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In the traffic assignment problem, first proposed by Wardrop in 1952, commuters select the shortest available path to travel
from their origins to their destinations. We study a generalization of this problem in which competitors, who may control
a nonnegligible fraction of the total flow, ship goods across a network. This type of games, usually referred to as atomic
games, readily applies to situations in which the competing freight companies have market power. Other applications
include intelligent transportation systems, competition among telecommunication network service providers, and scheduling
with flexible machines.
Our goal is to determine to what extent these systems can benefit from some form of coordination or regulation. We

measure the quality of the outcome of the game without centralized control by computing the worst-case inefficiency of
Nash equilibria. The main conclusion is that although self-interested competitors will not achieve a fully efficient solution
from the system’s point of view, the loss is not too severe. We show how to compute several bounds for the worst-case
inefficiency that depend on the characteristics of cost functions and on the market structure in the game. In addition, building
upon the work of Catoni and Pallotino, we show examples in which market aggregation (or collusion) adversely impacts the
aggregated competitors, even though their market power increases. For example, Nash equilibria of atomic network games
may be less efficient than the corresponding Wardrop equilibria. When competitors are completely symmetric, we provide
a characterization of the Nash equilibrium using a potential function, and prove that this counterintuitive phenomenon does
not arise. Finally, we study a pricing mechanism that elicits more coordination from the players by reducing the worst-case
inefficiency of Nash equilibria.
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1. Introduction
Logistic and freight companies routinely transport goods
between different points in the world to serve their clients.
They make use of trucks, trains, ships, and planes to deliver
goods from their points of origin to their destinations. Com-
panies that provide this service compete in at least two
dimensions: the price they charge for shipping and the
service level they provide. To improve their competitive
advantage, these companies need to be strategic in how they
deliver the goods and minimize costs and delivery times.
The main operative decision is choosing the routes to be
used in the actual shipments, where each route consists of
a sequence of basic segments that may combine various
modes.
Although these companies may own and operate some of

the resources needed to move and sort the goods, frequently
they also subcontract other multimodal freight transporta-

tion companies, and pay to receive services and to use
resources. Some examples consist of leasing additional
planes at a peak time such as the holiday season, paying
landing and take-off fees to airports, and sending a ship-
ment to an area not covered by the company’s network.
From the perspective of the company that provides service
to the freight company, standard economic arguments imply
that additional demand is associated with a price increase.
For example, if an airport becomes very popular, it may
decide to increase landing and take-off fees because the
demand supports it. A potential increase may lead some
freight companies to consider other routes that were too
expensive with the previous fees. Besides the economic
consideration, another aspect is congestion. For many facil-
ities, including airports, an increase in demand causes an
increase in service time, which may impact the feasibility
of a given route.
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We focus on the freight companies, and model compa-
nies that provide service to them implicitly. As we described
above, the cost and the delay generated by a given resource
depend on which freight companies use it and the quantity
of goods they ship through it. These negative externali-
ties generate an interdependence between freight compa-
nies, and leads to a competitive situation between them.
We study this competition from the perspective of nonco-
operative game theory, and use the Nash equilibrium as the
solution concept of the game. An equilibrium is a solution
under which no competitor has any regret after seeing what
all competitors have done.
The main goal of this article is to provide a method-

ology to understand under what conditions equilibria are
efficient or, at least, not extremely inefficient. We measure
the efficiency of a solution, which represents the collec-
tive decisions made by the competitors, using a social cost
function. A low or high social cost, in itself, does not imply
that an equilibrium is good or bad, because there may be
instances that are intrinsically more expensive than others;
instead, we compare the social cost of an equilibrium to
a reference point provided by the socially optimal solu-
tion. This solution encodes what would happen if a single
decision maker controlled all the freight companies and
minimized the social cost. To quantify the efficiency loss
arising from the self-mindedness of freight companies, one
can compute the worst-case ratio of the social cost of an
equilibrium to that of the social optimum. If the ratio, gen-
erally referred to as the price of anarchy, happens to be
close to one, equilibria are rather efficient, which suggests
that companies are better off by making routing decisions
on their own. Even if the competitors could get together
and coordinate themselves, they would not be able to lower
the social cost significantly. Moreover, the extra effort to
coordinate has a cost (e.g., deploying systems to collect
information, computing optimal coordinated solutions, dis-
seminating information back to the coalition members, and
enforcing that companies do as told) that could offset the
reduction arising from the additional coordination. This
does not even consider that participants lose their free will,
which raises the cost as well. Conversely, when the ratio is
significantly higher than one, competitors may benefit from
some kind of coordination. This coordination can take the
form of regulations for the market structure (e.g., no com-
pany can hold more than a given market share), regulations
for the network (e.g., trucks are not allowed to circulate in
certain roads), incentives (e.g., subsidies or taxes for some
resources), etc. In this article, we look at pricing mecha-
nisms that can approximate the resulting equilibria to the
socially optimal solution.

1.1. A Model of Competition in
Freight Transportation

We represent the different segments and resources, hence-
forth referred to as arcs, by a directed network G= �V �A�.
For example, an arc may represent a route from Hong Kong

to New York by sea going through the Panama Canal, land-
ing in the Atlanta airport, or leasing a truck from San
Francisco to Denver. Note that we do not mean a spe-
cific boat, plane, train, or truck; we mean that the shipment
uses that particular arc along its route. We denote the set
of all freight companies, henceforth referred to as play-
ers, by �K	 = 
1� � � � �K�. We assume that player k ∈ �K	
has to send dk units of freight from node sk to node tk
(§6 describes a generalization to multiple sources and des-
tinations). We refer to �sk� tk� as an origin-destination (OD)
pair. Each player executes its contracts by selecting how
much freight to send along each possible route connecting
the corresponding OD pair. This decision is encoded by a
flow that specifies shipments along each arc, and that satis-
fies flow conservation constraints at every node. Summariz-
ing, each player k ∈ �K	 chooses a flow xk ∈�A

+ that routes
dk units of flow from sk to tk. We refer collectively to the
flows for all players by �x �= �x1� � � � � xK� ∈�A×K

+ . In addi-
tion, to simplify notation we henceforth let x �=∑

k∈�K	 xk

be the aggregate flow induced by all K players. Hence, we
denote the flow that player k ships through arc a by xka,
and the total flow by xa.
As we described previously, arcs are subject to congestion

and to competition. More demand for a carrier increases its
delay and its price. Because both negatively affect the cost
incurred by a given company, the standard way of modeling
this is to merge delay and price in a single cost function.
This modeling simplification can be achieved by express-
ing delays in currency units. For example, one can assign
a penalty (usually called the value of time) to each unit of
time a product is late. This penalty reflects the customer
goodwill that is lost from the delay, or the cost of having
capital tied in the form of inventory for one extra period of
time. Formally, we associate a cost function ca�·�� �+ →
�+ to every arc. These functions map the total flow xa on
arc a to its per-unit cost ca�xa�, which is equal for all play-
ers. Notice that the cost function depends on the aggregated
flow xa, but not on the decomposition �xa. Cost functions
are assumed to be increasing, differentiable, and convex,
although for some of our results the convexity assumption
can be slightly relaxed. In addition, in this article we only
consider separable cost functions, meaning that the cost in
one arc only depends on the flow in the same arc. Two com-
monly used cost functions are polynomials of small degree
(e.g., the Bureau of Public Roads 1964 uses the well-known
BPR cost functions to measure delay in road segments; these
functions are polynomials of degree 4) and delay functions
of queues (e.g., �ca− xa�

−1, where ca is the capacity of the
queue). Of course, the choice of cost function in a given arc
will ultimately depend on the role of that arc in the logistic
network. We assume that cost functions are taken from a set
of allowable cost functions �.
The goal of player k is to send its total demand dk min-

imizing its own cost Ck��x� �= ∑
a∈A xkaca�xa�. Note that

players can divide their flows among many paths if they
think it is convenient for them. Indeed, in some situations
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it is advantageous to send a fraction of the goods along
a more expensive route to lower the cost in a bottleneck.
Because of the convexity of cost functions, this translates
into savings for most of the freight, which can ultimately
reduce the total cost of the shipment.
Because the above cost function heavily depends of

the decisions made by other players, the natural solution
concept is that of an equilibrium. Thus, a solution for all
players �xne is called a Nash equilibrium if each flow xne� k

minimizes Ck�xk� xne�−k� among all flows xk that are fea-
sible for player k, assuming that flows of other players
xne�−k are fixed. Because the goal is quantifying the qual-
ity of equilibria, we introduce a social cost function, given
by C��x� = C�x� �=∑

k∈�K	 Ck��x� =∑
a∈A xaca�xa�. Notice

that the total cost does not depend on �x directly, but on the
aggregated flow x. A socially optimal flow is a solution �x opt

that minimizes C�x� among all feasible solutions �x. Such
a solution may not be stable because players could have
an incentive to deviate from it. Notice that our assumptions
guarantee that the system optimum is unique because the
objective function is strictly convex and it is minimized over
a polytope. It is well known that a Nash equilibrium can
be inefficient with respect to a social optimum (Pigou 1920,
Dubey 1986); actually, it may even be worse for all play-
ers (Braess 1968). In addition, it need not even be Pareto
optimal.
An instance of the game introduced above is defined by

the network topology, the set of players with their corre-
sponding OD pairs and demands, and the cost functions
associated to arcs. We consider a set of allowed instances �
and denote an arbitrary Nash equilibrium and the social
optimum of a given instance I ∈� by �xne�I� and �x opt�I�,
respectively.
Koutsoupias and Papadimitriou (1999) proposed to use

the worst-case ratio of the social cost of equilibria and
that of a socially optimal solution as a way to quantify
the impact of not being able to coordinate the players of a
game. This quantity, which became known as the price of
anarchy (Papadimitriou 2001), can be computed by solving

sup
I∈�

C��xne�I��

C��x opt�I��
� (1)

As any worst-case measure, the price of anarchy tends
to be pessimistic when considered broadly. For exam-
ple, if � contains all possible instances, the supremum
is unbounded (Roughgarden and Tardos 2002). To get a
more realistic estimation of the efficiency loss, we con-
sider smaller sets � . Past work and different parts of this
paper restrict either the cost functions, the OD pairs, or the
demands to have certain characteristics.

