
Operations Research Letters 34 (2006) 85–93

Operations
Research
Letters

www.elsevier.com/locate/orl

Resource augmentation in two-dimensional packing with
orthogonal rotations�

José R. Correa
School of Business, Universidad Adolfo Ibáñez, Av. Presidente Errázuriz 3485, Las Condes, Santiago, Chile

Received 15 December 2004; accepted 20 February 2005
Available online 31 May 2005

Abstract

We consider the problem of packing two-dimensional rectangles into the minimum number of unit squares, when 90◦
rotations are allowed. Our main contribution is a polynomial-time algorithm for packing rectangles into at most OPT bins
whose sides have length (1 + �), for any positive �. Additionally, we show near-optimal packing results for a number of
related packing problems.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Bin packing; Approximation algorithms; Polynomial time approximation schemes

1. Introduction

The classical two-dimensional bin-packing problem
consists of placing rectangles of specified size into the
minimum number of rectangular bins, in such a way
that no two rectangles overlap. The most well-studied
version of the problem is the case in which the rect-
angles cannot be rotated and each rectangle must be
packed parallel to the edges of a bin. However, in many
applications one needs to consider the problem where
rotations—in particular 90◦ rotations—are allowed.
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Several variants of this two-dimensional packing
problem have been considered in the last 50 years. An
important one among them is the problem of finding
the minimum area rectangle in which a given set of
rectangles can be placed. This problem, known as min-
imum rectangle packing, is particularly relevant when
orthogonal rotations (i.e., 90◦ rotations) are allowed.
Indeed, Murata et al. [16] state that:

The earliest and the most critical stage in VLSI layout
design is the placement. The background of which is
the rectangle packing problem: Given a set of rectan-
gular modules of arbitrary sizes, place them without
overlap on a plane within a rectangle of minimum area.

Closely related to minimum rectangle packing
is the two-dimensional (and three-dimensional)
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strip-packing problem. Here, we are again given a set
of rectangles (or boxes in the three-dimensional case)
and a strip of fixed width (resp. fixed basis) and infinite
height. The goal is to find a placement of the rectangles
(resp. boxes) of minimum total height; depending on
the application, rotations may or may not be allowed.
A variant of the three-dimensional strip-packing prob-
lem with rotations is the so-called z-oriented three-
dimensional packing problem, in which orthogonal ro-
tations are allowed only on the z-axis. Strip-packing
problems have many industrial applications, particu-
larly in stock cutting. Moreover, applications in com-
puter science are also very common. For instance, the
z-oriented three-dimensional packing problem was in-
troduced by Li and Cheng [12] as a model for job
scheduling in partitionable mesh connected systems.

1.1. Assumptions

A standard assumption in the design of algorithms
for rectangle-packing problems, which we also adopt
here, is that the given rectangles (items) are of bounded
size. Also, note that for bin-packing problems with-
out rotations we can always assume (by rescaling) that
the bins are unit squares. However, this is not true in
two-dimensional bin packing under 90◦ rotations. For
simplicity, we present the results in this paper when
the bins are unit squares, nevertheless, as we essen-
tially use exhaustive search to deal with rotations, our
results hold in the general case as well. The same com-
ment applies to the basis of the strip in strip-packing
problems.

1.2. Previous work

Leung et al. [11] proved that given a collection of
squares it is NP-Hard to decide in polynomial time
whether these can be packed into a single bin. Later,
Ferreira et al. [8] noted that this implies that no 2 −
� approximation algorithm for two-dimensional bin
packing (with or without rotations) can exist unless
P=NP. In the case without rotations, Caprara [4] ex-
hibited an algorithm with an asymptotic performance
ratio of 1.691 . . ., improving the 2 + � obtained im-
plicitly from the asymptotic polynomial-time approx-
imation scheme (APTAS for short) for strip packing
by Kenyon and Rémila [10]. On the negative side,
Bansal and Sviridenko [3] recently showed that there

