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We consider a natural resource allocation problem in which we are given a set of items,

where each item has a list of pairs associated with it. Each pair is a configuration of an

allowed size for this item, together with a nonnegative penalty, and an item can be packed

using any configuration in its list. The goal is to select a configuration for each item so that

the number of unit bins needed to pack the sizes plus the sum of penalties is minimized.

This problem has applications in operating systems, bandwidth allocation, and discrete

time–cost tradeoff planning problems.

For the offline version of the problem we design an augmented asymptotic PTAS. That

is, an asymptotic approximation scheme that uses bins of size slightly larger than 1. We

further consider the online bounded space variant, where only a constant number of bins

can be open simultaneously. We design a sequence of algorithms, where the sequence of

their competitive ratios tends to the best possible asymptotic competitive ratio. Finally, we

study the bin covering problem, in which a bin is covered if the sum of sizes allocated to it is

at least 1. In this setting, penalties are interpreted as profits and the goal is tomaximize the

sum of profits plus the number of covered bins. We design an algorithm of best possible

competitive ratio, which is 2.We generalize our results for online algorithms and unit sized

bins to the case of variable sized bins, where there may be several distinct sizes of bins

available for packing or covering, and get that the competitive ratios are again the same as

for the more standard online problems.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The classical bin packing problem was introduced in the early 70s [27,17,18,9,6]. Since then many variants have been

studied. In the basic online model, a sequence of items, which are positive numbers no larger than 1, are to be packed into

unit sized bins. The sum of items packed into one bin cannot exceed its size and the supply of such bins is unbounded. Each

item must be packed into exactly one bin, minimizing the number of bins used. The problem has numerous applications in

storage and resource allocation.

Bin packing was investigated in both offline and online scenarios. In the latter scenario, the fact that items arrive online

means that each item must be assigned in turn, without knowledge of the next items. We analyze the algorithms using the

asymptotic approximation ratio (also called competitive ratio for the case of online algorithms). This is a standard measure

for bin packing algorithms. For a given input sequence σ , let A(σ ) (or A) be the cost of algorithm A on σ . Let OPT(σ ) (or OPT)

be the cost of an optimal algorithm, i.e., the minimum possible cost to deal with σ (in the case where online algorithms are

studied, this is an offline algorithm which has a complete knowledge of the sequence of items). For minimization problems,
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the approximation ratio for an algorithmA is defined to beR(A) = lim supn→∞ supσ { A(σ )
OPT(σ )

: OPT(σ ) = n}. Formaximization

problems, the approximation ratio for an algorithm A is defined to be R(A) = lim supn→∞ supσ {OPT(σ )
A(σ )

: OPT(σ ) = n}.
The offline bin packing problem admits an APTAS (Asymptotic Polynomial Time Approximation Scheme), as shown by

Fernandez de la Vega and Lueker [11]. Karmarkar and Karp [19] developed an AFPTAS (Asymptotic Fully Polynomial Time

Approximation Scheme) for the same problem. Karmarkar and Karp [19] also designed an algorithm which uses at most

OPT(I) + log2[OPT(I)]bins for an input I. The best current results known for online binpacking are an algorithmof competitive

ratio slightly less than 1.59 due to Seiden [24], and a lower bound of 1.54 on the competitive ratio of any online algorithm,

given by Van Vliet [28].

An interesting class of online algorithms is the class of bounded space algorithms, which are defined by the property

that they only have a constant number of bins available to accept items at any point during processing. These bins are also

called “open bins”. The bounded space assumption is quite natural. Essentially the bounded space restriction guarantees

that output of packed bins is steady, and that the packer does not accumulate an enormous backlog of bins which are only

output at the end of processing. Bounded space algorithms for the standard variant were studied by Lee and Lee [20] and

by Woeginger [29]. Lee and Lee defined a sequence of algorithms, where the sequence of the competitive ratios of these

algorithms tends to �∞ ≈ 1.691 (the series converging to this value is defined later in the paper). They also showed that no

bounded space algorithm can have a smaller competitive ratio.

In the variable-sized bin packing problem, there is a supply of several distinct bin sizes that can be used to pack the items.

The cost of an algorithm is the sum of sizes of used bins. The first to investigate the variable sized bin packing problemwere

Friesen and Langston [15]. Csirik [7] proposed the Variable Harmonic algorithm and showed that it has performance ratio

at most �∞. Seiden [23] showed that this algorithm is optimal among bounded space algorithms for any set of bin sizes.

Given a finite set of bin sizes, the largest of which is exactly 1, the competitive ratio is a solution of a mathematical program.

Unbounded space variable sized bin packing was studied also in [25].

Bin covering is a dual problem to bin packing. Items are to be assigned to bins as in bin packing, however there is no

restriction on the sum of items in a bin. A bin is seen as covered if the total size of items assigned to it is at least 1. The goal is

to maximize the number of covered bins. The problem was studied in [8,1]. It was shown in [1] that the algorithm Next Fit,

which uses a single bin at every time, and moves to the next bin when it is covered, has competitive ratio 2. Csirik and Totik

[8] showed that this bound is best possible for any online algorithm. In the case of variable sized bins, a bin is covered if the

total size of items assigned to it is at least its size. The goal is to maximize the sum of sizes of covered bins. Woeginger and

Zhang [31] showed that the best possible competitive ratio in this case can be computed as follows. Denote the list of bin

sizes that are larger than 1
2
by 1 = b1≥ . . . bk > 1

2
and let bk+1 = 1

2
. Then the best ratio is given by maxi=1,...,k{bi/bi+1}. Note

that bin sizes which are no larger than 1
2
have no influence on the competitive ratio.

Another model, which is relevant to our work, is bin packing with rejection. In this variant, each item is given a rejection

penalty. Each item can be either packed or rejected. The cost of an algorithm is the sumof rejection penalties of rejected items

plus the number of bins used to pack items. Bin covering with rejection is defined analogously. These problemswere studied

in [12,13,3]. In [12] a 2-competitive algorithm was designed for bin covering with rejection. This is best possible due to [8],

since the standard online bin covering problem is a special case where all rejection values are zero. In [13] the algorithms of

[20], and also the unbounded space algorithm of [22] were adapted to handle rejection keeping the same competitive ratios.

Again, the standard problem is a special case where all rejection penalties are infinite. The offline problem admits an APTAS

[13,3] and an AFPTAS [14].

In this paper, we study generalizations of bin packing and bin covering. As noted in [12,13], many applications for bin

packing have an option of refusing a customer. Sometimes it is easier to pay some penalty for not providing a service, or for

buying the service from an external source, rather than directly servicing the customer. Consider the following bandwidth

allocation problem. A customer requests a given bandwidth. If it is impossible to provide this amount, it is possible to provide

less bandwidthwith a small penalty, ormuch less bandwidthwith a greater penalty, or possibly not to provide any bandwidth

at all in extreme cases, paying a large penalty. The two extremes (either provide the full amount, or reject) are not enough

to model this situation. A similar situation arises when a freight carrier has to ship clients’ orders between an origin and a

destination. An order consists of a number of items, and there are several orders to be shipped. Some items in an order are

critical and must be shipped by the company’s own transportation system, while others can be outsourced (by contracting

a third party to do some shipments). Therefore, to achieve its task, the company can use their own transport (trucks) or

external sources. The freight carrier has to decide which part of each order is going to be externalized and which is going to

be shipped by their own means. Once this is decided, they have to pay for the outsourced items and minimize the number

of trucks used for the items to be shipped by themselves.