1.2. Our Contributions and Related Literature

The game presented in the previous section is generally
called a network game, although it also belongs to the more
general class of congestion games introduced by Rosenthal

(1973). The distinctive characteristic of these games is that
the per-unit cost of a resource (arc in this case) depends
only on the number of players that selected the resource
(total flow in this case), not on the identities of those play-
ers. Although we concentrate on network games to simplify
the presentation, everything holds true for the more gen-
eral class as well. Section 6 provides further details and an
application of congestion games in our context.
Most of the previous work on network games considers

that there are infinitely many players, and none of them
substantially controls the market. For this reason, play-
ers cannot influence prices unilaterally, causing them to
be price taking. In this situation, we say that the game is
nonatomic. A common application is given by a transporta-
tion network in which players represent drivers that com-
mute in the network. Here, players are small compared to
the scale of the whole system, and cannot modify the con-
gestion level on a given road by themselves. An equilibrium
is an assignment of commuters to routes such that every-
body is simultaneously taking a shortest path under the pre-
vailing conditions. This solution is commonly referred to
as a Wardrop equilibrium, due to the seminal paper about
road traffic modeling by Wardrop (1952).
Roughgarden and Tardos (2002) initiated the study of

the price of anarchy in nonatomic network games. They
showed that Wardrop equilibria can be arbitrarily ineffi-
cient compared to social optima if one considers all pos-
sible instances. For that reason, it is relevant to compute
the worst-case inefficiency, parameterized with the class �
of cost functions that are allowed to appear in the net-
work. For example, � can be the set of affine functions,
the polynomials of degree smaller than a fixed constant,
or the M/M/1 delay functions. For affine cost functions,
Roughgarden and Tardos (2002) showed that the price of
anarchy is 4/3, which implies that the efficiency loss that
arises from the self-mindedness of players is at most 33%.
Following their work, a series of papers generalized the
initial results by considering more general assumptions.
Roughgarden (2003) considered a general class � of (non-
linear) functions and established that an instance achieving
the supremum in (1) always has a simple structure, which
facilitates the computation of the price of anarchy. Exploit-
ing that, he found that the price of anarchy is 1.626 for
quadratic functions, 1.9 for cubic ones, and it grows as
b/ ln b if � contains nonnegative polynomials of degree
at most b. Correa et al. (2004) introduced the use of vari-
ational inequalities in this setting, which allowed them to
add side constraints to the problem without increasing the
price of anarchy, and to drop assumptions made previously
for technical reasons. Chau and Sim (2003) extended the
analysis to allow for symmetric, nonseparable cost func-
tions and elastic demands, whereas Perakis (2007) consid-
ered asymmetric, nonseparable ones. Because nonseparable
cost functions depend on the flow on all arcs in the net-
work, they can represent more general congestion and com-
petition effects. Finally, Roughgarden and Tardos (2004)
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and Correa et al. (2008) generalized earlier results from
network to congestion games. Furthermore, the latter refer-
ence provides a graphical interpretation of the inefficiency
of equilibria.
An atomic game represents situations in which some of

the players have a significant market power. In this case,
players control arbitrary demands, as opposed to an infini-
tesimal amount of flow, as was assumed in a nonatomic
game. Depending on the specific application, flow can or
cannot be divided along different routes. For example, for
freight transportation the shipper can normally send differ-
ent packets along different routes if it deems it convenient.
In some cases, companies may require shipments to follow
a single route to minimize the likelihood of losing or mis-
placing items. For telecommunications networks, depending
on the protocols in use, traffic is or is not required to follow
the same route (e.g., IP traffic versus ATM traffic). Rough-
garden and Tardos (2002) also presented some results for
the case of unsplittable demand. Later, Fotakis et al. (2005)
studied special classes of networks, and Awerbuch et al.
(2005) and Christodoulou and Koutsoupias (2005) indepen-
dently proved that if cost functions are linear, the price of
anarchy is bounded by a small constant.
The splittable case, which is the model we focus on,

was first considered by Orda et al. (1993), who noted that
existence of equilibria follows directly from the classical
result about concave games of Rosen (1965). That arti-
cle and one by Altman et al. (2002), among others, have
obtained uniqueness results for some special cases; nev-
ertheless, uniqueness does not hold in general as shown
recently by Bhaskar et al. (2009). Although Roughgarden
and Tardos (2002), Roughgarden (2005), and Correa et al.
(2005) studied the inefficiency of equilibria in a similar
model, unfortunately there are some problems with those
results, as we describe below. For this reason, this arti-
cle presents the first upper bounds on the price of anar-
chy of network games with atomic players and splittable
flow. Our main conclusion is that although Nash equilib-
ria may be strictly worse than a socially optimal solution,
the gap between the two is not too large. On the nega-
tive side, a Nash equilibrium of an atomic game may be
worse than a Wardrop equilibrium of the corresponding
nonatomic game, implying that market power can have a
negative effect on the quality of solutions. Additionally, a
counterintuitive phenomenon may arise: If some firms col-
lude and aggregate their demands, one would expect that
their collective efficiency improves. We provide examples
that show that this need not happen. Moreover, firms out-
side the cartel may find that the cost they incur is lower
when they compete with the cartel than when they compete
with the individual companies.
After looking at general market structures, we con-

sider assumptions that allow us to provide stronger results.
Specifically, when competitors ship from a common origin
to a common destination, we find a bound that depends on
the Herfindahl index (Tirole 1988)—a standard measure of

the industry concentration that is used by the U.S. Federal
Trade Commission to evaluate mergers and acquisitions.
Our bound shows that the price of anarchy decreases when
going from oligopolies with few companies that dominate
the market to instances in which companies’ market shares
are similar. Finally, assuming that market shares are exactly
equal allows us to characterize equilibria using a potential
function. In this case, all players are completely symmetric
because they also ship from a common origin to a common
destination. Besides simplifying the calculation of equilib-
ria, the characterization also implies that when more com-
panies compete, equilibria become less efficient because
companies are more difficult to coordinate. This rules out
paradoxes like the one previously mentioned and implies
that equilibria with atomic players are at least as efficient
as the Wardrop equilibrium of the corresponding nonatomic
instance. Independently of this work, Hayrapetyan et al.
(2006) study the effect of collusion in network games and
reach a similar conclusion for networks with parallel arcs
and splittable demands. Our results consider more restric-
tive assumptions on the players, but are valid for arbitrary
networks.
When players of a game internalize the negative exter-

nalities they generate (by paying a tax or toll), the result-
ing outcome is socially optimal. Inspired by this insight,
several researchers in different domains have designed pay-
ment mechanisms that provide the incentives to the partici-
pants to make decisions that are optimal from the system’s
perspective. This has important regulatory and operational
consequences because solutions that the system designer
has in mind can be enforced without introducing explicit
coordination among the users. For example, in the area of
transportation networks, this concept has been called con-
gestion pricing (Vickrey 1969, Johnson and Mattson 1992).
This mechanism assigns tolls to certain arcs of the net-
work, which are charged to users that take routes through
them. Congestion pricing has been used in cities such as
Singapore and London as a measure to help relieve the
ever-increasing congestion. The best possible set of tolls—
called optimal tolls—is one for which an equilibrium of
the system with tolls is socially optimal in the original net-
work. Beckmann et al. (1956) proved that charging users
the difference between the marginal and the real cost makes
them internalize the externality they generate, thus show-
ing that optimal tolls exist for nonatomic network games
with homogeneous users. More recently, Cole et al. (2003)
considered the more realistic situation in which players are
heterogeneous in their valuation of time. Their main result
says that when all users share the same origin and des-
tination there is an optimal set of tolls. Yang and Huang
(2004), and later Fleischer et al. (2004) and Karakostas and
Kolliopoulos (2004) proved that there are optimal tolls for
heterogeneous users even in general networks. For the case
of atomic players, we provide a mechanism that charges
uniform prices under which the Nash equilibrium is closer
to the social optimum, thus reducing the price of anarchy.
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Although our mechanism improves the efficiency of equi-
libria, they do not lead to fully efficient solutions. In the
case of symmetric games, tolls similar to those proposed
by Beckmann et al. (1956) are optimal.
Most research in the area of supply chain management

focuses on the design of mechanisms to achieve full effi-
ciency instead of analyzing the status quo to decide if some-
thing actually needs to be done. For example, Taylor (2002),
Cachon and Netessine (2004), Bernstein and Federgruen
(2005), and Golany and Rothblum (2006) study contracts
and pricing mechanisms that can induce efficient Nash equi-
libria. Nevertheless, Parlakturk and Kumar (2004) and Per-
akis and Roels (2007) compute the worst-case inefficiency
of equilibria in service systems and in various types of
supply chains, respectively. Switching to other application
domains, a series of papers study competition and pricing in
telecommunication networks. Johari and Tsitsiklis (2004),
building on Kelly (1997), prove that auctioning capacity in
networks leads to an efficiency loss of at most 33%. Sang-
havi and Hajek (2004) and Maheswaran and Başar (2004)
study extensions of the basic model. Finally, Acemoglu and
Ozdaglar (2007) study competition when network providers
compete for traffic by setting prices, and prove a tight worst-
case bound for the efficiency loss.

