval, and therefore invertible. It
is then sufficient to show that φG(H(q)) = F−1(q) where
H(q) = t . In particular, q ∈ [0, T ), with T as in the statement
of Proposition 6. Since G is also differentiable and G−1 = H
in this interval, it follows that φG(H(q)) = H(q) − (1 −
q)/G′(H(q)) = H(q)− (1− q)H ′(q). On the other hand, from
the definition of H ,

H ′(q) =
1

(1− q)2

(
−F−1(q)(1− q)+

∫ 1

q
F−1(y)dy

)
=

1
1− q

(
−F−1(q)+ H(q)

)
,

and therefore H(q)− (1− q)H ′(q) = F−1(q).
3. It follows from (2) that φG is non-decreasing, as both F−1

and G are non-decreasing. Since φG(E(w)) = F−1(0) = 0,
it holds that φG is non-negative which in turn implies that
φ+G = φG. □

Proof of Lemma 5. Recall that v is a random variable distributed
according to F . Let U be a random variable uniformly distributed in
[0, 1). Then, by Proposition 7(1), G is a distribution and therefore
the generalized inverse of U , namely v = G−1(U), has distribution
G. By Proposition 7(3), φ+G = φG and therefore it remains to study
the distribution of φG. By Proposition 7(2), we observe that for
t < 1, P(φG(v) ≤ t) = P(F−1(G(v)) ≤ t) = P(G(v) ≤ F (t)) = F (t),
since by Proposition 6, G is invertible in [E(w), 1). Thus, G(v) is
uniformly distributed in [0, 1). □

To prove the reduction, stated formally in Theorem 9, we need
other small technical ingredient. Given non-decreasing functions
η : [0, 1] → [0, 1] and ν : [a, 1] → [0, 1] for 0 ≤ a ≤ 1, we say
that ν is anon-linear stretching ofη if there exists ξ : [a, 1] → [0, 1]
strictly increasing and continuous in [a, 1) such that ν = η ◦ ξ in
[a, 1).

Proposition 8. If ν is constant in the interval [c, r), then η is constant
in the interval [ξ (c), ξ (r)).

Observe that since G is strictly increasing and continuous in
[E(w), 1), it follows that φG is a non-linear stretching of F−1. In
other words, if φG is constant in an interval [c, r), then F−1 is
constant over [G(c),G(r)).

Proof of Proposition 8. Suppose η is not constant over the interval
[ξ (c), ξ (r)), i.e., there exists s ∈ (ξ (c), ξ (r)) such that η(s) >
η(ξ (r)). Since ξ is strictly increasing and continuous in (c, r), there
exists z ∈ (c, r) such that ξ (z) = s. Thus, ν(z) = η(ξ (z)) = η(s) >
η(ξ (r)) = ν(r), which contradicts the fact that ν is constant in
[c, r). □

From posted prices to online selection. Given an instance for the
online selection problem, we feed a single-parameter mechanism,
M, by constructing a set of valuations G using the Valuation Map-
ping Lemma. For ease of notation, let φx be the virtual valuation
of Gx. We perform a randomized tie-breaking to determine the
thresholds.More specifically, consider the boundary prices given by
p−x = inf{p ∈ R : φx(p) = φx(px)} and p+x = sup{p ∈ R : φx(p) =
φx(px)}.

Algorithm 1 From posted prices to thresholds.
Require: (X,F, T ) of the online selection problem.
1: Initialize A0 ← ∅.
2: for t = 1 to n do
3: Let x = σ (t), and set price px =M(Ht−1, G, x),
4: if p−x = p+x and wx ≥ φx(px) then
5: select x, At ← At−1 ∪ {x};
6: else if p−x < p+x then
7: if wx > φx(px) then
8: select x, At ← At−1 ∪ {x};
9: else if wx = φx(px) then

10: set θx =
G(p+x )−G(px)
G(p+x )−G(p−x )

11: select xw.p. θx, At ← At−1 ∪ {x},
12: reject xw.p. 1− θx, At ← At−1.
13: else reject x, At ← At−1.
14: Return Alg = An.

Theorem 9. Let (X,F, T ) be an instance of the online selection
problem, and (X, G, T ) the instance of the multi-item auction ob-
tained by the Valuation Mapping Lemma. If the mechanism M is an
α-approximation for (X, G, T ) presented in order σ , then Algorithm 1
is an α-approximation for (X,F, T ) presented in order σ .

Proof of Theorem 9. Let Qt be the event that item σ (t) is selected
by Algorithm 1. We denote by Pt−1 the probability distribution
conditional on the history Ht−1, and the notation extends to the
expectation. We denote by χ (Qt ) the indicator function of event
Qt . By conditioning on the history, we have that E

(∑
x∈Alg wx

)
=∑n

t=1 E
(
wσ (t)χ (Qt )

)
=

∑n
t=1 E

(
Et−1

(
wσ (t)χ (Qt )

))
. For t ∈

{1, . . . , n}, let x = σ (t) and px =M(Ht−1, G, x) be the price com-
puted byM. We claim that Algorithm 1 satisfies Et−1 (wxχ (Qt )) =
px(1 − G(px)), where Gx is the distribution of vx. Before proving
this, we see how to conclude the theoremusing the equality above.
SinceM is an α-approximation and using Theorem 2, we have that∑

x∈X px(1− Gx(px)) is at least

α · E

(
max
A∈T

∑
x∈A

φ+x (vx)

)
= α · E

(
max
A∈T

∑
x∈A

wx

)
,

where in the last equality we used the fact that the valuations
are obtained from the Valuation Mapping Lemma, and that the
distributions in F are independent. This proves that Algorithm 1
is an α-approximation.