These applications result in the bin packing problem with controllable sizes problem, in which each item is associated with

a list of possible size/cost configurations. The goal is thus to pack items choosing one configuration for each item, so that the

number of bins needed plus the total cost is minimized. The bin covering problem with controllable sizes problem is defined

similarly, only the second component of a configuration is viewed as a profit rather than a cost, and goal is to maximize

the number of covered bins plus the sum of profits. These problems, in which an item has a list of configurations to choose

from, generalize both the standard bin packing and bin covering problems and furthermore they generalize bin packing and

bin covering with rejection. In the standard problems there is a single possible configuration for every item, whereas the

problems with rejection may admit two such configurations for each item.
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This problem is related to the discrete time–cost tradeoff planning problems [10,26]. In this setting, jobs, subject to

precedence constraints, are to be scheduled in infinitely many parallel processors. As opposed to the continuous version

of the problem, in the discrete time–cost tradeoff environment, job lengths can be varied discretely by paying additional

penalties. Moreover, there is a deadline T by which all jobs have to be completed and the question is to find the cheapest

schedule satisfying the deadline constraint. Interestingly, bin packing with controllable sizes is equivalent to the variation of

this problem in which there are no precedences, but, on the other hand we need to minimize the total cost plus the number

of machines needed to process all jobs by time T .

1.1. The setting

We denote an instance by I, which consists of a set of items N = {i1, . . . ,in}, a set of pairs L = {(sj ,pj) : 1 ≤ j ≤ �}, together
with a list L(i) ⊆ L for each i ∈ N. The values sj are rational numbers between 0 and 1while the pj ’s are nonnegative rationals.

Alternatively, we may view the instance as a bipartite graph G = (N ∪ L,E), in which L(i) is the set of neighbors of i ∈ N in

the graph G. The list L(i) thus represents the finite list of pairs, also called configurations to which each item i is associated.

In the case of bin packing, the first values in each pair are possible sizes which this item can have when it is packed. The

second value in each pair is the rejection penalty to be paid if the item is packed using the first value as its size. Therefore,

an algorithm, A, needs to choose a configuration from the list for each item i ∈ N. Denote by (sa(i),pa(i)) the choice of A. Once

the choice is made, the algorithm needs to pack the item into a bin, i.e., allocate it a space of size sa(i) in a bin in such a way

that the sum of spaces allocated in a bin cannot exceed 1. The cost of the algorithm is the number of bins used for any item

plus the sum of penalties pa(i).

In the case of bin covering, the second component of each pair is seen as a value gained by the algorithm. Moreover, there

is no restriction on the total size allocated in each bin. The goal is to maximize the sum of gained values and the number of

bins that the spaces allocated in them have a total size of at least 1. In variable sized bin packing and bin covering, the chosen

sizes may be packed into bins of several given sizes. The goal function changes as follows. In bin packing, the number of used

bins is replaced by the total size of used bins. The penalties are paid as before. In bin covering, a bin is covered if the sum of

sizes assigned to it is at least its size. The goal function contains the sum of sizes of covered bins instead of the number of

such bins.

1.2. Our results

We first consider the offline problem. Given a value ε > 0, we design an algorithm of cost at most (1 + ε)OPT + 5, using

bins of size 1 + ε. Such a scheme is called An augmented APTAS. To obtain the result we consider a rounding of the instance to

obtain a simple enough structure, using techniques of item classification. Although these techniques are fairly standard, the

rounding and classification task is more involved in our situation as we also need to clean up the lists of pairs corresponding

to items in a way that an optimal solution to the simplified instance is also near optimal for the original one. Then, the

first main idea behind the algorithm is to use a series of maximum flow computations to find a good solution for all items

except those having in their list a pair which is very small in both components. To deal with the latter items we use a greedy

approach. The justification for this approach comes from a result about the Minkowski sum of two-dimensional convex

polytopes, which may be of independent interest. The usage of a Minkowski sum allows us to prove that a greedy algorithm

that we apply in one of the cases is a good approximation. The scheme uses enumeration techniques in order to consider

a wide enough class of options. Observe that in the discrete time–cost tradeoff setting, this result says that we can find a

schedule of cost no more than (1 + ε)OPT + 5 with deadline (1 + ε)T , where OPT is the cost of the optimal schedule with

deadline T .

In addition, we consider online bounded space bin packing and generalize the results of Lee and Lee [20] to our problem.

We design a sequence of algorithms, each of which is an adaptation of the Harmonick algorithms of [20]. Although our

algorithms must take all packing options into account, we prove that it has the same competitive ratio. Therefore, we can

achieve a competitive ratio which is arbitrarily close to the best possible one, namely�∞ ≈ 1.691.We next consider variable

sized packing and generalize the results of Seiden [23]. Even though the adaptations are non-trivial, we prove that the

competitive ratios are not affected. Finally, we consider online bin covering. We adapt the algorithms of [1,31] and design

algorithms of best possible competitive ratio for the problem with unit sized bins and for the variable sized problem. Note

that again the competitive ratios of the adapted algorithms remain the same.

2. Offline packing

In this section we consider the offline version of the problem and design an augmented PTAS for it. Before we describe

the scheme, we discuss the main steps of the scheme and provide intuition regarding its correctness.

Rounding and discarding. In the scheme we apply classification and rounding techniques. Note that in many problems

items have fixed sizes, and thus rounding procedures are applied on the items directly. However, in our case, items do not

have a fixed size so the task is more involved. The procedures have to be applied on the configurations, that is, on all the

possible sizes and penalties of items.
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Wewould like to partition the configurations (also called pairs) into “small” and “large” ones. This is a common approach

allowing to round large enough sizes into a constant number of options. Such a rounding is only successful if the sizes are

bounded from below, so that the cost of an optimal solution to the resulting instance is within a small factor of the original

optimal cost. Since in our case every pair has two numbers associated it, this results in four sets BE (big and expensive), SE

(small and expensive), BC (big and cheap), and finally SC (small and cheap). However, we need that the gap between the

largest small size (price) and the smallest large size (price) is big enough for two main reasons: First, we would like to claim

that an item that can be packed using some configuration in SC, is always packed using some configuration in SC in an optimal

solution. This is generally incorrect, but we show that it is possible to adapt an optimal solution into a near-optimal solution

that complies with this requirement. This holds as long as the previouslymentioned gap is large. Secondly, wewant to round

the large components of pairs in BE,SE and BC to a constant number of values, and their corresponding small component (if

exists) is simply rounded to the maximum possible size of a small component. However, if we just use a threshold t, where

sizes no larger than t are defined to be small, and sizes larger than t are defined to be large, we may significantly increase

the cost of an optimal solution by rounding all small sizes to t. Again a large gap is required, so that the largest small size

is negligible when compared to the smallest large size (and thus the contribution of the small component of a pair to the

objective function value will be much smaller than the contribution of its large component).

To create this large gap between the largest small size (price) and the smallest large size (price) we look for a set of

“medium” configurations, omit all configurations in it from the list of configurations of every item, and discard all items

having their “best” configuration (i.e., the configuration which minimizes the sum of size and penalty) in this set. Such a set

must be one that is used relatively rarely in an optimal (or near-optimal) solution. In order to ensure the existence of such

a set, the list of possible configurations must be partitioned into a large enough number of sets. Since the assignment of

the optimal solution is unknown to us, we use enumeration to check all possible sets of medium size. Once a gap is created

between small and large items, it is possible to apply the rounding as above. We prove that for the proper choice of medium

configurations, the rounding does not harm the quality of the solution too much. Moreover, we prove that it is possible to

overcome the removal of the medium configurations by using different configurations for items packed using the removed

configuration in the optimal solution unless this is their “best” configuration.

The search for the proper “medium” configurations set is done in themain cycle of the algorithm. In step (1) we eliminate

medium configurations and discard items having their best configuration in this medium set. Then, in step (3) we perform

the second clean up step, discarding all items having a configuration in SC. Finally, in step (4) we do the required rounding.

Besides proving that an optimal solution to the rounded instance is near optimal, a key observation is that there is a

near-optimal solution that packs the rounded instance and the discarded items separately. Thus, our algorithmwill first find

a solution to the rounded instance and then complete it with the discarded items.