Structure of This Paper. In §2, we present a varia-
tional inequality characterization of Nash equilibria for the
atomic case, and work out a simple example. Then, §3
shows an upper bound on the price of anarchy for arbitrary
networks when cost functions belong to a set given a priori.
In addition, we provide a lower bound that arises from a
particularly bad instance. Section 4 concentrates in games
with a single origin and destination. We provide a bound
on the price of anarchy that depends on the variability of
the market power across players and a bound for the case
of symmetric players. Section 5 discusses pricing mech-
anisms that reduce the price of anarchy. We conclude in
§6 by presenting additional applications of our model, and
some directions in which our results can be generalized.

2. Characterization of Nash Equilibria in
the Atomic Network Game

Recall that a solution �xne for all players is a Nash equi-
librium if it is a best reply strategy for each player. For
that to be the case, the flow xne� k for player k ∈ �K	 needs
to be a solution to the following optimization problem in
which flows xne� i are fixed for i 
= k. For ease of notation,
we introduce a reverse arc with zero cost between tk and sk

for each k:

�NEk� min Ck�xne�1� � � � � xne� k−1� xk� xne� k+1� � � � � xne�K�

s.t.
∑

�u� v�∈A
xk�u� v�−

∑
�v�w�∈A

xk�v�w� = 0 for all v ∈ V �

xk�tk� sk� = dk�

xka � 0 for all a ∈A�

Note that our assumptions guarantee that these optimization
problems are convex. Then, an equilibrium always exists
(Rosen 1965). Using the convexity of Ck��x� and the first-
order optimality conditions of problem (NEk), we can char-
acterize equilibria with a variational inequality. Indeed, �xne

is at equilibrium if and only if, for all k ∈ �K	, xne� k solves
∑
a∈A

cka��xne
a ��x

k
a− xne� ka �� 0

for any feasible flow xk for player k� (2)

Here, the modified cost function cka��xa� �= ca�xa� +
xkac

′
a�xa� is the derivative with respect to x

k
a of the term

xkaca�xa� in C
k��x�. Intuitively, the second term accounts for

player k’s ability to affect prices.
At times, we will consider the Wardrop equilibria xwe

of an instance where each atomic player is replaced by
nonatomic ones controlling the same total flow. Under
a Wardrop equilibrium, all used paths serving the same
OD pair need to have the same cost with respect to ca�x

we
a �.

In addition, following Harker (1988), we consider situations
in which some OD pairs are controlled by atomic players,
whereas others are controlled by infinitely many nonatomic
players. These games can be viewed as limits of games in
which the number of players tends to infinity, but some
of them retain market power to set prices, whereas others
are relegated to be price takers. Harker (1988) referred to
the equilibria of those games as mixed behavior equilib-
ria, and he showed how to characterize them using a set of
variational inequalities similar to (2). Except where other-
wise stated, all results in this paper are valid for the three
classes of equilibria that we introduced (Nash, Wardrop,
and mixed) because we work with arbitrary market powers.
We remind the reader that the quality of equilibria for a

given set of allowable instances is determined by solving
the problem shown in (1). In this article, we work with
arbitrary network topologies, we assume that cost functions
belong to an arbitrary but fixed set of functions �, and
we consider alternative assumptions for the structure of the
players and their OD pairs. For example, market structures
can be arbitrary (§3), have a single OD pair with arbitrary
demands (§4.1), or have a single OD pair with symmetric
demands (§4.2).

2.1. A Simple Example with Linear Costs

In this section, we provide a simple example with linear
costs (i.e., the cost equals a constant times the flow) to illus-
trate that price-setting players can hurt the system. Although
in this case Wardrop equilibria are known to be optimal,
Nash equilibria may be inefficient when players are atomic.
(Dafermos and Sparrow 1969 showed that when cost func-
tions are of the form ca�xa�= rax

b
a for a fixed b, a flow is

a Wardrop equilibrium if and only if it has minimal total
cost.)
The example we present in Figure 1 is inspired from

a discussion on traffic paradoxes by Catoni and Pallotino
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Figure 1. An instance of a network game with atomic
players and splittable flow.

d1

d2d1

d2

0 0

0 0

c2c1 c3

(1991) and will be the basis for other instances in which
Nash equilibria exhibit a peculiar behavior. There are two
atomic players with demands equal to d1 �= 2 and d2 �= 3,
and cost functions equal to c1�x1� �= x1, c2�x2� �= x2, and
c3�x3� �= 2x3. In this example, the unique Wardrop equilib-
rium xwe (and therefore also the social optimum) routes all
d1 units of flow along arc 1 making xwe

1 = 2, whereas the
d2 units are split between x

we
2 = 2 and xwe

3 = 1. Notice that
c1�2� = c2�2� = c3�1� = 2 as expected, and the total cost
equals 10.
Nash equilibria of atomic games with linear cost func-

tions generally do not minimize the total cost. The main
difference compared to a Wardrop equilibrium is that when
competitors have market power they give relatively less
importance to others. Using (2), it can be verified that the
unique Nash equilibrium is the flow that routes xne1 ≈ 1�48,
xne2 ≈ 0�52+ 1�91, and xne3 ≈ 1�09, where xne2 is the sum
of the flows coming from the two players. Indeed, all used
paths have the same length with respect to the modified
cost functions cka��xa�= ra�xa+xka�. Its total cost is approx-
imately equal to 10�47, and therefore the efficiency loss
in this instance amounts to 4�7%. The degradation arises
because both players give less importance to the competi-
tor’s flow and they load arc 2 too much. A carefully con-
structed instance with linear cost functions implies that the
price of anarchy is at least 1.17. For the case of a single
OD pair, Altman et al. (2002) show that Wardrop equilib-
ria, Nash equilibria, and social optima all coincide when
cost functions are monomials of a fixed degree.

3. Atomic Games with General Players
In this section, we study the price of anarchy for atomic
games with arbitrary networks and demand configurations.
For example, players with arbitrary market power may
coexist with price-taking players. The most important con-
clusion that can be drawn from the results of this section
is that if marginal costs do not increase too steeply, then
the total cost at a Nash equilibrium is not too large when
compared to the cost of a socially optimal solution. Even if
players could collude and distribute the benefits fairly, the
total savings will not be significant.

As a warm-up exercise and before considering arbitrary
cost functions, we derive a bound on the price of anarchy
for the case in which � is the set of affine cost functions.
To this end, we define an optimization problem whose
first-order optimality conditions correspond to the equilib-
rium conditions. In particular, this optimization problem
implies that the game is potential (Monderer and Shapley
1996) and that there is an essentially unique equilibrium.
(Boulogne 2004 pointed out that this conclusion is implied
by the results of Rosen 1965; “essentially unique” means
that if there are multiple equilibria, they are indistinguish-
able from the players’ perspective.)
Consider an affine cost function of the form ca�xa�=qaxa

+ ra. Let us define a modified cost function ĉa� �
K
+→�+

by ĉa��xa� �= qa
∑

i�j∈�K	2 xiax
j
a + ra

∑
k∈�K	 xka. Note that

2
∑

i�j∈�K	2 xiax
j
a = �

∑
k∈�K	 xka�

2 + ∑
k∈�K	�xka�

2, which
implies that ĉa��xa� is convex, or strictly convex when costs
are strictly increasing. We define problem (NLP-NE) as the
minimization of the potential function �C��x� �=∑

a∈A ĉa��xa�
among all feasible flows �x. Strict convexity implies that
there is a single solution to the previous problem. Because
its first-order optimality conditions coincide with the
conditions that characterize a Nash equilibrium, the latter
has to be unique. In addition, problem (NLP-NE) can be
used to approximate a Nash equilibrium up to a fixed
additive term in polynomial time (Potra and Ye 1993). One
cannot expect to do better than an additive approximation
because an equilibrium may require irrational numbers.
This potential function can be used to derive bounds on the
price of anarchy (e.g., see Roughgarden and Tardos 2002,
Johari and Tsitsiklis 2004). However, this bound is looser
than that of Proposition 3.2.