It remains to proveEt−1 (wxχ (Qt )) = px(1−Gx(px)). To this end,
we condition on whether we are in line 5 or 6 of Algorithm 1. If the
condition in line 5 holds, thenφx(vx) > φx(px) if and only if vx > px.
In particular, Pt−1 (Qt) = Pt−1(φx(vx) > φx(px)) = Pt−1(vx >

px) = 1−Gx(px). By Lemma 3 and Proposition 7, Et−1
(
wσ (t)|Qt

)
=

Et−1(φx(vx)|φx(vx) > φx(px)) = px, so setting R(t) = p(1 − Gx(t)),
we conclude that Et−1

(
wσ (t)χ (Qt )

)
= Et−1

(
wσ (t)|Qt

)
Pt−1 (Qt) =

px(1 − Gx(px)) = R(px). Suppose now that the condition in line 6
is satisfied. By Proposition 8, the function F−1 is constant in the
interval [G(p−x ),G(p

+
x )).

Claim 10. For every p ∈ [p−x , p+x ), we have that

G(p) =
p− φx(p+x )G(p

+
x )−

∫ 1
G(p+x ) F

−1(y)dy

p− φx(p+x )
.

We postpone the proof of the claim to the end of this section.
Using the expression of G shown in the claim, it follows that
R(p) = φG(p+x )[G(p

+
x ) − G(p)] +

∫ 1
G(p+x ) F

−1(y)dy. By definition of
θx, G(p) = θxG(p−x ) + (1 − θx)G(p+x ) and therefore R(p) = θxR(p−x )
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+(1−θx)R(p+x ).Note thatφx(vx) ≥ φx(px) if and only if vx ≥ p−x , and
φx(vx) > φx(px) if and only if vx ≥ p+x . By conditioning on whether
line 8 or line 11 is satisfied, we have that Et−1

(
wσ (t)χ (Qt )

)
equals

θxEt−1(φx(vx)|vx ≥ p−x )Pt−1(vx ≥ p−x )
+ (1− θx)Et−1(φx(vx)|vx > p+x )Pt−1(vx > p+x ).

Using Lemma 3 we conclude that Et−1
(
wσ (t)χ (Qt )

)
equals

θxR(p−x )+ (1− θx)R(p+x ) = R(px). □

Proof of Claim 10. Given q ∈ [G(p−x ),G(p
+
x )], we have

H(q) =
1

1− q

[∫ G(p+x )

q
F−1(y)dy+

∫ 1

G(p+x )
F−1(y)dy

]

=
G(p+x )− q

1− q
φx(px)+

1
1− q

∫ 1

G(p+x )
F−1(y)dy,

where the last equality follows from F−1 being equal to φx(px) on
the interval [G(p−x ),G(p

+
x )). □

4. Implications

A direct consequence of Theorem 9 and the Valuation Mapping
Lemma is that we obtain lower bounds for the guarantees of
PPMs by considering lower bound instances of the online selec-
tion problem. We improve the previous known lower bounds for
SPM when constraints are on the form of downward closed fami-
lies, from log n/(3 log log n) to log n/(2 log log n) [9,29], and in the
k-uniformmatroid setting from1.253 to 1.341 [6,21] (this holds for
general matroids or even intersection of matroids). Additionally,
using the results from Göbel et al. [19], it is possible to derive a
new lower bound for PPM where the feasibility is given by stable
sets in graphs, of Ω(log n/log2 log n).

Consider the single item sequential posted price problem as
defined by Chawla et al. [9], where one seller can also choose the
order in which the buyers are offered the price. The current best
known lower bound for this problem was obtained a decade ago
by Blumrosen and Holenstein [6] considering an instance where
all buyers have i.i.d. valuations distributed according to F (v) =
1 − 1/v2. They show that the expected revenue of the optimal
mechanism isΓ (1/2)

√
n/2,while that of the optimal SPM is

√
n/2.

Thus, the ratio is approximately 1.253. Rather surprisingly, this
lower bound is the best known when the feasibility constraint is
a k-uniform matroid, a general matroid, and even the intersection
of two matroids.

To see that the lower bound can be improved we consider the
lower bound for the i.i.d. prophet inequality designed by Hill and
Kertz [21] over three decades ago. They considered the problem of
finding the best constant an such that for n i.i.d. random variables
the expected gambler’s gains are within a factor an of that of the
gambler. They were able to characterize an through a recursion
and also to find the instance that exactly achieves this gap of an. In
follow-up work, Kertz [22] proves that an converges to β ≈ 1.341,
the unique solution to the integral equation∫ 1

0
1/(y(1− ln(y))+ (β − 1))dy = 1. (2)

With the Valuation Mapping Lemma we map back the distri-
butions of the instances of Hill and Kertz to distributions for the
PPM. Since the distributions used in Hill and Kertz’s instances are
i.i.d., those for the sequential posted price problem are also i.i.d.
and Theorem 9 guarantees the gap of β ≈ 1.341 to be preserved.
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