Dealing with the rounded instance. In step (5), the rounded configurations in BE, BC and SE are assigned to items that do

not have a configuration in SC. We use enumeration to determine the number of items that are packed according to a given

configuration. For each such option, we solve a maximum flow problem, in order to check whether it is possible to assign

items to configurations that are valid for them, so that the total number of items packed according to each configuration is as

expected. The usage of flow is unusual in the design of approximation schemes. This is due to the fact that problems where

network flow is helpful are usually just solved completely via flowmethods and are thus polynomially solvable. We employ

flow to solve an assignment problem due to the unique structure of our problem, since the sizes that we enumerate are just

configurations and not associated with particular items.

After we have guessed the number of items to be packed using each possible configuration, we find a packing of large

items into a minimum number of bins of size 1 + ε (guaranteeing that the number of bins is as small as the optimal number

of bins without rounding). This is done by the algorithm in [16], which is sketched below.

Dealing with the discarded items.Once the best packing of itemswith configurations only in BE ∪ BC ∪ SE is found, we need

to add the items that are going to be packed according to a configuration in SC (which we call here the “small items”), which

were discarded previously. These items are added to the packing in step (6) in one of two possible ways.

Note that an item may have a number of configurations in SC. For every small item, we choose the “best” configuration

for it in SC. If with this choice the sum of sizes already fills the gaps in the bins left by the packing of large items (and possibly

requires additional bins), then it is clearly the best option. The small items are small enough that a Next Fit packing of these

items will create bins that are almost full.

Otherwise, for every item, we start with its configuration where the size is smallest (ignoring the penalty). And apply

a greedy process of moving one item at a time into a different configuration, until the total size fills the gaps. The item for

which the configuration is changed, and the new configuration, are chosen so as tomaximize a function whichmeasures the

tradeoff between increase in size and reduction in penalty. Surprisingly, this greedy process can be applied to find the best

such solution, which we show using an interesting result on Minkowski Sums (that we prove in this paper as well).

The algorithm simply checks the packing resulting from these two greedy approaches and chooses one of the resulting

solutions, which has a minimum cost. As the “medium” items discarded in step (1) are negligible, we pack them using new

bins according to their best configuration. Finally we choose the packing with minimum cost among all packings considered

by our enumeration on the possible sets of medium configurations.

The Hochbaum and Shmoys algorithm. Our algorithm uses the scheduling algorithm of Hochbaum and Shmoys [16] as a

procedure.We give a sketch of that algorithm, where we see it as a bin packing algorithm rather than a scheduling algorithm

and thus use the terminology of bin packing. The input is a set of ñ items with given sizes {s1 ≥ . . . ≥ sñ} that can be packed
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into m̃ bins of size 1, and a constant ε > 0. The output of the algorithm is a packing of these items into m̃ bins of size 1 + ε.

The algorithm finds themaximum index � such that s� > δ = ε
2
. If no such index exists, a greedyNext Fit packing into bins of

size 1 + ε already gives the desired result, since all bins (that are used) are occupied with a total size of more than 1 (except

for possibly the last such bin), and thus at most m̃ bins are used. Otherwise, the sizes of the first � items are rounded up into

sizes s′
i
, where s′

i
≥ si is the minimum number of the form δ + δ2j for some j ≥ 1. These � items are called large whereas the

remaining items are called small. This increases the size of items by a factor of at most 1 + δ. Next, a packing of the rounded

items into bins of size 1 + δ is found.When rounded items are later replacedwith their original sizes, the total size of items in

a bin may only decrease. At this time, a constant number of large item sizes are present. Since a bin of size 1 + δ may contain

at most 1
δ
large items, it is possible to enumerate all packing patterns, where the number of configurations is constant as a

function of ε. After this step, an assignment problem via integer programming in a fixed dimension (see [21]) is solved. Small

items are added greedily, increasing the bin sizes by at most an additional additive factor of δ.

2.1. The algorithm

In the algorithm belowwewill assume the instance is given as a triple I = (N,L,G) where N = {i1, . . . ,in} is the set of items,

L = {(sj ,pj) : 1 ≤ j ≤ �} set of pairs, and G = (N ∪ L,E) the bipartite graph defining the lists of possible pairs L(i). Furthermore,

for each i ∈ Lwe let o(i) ∈ L(i) be the pair selected by the optimal solution, andm(i) = argmin{sj + pj : j ∈ L(i)}. Also, let OPT(I)

denote the value of an optimal solution to instance I.

Input: A instance I = (N,L,G).

For k = 1, . . . ,4/ε, letMk = {j ∈ L : εk+1 ≤ sj ≤ εk or εk+1 ≤ pj ≤ εk} and do

(1) Define a new instance I′ as follows:N′ = N \ {i ∈ N : m(i) ∈ Mk} and for each i ∈ N′, let L′(i) = L(i) \ {j : (sj ,pj) ∈ Mk}. For
an item i ∈ I′, we define m′(i) and o′(i) analogously to m(i) and o(i).

(2) Let δ = εk , and partition L′ = ∪i∈N′L′(i) into four sets:

– BE = {j ∈ L′ : sj ≥ δ,pj ≥ δ} (big and expensive).

– SE = {j ∈ L′ : sj ≤ εδ,pj ≥ δ} (small and expensive).

– BC = {j ∈ L′ : sj ≥ δ,pj ≤ εδ} (big and cheap).

– SC = {j ∈ L′ : sj ≤ εδ,pj ≤ εδ} (small and cheap).

(3) We now clean up items, such that their corresponding list contains a pair in SC. To this end define an instance I′′ as
follows: N′′ = N′ \ {i ∈ N′ : L′(i) ∩ SC /= ∅} and we let L′′(i) = L′(i) for all i ∈ N′′. We also define BE,SE,BC,SC accordingly

(note that we get the same sets as before except that SC = ∅). We could have skipped step (2) above, however it will be

useful in order to break down the analysis.

(4) We now proceed to round pairs in BE,SE and BC. Both coordinates of pairs in BE are rounded up to the next number of

the form δ + rεδ (for integer r). The first coordinate (size) of pairs in SE is rounded up to εδ while the second (penalty)

is rounded up to the next number of the form δ + rεδ (for integer r). Finally, the first coordinate (size) of pairs in BC

is rounded up to the next number of the form δ + rεδ (for integer r) while the second (penalty) is rounded up to εδ.

(5) With the previous rounding, all sizes and penalties are at least εδ, and there are at most K ≤ (1/εδ)2 different pairs.

Therefore we can guess the optimal assignment of items to pairs for this instance by solving a polynomial number of

flow problems as follows:

For each integral vector (n1, . . . ,nK ) ≥ 0 such that
K∑
j=1

nj = |N′′|, we will attempt to pack nj pairs of type (sj ,pj).

(5.1) Check whether (n1, . . . ,nK ) is feasible for instance I′′. This is done using max-flow in the bipartite graph G′′: add
a source and a sink, and capacities nj from vertex (sj ,pj) to the sink, capacities 1 from the source to every vertex

in N′′ and capacities 1 to all edges in E (that are directed from the vertices of N′′ towards the vertices of L′′). Now
themaximumflow equals |N′′| if and only if there is an assignment of items inN′′ to pairs in L′′ such that nj items

are matched to a pair of type (sj ,pj) (i.e., (n1, . . . ,nK ) is feasible).

(5.2) Pack optimally a bin packing instance with nj items of size sj using bins of size 1 + ε, using the algorithm in

[16]. Call BINS(n1, . . . ,nK ) the number of bins used by the solution. Note that the algorithm of [16] assumes that

the number of bins to be used is known. Therefore, in order to apply it for here, we need to find the smallest m

such that it is possible to pack the input intom bins of size 1 + ε. For this, we can run the algorithm of [16] with

m̃ = m for all 0 ≤ m ≤ n.

(5.3) Choose the feasible vector (n1, . . . ,nK ) such that BINS(n1, . . . ,nK ) +
K∑
j=1

njpj is minimized.

(6) To finish we need to see how to deal with items in N′ \ N′′ and with those in N \ N′.