Proposition 3.1. Consider an atomic congestion game
with K players and affine cost functions. Let �xne be a Nash
equilibrium and �x opt be a social optimum. Then, C�xne��
�2K/�K+ 1��C�x opt�.

Proof. To compare �C�·� and C�·�, notice that xaca�xa��
�2K/�K + 1��ĉa��xa� for an arbitrary decomposition of xa
into �xa. Summing over the arcs,
C�xne��

2K
K+ 1 �C��xne��

2K
K+ 1 �C��x opt��

2K
K+ 1 C�x

opt��

where the middle inequality holds because �xne minimizes
problem (NLP-NE). �

This approach can be easily extended to games with a
mix of atomic and nonatomic players (Harker 1988). We
need only to correct the cost function introduced above to
take into account that some users are price setters, whereas
the rest are price takers. Denoting the former by � �K	, the
resulting cost function is ĉa��xa� �= �qa/2��

∑
k∈�K	 xka�

2 +
�qa/2�

∑
k∈� �K	�xka�

2+ ra
∑

k∈�K	 xka.

3.1. The Price of Anarchy for General Cost
Functions

Using the variational inequality displayed in (2), we can
prove a stronger upper bound on the price of anarchy for
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atomic congestion games. The upper bound we provide
below originates in Roughgarden (2005), using ideas from
Correa et al. (2004). We define

 K�c� �= sup
�x� �y∈�K+

∑
k∈�K	
�ck��x�−c�y��yk+�c�x�−ck��x��xk�

xc�x�
�

and  K��� �= supc∈�  
K�c�. Notice that in the previous

definition (and later on when working with  ) we over-
loaded notation slightly because x, �x, y, and �y represent
flows on a single arc instead of representing flows for the
entire instance, as usual. Also, in this supremum we implic-
itly assume that x =∑

k∈�K	 xk and y =
∑

k∈�K	 yk. For this
definition and the ones below to work, we shall assume that
0/0 = 0. It is straightforward to see that  K��� � 0. The
magnitude of  is related to the steepness of cost functions.
For a geometric interpretation of this calculation in the set-
ting of nonatomic games, we refer the reader to Correa
et al. (2008).
We now give a bound on the price of anarchy for games

with k players that depends on  K���. To simplify nota-
tion, we will not explicitly distinguish the case of  K����
1 and assume that �1− K����−1 =+� in such a case.

Proposition 3.2 (Roughgarden 2005). Consider an
atomic congestion game with K players and separable
cost functions drawn from �. Let �xne be a Nash equi-
librium and �x opt be a social optimum. Then, C�xne� �
�1− K����−1C�x opt�.

Proof. Using (2) and the definition of  K��� in order, we
get that

C�xne�=∑
a∈A

∑
k∈�K	

{
�ca�x

ne
a �−cka��xne

a ��x
ne�k
a +cka��xne

a �x
ne�k
a

}

�
∑
a∈A

∑
k∈�K	

{
�ca�x

ne
a �−cka��xne

a ��x
ne�k
a +cka��xne

a �y
k
a

}

� K���C�xne�+C�y�
for any solution �y. We finish by setting �y = �x opt. �

Note that this bound on the price of anarchy is also valid
for the mixed atomic and nonatomic games. This is because
those games can be seen as the limit of atomic games when
the number of players goes to infinity. Roughgarden (2005)
proved that the price of anarchy under the same situation
equals "K��� �= supc∈� "K�c�, where

"K�c� �= sup
�x� �y∈�K+

xc�x�

yc�y�+∑
k∈�K	�xk− yk�ck��x� (3)

for c ∈ �. The two bounds match because "K��� =
�1− K����−1 when  K���� 1.
Although Roughgarden (2005) and Correa et al. (2005)

independently claimed that the price of anarchy for atomic
network games cannot exceed that in nonatomic ones, Fig-
ure 2 presents a counterexample. The OD pair on the left

Figure 2. Example of an instance with affine costs and
price of anarchy larger than 4/3.

0 0
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1

2.8

1

1.9

0 0

x

is nonatomic, whereas that on the right is controlled by a
single player. At Nash equilibrium, the common arc has 1
and 0.9 units of demand coming from the left and right
OD pairs, respectively, and the total cost is 3.89. Under
the social optimum, the common arc has 0 and 1 units of
demand and the total cost is 2.9. Dividing, we get a price
of anarchy of approximately 1.341, which is larger than 4/3
(the price of anarchy when players are nonatomic and cost
functions are affine).
As a side remark, a Wardrop equilibrium for the same

instance incurs a smaller total cost than the Nash equilib-
rium. Furthermore, the same happens considering only the
cost paid by the atomic OD pair. One could argue that the
corresponding player may anticipate the response of the
nonatomic players and simulate a Wardrop equilibrium to
her advantage. This reasoning fails because this behavior
for the atomic player is not allowed in a Nash equilibrium
because the atomic player has to select a best response to
the flow that the nonatomic players choose. In other words,
a Wardrop equilibrium is actually better for the atomic
player, but it is not a Nash equilibrium of the atomic game.
The following remark implies that atomic games are

provably harder to coordinate than nonatomic ones. Indeed,
the affine case discussed previously is not an anomaly. The
price of anarchy for atomic games grows by at least a factor
of ln b faster than that of nonatomic ones, where b denotes
the maximum degree of the polynomials that appear as cost
functions.

Remark 3.1. Using a structure similar to the previous
example, let us consider an instance that consists of two
arcs with constant cost, a common arc with cost function
equal to xb, and nonatomic and atomic OD pairs, both with
unit demands. Optimizing over the two constant costs, we
get lower bounds on the price of anarchy of 1�343, 1�67,
1�981, and 2�287 for polynomials of degree one to four,
respectively. Asymptotically, the price of anarchy grows as
#�b�, in contrast to the price of anarchy for nonatomic
games, which grows as $�b/ ln b�.

To conclude the example, let us add that it is not nec-
essary to use a nonatomic OD pair. We could have con-
structed a similar example with a finite number of players.
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That would require replacing the nonatomic OD pair by
K − 1 atomic players, each controlling 1/�K − 1� units of
demand. If K is large, both equilibria are similar by conti-
nuity (e.g., Haurie and Marcotte 1985 proved that equilib-
ria in atomic games converge to those in nonatomic games
when players lose market power). For example, for the
affine instance with price of anarchy equal to 1�343, if the
nonatomic demand is controlled by 94 or more identical
players, the price of anarchy is already larger than 4/3.
We now compute a concrete expression for the price of

anarchy under specific sets of cost functions. The key is to
first obtain a simpler expression for  K�c�.

Theorem 3.1. The constant  K�c� is at most

sup
x� y∈�2+

yc�x�− yc�y�+ c′�x��y2/4− �x− y/2�2/K�
xc�x�

�

Proof. Starting from the definition of  K�c�, we get

 K�c�

= sup
�x� �y∈�K+

xc�x�− yc�y�+∑
k∈�K	 ck��x��yk− xk�

xc�x�

= sup
�x� �y∈�K+

yc�x�−yc�y�+c′�x��∑k∈�K	ykxk−
∑

k∈�K	�xk�2�
xc�x�

�

(4)

As c is nondecreasing, c′�x�� 0. Thus, assuming w.l.o.g.
that x1 � xk for all k ∈ �K	, to make (4) as big as possible
we have to set �y1� � � � � yK� to �y�0� � � � �0�. It follows that

 K�c�= sup
�x∈�K+%y∈�+
x=∑

k∈�K	 xk�
x1=max��x�

yc�x�−yc�y�+c′�x��x1y−∑
k∈�K	�xk�2�

xc�x�
�

(5)

To find the best choice of �x, we fix the total flow x and
compute the optimal decomposition. It is enough to solve
max
x1y − ∑

k∈�K	�xk�2� �x ∈ �K
+� x

1 = max��x��. By sym-
metry, an optimal solution to this problem satisfies x2 =
· · · = xK . Therefore, we replace x1 by u and x2� � � � � xK by
�x− u�/�K− 1�, and solve
max

x�u�x/K
uy− u2− �x− u�2

K− 1 � (6)

This is a concave program so we can conclude that the opti-
mal solution is u∗ =min
x� x/K+y�K−1�/2K�. Plugging
in x1 = u∗ and xk =max
x/K− y/2K�0� for k= 2� � � � �K
in (5), we have that

 K�c�

=max
{
sup

0�y�2x

yc�x�−yc�y�+c′�x��y2/4−�x−y/2�2/K�
xc�x�

�

sup
0�2x�y

yc�x�− yc�y�+ c′�x��xy− x2�

xc�x�

}

� sup
x�y�0

yc�x�−yc�y�+c′�x��y2/4−�x−y/2�2/K�
xc�x�

�

The last inequality follows by removing the constraint
x� u from (6). �

Corollary 3.1. If xc�x� is a convex function, then

 K�c�= sup
0�y�x

yc�x�−yc�y�+c′�x��y2/4−�x−y/2�2/K�
xc�x�

�

Moreover, defining

 ��c� �= sup
0�y�x

(
c�x�− c�y�+ c′�x�y

4

)
y

xc�x�
�

we have that  K�c��  ��c�.