is no APTAS for two-dimensional bin packing unless
P = NP. They, also designed an APTAS for the spe-
cial case in which the rectangles are squares. This
last result was independently obtained by Correa and
Kenyon [6], who, in addition, obtained an algorithm
that finds a packing using no more than OPT bins of
size (1 + �) × (1 + �). The reader is referred to [2]
for more details on these results. Under 90◦ rotations,
however, the situation is less clear: No hardness of ap-
proximation result is known, while, when the bins are
unit squares, the best approximation algorithm is due
to Epstein and Van Stee [7] has a performance guar-
antee of 2.25, and, in the general case, the best known
is a 2.64-approximation algorithm, due to Miyazawa
and Wakabayashi [15].

In the context of minimum rectangle packing with-
out rotations, only heuristic approaches had been
proposed. However, a polynomial-time approxima-
tion scheme (PTAS) was recently obtained [6]. Prior
to this work, the situation for rectangle packing with
rotations was still open. In fact, we are not aware of
any theoretical approximation result.

The breakthrough result for two-dimensional strip
packing without rotations was obtained by Kenyon
and Rémila [10] who gave an APTAS, improving an
old 1.25 approximation by Baker et al. [1]. In the
three-dimensional case however, Miyazawa and Wak-
abayashi [13] obtained the best-known algorithm, that
has an asymptotic approximation ratio between 2.5
and 2.67. Moreover, as noted by Kenyon [9], the re-
sults in [3] imply that no APTAS for the problem can
exist unless P = NP.

For two-dimensional strip packing with 90◦ rota-
tions the best-known algorithm has a performance
guarantee of 1.5, while in the three-dimensional case
with rotations 2.25 is currently the best known when
the strip has unit width [7]. The bounds respectively
become 1.613 and 2.76 in the general case [13]. For
the z-oriented three-dimensional packing problem,
Miyazawa and Wakabayashi [14] proved that an algo-
rithm with asymptotic performance ratio of � can be
translated into an �-asymptotic approximation algo-
rithm for the three-dimensional strip packing problem
without rotations. They also give an algorithm with
an asymptotic performance guarantee between 2.5
and 2.67 (actually this is how they derived the per-
formance bound for three-dimensional strip packing).
Later, Epstein and van Stee gave a 2.25 asymptotic
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approximation algorithm for the problem, which they
call, the “This Side Up” problem [7]. It is impor-
tant to mention that all results in [7] hold for bins
of unit size, while those in [13–15] hold for gen-
eral bins. Therefore, their results are not directly
comparable.

1.3. Our results

In this short paper, we obtain results for packing
problems allowing orthogonal rotations. Our main re-
sult, proved in Section 2, reads as follows:

Theorem 1.1. There exists an algorithm A which,
given a list I of n rectangles and a positive number �,
produces a packing of I into A(I) copies of [0, 1+ �]2
such that

A(I)�OPT(I ),

where OPT(I ) is the minimum number of unit squares
in which I can be packed. The running time of A is
polynomial in n for fixed �.

To prove this result we borrow ideas from [6],
where the problem without rotations was considered.
Similar to that case, our algorithm relies on an ap-
propriate partition of rectangles into “large”, “small”,
“flat”, and “medium”, in such a way that the medium
rectangles are negligible. Large rectangles are both
tall and wide while flat rectangles are long in one di-
mension but very small on the other. Then, we round
up the long sides of rectangles, i.e., the long side
of flat rectangles and both sides of large rectangles.
With this rounding, rectangles which are large are
reduced to a constant number of types, and thus they
are packed by exhaustive search. Small rectangles are
packed using the Next-Fit Decreasing Height (NFDH)
shelf heuristic; described at the beginning of Section
2. The main difficulty is to deal with flat rectangles.
In particular, in the case with orthogonal rotations, we
need to guess a right partition of flat rectangles into
“vertical” and “horizontal”. To overcome this prob-
lem, we note that, after rounding, essentially there is
only a constant number of flat rectangles which need
a significantly different treatment. This is true since
two equally wide flat rectangles are treated similarly
by the strip packing algorithm of Kenyon and Rémila
[10]. We can, therefore, show that it is enough to look

at a polynomial number of partitions of flat rectangles
to guess a solution that is sufficiently close to the
optimal.

