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Abstract. Centralized school admission mechanisms are an attractive way of improving
social welfare and fairness in large educational systems. In this paper, we report the design
and implementation of the newly established school choice system in Chile, where over
274,000 students applied to more than 6,400 schools. The Chilean system presents unprece-
dented design challenges that make it unique. First, it is a simultaneous nationwide system,
making it one of the largest school choice problems worldwide. Second, the system is used
for all school grade levels, from prekindergarten to 12th grade. One of our primary goals is
to favor the assignment of siblings to the same school. By adapting the standard notions of
stability, we show that a stable assignment may not exist. Hence, we propose a heuristic
approach that elicits preferences and breaks ties between students in the same priority
group at the family level. In terms of implementation, we adapt the deferred acceptance
algorithm as in other systems around the world.
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1. Introduction
According to the Duncan Segregation Index, Chilean
schools are extremely socially segregated (Bellei 2013,
Valenzuela et al. 2014). Several authors have shown
that the costs of school segregation are high, including
low social cohesion and lack of equal opportunities and
social mobility (Villalobos and Valenzuela 2012, Wor-
mald et al. 2012). Although the drivers of school segre-
gation include societal aspects well beyond school
choice, social movements and politicians were probably
right in blaming features of the admissions system.

The School Inclusion Law marks a breaking point in
the organization and functioning of the school system.
The law, promulgated in 2015, changed the old admis-
sions process drastically by (i) eliminating copay-
ments in publicly subsidized schools; (ii) forbidding
publicly subsidized schools from selecting their stu-
dents based on social, religious, economic, or academ-
ic criteria; and (iii) defining priorities that must be
used to assign students to schools.1

In this paper, we report the results of an ongoing
collaboration with the Chilean Ministry of Education
(MINEDUC) addressing the practical challenges of
implementing the School Inclusion Law. To this end,
we designed and implemented a centralized system
that (i) provides information about schools to help pa-
rents and students in building their preferences; (ii)
collects families’ preferences through an online plat-
form, reducing the time and cost that visiting each
school involved in the past; and (iii) assigns students
to schools using a transparent and fair procedure.

One of the distinctive features of this new school
choice system is its universality, as it is used nationwide
and for all school grade levels (from prekindergarten
(pre-K) to 12th grade). We agreed with MINEDUC that
one of the primary goals of the system should be to ob-
tain an assignment that favors the joint allocation of sib-
lings to the same school, although it is not required by
law. The reason is, since the new law does not include
walk-zone priorities and there is no public provision of
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school transportation, the simplest way to reduce the
travel time of families with multiple children is to in-
crease the chances of them getting assigned to the same
school. This objective imposes several challenges, as it
introduces complementarities into the preferences of
families, similar to those in the matching with couples
literature. Indeed, we show that a stable assignment
may not exist if families are allowed to report their pref-
erences regarding the joint assignment of their children.
For this reason, we adopt a heuristic approach where
we allow families to submit one preference list per
child, and we also allow them to report whether they
want to prioritize the joint assignment of their children.
If this is the case, our heuristic automatically updates
the preferences of the younger siblings to account for
the assignment of older siblings and to leverage the sib-
lings’ priority. We explore the stability and incentives
of the mechanism when families’ preferences are con-
sistent with this heuristic, which we call higher-first
preferences (see Sections 4.1 and 4.1.4, respectively).
Further, we break ties between students in the same
priority group at the family level within each school, as
opposed to having one lottery number per student. Lot-
teries over families create correlations between the pri-
orities of siblings applying to different grades in a given
school. We show, theoretically and through simula-
tions, that this correlation increases the probability that
siblings are assigned to the same school.

Apart from obtaining a fair allocation that favors the
assignment of siblings to the same school, our imple-
mentation—based on the deferred acceptance (DA) al-
gorithm introduced in the seminal paper by Gale and
Shapley (1962)—needs to accommodate several ele-
ments required by law and byMINEDUC. In particular,
the system needs to consider a set of priority groups—
students with siblings in the school, students with pa-
rents that work in the school, and students returning to
the school—that are served in strict order of priority.
The system also needs to fill quotas for students (i) with
special educational needs and disabilities, (ii) with high
academic performance, and (iii) from disadvantaged
environments. The law requires ties between students
be broken at the school level, and that students who are
currently enrolled but are trying to transfer to a differ-
ent school be guaranteed the option to enroll in their
current school if they cannot improve their assignment.