Proof. Consider the function h�y� defined as the numer-
ator inside the supremum of (5). To prove that the solu-
tion satisfies y � x, we will show that h′�y�� 0 if y � x.
Because h′�y�= c�x�−c�y�−yc′�y�+x1c′�x�, the deriva-
tive is negative if and only if c�x� + x1c′�x� � c�y� +
yc′�y�. Because xc�x� is convex, its derivative is increas-
ing, implying that c�x�+ xc′�x�� c�y�+ yc′�y� for x� y.
The first claim follows because x1 � x. The second claim
is straightforward because a square is nonnegative. �

The definition of the constant  ���� is very similar to
that of

 ��� �= sup
0�y�x

y�c�x�− c�y��

xc�x�
�

which provides a bound on the price of anarchy for
nonatomic games (Correa et al. 2004). The only difference
between the two expressions is the last term in the numer-
ator of  ����, which penalizes equilibria in the case of
atomic players.

3.2. Computing the Price of Anarchy

In this section, we show how to evaluate  ����. We start
with a rough estimate of  ����, and we continue by com-
puting it exactly. In particular, that allows us to conclude
that the price of anarchy is at most 3/2, 2.464, and 7.826,
for affine, quadratic, and cubic cost functions, respectively.
Roughgarden (2002) and Correa et al. (2007) used the

constant

'��� �= sup{1+ c′�x�x/c�x�� c ∈�� x ∈�+
}

to bound the unfairness of a socially optimal solution.
Notice that '��� can be easily computed for given sets
of cost functions. For example, '�degree-b polynomials�=
b+ 1.
Corollary 3.2. The constant  ���� satisfies that

'���− 1
4

�  �����
'���− 1

4
+ ����
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Proof. The lower bound arises from evaluating  ���� in
x= y. The upper bound holds because the supremum of a
sum is bounded by the sum of the suprema. �

The following bound provides a tighter expression for
common sets of allowable cost functions such as polyno-
mials of a fixed degree.

Proposition 3.3. Let � be a family of continuous and
nondecreasing cost functions c that satisfy that xc�x� is
convex. Furthermore, assume that c�rx�� s�r�c�x� for all
r ∈ �0�1	, where s� �0�1	→ �0�1	 is a differentiable func-
tion satisfying s�1�= 1. Then,

 ��c�� max
0�u�1

u

(
1− s�u�+ s′�1�

u

4

)
�

Proof. Let us first bound c′�x� using that for any two val-
ues z� z′, c�z′�= c��z′/z�z�� s�z′/z�c�z�. We have that

c′�x�= lim
)↓0

c�x+ )�− c�x�

)
� c�x� lim

)↓0
1− s�x/�x+ )��

)

= c�x�
s′�1�
x

�

where the last equality follows by applying l’Hôpital’s rule.
Therefore,

 ��c�� sup
0�y�x

yc�x��1− c�y�/c�x�+ s′�1�y/�4x��
xc�x�

� sup
0�y�x

y�1− s�y/x�+ s′�1�y/�4x��
x

= max
0�u�1

u

(
1− s�u�+ s′�1�u

4

)
� �

Corollary 3.3. If � only contains polynomials of degree
at most b, the price of anarchy is at most
(
1− max

0�u�1
u�1− ub + bu/4�

)−1
�

Proof. The assumption of Proposition 3.3 is now satis-
fied with s�x� = xb. Therefore, s′�1� = b and  ��c� �
max0�u�1 u�1− ub + bu/4�. �

Using Corollary 3.3, we can determine that our bound on
the price of anarchy when cost functions are affine equals
3/2. For the case of quadratic or cubic polynomials, it is
approximately 2�564 or 7�826, respectively. For polynomi-
als of degree 4, our bound evaluates to infinity. This stands
in contrast with the situation of nonatomic games in which
the price of anarchy grows as b/ ln b, where b is the degree
of the polynomials. Using Corollary 3.2, it is straightfor-
ward to see that b/4 �  ��degree-b polynomials� � 1 +
b/4. This follows from the definition of '��� and 0 �
 ���� 1. Notice that although there is a gap between the
lower and upper bound for the price of anarchy, the value
of  ���� that we computed is exact. The following propo-
sition provides a bound that depends on the range that the
derivative of the cost functions is allowed to take.

Proposition 3.4. Suppose that

max
x∈�+

c′�x�� ' min
x∈�+

c′�x�

for a given ' � 1. Then,  ��c�� '/3.

Proof. Denote minx∈�+ c
′�x� by c and maxx∈�+ c

′�x� by c̄.
Using the Mean Value Theorem, and the convexity and non-
negativity of c, it is easy to see that c�x�− c�y�� �x− y�c̄
and that c�x�� xc. Replacing the values in the bound from
Corollary 3.1, we get that

 ��c�� sup
0�y�x

y��x− y�c̄+ c̄y/4�
x2 c

� ' sup
0�y�x

yx− 3y2/4
x2

= '/3� �

As an example, the last proposition can be used to show
that if, for all c ∈ �, the largest derivative is not bigger
than twice the smallest derivative, then the price of anar-
chy is bounded by three. It also provides another proof of
Corollary 3.3 in the case of affine cost functions because
the ratio of the derivatives is equal to one.
Now we analyze the dependence of the price of anar-

chy on the number of players K. For K = 1, the sin-
gle player computes a social optimum, and therefore one
should expect that if the bound provided by Proposition 3.2
is tight, then "1��� should be one. This is the case, in fact,
when cost functions are convex. The following proposition
establishes the price of anarchy for K players and affine
cost functions. We do not include a proof because it simply
consists of technical calculations.

Proposition 3.5. If there are K players and the allowable
cost functions are affine, the price of anarchy is bounded
from above by "K�affine�= �3K+ 1�/�2K+ 2�.
The previous proposition implies that when K → �,

"K�affine�→ "��affine� = 3/2. In particular, for K > 5,
the upper bound is larger than "�affine� = 4/3, the price
of anarchy for nonatomic games. Recall that for the exam-
ple that we presented before, we needed approximately 100
players to achieve a price of anarchy larger than 4/3.

3.3. Pseudoapproximations

We now concentrate on pseudoapproximation results (also
known as bicreteria results) that compare the Nash equi-
librium to a social optimum in an instance with expanded
demands (Roughgarden and Tardos 2002). The main moti-
vation of this comparison is that a large coordinating power
is required to achieve a social optimum, but an equilib-
rium arises naturally and without any coordination. To bal-
ance this difference, we impose more costs to the socially
optimal solution by increasing its demand. We measure
the quality of equilibria by determining how much more
demand is needed to make the social costs of the two solu-
tions equal. If a large expansion factor for the demand is
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Figure 3. Example with pseudoapproximation guaran-
tee larger than 2.
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needed, it means that equilibria are inefficient. These results
can also be interpreted as a way to compute the expansion
of capacity that is needed to offset the lack of coordination
in the network. Roughgarden and Tardos (2002) proved that
the social cost of a Wardrop equilibrium is bounded by that
of a social optimum of a game with demands doubled. This
means that instead of trying to coordinate the network, one
can double the capacity of all arcs and achieve a similar
social cost.
Roughgarden and Tardos (2002) extended the pseudoap-

proximation bound to atomic games. This extension was
based on a characterization of equilibria of atomic conges-
tion games that they proposed. Unfortunately, this character-
ization is not correct, and hence the results in Correa et al.
(2005) that used it are not valid. Figure 3 presents an exam-
ple for which the Nash equilibrium is more costly than the
social optimum with demands doubled. The OD pair on the
left is nonatomic, whereas the one on the right is atomic.
Consider M �= �1−)�b+b�1/4−)��1−)�b−1, where ) is
such that �1−)�b < 1/b. The parameters M and ) are cho-
sen so that the Nash equilibrium is the flow in which the
nonatomic demand routes all its 3/4 units of flow in the mid-
dle arc and the atomic player splits its flow in 1/4−) along
the middle arc and the rest in the other. The social cost of the
equilibrium equals �1− )�b+1+ �1/4+ )�M . Consider the
flow that routes twice the demand in which 3/2 units of flow
take the left arc, 1−) units take the middle arc, and ) units
take the right arc. Therefore, the social cost of the social
optimum is at most )M + �1− )�b+1+ 3/�2b�. Comparing
the two costs, we conclude that to find a counterexample, we
need to find b and ) such that b�1−)�b < 1 and Mb/6> 1.
This is achieved by taking )= 0�1 and b = 34. Modifying
the example slightly, we can obtain a counterexample with
polynomials of degree 26. On the other hand, if we allow
polynomials of arbitrary degree, it can be seen that the cost
of the Nash equilibrium can be made arbitrarily higher than
that of the social optimum with demands doubled.
In addition, one cannot expect to prove a theorem of this

type with a constant expansion factor if arbitrary cost func-
tions are allowed. To see this, consider the same example
as in Figure 3 and a parameter 0< - < 1. The nonatomic

demand is 1−-, the demand of the atomic player is 2-, and
the cost functions, from left to right, are 0, a step function
that is 0 for x � 1 and 1 otherwise, and 2. It can be seen
that there is one equilibrium with total cost equal to 2-,
whereas the social optimum when the demand is amplified
by 1/�2-� has zero cost. The example can be worked out
for polynomial cost functions (of arbitrary high degree).
The previous discussion leads us to the following result.