In Section 3 we first apply the ideas behind Theo-
rem 1.1 to obtain similar augmented PTASs for other
two-dimensional packing problems. Indeed, we ob-
tain a PTAS for the minimum rectangle-packing prob-
lem with rotations, and an �-augmented asymptotic
PTAS for two-dimensional strip packing with rota-
tions. Furthermore, we will combine these ideas, the
ideas in [6], and the linear programming approach of
Kenyon and Rémila to obtain the following results:
an APTAS for three-dimensional strip packing with-
out rotations when the boxes have a square basis; an
�-augmented asymptotic PTAS for three-dimensional
strip packing without rotations; and an �-augmented
asymptotic PTAS for the z-oriented three-dimensional
packing problem. The first two of these facts were also
observed by Kenyon [9].

2. Two-dimensional bin packing with rotations

The algorithm presented here is built upon the al-
gorithm described by Correa and Kenyon [6]. Indeed,
after decomposing the input into “large”, “small” and
“flat” rectangles, we use exhaustive search to find a
packing of large rectangles and NFDH to pack small
rectangles. As we shall see, these two types of rectan-
gles can still be packed almost optimally in the case
with rotations. The key difficulty is to decide which
flat rectangles should be placed horizontally and which
vertically. To this end we find a way of looking at only
a polynomial number of partitions of flat rectangles
into “horizontal” and “vertical”, and we prove that at
least one of these is sufficiently close to the optimal
one.

An important subroutine of our algorithm is the
NFDH heuristic, defined by Coffman et al. [5]. In the
NFDH heuristic, rectangles are first sorted in nonin-
creasing order of their height. Then, they are packed
left-justified on a level (starting from the bottom) until
there is insufficient space at the right to accommodate
the next rectangle. At that point, the next level is de-
fined by drawing a horizontal line through the top of
the first (and therefore largest) rectangle placed in the
previous level.
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2.1. The algorithm

The following algorithm is strongly based on that
in [6]. The main difference is that, as rotations are
allowed we need to do many more iterations through
the main loop. For clarity, we present the algorithm in
full detail. The algorithm packs any list I of rectangles
into no more than OPT(I ) bins of size (1+15�)×(1+
15�), where OPT(I ) is the minimum number of unit
squares in which I can be packed. To obtain the exact
result in Theorem 1.1 it is enough to reassign � ←
�/15 and apply the algorithm to this newly defined �.

Algorithm for rectangle packing with 90◦ rota-
tions

Input. Let I denote the input list consisting of n rect-
angles to be packed. Since rotation is allowed, assume
that the ith rectangle has width ai and height bi , with
0 < bi �ai �1. Denote also by Sf(I )=∑n

i=1 aibi , the
total surface of the input.

Partitioning the input. For j ∈ {1, 2, . . . , 2/�},
let Mj denote those rectangles i such that ai ∈
(�2(j+1)+1, �2j+1] or bi ∈ (�2(j+1)+1, �2j+1]. Let j0
be such that the total surface area of the rectangles
of Mj0 is minimum. Let �′ = �2j0+1, and define the
partition I =Mj0 ∪ L ∪ F ∪ S, where

• L= {i : ai > �′ and bi > �′}
• S = {i : ai < �′�2 and bi < �′�2}
• F = {i : ai > �′ and bi < �′�2}

Rounding the input. We now round every coordi-
nate greater than �′ up to the nearest multiple of �′�.
Denote by I ′ the rounded instance, i.e. I ′ is L ∪ F

after rounding.

Let C denote the number of distinct rectangles in L:
thus L contains �i rectangles of type i, for 1� i�C.