The results reported in this paper consider the ad-
missions process of 2018—for students who started
the academic year in March 2019—which includes all
regions except the Santiago metropolitan area, involv-
ing 274,990 students and 6,421 schools in the main
round. In this admissions process, students applied to
3.18 schools on average, and 59.2% of students were
assigned to their top preference. Moreover, 82.5% of
the students were assigned to one of the schools in
their preference list, 8.6% were assigned to their

current school, and only 8.9% were unassigned. In ad-
dition, there were 10,301 family applications involving
21,424 students and 65.3% of these were successful,
that is, siblings got assigned to the same school,
whereas 3% were partially successful, that is, only a
subset of siblings got assigned together.2 We also pro-
vide simulations evaluating different elements of our
design, including (1) the use of a family application
(as opposed to no updating of preferences); (2) the use
of a family lottery (as opposed to a student lottery);
(3) modifying the order in which we process quotas;
and (4) processing grade levels in decreasing order (as
opposed to doing so in increasing order).

1.1. Contributions
Designing, implementing, and improving the Chilean
school choice system has resulted in many contribu-
tions that could help other practitioners design large-
scale clearinghouses. From a theoretical standpoint, we
contribute to the existing literature by introducing the
notion of family applications. We show that a stable
matching may not exist, and we provide heuristics that
are successful at increasing the fraction of siblings as-
signed to the same school. In addition, our results show
that having lotteries over families significantly increases
the fraction of siblings assigned to the same school.

From a practical standpoint, a key lesson is that main-
taining continuous communication and collaboration
with policymakers is essential, as many practical issues
arise and must be incorporated into the design. In addi-
tion, decomposing the implementation into a given
number of steps allowed us to gain experience, solve
unexpected problems, and continuously improve the
system. As centralized procedures to assign students to
schools are becoming the norm in many countries, we
expect that the lessons and solutions offered in this
work will be deemed useful in other implementations.

The remainder of the paper is organized as follows.
In Section 2, we describe the school choice problem in
Chile. In Section 3, we discuss how this paper relates to
several strands of the literature. In Section 4, we present
our model and describe its implementation. In Section 5,
we present the results. In addition, we evaluate the ef-
fects of (i) family applications and (ii) quotas for disad-
vantaged students via simulations. Finally, in Section 6,
we conclude and provide directions for future work.

2. The School Choice Problem in Chile
Depending on their type of funding, schools can be clas-
sified into three types: (1) private, that is, schools that
are independent and privately funded; (2) voucher, that
is, schools where families make copayments to comple-
ment state subsidies; and (3) public, that is, schools that
are fully funded and operated by local governments.
Voucher and public schools, which are the focus of this
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paper, account for more than 90.3% of the total number
of students in primary and secondary education (MINE-
DUC 2018). These schools can offer a subset of the 14
grades that are part of the Chilean school system (from
pre-K to 12th grade), but their lowest grade must be one
of the following five entry-level ones: pre-K, kindergar-
ten, first, seventh, and ninth grades.

Before the introduction of the School Inclusion Law,
schools ran their admission processes independently,
often selecting their students based on arbitrary rules,
such as interviews with the students and their parents,
results of unofficial admissions exams, past academic
records, and more. Since the admissions processes were
not coordinated, in many cases parents were forced to
decide whether to accept an offer or to reject it and wait
until other schools released their admissions offers, and
declined seats were not efficiently reassigned. More-
over, many schools used first-come, first-served
rules to prioritize students, resulting in parents wait-
ing in long overnight queues to secure a seat for
their children. Overall, the freedom of schools to
choose their students and the existence of voucher
schools are considered among the main reasons for
the polarization and segregation of the Chilean
school system (Valenzuela et al. 2014).