Proposition 3.6. Let �xne be a Nash equilibrium and, for
an arbitrary " > 1, let �x opt be a social optimum of the
game when demands are multiplied by ". Then, there exists
an instance of the atomic network game with convex and
increasing cost functions such that C�xne� > C�x opt�.

In view of the previous negative results, we now prove
a pseudoapproximation result for atomic games that hinges
on ideas of Correa et al. (2008). The following proposition
provides a bound that depends on the allowable cost func-
tions �. For example, in the case of affine cost functions,
an expansion factor equal to 4/3 makes the social cost of
an equilibrium be bounded by that of the expanded social
optimum.

Proposition 3.7. Let �xne be a Nash equilibrium of an
atomic congestion game with K players and with separable
cost functions drawn from �. If �x opt denotes a social opti-
mum of the game with demands multiplied by 1+ K���,
then C�xne��C�x opt�.

Proof. Let �y be a flow that routes �1+ K����dk units of
demand from sk to tk for k ∈ �K	. Then,

C�xne�= �1+ K����
∑
a∈A

∑
k∈�K	


�ca�x
ne
a �− cka��xne

a ��x
ne� k
a

+ cka��xne
a �x

ne� k
a �− K���C�xne�

� �1+ K����
∑
a∈A

∑
k∈�K	

{
�ca�x

ne
a �− cka��xne

a ��x
ne� k
a

+ cka��xne
a � y

k
a

1+ K���

}
− K���C�xne��

where the inequality follows using (2) with yka/�1 +
 K����. As ca�x

ne
a �− cka��xne

a �� 0,

C�xne��
∑
a∈A

∑
k∈�K	


�ca�x
ne
a �− cka��xne

a ��x
ne� k
a + cka��xne

a �y
k
a�

− K���C�xne�

�  K���C�xne�+C�y�− K���C�xne�=C�y��

The proof follows by evaluating in �y = �x opt. �

Remark 3.2. Note that the example above shows that
 ���� is unbounded for general cost functions (continuous
and convex).
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4. Atomic Games with a Single OD Pair
In this section, we concentrate on atomic games played on
networks with arbitrary topology in which all K players
share the same source s and sink t. This context is partic-
ularly relevant in settings in which goods are produced in
one place (e.g., Asia) and consumers are located in another
one (e.g., the United States). In another example that we
present in §6, we consider a flexible manufacturing envi-
ronment. Here, production involves a series of operations
starting from raw materials that are assembled into finished
goods by different producers. This process can be modeled
using a congestion game with units that start from a state
corresponding to raw material and that evolve into a state
corresponding to finished goods.
Single-source single-sink instances are easier to analyze

because the same set of paths is available to all play-
ers. This fact will allow us to provide improved results
compared to the general case. We consider two alterna-
tives: either players control arbitrary fractions of the mar-
ket, or players are symmetric. This type of games and the
two alternatives have also been considered by Orda et al.
(1993), although they restricted the network topology to be
of parallel arcs.
The presentation is divided into two sections: In the first,

we consider the case in which different players control dif-
ferent amounts of demand, resulting in different market
shares. We prove an upper bound on the price of anar-
chy that depends on the variability of the market power of
the different players. To the best of our knowledge, this
is the first known bound of this type. In the second part,
we consider the case of symmetric players in which all
players have the same demand to route through the net-
work. This symmetry allows us to provide improved results
and to rule out counterintuitive phenomena such as a para-
dox described by Catoni and Pallotino (1991). We provide
improved results for the particular case of affine cost func-
tions in the appendix.

4.1. Variable Market Power

We consider the case in which different players control dif-
ferent amounts of demand, leading to different levels of
market power. Our main result is a bound on the price of
anarchy that depends on the variability of market power
across players. To that extent, we use the Herfindahl index
which is a standard measure of industry concentration. We
denote it by H �= ∑

k∈�K	�dk/D�2, where D �= ∑
k∈�K	 dk

is the total demand. This index is a number between 1/K
and 1. A higher index means that the market is less com-
petitive, and the case of H = 1 corresponds to a monopoly.
The case in which H = 1/K corresponds to instances with
symmetric players (see the next section).
The following proposition combines Theorem 3.1 and

Corollary 3.1 and achieves a better bound by reinterpreting
the definition of  K�c�.

Proposition 4.1. Consider an instance with a single OD
pair and Herfindahl index equal to H . Letting

� �c�H� �= sup
0�y�x

y�c�x�− c�y�+ c′�x�yH/4�
xc�x�

�

and � ���H� �= supc∈� � �c�H�, we have that C�xne� �
�1− � ���H��−1C�xopt�.
Proof. Looking at the proof of Proposition 3.2, the con-
stant  K�c� can be interpreted as the minimum number
for which the last inequality of the proof holds. Because
that inequality does not depend at all on the decomposi-
tion of y into yk, we can set yk in the way that is most
convenient instead of using its worst realization, as we
have done in (5). The only restriction in setting yka is that
when we sum the inequalities derived from each arc, yk

has to be a feasible flow for player k. This can be eas-
ily done in the case of a single OD pair by decompos-
ing y proportionally to the demand of each player, i.e., as
�dky/D�k∈�K	. The claim follows after solving the supre-
mum in (4) with the new decomposition of y, and redoing
the proof of Corollary 3.1. �

Providing bounds of this type for multiple OD pairs is an
interesting question that our work leaves open. Our tech-
niques do not easily extend to multiple OD pairs because
it is not clear how to create a feasible flow arc by arc.
Nevertheless, §6 outlines a generalization in that direction.
The difference compared to the expression provided by

Corollary 3.1 is the factor H in the last term of the numer-
ator. Observe that as H � 1, this result can only reduce the
price of anarchy. Moreover, if each player controls at most
a fraction 0�K� of the demand such that 0�K�→ 0 when
K → �, the price of anarchy is asymptotically equal to
that in the nonatomic game. Indeed, the worst case for the
market power variability is that there are 1/0�K� players,
each controlling a fraction 0�K� of the demand, whereas
the rest of the players control an infinitesimal. In that case,
H � �1/0�K��0�K�2 = 0�K� → 0. For example, in an
oligopoly with K players that control a total demand equal
to K, but in which K/ lnK players control lnK units of
demand each and the rest of the players do not have mar-
ket power, the analysis above shows that this oligopoly
approaches the nonatomic game when K grows.
Proposition A1 in the appendix shows that the price of

anarchy in the case of affine cost functions is at most
�4−H�/�3−H�. This generalizes that the price of anarchy
is equal to 4/3 for nonatomic games (H = 0) and at most
3/2 in general (arbitrary H ). Nevertheless, we know that
when H = 1 the price of anarchy equals 1. By perturbing
the monopolistic case, we can show that the price of anar-
chy for the case of a single OD pair is strictly less than 3/2.
However, this analysis is quite technical, and it is unlikely
to provide a bound that is tight.
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4.2. Symmetric Players

When all players have the same demand d to route through
the network, Orda et al. (1993) showed that there is a
unique Nash equilibrium. Our first contribution in this sec-
tion is to provide a convex optimization problem whose
optimum is the unique equilibrium. This implies that the
game with symmetric players is a potential game. To facil-
itate notation, we add a reverse arc between t and s with
zero cost:

�SNE� min
∑
a∈A

xaca�xa�+�K−1�∑
a∈A

∫ xa

0
ca�1�d1

s.t.
∑

�u�v�∈A
x�u�v�−

∑
�v�w�∈A

x�v�w�=0 for all v∈V �

x�t�s�=dK�
xa�0 for all a∈A�

Interestingly, problem (SNE) consists of finding a feasi-
ble flow that minimizes a convex combination between
the objective functions of the problems used to compute
a social optimum and a Nash equilibrium of a nonatomic
game. When there is a single player, the second part van-
ishes, leaving only the social cost. Instead, when there are
many players the second part is dominant and the social
cost becomes negligible. The next result shows that a solu-
tion is optimal for problem (SNE) if and only if it is a Nash
equilibrium. Therefore, if the cost functions are strictly
increasing, there is exactly one Nash equilibrium. Addition-
ally, we make use of the potential function to derive results
on the efficiency of equilibria.

Theorem 4.1. If x solves problem (SNE), then �xne =
�x/K� � � � � x/K� is a Nash equilibrium of the symmetric
game with atomic players.