(6.1) Dealing with S = N′ \ N′′. Let C be the total space left in the already opened bins (which are of size 1 + ε). For

each item i ∈ S we only consider the restriction of its list L(i) to pairs in SC, and denote this new list as LSC (i). We

proceed as follows:
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(i) For all i ∈ S, select from each list LSC (i) the pair with smallest size (first component) and call the index of this

pair a(i).

(ii) Find z(i) = argmax{(pa(i) − pj)/(sj − sa(i)) : for j ∈ LSC (i)} and let z(i*) = maxi∈S z(i).
(iii) Update a(i*) = z(i*) and go to (ii) until the total size of chosen pairs surpasses C + ε.

(iv) Pack items by Next Fit (using the a(i) assignment) in the already opened bins and possibly increasing their

size to 1 + 2ε.

(v) Forall i ∈ S, select fromeach listLSC (i) thepairm′(i)withsmallest sizepluspenalty (i.e.,m′(i) = argminj∈LSC (i){sj +
pj}) and pack items by Next Fit (using this assignment) in the already opened bins increasing their size to

1 + 2ε, and possibly using new bins.

(vi) Choose the solution with smallest total cost from those constructed in (iv) or (v).

(6.2) Dealing with N \ N′. Each i ∈ N \ N′ is assigned to pair m(i) ∈ L(i). Then they are packed using only new bins by

any constant factor approximation for bin packing, e.g. by Next Fit.

end for

Output: Output the lowest cost packing thus constructed.

2.2. Analysis of correctness

The idea of the algorithm is to transform the instance several times so that an near optimal solution to the transformed

instance is also near optimal for the original one. Let us start by observing that the main cycle will eventually reach a good

value of k.

We define sets Ik as follows. Ik = {i : m(i) ∈ Mk or o(i) ∈ Mk}.

Lemma 1. There exists 1 ≤ k* ≤ 4/ε such that
∑

i∈Ik* (sm(i) + pm(i) + so(i) + po(i)) ≤ εOPT(I).

Proof. The property sm(i) + pm(i) ≤ so(i) + po(i) holds for every item i. Using this property we clearly have
∑
i∈N

(sm(i) + pm(i) +
so(i) + po(i)) ≤ 2OPT(I). Furthermore, as each pair appears in at most two sets Mk , we have that:

4/ε∑
k=1

∑
i∈Ik

(sm(i) + pm(i) + so(i) + po(i)) ≤ 2
∑
i∈N

(sm(i) + pm(i) + so(i) + po(i)) ≤ 4OPT(I).

The lemma follows since there has to be a term on the left, such that its value is at most the average. �

Note that, as we do not know o(i), we cannot compute k* a priori, however, themain cycle of the algorithmwill eventually

guess such a value. From now on, we assume we have guessed a value of k* as in Lemma 1.

Lemma 2. All items discarded in step (1) are packed in step (6.2) at a total cost of at most 3εOPT(I) + 1.

Proof. By Lemma 1 we have that
∑

i :m(i)∈M
k*

(sm(i) + pm(i)) ≤ ∑
i∈Ik

(sm(i) + pm(i) + so(i) + po(i)) ≤ εOPT(I). Therefore, if we assign

every item inN \ N′ tom(i),Next Fitwill need atmost 2εOPT(I) + 1 bins, while the total penalty will be atmost εOPT(I). �

Lemma 3. The instance I′ defined in step (1) satisfies OPT(I′) ≤ (1 + O(ε))OPT(I) + 1.

Proof. Take an optimal solution (which consists of a choice of a configuration for each item, that implies penalties, together

with a packing) to instance I and map it to a feasible solution to instance I′ (except for the items in N \ N′ ). This mapping is

valid all i ∈ N′ except for those such that (so(i),po(i)) ∈ Mk* (but (sm(i),pm(i)) 
∈ Mk* ). However, by Lemma 1, for these items:∑
i : o(i)∈M

k*

(sm(i) + pm(i)) ≤
∑
i∈Ik

(sm(i) + pm(i) + so(i) + po(i)) ≤ εOPT(I).

Therefore, they can be packed using only new bins at costO(ε)OPT(I) + 1 by simply assigning them tom(i) and usingNext

Fit. �

The last Lemma implies that it is enough to get an augmented APTAS for instances such as I′, in which no pair has a

coordinate between εk
*+1 and εk

*
. This motivates the partitioning scheme of step (2). We now turn to see that after the

second cleaning step of the algorithm a close to optimal solution is maintained. This justifies the fact that we can deal with

the parts of N′ separately as we deal with N′′ in steps (4) and (5) and with N′ \ N′′ in step (6).
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Lemma 4. There exists a solution with a cost of at most (1 + O(ε))OPT(I′) + 1, that for every i ∈ N′, such that L′(i) ∩ SC /= ∅, the
solution assigns i to a pair in L′(i) ∩ SC.

Proof. Suppose that in an optimal solution for instance I′, each item i ∈ F , where F ⊆ I′, is assigned to o(i) ∈ L′(i) \ SC and

L′(i) ∩ SC /= ∅. Consider a new feasible solution that assigns each item i ∈ F tom(i). Clearly for all i ∈ F ,m(i) ∈ L′(i) ∩ SC (since

for each pair in SC, its size plus its penalty is at most 2εδ, while the size plus the penalty of every pair in L′(i) \ SC is at least δ).

Observe that for i ∈ F , at least one of so(i) ≥ δ and po(i) ≥ δ holds, so we can partition F into Fs = {i ∈ F : so(i) ≥ δ} and

Fp = {i ∈ F : po(i) ≥ δ,so(i) < δ}. Thus, an optimal solution to I′ uses at least δ|Fs| bins, and pays a total penalty of at least δ|Fp|.
This implies that |F | ≤ OPT(I′)/δ. It follows that if we reassign items i ∈ F tom(i) instead of o(i) (and pack using Next Fit) the

cost will increase by at most 2|Fs|εδ + 1 + |Fp|εδ ≤ 3|F |εδ + 1 ≤ 3εOPT(I′) + 1. �

The previous lemma implies that to get a near optimal packing of I′, it is enough to first get a near optimal packing of

I′′ and then complete it with the rest of the items using pairs which are small and cheap. Indeed, consider an optimal

solution to instance I′ in which lists L′(i) are changed to L′(i) ∩ SC, whenever the latter is not empty. Suppose we can

also guess the optimal pair o′(i) to be assigned to any item i. We can now remove the items of SC from the optimal

packing and repack them using Next Fit in the available space. As we are now using bins of size 1 + ε and since all

items are of size at most δε, the total size of items that each bin (except for the last one) would contain increases to at

least 1 + ε − εδ. Therefore, the items will fit, and thus the number of bins used will stay the same (or decrease). We now

proceed to prove that the rounding of pairs in BE,SE,BC and SC done in step (4), does not affect the optimal value too

much.

Lemma 5. The optimal solution to instance I′′ with pairs in BE,SE,BC rounded as in step (4), when using bins of size 1 + ε, has

cost at most (1 + O(ε))OPT(I′′) + 1.

Proof. Consider an optimal solution for instance I′′ before the rounding. Let B, C, D be the items in N′′ assigned to pairs in

BE,SE and BC in such an optimal solution respectively. Clearly the rounding of BE (i.e., items in B) remains feasible when the

size of the bins is augmented to 1 + ε, since there are at most 1/δ items in any one bin. Also, the total penalty paid by the

rounded instance for BE only increases by a factor 1 + ε. On the other hand, note that for i ∈ C, po(i) ≥ δ, and for i ∈ D, so(i) ≥ δ.