To address these problems, the School Inclusion Law
forbids any sort of discrimination in the admissions
processes of schools that receive (partial or full) govern-
ment funding, and mandates schools to use a central-
ized system that collects families’ and students’ prefer-
ences and returns a fair allocation. In this system,
students and families can access a platform where they
collect information—number of open seats, number of
students per classroom and grade, educational project,
rules and values, copayments required, and more—to
build their preferences. Later, they can use this informa-
tion to apply to as many schools as they want by sub-
mitting a strict order of preferences. The system collects
all these applications and runs a mechanism that aims
to assign students to their top preference provided there
are enough seats available. More specifically, if the
number of applicants is less than the number of open
seats, the law requires that all students applying to that
school be admitted, unless they can be allocated to a
school they prefer. On the other hand, for schools that
are over-demanded, the law defines a set of priority
groups that are used to order students. In particular,
there are three priority groups, which are processed in
strict order of priority:

1. Sibling. This group consists of students that have a
sibling already enrolled or admitted at the school.

2. Working parent. This group consists of students
that have a parent working at the school.

3. Returning student. This group consists of students
that were enrolled at the school in the past and were
not expelled from it.

In addition to these priorities, the law specifies three
different types of quotas:

1. Special needs. This quota prioritizes students with
disabilities. It reserves at most two seats per classroom
per school and must be processed before any other pri-
ority group or quota. The quota only applies to schools
that have a validated special program.

2. Academic excellence. This quota prioritizes students
with high academic performance. It must be processed
right after the special needs quota and assigns between
30% and 85% of the total number of seats depending
on the school. MINEDUC allows only a subset of prese-
lected schools to implement this quota in the seventh
and ninth grades, and schools can rank students based
on an admissions exam only.3

3. Disadvantaged. This quota prioritizes the most vul-
nerable students (the bottom third in terms of income
according to the Social Registry of Homes). At each
grade in every school, 15% of the seats are reserved for
disadvantaged students, and this group is processed
right after students with siblings.

Finally, the School Inclusion Law sets three addition-
al requirements: (1) ties between students in the same
priority group must be broken at each school indepen-
dently, that is, a single tie-breaking (STB) rule cannot be
implemented;4 (2) if a student that is currently enrolled
in a school participates in the system with the aim of
transferring but remains unassigned, the system must
guarantee that student the option to enroll in the stu-
dent’s current school; and (3) students that are left unas-
signed must be allocated to the school with remaining
seats that are closest to their homes. We refer to this as
assignment by distance.5

To accommodate all these requirements, the first
step was to decide which mechanism to use to per-
form the allocation. The law only requires that the
resulting assignment be fair, and so we considered
two alternatives: the deferred acceptance algo-
rithm, and the top-trading cycles (TTC) algorithm.
We decided to opt for the former because communi-
cating the results of the assignment—especially to
families that are unhappy with the allocation—is
much simpler under DA. Moreover, this mecha-
nism has been used in many other school districts
worldwide. A second major choice was how to han-
dle families with multiple children participating in
the system. As opposed to many frameworks for in-
clusion in education around the world, the School
Inclusion Law intentionally excludes walk-zone
priorities due to the high urban segregation that
characterizes most of the major cities in Chile. In
addition, public provision of school transportation
is almost nonexistent, making families responsible
for getting their children to school. Hence, having
siblings assigned to different schools can dramati-
cally increase the transportation time and cost for
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families, and therefore the assignment of siblings to
the same school is a priority in our design.

As discussed in the previous section, accommodat-
ing this goal is challenging because it introduces com-
plementarities into the preferences of families with
multiple children participating in the system, similar
to those in the literature on matching with couples.
However, the problem with families is even more
complicated because families may have more than
two children participating in the system, increasing
the complexity of eliciting their preferences for their
children’s joint allocation. For instance, a family with
three children interested in applying to three schools
would have to submit a preference list with 27 triplets
to exhaust all possibilities. Moreover, due to the sib-
lings’ priority, the ordering of students by schools
becomes dynamic, as at any given iteration of the
mechanism a student may be tentatively assigned to a
school, thereby increasing the priority of the student’s
siblings being assigned to that school. This feature is
in sharp contrast with the standard implementation of
DA, where students’ preferences and schools’ priori-
ties are fixed and known.