Proof. Because problem (SNE) is a convex program, the
Karush-Kuhn-Tucker conditions say that x is an optimal
solution if and only if it is a feasible flow satisfying

Kca�xa�+ xac
′
a�xa�= 2u−2v +3a for all a= �u� v� ∈A�

0= 2t −2s +2�t� s��

3axa = 0 for all a ∈A�
3� 0�

By letting xne� k = x/K, 2k = 2/K and 3k = 3/K, and by
dividing all previous equations by K, we obtain that xne� k

is feasible for problem (NEk), and it satisfies

ca�x
ne
a �+ xne� ka c′a�x

ne
a �= 2ku−2kv +3k

a

for all a= �u� v� ∈A�
0= 2kt −2ks +2k�t� s��

3k
ax

ne� k
a = 0 for all a ∈A�

3k
� 0�

which are exactly the Karush-Kuhn-Tucker conditions cor-
responding to problem (NEk). �

We now use Theorem 4.1 to derive results on the effi-
ciency of equilibria for symmetric network games with
atomic players.

Proposition 4.2. Let �x ∈�K
+ be a Nash equilibrium in an

atomic game with K players who control d units of flow
each, and let �y ∈ � �K

+ be a Nash equilibrium in an atomic
game with �K <K players who control dK/ �K units of flow
each. Then, C�y��C�x�.

Proof. Using the optimality of x and y in their respective
problems as before,

∑
a∈A

xaca�xa�+ �K− 1�∑
a∈A

∫ xa

0
ca�1�d1

�
∑
a∈A

yaca�ya�+ �K− 1�∑
a∈A

∫ ya

0
ca�1�d1

�
∑
a∈A

xaca�xa�+ � �K− 1�∑
a∈A

∫ xa

0
ca�1�d1

+ �K− �K�∑
a∈A

∫ ya

0
ca�1�d1�

Thus,
∑

a∈A
∫ xa
0 ca�1�d1 �

∑
a∈A

∫ ya
0 ca�1�d1 , which im-

plies that

∑
a∈A

yaca�ya�+ � �K− 1�∑
a∈A

∫ ya

0
ca�1�d1

�
∑
a∈A

xaca�xa�+ � �K− 1�∑
a∈A

∫ xa

0
ca�1�d1

�
∑
a∈A

xaca�xa�+ � �K− 1�∑
a∈A

∫ ya

0
ca�1�d1� �

The previous proposition implies that the price of anar-
chy in symmetric games with K players increases as the
number of players increases. Going to the limit when
K→�, we get the following corollary.
Corollary 4.1. The social cost of a Nash equilibrium in
an atomic game is bounded by that of the Wardrop equilib-
rium in the corresponding nonatomic game.

Hence, when the number of players goes to infinity, the
price of anarchy approaches that in the nonatomic case. The
conclusion is that when players are completely symmetric,
the ability to set prices does not degrade the quality of
equilibria with respect to price-taking players. This stands
in clear contrast to the case of atomic asymmetric games
whose price of anarchy is larger than that of nonatomic
games. Proposition A2 in the appendix evaluates the price
of anarchy of symmetric games as a function of the number
of players K when cost functions are affine. As expected,
it tends to 4/3 as the number of players grows.
The results for symmetric players can be generalized to

the asymmetric case with a single OD pair if we assume
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that for each arc either all players have a positive flow on
it, or no player uses it. Orda et al. (1993, p. 518) referred
to this assumption by “all-positive flows,” and proved that
in this case there is a unique Nash equilibrium. Specifi-
cally, if we consider the KKT conditions of each of the
player problems under an equilibrium and sum them up,
we get the KKT conditions of problem (SNE). This implies
that, on every arc, the total flow induced by an equilibrium
matches the optimal solution of (SNE), and thus the results
we have presented in this section carry over to this setting.
Note, however, that the equilibrium flows do not necessar-
ily consist of the proportional decomposition of the total
flow, as was the case for symmetric players.

5. Pricing Mechanisms
In this section, we consider that players are charged a per-
unit price when sending flow through taxed arcs. These
charges are levied by the system administrator, designer
or regulator with the sole purpose of encouraging coordi-
nation among the participants of the game. This approach
extends previous work in the setting of nonatomic conges-
tion games. Because prices are payments inside the system,
they do not change the functional form of the social cost.
If it is possible to charge different prices to different

users (price discrimination), it is always feasible to achieve
a fully efficient solution. It is enough to compute a social
optimum and charge player k ∈ �K	 the difference between
its marginal cost and the real cost. Indeed, consider a social
optimum x opt with an arbitrary flow decomposition by
player. Because x opt satisfies the first-order optimality con-
ditions of its optimization problem, the following inequality
holds for all players:
∑
a∈A
�ca�x

opt
a �+ x opt

a c′a�x
opt
a �	�yka − xopt� ka �� 0

for any feasible flow yk for player k� (7)

Notice the resemblance between this inequality and (2).
Actually, if player k in arc a is charged a nonnegative unit
price of 4ka �= �x opt

a − xopt� ka �c′a�x
opt
a �, player k’s total unit

cost in arc a will be ca�xa�+ 4ka. Plugging that cost func-
tion into (2), we see that the inequality coincides with (7),
implying that �x opt is at equilibrium.
We now present some other cases in which we can

guarantee full efficiency without price discrimination. The
case of a nonatomic game, which was first analyzed by
Beckmann et al. (1956), is included in the analysis above.
Indeed, the flow controlled by any player is infinitesimally
small, implying that 4a �= x opt

a c′a�x
opt
a �. This case results in

uniform prices because the term that discriminates players
vanishes. The case of a symmetric game can be handled in a
similar way: Using the flow decomposition xopt� k = x opt/K
for all k ∈ �K	, we get that 4a �= �1− 1/K�x opt

a c′a�x
opt
a �.

If one is not allowed to price discriminate, it is not clear
that achieving an optimal solution is possible. For a gen-
eral network topology and market structure, we find a set

of prices for each arc that reduces the price of anarchy.
Denoting the tax that we add to the cost function on each
arc a by 4a, we want to find the taxes 4

∗
a that minimize the

price of anarchy. To this end, we need to redefine  K�c� as
follows:

 K�c�4�

�= sup
�x� �y∈�K+

∑
k∈�K	
�ck��x�−c�y�+4�yk+�c�x�−ck��x�−4�xk�

xc�x�
�

and  K��� 4� �= supc∈�  K�c�4�. With this, we have a new
version of Proposition 3.2.

Proposition 5.1. Consider an atomic congestion game
with K players, separable cost functions ca, and prices 4a.
Let �xne be a Nash equilibrium with tolls and �x opt be a
social optimum without tolls. Then,

C�xne��
(
1−max

a∈A
 K�ca�4a�

)−1
C�x opt��

Proof. Using (2) and the definition of  K��� in order, we
get that

C�xne�=∑
a∈A

∑
k∈�K	

{
�ca�x

ne
a �− �cka��xne

a �+4a��x
ne� k
a

+ �cka��xne
a �+4a�x

ne� k
a

}
�

∑
a∈A

∑
k∈�K	

{
�ca�x

ne
a �− cka��xne

a �−4a�x
ne� k
a

+ �cka��xne
a �+4a�y

k
a

}
�max

a∈A
 K�ca�4a�C�x

ne�+C�y��

for any solution �y. We finish by setting �y = �x opt. �

Proceeding as in Proposition 3.7, we can also get the
following:

Proposition 5.2. Let �xne be a Nash equilibrium of an
atomic congestion game with K players, separable cost
functions ca, and prices 4a. If �x opt denotes a social
optimum of the game with demands multiplied by 1 +
maxa∈A  K�ca�4a�, then C�xne��C�x opt�.

Motivated by the symmetric case, we propose that the
price charged in every link is 4a�5� �= 5x opt

a c′a�x
opt
a �,

where 5 ∈ �0�1	 is a constant that is going to be chosen to
minimize the price of anarchy.

Proposition 5.3. If � is the set of nonnegative polynomi-
als of degree at most b, the optimal price for this mech-
anism is 5∗ = min
1/2�1/b�. The corresponding price of
anarchy is bounded by  K��� 4�5∗�� � max0�u�1 u�1 −
ub−1+ bu/4�.