This implies that |C| ≤ OPT(I′′)/δ and |D| ≤ OPT(I′′)/δ. Therefore, the rounding of BC (i.e., items in D) can only increase the

penalty by a factor 1 + ε. In addition, while the rounding of SE (i.e., items in C) can actually overflow bins by too much,

the items overflowing bins can be removed from their current bins and placed in new bins using Next Fit. These new bins

will be almost full and therefore there can be at most εOPT(I′′) + 1 new bins. Overall we have increased the cost by at most

2εOPT(I′′) + 1. �

With this rounding we have a constant number of elements in L′′ = ∪i∈N′′L′′(i). And using the flow technique described in

step (5) we guess the optimal assignment of items i ∈ N′′ to pairs in their corresponding L′′(i). This is done by solving at most

nK maximum flow problems, where K ≤ (1/εδ)2 is the number of possible pairs after the rounding. Once the assignment has

been guessed we use [16] to solve the bin packing problem optimally using bins of size 1 + ε (we have a constant number

of items all of size at least εδ). Therefore we obtain an optimal solution of cost smaller than that for instance I′′ after the
rounding (since we use larger bins).

To finish the proof of correctness we need to see that step (6.1) correctly packs items in N′ \ N′′. To this end we first prove

a lemma concerning the Mikowski sum of convex two-dimensional polyhedra. For i = 1, . . . ,n, let Pi be a convex polyhedron

in R2
+ and let Di be the dominant of Pi (i.e., Di = Pi + R2

+). Denote the set of extreme points of Di by Li = {x1
i
, . . . ,x

μ(i)
i

} ⊂ R2
+,

where x
j
i
= (s

j
i
,p

j
i
), and assume that xi’s are sorted in increasing order of their first component s1

i
< . . . < s

μ(i)
i

. Let D be the

Minkowski sum of sets Di i.e., D =
n∑

i=1

Di = {y ∈ R2
+ : y = y1 + . . . + yn, with yi ∈ Di} (see Figure 1).

Lemma 6. The following hold:
(i) D is a polyhedral convex set and if x is a vertex of D, x can be written as sum of vertices in Di, i.e., x = x1 + . . . + xn,where each

xi is a vertex in Di.

(ii) If x = x
l1
1

+ . . . + xlnn and y = x
h1
1

+ . . . + xhnn are two adjacent vertices of D (joined by a one-dimensional face of D), then for all

u such that xluu /= xhuu

pluu − phuu

shuu − sluu
= max

1≤k≤n

⎧⎨
⎩p

lk
k

− p
hk
k

s
hk
k

− s
lk
k

⎫⎬
⎭ ,

where by convention 0/0 = 0. In other words, this ratio is either zero or constant. Furthermore if
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Fig. 1. Example of Minkowski sum.

K = argmax

⎧⎨
⎩p

lk
k

− p
lk+1

k

s
lk+1

k
− s

lk
k

: k = 1, . . . ,n; lk < μ(k)

⎫⎬
⎭ /= ∅,

then x′ = x + ∑
k∈K

(x
lk+1

k
− x

lk
k
) is also a vertex of D which is adjacent to x.

Proof.

(i) The sum of convex sets is convex. It is also easy to see that it is polyhedral. Let x be a vertex of D, and suppose that

x = x1 + . . . + xn, with xi ∈ Di for all i = 1, . . . ,n, but xj is not a vertex of Dj for some 1 ≤ j ≤ n. Thus, xj = (x′
j
+ x′′

j
)/2 where

x′
j
,x′′
j

∈ Dj . It follows immediately that x = (x′ + x′′)/2, with x′ = x − xj + x′
j
and x′′ = x − xj + x′′

j
, where clearly x′,x′′ ∈ D. A

contradiction is obtained.

(ii) Suppose x and y are as in (ii) and let k be an integer so that x
l1
1

/= x
h1
1
, . . . ,x

lk
k

/= x
hk
k
,x
lk+1

k+1
= x

hk+1

k+1
, . . . ,xlnn = xhnn , that is, x and

y differ in the first k terms and they are equal in the last n − k (this is done without loss of generality maybe by reordering

the terms in the sum). Let z1, . . . ,zk ∈ D be defined as zj = x − x
lj
j

+ x
hj
j
. Clearly z := 1

k

k∑
j=1

zj = 1
k
y +

(
1 − 1

k

)
x. Therefore z

is a convex combination of x and y, thus it lies in the segment [x,y]. However, z is also a convex combination of the zj ’s,

which in turn implies that all zj ’s have to lie in the segment [x,y], since all zj ’s belong to D. Then, for all j = 1, . . . ,k the slope

(p
lj
j

− p
hj
j

)/(s
hj
j

− s
lj
j
) is constant. The first part of assertion is proved.

To see the second, let y be the vertex in D adjacent to x with larger first component. Keeping the notation, let us say

y = x
h1
1

+ . . . + xhnn . Thus z1, defined as above, lies in the segment [x,y] (here we are again assuming x
h1
1

/= x
l1
1
, and note that

h1 > l1). Thus the slope of segment [x,y] equals, (ph1
1

− p
l1
1

)/(s
h1
1

− s
l1
1

). Now we have that

p
l1
1

− p
l1+1
1

s
l1+1
1

− s
l1
1

≥ p
l1
1

− p
h1
1

s
h1
1

− s
l1
1

≥ max

⎧⎨
⎩p

lk
k

− p
lk+1

k

s
lk+1

k
− s

lk
k

: k = 1, . . . ,n; lk < μ(k)

⎫⎬
⎭ .

The first inequality follows from the convexity of D1 and the choice of the ordering for the vertices of D1, the second

inequality follows form the fact that segment [x,y] is the one having the most negative slope out of all segments [x,u] with u

having larger first component than x (in particular this holds for u = x′). The latter implies that segment [x,x′] is contained
in segment [x,y], and from the maximality of K , y = x′. �

Lemma 6 essentially says that we can enumerate all extreme points of D efficiently. To do this part (ii) of the lemma

suggests that one should start by the vertex of Dwith highest penalty x = x1
1

+ . . . + x1n . Then, if at some point we have vertex

x = x
l1
1

+ . . . + xlnn , find the index i such that the slope between x
li
i
and x

li+1

i
is most negative, and move to x′ = x − x

li
i

+ x
li+1

i
.

This is repeated until one reaches the last point x
μ(1)

1
+ . . . + x

μ(n)
n . In particular, the latter implies that the number of extreme

point in D is at most
n∑

i=1

μ(i).

We now go back to prove that step (6.1) correctly packs items in N′ \ N′′. Recall that for all such items it is enough to

consider pairs which are both small and cheap (as long as we only would like to get an augmented APTAS).

Lemma 7. The solution for instance I′ obtained at the end of step (6.1) has cost at most (1 + ε)OPT(I′) + 3.

Proof. Consider a near optimal packing of I′′ as that constructed in step (5). Given this packing, let us assume that the optimal

solution that uses bins of size 1 + ε, assigns to items i ∈ S a pair b(i) ∈ LSC (i). For simplicity of notation assume also that for
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i ∈ N′′, b(i) is the pair assigned to i in step (5). Therefore b(i) is defined for every i ∈ N′. Clearly, Lemmas 4 and 5 imply that

this latter solution has cost, COST , at most (1 + O(ε))OPT(I′) + 2. We shall show that the solution constructed in step (6.1) is

close to that just described. We consider three cases.

(a) In step (6.1.v)
∑
i∈S

sm′(i) > C. In this situation we are done since the total cost of the packing constructed in step (6.1.v) is at

most

A(I′′) +
∑
i∈S

sm′(i) − C + 1 +
∑
i∈S

pm′(i) ≤ A(I′′) − C + 1 +
∑
i∈S

(sb(i) + pb(i)) ≤ COST + 1,

where A(I′′) is the total cost of the solution for instance I′′ constructed by the algorithm in step (5). The cost of the sizes

and penalties used by all items of N′′ in the considered solution is A(I′′) − C. Since we increase each bin before packing,

each bin except for the last one will contain a total size of 1 + 2ε and a total of at least C can be packed into existing bins.