Rounding and partitioning the output. We define
bin types by decomposing (1+ 2�)× (1+ 2�) squares
as follows:

• We consider all possible packings of (large) rectan-
gles of type i, 1� i�C, into a (1+ 2�)× (1+ 2�)

square, such that the corners of the rectangles have
coordinates which are integer multiples of �′�. Note
that this should include considering rotations of
rectangles in L. That is, in each possible packing, a
rectangle in L is associated with its type (1� i�C)
and with an orientation (either horizontal or verti-
cal).
• For each possible packing of large rectangles into a

(1+ 2�)× (1+ 2�) square, we consider the area of
the bin which is still uncovered as a union of small
square cells of side length �′� (where each square
is positioned at integer multiples of �′�), and label
each cell either H or V. Together with this labelling
of the uncovered area, this packing of large rectan-
gles defines a bin type. Let K be the total number
of bin types.

Consider all rectangles in F after rounding. Let
R=�(1+�)/�′�� be the maximum number of possible
widths of rectangles in F. For each integer 1�r �R

(i.e., r�′� is less than 1 + �) consider all rectangles
in F whose width is r�′� and number them (in arbi-
trary order) 1, 2, . . . , tr (of course, tr �n). Thus, after
rounding, each rectangle in F is uniquely determined
by its width and a positive integer.

Main loop. For each choice of m1, . . . , mR with
mr � tr , r= 1, . . . , R, and for each (n1, . . . , nK) such
that

∑
j nj �n, we attempt to construct a packing of

I ′ ∪ S using nj bins of type j. The packing satisfies
the following: the rectangles from L are packed in the
spaces reserved for them in the bin type; the cells la-
belled H are only used to horizontally place rectangles
from F whose associated integer is at most mr , where
r�′� is the width of the rectangle, and rectangles from
S; the cells labelled V are only used to vertically place
rectangles from F whose associated integer is more
than mr , where r�′� is the width of the rectangle, and
rectangles from S. In the remainder of the algorithm
we let H (resp. V) be the set of rectangles in F that
we will attempt to pack in cells labelled H (resp.
V); thus, F = H ∪ V . The packing is constructed as
follows:

(1) To decide whether the rectangles from L can be
placed, we check that for every rectangle type i,
1� i�C, the number �i oftype i rectangles in I ′



J.R. Correa / Operations Research Letters 34 (2006) 85–93 89

is less than or equal to the total space available
for them:

�i �
K∑

j=1

nj

(
number of type i rectangles

positioned in type j bins

)
.

Here we look at type i rectangles positioned in
type j bins, either horizontally or vertically.

(2) We use the following algorithm for packing the
rectangles from H:
(a) For each bin type j, consider the union U

of the cells labelled H. Drawing horizontal
lines at y-coordinates integer multiples of
�′�, we can interpret U as a union of hori-
zontal strips of height �′� and width multiple
of �′�. For each integer multiple � of �′�, let
h

(j)
� denote the sum of the heights of the

strips of width � in a type j bin. Let h� de-
note the total height of the strips of width
� in the packing which we are currently
constructing,

h� =
∑

1� j �K

njh
(j)
� .

(b) We now consider the problem of packing rect-
angles from H with rounded widths into two-
dimensional bins of height h� and width �.
Note that the number of different width types
for rectangles in H is bounded above by a con-
stant. To do this we will solve the following
fractional strip-packing problem. Consider
all configurations (w1, w2, . . .) of widths (in-
cluding the empty configuration) which are
multiples of �′� and sum to at most 1+ �. The
number of such configurations is constant.
Let Air denote the number of occurrences of
width i�′� in configuration r. Let Bi denote the
sum of all heights of the rectangles of H whose
width equals i�′�. We define one variable x

(�)
r

for each strip width � and for each configura-
tion r whose widths sum to at most �. We find,
in polynomial time, a basic feasible solution to
the following system of linear constraints, if it

exists.