Proof. Starting with a general 5 and proceeding as in §3.1,
we have that for c ∈�:

 K�c�4�5��

�  ��c�4�5��

�= sup
x�y∈�+

y�c�x�−c�y�+c′�x�y/4+5c′�y��y−x��
xc�x�

� (8)
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We can assume without loss of generality that cost func-
tions are monomials of degree at most b (otherwise, sub-
divide each arc into multiple arcs with a monomial each).
Hence, we only need to compute  ��axb�4�5�� because
lower-degree monomials have a smaller price of anar-
chy. Using (8) and the change of variables u �= y/x,
 K��� 4�5��� supu∈�+ u�1+�1−5b�ub−5bub−1+bu/4�.
For convenience, let us call the argument of the supremum
h5�u�. A requirement for the supremum to be bounded is
that the highest-degree monomial of h5�·� has a nonpos-
itive coefficient. Therefore, optimal prices are achieved at
5∗ �min
3/4�1/b�.
We will concentrate first on the case b > 1, which

implies that 5∗ � 1/2. Evaluating, the derivative h′5�1�
is b�5 − 1/2� � 0, and the second derivative h′′5�u� is
�b+1�b�5b−1�ub−1−5b2�b−1�ub−2+b/2. This implies
that h′5�u� decreases for u � 1, and thus the optimal
value for u verifies 0 � u � 1. Finally, as 6h5�u�/65 =
bub�u− 1� � 0 in 0 � u � 1, we conclude that for larger
values of 5, h5�u� decreases. Hence, we should set 5

∗ to its
largest possible value 1/b. Plugging this value into h5�·�,
we get the claim.
The only case we have not yet considered is the affine

one. If 0� 5� 1/2, reasoning as before, we conclude that
5∗ = 1/2 and the optimal value of u satisfies 0 � u � 1.
When 1/2 < 5 � 3/4, as h5�1� = b/4 and h′5�1� > 0, the
supremum is strictly higher than that with 5= 1/2, so this
case does not provide an optimal value for 5. �

In Table 1, we compute values of  and bounds for the
price of anarchy with optimal prices and without pricing.
Notice that the pricing mechanism reduces both values.
Moreover, in the affine case the pricing mechanism is able
to reduce the price of anarchy to the level of nonatomic
games.

6. Concluding Remarks
We now discuss some possible extensions of the model
we have presented. Although we have assumed that each
player routes flow only from a single origin to a single
destination, this can be relaxed. Equation (2) still holds
when each player has to route flow from multiple origins
to multiple destinations, implying that our bounds on the
price of anarchy hold too. In §4, this means that instead
of a single OD pair, there may be many OD pairs. Sec-
tion 4.1 requires that market share of player k in OD pair

Table 1. Bounds on the price of anarchy for polynomials of degree up to b with and without pricing.

Optimal pricing No pricing Nonatomic

b 5∗  ���� 4�5∗�� �1− ���� 4�5∗���−1  ����0� �1− ����0��−1  ��� �1− ����−1

1 1/2 1/4 4/3 1/3 3/2 1/4 4/3
2 1/2 1/2 2 0.61� � � 2.56� � � 0.38� � � 1.63� � �
3 1/3 0.78� � � 4.53� � � 0.87� � � 7.83� � � 0.47� � � 1.90� � �
4 1/4 1.05� � � � 1.13� � � � 0.53� � � 2.15� � �
5 1/5 1.32� � � � 1.38� � � � 0.58� � � 2.39� � �

s-t (i.e., dkst/
∑

j∈�K	 d
j
st , where dkst is the demand controlled

by player k in OD pair s-t) is the same throughout all
OD pairs. Instead, §4.2 requires that dkst = d

j
st for all play-

ers k and j and all OD pairs.
After the publication of a preliminary version of this

article (Cominetti et al. 2006), there has been some work
related to atomic network games with splittable flow. Harks
(2008) strengthened our upper bounds on the price of anar-
chy for general networks and for nonlinear polynomials of
bounded degree. His improvement arises from introducing
and optimizing upon another free variable in the definition
of  ���. In addition, using the framework developed by
Fleischer et al. (2004), Swamy (2007) and Yang and Zhang
(2008) proved that tolls that induce a socially optimal flow
always exist and can be computed efficiently.

6.1. Further Applications

We conclude by presenting other examples that fit the
abstract model we have presented, beyond competition in
the setting of freight transportation. Intelligent transporta-
tion systems (ITS) provide users with information about
travel options and allow them to make informed travel deci-
sions. Eventually, ITS could be used to provide route guid-
ance services to users. These services will not only provide
information about traffic network conditions, but may also
provide a user with detailed guidance from her current posi-
tion to her final destination. This situation naturally fits our
model. Route guidance service providers are atomic play-
ers (they have market power as they control a nonnegligi-
ble fraction of the cars) who strive to minimize the overall
travel time of their clients. The rest of the users in the trans-
portation network are nonatomic players because they make
their decisions independently. Although route assignments
that achieve minimal travel time may route some users on
excessively long paths, the overall adverse effect from the
user perspective is small because users are assigned to paths
randomly (see also Jahn et al. 2005 for a route guidance
model that specifically addresses this issue). Hence, users
will improve the travel time in expectation because the like-
lihood of being assigned to a long path is insignificant.
Interestingly, it has been frequently mentioned that ITS
promises to improve the usage of the existing road network
infrastructure and to help manage congestion. Our results
seem to indicate that route guidance systems that minimize
total delay may not always improve users’ performance. It
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may happen that by joining a route guidance service, a user
may end up being worse than when she selected the path
with shortest delay. Nevertheless, this probably happens
very rarely. Although the instances we provide were care-
fully constructed to show that degradation may occur, in
real-world instances delays would typically be lower when
guidance is available.
Another application domain that fits this model is that

of telecommunication networks. Internet service providers
(ISPs) route packets using an underlying physical network
whose arcs are owned by network providers. To deliver
their packets, ISPs must subcontract capacity from link
owners and determine routing patterns to deliver packets
across the network. Competition arises from the fact that
network providers can sell their capacity to different ISPs.
As before, the two performance measures of interest are
cost paid to link owners and an indicator of service level,
such as routing delay. Mapping both measures into cost,
we can model this game with the help of price curves that
map demand to unit prices.
Even though the network structure arises naturally in

applications that involve networks such as those presented
above, this model can also represent other situations. For
example, in a flexible manufacturing environment, produc-
ing goods involves a series of operations that are performed
by different flexible machines. There may be more than
one sequence of machines that can process parts to man-
ufacture the finished product. In this setting, the flexible
machines are owned by different agents who sell capac-
ity to contractors. Contractors, in turn, compete in the two
dimensions previously mentioned: If more contractors buy
capacity of a particular machine, its price goes up on the
one hand, but on the other hand its waiting time, and
thus the completion time, increases. Naturally, a contrac-
tor would like to produce at minimum cost—the reason
for which competition arises—and hence has to determine
which machine sequences to use for production. However,
such an environment cannot be modeled directly by net-
work games; instead, one needs to use an atomic congestion
game. In this class of games there are resources (machines
in this case), and players (contractors) have to pay to use
them. Here, payments depend only on how many players
select the resources, and not on their identities. Because,
our results did not make use of the network structure, but
relied on variational inequalities to characterize Nash equi-
libria, all results we have presented extend to congestion
games without modification.

Appendix. Games with One OD Pair and
Affine Costs
We prove additional results for networks with a single
OD pair and affine costs. Namely, we compute the price
of anarchy as a function on the Herfindahl index, and as a
function on the number of players for symmetric games.

Proposition A1. Consider an atomic game with a single
OD pair and affine cost functions. The price of anarchy is
bounded from above by �4−H�/�3−H�, where H is the
Herfindahl index.

Proof. Using the extension of Proposition 3.3 to this set-
ting, we have that

 ��c�� max
0�u�1

u�1− u+Hu/4�= 1
4−H

�

from which the claim follows. �

Proposition A2. Consider a symmetric atomic game
with K players and affine cost functions. The social
cost of an equilibrium is bounded from above by
4K2/�K+ 1��3K− 1� times that of a social optimum.

Proof. Let ca�xa�= qaxa+ ra. By Theorem 4.1, we know
that equilibria are of the form �x/K� � � � � x/K�, where
x solves problem (SNE). The optimality condition of
Problem (SNE) can be expressed as
∑
a∈A
��K+ 1�qax2a+Kraxa��

∑
a∈A
��K+ 1�qaxaya+Kraya�

for any feasible flow y�

By reorganizing the terms in the above inequality, we
obtain

�K+ 1�∑
a∈A

xa�qaxa+ ra�

� �K+ 1�∑
a∈A

qaxaya+K
∑
a∈A

raya+
∑
a∈A

raxa

�K
∑
a∈A

ya�qaya+ ra�+
�K+ 1�2
4K

∑
a∈A

qax
2
a+

∑
a∈A

raxa

�K
∑
a∈A

ya�qaya+ ra�+
�K+ 1�2
4K

∑
a∈A

xa�qaxa+ ra��

The second inequality follows from ��x/2�
√
�K+ 1�/K −

y
√
K/�K+ 1��2 � 0, whereas the third holds as �K+1�2 �

4K, for all K � 1. We conclude that

∑
a∈A

xa�qaxa+ ra��
4K2

�K+ 1��3K− 1�
∑
a∈A

ya�qaya+ ra�

for any feasible flow y; in particular, it holds for the social
optimum. �

Let us prove that the bound provided by Proposition A2
is tight. To this end, consider a two-node two-arc network
with K unit-demand players. The cost of arc 1 is c1�x�= 1,
whereas the cost of arc 2 is given by c2�x�= x/�K+1�. It
is easy to see that the optimal flow pattern routes �K−1�/2
and �K + 1�/2 on arcs 1 and 2, respectively, leading to a
total cost of �3K− 1�/4. On the other hand, at equilibrium
each player routes all its flow along arc 2, and therefore the
social cost of the equilibrium is K2/�K+ 1�. The resulting
ratio is exactly as previously stated.
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