Therefore, every bin that receives items of S except for the last one contains a total of at least 1 + 2ε − εδ > 1 + ε. This

means that the already existing bins receive a total of at least C, and the number of additional bins needed is at most

�∑
i∈S

sm′(i) − C� ≤ ∑
i∈S

sm′(i) − C + 1.

(b) In step (6.1.v)
∑
i∈S

sm′(i) ≤ C. If this is the case, suppose that
∑
i∈S

sb(i) = C + U, for some positive U, and that
∑
i∈S

pb(i) = V .

Therefore,

COST ≥ BINS + U

1 + ε
+
∑
i∈N′′

pb(i) + V ≥
∑
i∈N′

sb(i)

1 + ε
− 1 +

∑
i∈N′

pb(i),

where BINS is the number of bins used in step (5) for instance I′′. Note that the last inequality holds since in the b(i)

assignment all bins (except the las one) are almost full. Consider T ⊂ S satisfying U ≤ ∑
i∈T

(sb(i) − sm′(i)) ≤ U + ε. Such a T

necessarily exists and it is easy to find since for T = S the latter difference is at least U, for T = ∅ the difference is 0, and

moreover, si ≤ ε for i ∈ SC. With this, and from the choice ofm′(i), we also have that
∑
i∈T

(pb(i) − pm′(i)) ≥ −U − ε. Therefore,

if we change the assignment for items in i ∈ T from b(i) to m′(i), keeping the packing of I′′ and repacking items in S by

Next Fit, the new cost will be at most

∑
i∈N′\T

sb(i) +
∑
i∈T

sm′(i) +
∑
i∈N′′

pb(i) + (V + U + ε) ≤
∑
i∈N′

sb(i) − U +
∑
i∈N′′

pb(i) + (V + U + ε),

≤
∑
i∈N′

sb(i) +
∑
i∈N′

pb(i) + ε ≤ (1 + ε)COST + 1.

The latter means that there is an assignment of items in i ∈ S to a pair b′(i) ∈ LSC (i) resulting in a solution with cost at

most (1 + ε)COST + 1, satisfying
∑
i∈S

sb′(i) ≤ C. Thus, we reduce to case (c).

(c) The assignment b(i) satisfies
∑
i∈S

sb(i) ≤ C. In this case, we show that the solution produced at step (6.1.iv) is near optimal.

Consider Lemma 6 with Pi being the convex hull of LSC (i), for i ∈ S. The assertion of the lemma guarantees that our

algorithmwill end up with an assignment a(i) for items i ∈ S, such that the frontier of D contains

(∑
i∈S

sa(i),
∑
i∈S

pa(i)

)
. Since

sa(i) ≤ δε, from (6.1.iii) it follows that C + ε ≤ ∑
i∈S

sa(i) ≤ C + δε + ε. This in turn implies that
∑
i∈S

pa(i) ≤ ∑
i∈S

pb(i), as otherwise(∑
i∈S

sb(i),
∑
i∈S

pb(i)

)
would be a point in D, such that its components are strictly smaller that those of

(∑
i∈S

sa(i),
∑
i∈S

pa(i)

)
.

Overall the cost of the solution returned by the algorithm is A(I′′) +∑
i∈S

pa(i) ≤ COST .

In all three cases we obtain a feasible solution, together with a packing in bins of size (1 + 2ε), of total cost of at most

(1 + ε)COST + 1 ≤ (1 + O(ε))OPT(I′) + 3. �

Theorem 8. The solution returned by the algorithm has cost at most (1 + O(ε))OPT(I) + 5

Proof. Last lemma together with Lemmas 2 and 3 imply that the cost of the solution returned by the algorithm is at most

(1 + O(ε))OPT(I′) + 3 + 3εOPT(I′) + 1 ≤ (1 + O(ε))OPT(I′) + 4 ≤ (1 + O(ε))OPT(I) + 5. �
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3. Online bounded space packing

We first study the problem where the items are allocated spaces in unit sized bins. In Section 4, we generalize it to the

case of variable sized bins. Also, in Section 5 we study online bin covering, and its generalization to variable sized bins.

3.1. Algorithm Picky Harmonic

We define our algorithmwhich uses as a procedure theHarmonick algorithm of Lee and Lee [20]. Our algorithm is called

Picky Harmonick (PHk). The main idea of “harmonic-based” algorithms is to first classify items by size, and then pack an

item according to its class (as opposed to letting the exact size influence packing decisions, as in fit based algorithms such

as First Fit and Next Fit). Since our items do not have a fixed size, given an item, we first decide which configuration to use

and then apply a “harmonic-based” classification. Our algorithm uses an integer parameter k ≥ 2.

We first show how an item is packed after one of its possible configurations is chosen. We call the size of the item in

this configuration “its chosen size”. First define two auxiliary functions: For s ∈ [0,1], let K(s) = k if s ≤ 1
k
and K(s) = � 1

s �
otherwise; also let w(s) = 1

K(s) for s ∈
(
1
k
,1
]
and w(s) = ks

k−1
for s ∈

[
0, 1

k

]
.

For the classification of chosen sizes, we partition the interval (0,1] into sub-intervals. We use k − 1 sub-intervals of

the form ( 1
i+1

, 1
i
] for i = 1, . . . ,k − 1 (intervals 1, . . . ,k − 1) and one final sub-interval [0, 1

k
] (interval k). Each packed bin will

contain only items of chosen sizes associated with a single sub-interval. Items of chosen size which belong to sub-interval i,

are packed i to a bin for i = 1, . . . ,k − 1 (except for possibly the very last bin dedicated to this interval). Items of chosen size

in interval k are packed using the greedy algorithm Next Fit. This algorithm keeps a single open bin and packs chosen sizes

which belong to interval k to this bin until some chosen size does not fit. Then a new bin is opened for interval k, and the

previous bin is never used again. For 1 ≤ i ≤ k − 1, a bin which received the full number of items (according to its type, that

is, received i items) is closed, so at most k − 1 bins are open or active simultaneously (one per interval, except for ( 1
2
,1] which

does not need an active bin).

The packing of items after configurations are chosen is similar to the algorithm of [20]. The only difference is that wemay

need to pack items of size zero. They are packed into bins of small items.

Wedefinea function f (a,b),wherea ∈ [0,1]andb ≥ 0, as follows: f (a,b) = w(a) + b. Foran item i, let (si,pi)beaconfiguration

which minimizes the function f . Then Picky Harmonick chooses this configuration and packs item i with chosen size si and

penalty pi. Ties are broken arbitrarily.

As a first step to analyze the algorithm we assign costs to items (similar to weighting [27,24]). The cost of an item is a

function of its allowed configurations. We say that the “chosen weight” of item i is w(i) and the “chosen cost” of item i is

f (si,pi), which is denoted by c(i). We obtain the result using a sequence of lemmas.

Lemma 9. The cost of PHk is at most
n∑

i=1

c(i) + k − 1.

Proof. Let uj be the number of bins used for itemswith chosen size in the interval
(

1
j+1

, 1
j

]
for 1 ≤ j ≤ k − 1 and of chosen size

in
[
0, 1

k

]
for j = k. The cost of the algorithm is thereforeAlg ≤

n∑
i=1

pi +
k∑

j=1

uj ≤
n∑

i=1

(c(i) − w(i)) +
k∑

j=1

uj . Consider items of chosen

size in
(

1
j+1

, 1
j

]
for some 1 ≤ j ≤ k − 1. Let nj be the number of such items, then the sum of their chosenweights is

nj
j
. We also

have uj = � nj
j
� ≤ nj

j
+ 1 for 2 ≤ j ≤ k − 1 and u1 = n1. Consider next items of chosen size in

[
0, 1

k

]
. Let S be the total size of such

items, then the sum of their chosenweights is Sk
k−1

. Since a bin is closed only after it is filled by at least a total of 1 − 1
k
, we also

haveuk ≤ � Sk
k−1

� ≤ Sk
k−1

+ 1. One special case iswhen S = 0 and yet some items of chosen size zero are packed. In this caseuk =
1, whichmeans that the bound uk ≤ Sk

k−1
+ 1 still holds.We get Alg ≤

n∑
i=1

(c(i) − w(i)) +
n∑

i=1

w(i) + k − 1 =
n∑

i=1

c(i) + k − 1. �

For the analysis, we use the following well known sequence πi, i ≥ 1, which occurs quite often in bin packing. Let π1 =
2,πi+1 = πi(πi − 1) + 1 and let �∞ =

∞∑
i=1

1
πi−1

≈ 1.69103. This sequence is presented in [20]. It is not difficult to show that

1 −
t∑

i=1

1
πi

= 1
πi+1−1

. It is shown in [20] that the sequence of asymptotic competitive ratios of the algorithmsHarmonick tends

to�∞ as k grows, and that no bounded space algorithm can have an asymptotic competitive ratio smaller than�∞. We show

that the generalized algorithm PHk has the same properties. Clearly, the lower bound for the problemwith controllable sizes

follows from the lower bound for classical bin packing, which is the special case where each item has a single configuration.