(∀i) Bi �
∑
�,r

x(�)
r Air ,

(∀�)
∑

r

x(�)
r �h�,

(∀r, �) x(�)
r �0.

(c) We place rectangles from H in the configu-
rations thus defined, proceeding in a greedy
fashion.

(d) We cut back bins of height h� into strips of
height �′� and place them back into the bins.
If a rectangle is cut we throw this rectangle
away from the packing and pack it later.

(3) Similarly, we pack the rectangles of V into the
parts of the bins labelled V.
Let M ⊆ H denote the set of rectangles which
either did not fit in the fractional packing after
(c) or are cut in the process (d). Analogously, we
define the set of rectangles M ′ ⊆ V that remained
unpacked after step (3).

(4) We choose an arbitrary orientation for the rectan-
gles in S and pack them into the �′� × �′� cells
which have available space, using the NFDH al-
gorithm.

(5) We expand each bin by adding 13 thin 1 × �
horizontal strips and also 13 thin � × 1 vertical
strips and use them to pack the rectangles from
Mj0 ∪M∪M ′ using an O(1)-approximation algo-
rithm such as NFDH in the horizontal strips and
Next Fit Decreasing Width (NFDW) in the verti-
cal strips.

Output. We output the best packing among all feasi-
ble packings of I thus constructed.

2.2. Analysis of the running time

We show that, for fixed � > 0, the algorithm just
described runs in time polynomial in n.

Theorem 2.1. Given a list I of n rectangles, our al-
gorithm runs in time polynomial in n for fixed � > 0.

Proof. Let us first see that the input can be parti-
tioned and rounded efficiently. Indeed, as j0 �2/�, we
have that �′��4/�=�(1). Thus, partitioning the input
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requires O(n) operations, the same as rounding the
input.

To bound the number of bin types, note that the
number C of large rectangle types (after rounding) is
at most (1/�′�)2=O(1). A bin type can be defined by
labelling each �′�× �′� cell by H, V, (i, V ) or (i, H),
for some 1� i�C. Label (i, V ) (resp. (i, H)) means
that in such cell a rectangle of type i will be placed
vertically (resp. horizontally). Thus, the number K of

bin types is at most (2C + 2)(1+�)/(�′�)2 = O(1).
Let us now look at the number of iterations of the

main loop. Clearly, R= (1+ �)/�′��(1+ �)/�1+4/�=
O(1) and m1, . . . , mR (i.e., the partition of F into H
and V) can be chosen in at most nR ways. Also, the
number of choices of n1, . . . , nK is at most nK . There-
fore, the number of iterations through the main loop
is at most n(K+R) which is polynomial in n.

Finally, let us see what happens within an iteration
of the main loop. Step (1) requires O(1) arithmetic
operations with numbers of size O(n). In step (2), the
number of strip widths is at most 1/�′�= O(1) while
the number of configurations is at most 22/(�′�)=O(1).
Multiplying, the number of variables in the system
of linear constraints is O(1). The number of con-
straints is at most 2/(�′�) = O(1). The coefficients
Ai,r are bounded by O(1) and Bi are written on at
most O(log n) bits. Hence the linear program (and thus
steps (2) and (3)) can be solved efficiently in poly-
logarithmic time. The NFDH and NFDW algorithms
runs in time O(n log(n)). Therefore, steps (4) and (5)
require time O(n log(n)).

Overall, we conclude that the algorithm runs in
time

O(nK+Rn log(n))= O

(
n22Õ(1/�)

)
,

which is polynomial in n for fixed �. �

2.3. Analysis of correctness

The analysis of the algorithm borrows several ideas
from Section 3 in [6]. Therefore, in several proofs we
will refer the reader to that paper.

Let I ′ denote the rounded input. It was noted in
[6] that a packing of I into B unit size bins, can be
converted into a packing of I ′ ∪S∪Mj0 into B bins of
size (1+ 2�)× (1+ 2�), such that any rectangle with
width at least �′ is positioned at an x-coordinate which

is an integer multiple of �′�, and any rectangle with
height at least �′ is positioned at a y-coordinate which
is an integer multiple of �′�. Here, the width and height
of a rectangle correspond to those quantities using the
orientation of the current packing.