To address these challenges, we made three impor-
tant decisions. First, instead of eliciting tuples of pref-
erences to account for all siblings, we ask families to
report one preference list per child and whether they
want to prioritize the joint assignment of their chil-
dren in the same school over each child’s individual
preferences. We refer to this feature as a family applica-
tion. Second, to avoid the problems associated with
simultaneously finding an assignment (for all grade
levels) that satisfies families’ preferences and schools’
priorities, we process grade levels sequentially and in
decreasing order. More specifically, we start by solv-
ing the allocation of students in the 12th grade. Then,
we use this allocation—and the enrollment of siblings
not participating in the system—to update schools’
priorities in all lower grades to account for the sib-
lings’ priority. We also use this allocation to update
the preferences of siblings in a family application. In
particular, if a family submits a family application
and the older sibling is assigned to a school included
in the preference lists of the younger siblings, the pref-
erence lists of the younger siblings are updated to
place that school as their top preference.6 Based on the

updated students’ preferences and schools’ priorities,
we then obtain the next grade’s allocation. We repeat
this process until we obtain the allocation for the low-
est grade (pre-K). Finally, the third choice we make to
favor the joint allocation of siblings is to break ties be-
tween students in the same priority group (if any) at
the family level in each school. As we show theoreti-
cally in Section 4 and through simulations in Section
5, this approach to breaking ties considerably helps to
increase the fraction of siblings assigned to the same
school.

2.1. Timeline of Process
We summarize the timing of the admissions process
in Figure 1. Families submit their preference lists be-
tween September and October. The centralized mech-
anism collects all these lists, generates the lotteries
used to order students in over-demanded schools,
and executes the main round of the process to obtain
the allocation. Families have five days to make one of
the following decisions: (1) to accept their initial as-
signment, (2) to wait in case of improvement from
movements in the waiting lists and accept the result-
ing assignment, (3) to reject the assignment, and (4) to
reject it but also wait in case of improvement from
movements in the waiting lists. Families that do not
accept their assignment or are unassigned, together
with those that do not participate in the main round,
can participate in the complementary round by sub-
mitting a new preference list that only includes
schools with available seats. Students that are unas-
signed in the complementary round are assigned to
the closest school with available seats that does not
charge a copayment. The complementary round re-
sults are published in mid-December, and families
can choose to either accept their assignment or reject it
and reach out to MINEDUC to find a better assign-
ment directly. Notice that students and families have
incentives to accept their main-round allocation, as
there are fewer seats available in the complementary
round, and rejecting the main-round allocation entails
giving up both their assignment and their right to en-
roll in their current school (if any). The last step in the
timeline is enrollment, which takes place in late De-
cember. The system grants students the right to enroll

Figure 1. Timeline of the Admissions Process

September October November December January

Applications
Main round
Start

Applications
Main round

End Tie-
Breaking

Assignment
Main round Application

Complementary round

Assignment
Complementary

round

Enrollment
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in the school to which they were assigned. However,
students can also enroll in schools outside the central-
ized system (private schools and some other excep-
tions), or they can directly contact schools that are
part of the system to check whether they can accom-
modate them. However, direct contact can happen
only after the official enrollment is over. In Appendix
B.5, we discuss the results of the enrollment process.

3. Literature
This paper is related to five strands of literature: (1)
school choice, (2) implementation of large-scale clear-
inghouses, (3) affirmative action, (4) matching with
externalities, and (5) tie-breaking.

3.1. School Choice
In the past two decades, starting from the theoretical
formalization of the school choice problem by Abdul-
kadiroğlu and Sönmez (2003), there have been re-
forms to the school choice system in many places
worldwide. New York City introduced the first major
reform, implementing a variation of the deferred ac-
ceptance (DA) algorithm with restricted lists (Abdul-
kadiroğlu et al. 2005a). In 2005, the Boston public
school system decided to switch from the so-called
Boston mechanism (BM), also known as immediate
acceptance (IA) mechanism, to DA to address the stra-
tegic incentives introduced by the former algorithm
(Abdulkadiroğlu et al. 2005b). Since then, other school
systems, for example, Barcelona (Calsamiglia and
Güell 2018), Amsterdam (Gautier et al. 2016), and
New Orleans (Abdulkadiroğlu et al. 2017), have im-
plemented centralized school choice systems using
some variant of DA, BM, or top-trading cycles (TTC).
Abdulkadiroğlu and Sönmez (2003) also initiated a
large literature that theoretically analyzes the school
choice problem. Recent papers have extended it by in-
cluding multiple priorities and quotas (see later dis-
cussion), allowing different admissions processes to
run simultaneously (Manjunath and Turhan 2016) or se-
quentially (Andersson et al. 2018), optimizing other dis-
tributional goals (Bodoh-Creed 2020), and more. This
paper contributes to this literature by adding a feature
that has not been explored in previous literature: favor-
ing siblings’ joint allocation to the same school.