In [20], the competitive ratio is analyzed using a weighting function. The weight of item i of size si is defined to be w(si)

(according to our definition of the functionw as above). It is shown in [20] that the total weight of items that can fit into one
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bin is at most �∞ + δ(k), where δ(k) is a non-negative function of kwhich tends to zero as k tends to infinity. We extend this

property for our problem as follows.

Lemma 10. Let T denote a set of items all packed in one bin by some algorithm, using a configuration (xi,yi) for i ∈ T . Then the

sum of chosen weights of items in this bin is at most �∞ + δ(k), where δ(k) is a non-negative function of k which tends to zero as

k tends to infinity.

Proof. Since the configuration according to which each item is packed is fixed in advance, we can see the chosen sizes of

items simply as items for a classical bin packing problem, and their chosen weights as their weights. Therefore, the claim is

implied by the result of [20]. �

Lemma 11. Let R ≥ 1 be a constant. Assume that we are given a set of items packed in one bin by some algorithm, using specific

configurations, and for every bin packed by the algorithm, the sum of chosen weights of items assigned to this bin is at most R.

Then the competitive ratio of PHk is at most R.

Proof. By Lemma 9 we have that Alg ≤
n∑

i=1

c(i) + k − 1. Consider an optimal packing OPTand let (xi,yi) be the configuration

according towhichOPTpacks item i.Wehave c(i) ≤ w(xi) + yi. Let z be thenumberofbinsusedbyOPTand letTj be the subsetof

items packed into bin j (for an item iwhich is packed byOPTso that yi = 0,we still assume that it is assigned a bin). Thus Alg ≤
n∑

i=1

(w(xi) + yi) + k − 1 =
n∑

i=1

yi +
z∑

j=1

∑
i∈Tj

w(xi) + k − 1 ≤
n∑

i=1

yi + z · R + k − 1, while OPT =
n∑

i=1

yi + z. The claim follows. �

Theorem 12. The asymptotic competitive ratio of PHk tends to �∞ as k grows. No algorithm can have a smaller asymptotic

competitive ratio.

Proof. The lower bound follows from that in [20], since the standard online bounded space bin packing problem is a special

case of our problem. The upper bound is a consequence of Lemmas 9,10,11. �

4. Algorithm Variable Picky Harmonic

In this section, we define an algorithm which uses as a procedure the variable Harmonicε algorithm of Csirik [7], later

analyzed by Seiden [23]. This algorithm is a generalization of theHarmonick (with ε = 1
k
) algorithm of Lee and Lee [20], and

takes into account the different bin sizes.

Our algorithm is calledVariablePickyHarmonicε (VPHε).Weagain classify by size, but the classesdependon thebin sizes.

Our algorithm uses a real parameter ε > 0. Denote the bin set by B, and let 1 = b1 > b2 > . . . bs > 0 be the list of bins sizes.

We define the set of breakpoints for the bin size bi as follows, Bri = { bi
j

> ε|j is integer}. We define the set of all breakpoints

as Br = ⋃s
i=1 Bri. Note that Br is a set and not a multiset, that is, some breakpoints may come frommore than one set Bri. We

sort Br and enumerate it as 1 = t1 > t2 > . . . > tp. We let tp+1 = ε and tp+2 = 0. This results in p + 1 intervals Ii = (ti+1,ti] for
1 ≤ i ≤ p and Ip+1 = [0 = tp+2,tp+1]. The algorithm keeps at most one open bin for each such interval.

We define the function w′ which is based on the partition into intervals as above. For i ≤ p, let �i be an integer such that

ti ∈ Br�i and ji be such that ji · ti = b�i . The function w′ is piecewise linear and is equal to
b�i
ji

in the interval Ii for 1 ≤ i ≤ p,

and in Ip+1, w
′(x) = x

1−ε
.

Given an item, the algorithm decides on a configuration according to which the item will be packed. We explain later

how this configuration is chosen. Let such a configuration for an item i be (ci,di). The item is then classified into an interval

Iz according to the value ci. If z = p + 1, a space of size ci is allocated in an active bin of this interval. If a new bin needs

to be opened, i.e., the size ci is larger than the remaining space in the active bin for Ip+1, a new bin of size 1 is opened for

this interval, and a space of size ci is allocated there. If z ≤ p we act as follows. If there is no active bin for this interval,

a bin of size b�z is opened. Then a space of size ci is allocated in the active bin for this interval. If as a result the bin

contains jz items, it is closed. Since tz = b�z
jz
, and all spaces allocated in this bin are of size at most tz , this process does not

fail.

We define a function f (a,b) = w′(a) + b, similarly to the previous section, (but w′ is different from w and is a function

of B). For an item i, let (a,b) = (si,pi) be a configuration which minimizes the function f . Then Variable Picky Harmonicε

chooses this configuration and packs item i with chosen size si and penalty pi. Ties are broken arbitrarily. We assign

costs to items. The cost of an item is a function of its allowed configurations. We say that the “chosen weight” of item i

is w′(i) = w′(si) and the “chosen cost” of item i is f (si,pi), which is denoted by c(i). The result follows from the following

lemmas.
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Lemma 13. The cost of VPHε is at most
n∑

i=1

c(i) + s
ε
.

Proof. We start with bounding the value p. We have p = |Br| ≤
s∑

i=1

|Bri| ≤
s∑

i=1

� 1
ε
� ≤ s

ε
.

Let uz be the number of bins used for items with chosen size in the interval Iz for 1 ≤ z ≤ p + 1. The cost of the algorithm

is therefore Alg ≤
n∑

i=1

pi +
p+1∑
z=1

uz · b�i ≤
n∑

i=1

(c(i) − w′(i)) +
p+1∑
z=1

uz · b�i . Consider items of chosen size in Iz for some 1 ≤ z ≤ p.

Let nz be the number of such items, then the sum of their chosen weights is
b�z ·nz

jz
. We also have uz = � nz

jz
� ≤ nz

jz
+ 1 and

uz · bz ≤ bz ·nz
jz

+ bz ≤ bz ·nz
jz

+ 1. Note that for z = 1, we have j1 = 1 and u1 = n1. Consider next items of chosen size in Ip+1. Let

S be the total size of such items, then the sum of their chosen weights is S
1−ε

. Since a bin is closed only after some chosen

size (in Ip+1) does not fit, it is filled by at least a total of 1 − ε, we also have up+1 ≤ � S
1−ε

� ≤ S
1−ε

+ 1. One special case is when

S = 0 and yet some items of chosen size zero are packed. In this case up+1 = 1, which means that the bound up+1 ≤ S
1−ε

+ 1

still holds. We get Alg ≤
n∑

i=1

(c(i) − w(i)) +
n∑

i=1

w(i) + p ≤
n∑

i=1

c(i) + s
ε
. �

Lemma 14. Consider the algorithm for a parameter ε > 0. For a bin set B, let W be an upper bound on the maximum ratio for any

bin size, between the total weight of items that can be assigned to this bin and the size of the bin (which can be computed by the

mathematical program in [23]). Let T denote a set of items all packed in one bin of size bj by some algorithm, using a configuration

(xi,yi) for i ∈ T . Then the sum of chosen weights of items in this bin is at most bjW.