The following lemma says that once we have cho-
sen the orientation of the rectangles (i.e., defined the
partition F = H ∪ V ), a cell cannot be shared by an
horizontal and a vertical rectangle.

Lemma 2.2 (6, Lemma 3.3). Consider a packing of
I ′ into bins of size (1+ 2�)× (1+ 2�), satisfying the
conditions above. Consider any cell C= [m�′�, (m+
1)�′�]× [p�′�, (p+ 1)�′�] in any bin. Then either H ∩
C= ∅ or V ∩ C= ∅.

Lemma 2.3. The sets Mj0 , M and M ′ satisfy
Sf(Mj0)��Sf(I ), Sf(M)�5� Sf(I ) and Sf(M ′)�
5�Sf(I ) respectively. Moreover, all rectangles in
Mj0 ∪M ∪M ′ fit into the thin strips added along the
bins in step (5).

Proof. Each rectangle in I belongs to at most two sets
Mj . Therefore

2

�
Sf(Mj0)�

∑
1� j �2/�

Sf(Mj )�2Sf(I ),

and then Sf(Mj0)��Sf(I ). The fact that Sf(M)�
5�Sf(I ) and Sf(M ′)�5�Sf(I ) is analogous to Lemma
3.4 in [6] (see [2] for details).

Let us see that all rectangles in Mj0 ∪ M ∪ M ′
fit into the strips added along the bins in step (5).
The total surface of Mj0 ∪M ∪M ′ is no more than
11�Sf(I )�11�OPT(I ). Furthermore, Mj0 ∪M ∪M ′
can be partitioned (and rotated) into two sets, A and B
such that: A contains only rectangles with ai < �′< �2

and Sf(A)�6�Sf(I ); and B contains only rectangles
with bi < �′< �2 and Sf(B)�6�Sf(I ).

As all rectangles in A have width smaller than �2, for
small enough �, NFDW packs A into the 13×OPT(I )

added strips of size �× 1. On the other hand, NFDH
does the work for the rectangles in B. Note that the
number of thin strips that we need to add to the (1+
2�)× (1+ 2�) bins depends on the algorithm used to
pack rectangles in Mi0 ∪M ∪M ′. �
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The following lemma is a slight variation of a result
due to Coffman et al. (cf. Theorem 3 in [5]). It simply
says that NFDH wastes a negligible amount of space
when packing only small rectangles.

Lemma 2.4. Consider the two-dimensional NFDH
heuristic applied to rectangles in S. When NFDH
cannot place any other rectangle in a bin of size a×b

then the total unused area in that bin is no more than

(�′�2)(a + b).

We are now ready to give the overall analysis of the
algorithm.

Theorem 2.5. Given a list I of n rectangles and a
positive number �, our algorithm produces a packing
of I into A(I) copies of [0, 1+ 15 · �]2 such that

A(I)�OPT(I ),

where OPT(I ) is the minimum number of unit squares
in which I can be packed, with 90◦ rotations allowed.

Proof. Consider an input list I and let I ′ be the
rounded input. We know that there exists a packing
of I ′ ∪ S ∪ Mj0 into no more than OPT(I ) bins of
size (1+ 2�)× (1+ 2�) such that

(i) Rectangles are oriented in the same way as in an
optimal packing of I.

(ii) In the current orientation, any rectangle with
width at least �′ is positioned at an x-coordinate
which is an integer multiple of �′�, and any rect-
angle with height at least �′ is positioned at a
y-coordinate which is an integer multiple of �′�.