Proof. Since the configuration according to which each item is packed is fixed in advance, we can see the chosen sizes of

items as items for a classic bin packing problem, and their chosen weights as their weights. �

Lemma 15. Let R ≥ 1 be a constant. Assume that we are given a set of items packed in one bin of size bj by some algorithm,

using specific configurations, and for every bin packed by the algorithm, the sum of chosen weights of items assigned to this bin is

at most bjR. Then the competitive ratio of VPHε is at most R.

Proof. Using Lemma 13 we have Alg ≤
n∑

i=1

c(i) + s
ε
. Consider an optimal packing OPTand let (xi,yi) be the configuration

according towhichOPTpacks item i.We have c(i) ≤ w(xi) + yi. Let zm be the number of bins of size bm used byOPT, and let Tj,m
be the subset of items packed into the j-th bin of size bm, for 1 ≤ m ≤ s. (For an item iwhich is packed byOPTso that yi = 0,we

assume that it is assigned a bin.) Thus Alg ≤
n∑

i=1

w(xi) + yi + s
ε

=
n∑

i=1

yi +
s∑

m=1

zm∑
j=1

∑
i∈Tj,m

w(xi) + s
ε

≤
n∑

i=1

yi +
s∑

m=1

zm∑
j=1

bm · R + s
ε

≤
n∑

i=1

yi +
s∑

m=1

zm · bm · R + s
ε
. However, we have OPT =

n∑
i=1

yi +
s∑

m=1

zm · bm, the claim follows. �

Theorem 16. The asymptotic competitive ratio of VPHε is the same as the competitive ratio of the algorithm Variable Harmonic

with the same value of ε. No algorithm can have a smaller asymptotic competitive ratio.

Proof. The lower bound follows from the lower bound proved in [23], since the standard variable sized online bounded

space bin packing problem is a special case of our problem. The upper bound is a consequence of Lemmas 13,14,15. �

5. Online bin covering

In this section we study the dual problem, which is a generalized bin covering problem. We start by a simple adaptation

of the algorithm of [1] for the case of unit bins.

5.1. Algorithm Picky Cover

The algorithm Picky Cover (PC) acts as follows.We define a function h(a,b), where a ∈ [0,1] and b ≥ 0, as follows. h(a,b) =
a + b. For an item i, Let (si,pi) be a configurationwhichmaximizes the function h. Then Picky Cover chooses this configuration

and packs item iwith chosen size si and value pi. The algorithm keeps a single active bin, and packs the sizes si into this bin.

Once the bin is covered, that is, contains a total of at least 1, this bin is closed and a new one is opened.

We prove the following theorem.
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Theorem 17. The competitive ratio of pc is 2 and this is the best possible ratio.

Proof. The lower bound follows from the result of [8], since standard online bin covering is a special case where each item

has a single configuration with its original size, and value zero. To prove the upper bound, consider an optimal solution OPT.

Denote the configuration used by OPT for item i by (xi,yi). We have OPT ≤
n∑

i=1

(xi + yi) ≤
n∑

i=1

h(si,pi) =
n∑

i=1

(si + pi). This is true

by the choice of configurations (si,pi).

Since si ≤ 1 for all i, no bins that the algorithm covers is covered by a total of more than 2. Thus, the number of bins

that are successfully covered is at least

n∑
i=1

si−1

2
. The total value of the algorithm is therefore at least Alg ≥

n∑
i=1

pi +
n∑

i=1

si−1

2
≥

n∑
i=1

(si+pi)−1

2
≥ OPT

2
− 1

2
�

5.2. Algorithm Variable Picky Cover

As in the previous cases, our algorithm first applies a decision rule, and then uses a known algorithm. In our case this is

the algorithm of [31] (which is the same as the greedy algorithm of [1], in the special case of unit bins).

The algorithm Variable Picky Cover (PC) acts as follows (again using h(a,b)). For an item i, let (si,pi) be a configuration

whichmaximizes the function h. Then Picky Cover chooses this configuration and packs item iwith chosen size si and value

pi. The packing is performed as in [31]. We next describe the packing method.

Recall that the bin sizes which are of size at least 1/2 are denoted b1 > b2 > . . . > bk > 1/2, and bk+1 = 1/2. We define

q = maxi=1,...,k{bi/bi+1} andm = − log2 (q − 1). Note that due to the definition of q,m is polynomial in the length of the input.

Thus we have bi ≤ qbi+1 for i < k and bk ≤ qbk+1 = qb1/2. Note that this definition is valid since 1 < q ≤ 2.

We use mk + 1 intervals, where the items of each interval are packed independently of other items. Interval I(i,j), for

1 ≤ i ≤ k, 0 ≤ j ≤ m − 1 is defined as (
bi+1

2j
,
bi
2j

] and interval Ilast = [0, 1
2m

]. The algorithm keeps an active bin for each interval,

and packs all items of size in this interval into the bin. For interval I(i,j), the bin is of size bi+1 if i < k and of size b1 = 1

otherwise. For interval Ilast this is a bin of size b1 = 1.

Once a bin of size bi is covered, that is, contains a total of at least bi, this bin is closed and a new one of the same size is

opened for the respective interval. Note that a bin for interval I(i,j) is covered if exactly 2j items were assigned to it, if i < k

and otherwise if 2j+1 items were packed into it. Therefore, each bin, which belongs to interval I(i,j) for some 1 ≤ i < k (and

has size bi+1) is covered by at least a total of bi+1 and at most a total of bi ≤ qbi+1, and each bin which belongs to interval

I(k,j) (and has size b1 = 1) is covered by at least a total of 1 and at most 2bk ≤ qb1.

This is true for all bins except one last bin from each interval. We prove the following theorem.

Theorem 18. The competitive ratio of vpc is q and this is the best possible ratio.

Proof. The lower bound follows from the result of [31], since it is proved for a special case of our problem. To prove the

upper bound, consider an optimal solution OPT. Denote the configuration used by OPTfor item i by (xi,yi). Let VAlg and VOPT

be the total size of bins covered by the algorithm we defined and an optimal offline algorithm respectively.

We have OPT =
n∑

i=1

xi + VOPT ≤
n∑

i=1

(xi + yi) ≤
n∑

i=1

h(si,pi) =
n∑

i=1

(si + pi). This is true by the choice of configurations (si,pi).

Since the contents of no covered bin exceed its size by a factor of more than q, and no more than km + 1 additional bins

were used to pack items, but not covered, we also have
n∑

i=1

si ≤ qVAlg + mk + 1. Since Alg = VAlg +
n∑

i=1

pi, we have, OPT ≤

qVAlg + mk + 1 +
n∑

i=1

pi ≤ qAlg + mk + 1.

Since for a given set of bin sizes, m and k are constant, we get that the algorithm has an asymptotic competitive ratio of

at most q. �

6. Concluding remarks

We have designed an augmented APTAS for bin packing with controllable item sizes. Such an APTAS allows to relax the

problem in two ways. The algorithm both uses larger bins (of size 1 + ε) than the ones used by an optimal solution OPT, and

the number of bins used is slightly larger (by a factor of 1 + ε plus an additive constant) than the number of bins in OPT.

An open question is whether it possible to use only one such relaxation rather than both of them, that is, whether a dual

PTAS exists for the problem, and whether a standard APTAS for the problem can be designed.
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Typically, bin packing problems with more than one parameter become hard; this is the case for 2-dimensional vector

packing and for 2-dimensional bin packing [30,2,5]. On the other hand, some such problems admit an APTAS and an AFPTAS,

such as bin packing with rejection [13,3,14] and bin packing with cardinality constraints [4,14].
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