Consider then such a packing for I ′ ∪ S ∪Mj0 and let
H and V be respectively, the rectangles in F (defined as
in the “Partitioning the Input” step) which are placed
horizontally and vertically. By Lemma 2.2 we know
that in such a packing all cells C intersect either a
rectangle in L, H or V but not two of them. In other
words in such a packing of I ′ ∪ S ∪Mj0 each cell is
labelled either V, H, (i, V ) or (i, H) for i = 1, . . . , C;
or will have no label at all. Let us call this labelling
the optimal labelling.

Clearly, our algorithm will eventually guess a la-
belling of the cells that coincides with the optimal la-
belling. At the same time, our algorithm will guess a

partition of F into H and V which need not be optimal.
Let us see that at least one of the partitions of F our
algorithm will guess is sufficiently close to the opti-
mal. To this end, let H ∗l ⊂ H denote the set of width
l horizontal rectangles in the (rounded) optimal pack-
ing. Let Hl ⊂ H denote the set of width l rectangles
in the best possible partition the algorithm can guess.
By best possible we mean the partition minimizing the
maximum over l of the total height difference between
H ∗l and Hl , i.e., minimizing

max
widths l

∣∣∣∣∣∣
∑
i∈H ∗l

bi −
∑
i∈Hl

bi

∣∣∣∣∣∣ ,

where bi is the height of rectangle i in the current ori-
entation. Note that H ∗l and Hl may be very different
sets. However, since all rectangles in F are of height
at most �′�2, in the best possible partition of F into H
and V the algorithm can guess, the total height of rect-
angles in H ∗l and that of rectangles in Hl will differ
by at most �′�2, for all widths l. Of course, the analo-
gous condition will simultaneously hold for rectangles
in V.

After guessing the right partition of F into horizon-
tal and vertical rectangles, the algorithm will find a
feasible packing of all rectangles in L and almost all
rectangles in H and V. This is done in steps (2) and
(3). By Lemma 2.3, the unpacked rectangles Mj0 , M
and M ′ are of small surface and they are packed in
the extra space added in step (5) of the algorithm.

It remains to see that the small rectangles, S, will
be successfully packed by NFDH in step (4) using
the remaining space available in the OPT(I ) bins of
size (1 + 2�) × (1 + 2�). Assume, by contradiction,
that a new bin is indeed opened in step (4). At this
step, we distinguish four types of �′� × �′� cells: the
ones completely filled with a rectangle in L, the ones
filled with only rectangles in S, the ones filled only
with rectangles in H or V, and the ones partly filled
with rectangles in H or V and partly with rectangles in
S. By Lemma 2.4, all cells are almost filled. Indeed,
the wasted space in each cell is at most �′�2 × (�′� +
�′�) = 2 × (�′)2�3, while the total area of each cell is
exactly (�′�)2. Thus a fraction (1 − 2�) of each cell’s
surface is filled. Overall, this implies that a fraction
(1−2�) of the first OPT(I ) bins is filled, and then the
total surface that has been filled in the first OPT(I )
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bins of size (1 + 2�) × (1 + 2�) squares is at least
(1− 2�)OPT(I )(1+ 2�)2 �OPT(I ), for � < 1/4. �

3. Further results on packing with rotations

To conclude, we give some notes on other packing
problems with 90◦ rotations in which the ideas of Sec-
tion 2 apply. The first such problem is the minimum
rectangle packing problem.

Theorem 3.1. There exists an algorithm A which,
given a list I of n rectangles and a positive number
�, produces a packing of I into a rectangle R(I) such
that

Sf (R(I))�(1+ �)OPT(I ),

where OPT(I ) is the area of the smallest rectangle in
which I can be packed (where rotations are allowed)
and Sf (r) denotes the area of rectangle r. The running
time of A is polynomial in n for fixed �.

To obtain this result, it is enough to note that if
I denotes an instance of total surface Sf(I ), the al-
gorithm in Section 2 can be easily adapted to solve
the underlying approximate decision problem: Given
n rectangles with sides ai, bi ∈ (0, 1], a rectangle R of
size a×b, and � > 0: determine if all n rectangles can
be packed (with 90◦ rotations) in a rectangle of size
[(1+�)a+�]×[(1+�)b+�] or they cannot be packed
in R. As done in [6], if for at least one rectangle i ∈ I

both ai and bi are not too small, say at least �, we can
solve the decision problem (taking �= �2) for a poly-
nomial number of rectangles R to obtain Theorem 3.1
(since we know that NFDH can always pack I in a
square of size 2Sf(I )× 2Sf(I )). Otherwise, either all
ai’s or all bi’s are smaller than � (note that orthogonal
rotations are allowed). In this case, the result can be
obtained by a surface argument using a shelf packing
heuristic (adapting a result in [5]).

Very similarly, this approximate decision problem
can be used to obtain an approximately optimal pack-
ing for the two-dimensional strip packing problem un-
der 90◦ rotations.

Theorem 3.2. There exists an algorithm A which,
given a list I of n rectangles of height bounded by h,
and a positive number �, produces a packing of I into a

strip of dimensions (1+�)×((1+�)OPT(I )+O(h/�2))

whenever a packing of I into a strip of dimensions
1 × OPT(I ) exists. The running time of A is polyno-
mial in n for fixed �.

However, an even stronger result for this latter prob-
lem may hold. In fact, it was conjectured in [10] that
two-dimensional strip packing admits an APTAS. To
the best of our knowledge, this remains open.

For three-dimensional strip packing without rota-
tions, already the results in [6], combined with the
linear programming technique in [10], have some in-
teresting consequences. First, they imply the existence
of a polynomial-time algorithm A, which, given a list
I of boxes with square basis and height bounded by h,
and a positive number �, produces a packing of I into a
strip of dimensions 1×1×((1+�)OPT(I )+O(h/�2))

whenever a packing of I into a strip of dimensions
1 × 1 × OPT(I ) exists. This APTAS represents
an improvement over the prior best-known algo-
rithm, that has an asymptotic performance ratio of
2.36 [14]. Secondly, one can obtain a near-optimal
resource-augmented packing result for the general
case. In other words, one can prove that there ex-
ists an algorithm A which, given a list I of boxes
of height bounded by h and a positive number �,
produces a packing of I into a strip of dimensions
(1 + �) × (1 + �) × ((1 + �)OPT(I ) + O(h/�2))

whenever a packing of I into a strip of dimensions
1× 1×OPT(I ) exists. The key idea behind these two
results is that in both cases we only need to consider
a constant number of different basis configurations.
Then, the linear program of Kenyon and Rémila [10]
will handle the problem by associating one variable
for each such configuration. In an optimal LP solu-
tion the value of that variable will correspond to the
total height for which the associated configuration
has to be used in an optimal “fractional” packing.
The solution can finally be rounded with the help of
three-dimensional versions of NFDH.

Essentially the same technique can be applied in
the context of the z-oriented three-dimensional pack-
ing problem (in which rotations are allowed only on
the z-axis). The ideas in Section 2 allow us to consider
a constant number of basis configurations, thus, they
may again be combined with the linear program ap-
proach in [10] to obtain the following approximation
result.
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Theorem 3.3. For the z-oriented three-dimensional
packing problem there exists an algorithm A which,
given a list I of n boxes of height bounded by h and a
positive number �, produces a packing of I into a strip
of dimensions (1+ �)× (1+ �)× ((1+ �)OPT(I )+
O(h/�2)) whenever a packing of I into a strip of di-
mension 1 × 1 × OPT(I ) exists. The running time of
A is polynomial in n for fixed �.

This result is actually the best possible in some
sense. Indeed, the reduction of Miyazawa and Wak-
abayashi [14] (which says that an �-approximation
algorithm for z-oriented three-dimensional packing
can be transformed into an �-approximation algorithm
for three-dimensional strip packing) together with the
hardness result of Bansal and Sviridenko [3] imply
that no APTAS for the z-oriented three-dimensional
packing problem exists unless P = NP.
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