3.2. Priorities and Affirmative Action
Many school choice systems include affirmative action
policies to promote diversity in the classroom. Ehlers
(2010) explores DA under type-specific quotas, find-
ing that the student-proposing DA is strategy proof
for students if schools’ priorities satisfy responsive-
ness. Kojima (2012) studies the implementation of ma-
jority quotas and shows that these may hurt minority
students. Consequently, Hafalir et al. (2013) propose

using minority reserves to overcome this problem
and show that DA with minority reserves Pareto
dominates DA with majority quotas. Ehlers et al.
(2014) extend the previous model to account for multi-
ple disjoint types and propose extensions of DA to
incorporate soft and hard bounds. Other types of con-
straints are considered by Kamada and Kojima (2015),
who study problems with distributional constraints
motivated by the Japanese Medical Residency pro-
gram. Dur et al. (2016a, b) analyze the Boston and Chi-
cago school systems, respectively.

Within the literature on affirmative action, the line
of research closest to our paper is that on multiple re-
serves and overlapping types. Kurata et al. (2017)
study this problem and show that a stable matching
might not exist even in the soft-bound minority quota
scenario. As a solution, they propose a model in which
they recover stability by assuming that students have
preferences over contracts that specify the school and
the type of seat to be used, whereas schools have pref-
erences over contracts specifying the student and the
type of seat. A similar setting is assumed by Aygün
and Turhan (2020), who propose a mechanism to
transfer seats from low-demand groups to high-
demand ones in order to reduce the number of unas-
signed seats. Recently (following the implementation
of the system in Chile), two papers—Sönmez and Yen-
mez (2020) and Delacrétaz (2020)—consider overlap-
ping types. Both papers axiomatically characterize
desirable properties and propose algorithms to find an
allocation satisfying them. Sönmez and Yenmez (2020)
aim to maximize the number of targeted students re-
ceiving a seat, whereas Delacrétaz (2020) focuses on
respecting priorities and treating all target groups
identically. Although both goals are valid, we cannot
implement the algorithm of Sönmez and Yenmez
(2020) in our setting. The reason is that their algorithm
assumes that all seat types rank students according to
the same baseline priority order, which is not the case
in Chile. For instance, academic excellence seats are as-
signed based on test scores, special needs seats are as-
signed based on the fit of students with the infrastruc-
ture available to accommodate them, and general seats
are assigned based on a random lottery. In this sense,
the algorithm of Delacrétaz (2020) is closer to ours, as
it allows students to have different priority orders for
each type of seat. Nevertheless, the fact that most stu-
dents have at most one type (93.8% in 2018)7 guaran-
tees that our approach—based on Kurata et al.
(2017)—incorporates quotas as minimum guarantees
(Hafalir et al. 2013, Sönmez and Yenmez 2020), which
is precisely our aim.

3.3. Matching with Externalities
The allocation of siblings is related to the work on
matching with externalities, which extends the standard
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setting by allowing agents to have preferences over the
allocation of other agents (Pycia and Yenmez 2015). An
example of this is the labor market of medical residents,
where couples prefer (in general) to be allocated to the
same city. Roth (1984) shows that one cannot guarantee
the existence of a matching without justified envy when
couples have arbitrary preferences over pairs of hospi-
tals. Kojima et al. (2013) show that a stable matching
exists if the number of couples is relatively small and
preference lists are sufficiently short relative to the size
of the market. Another positive result is presented by
Ashlagi et al. (2014), who introduce a new algorithm
that finds a stable matching with high probability (in
large matching markets) and where truth telling be-
comes an approximate equilibrium for the induced
game. Another example where complementarities are
important is in the school choice context, where stu-
dents may prefer to be assigned to the same school as
their neighbors. Ashlagi and Shi (2014) show that using
correlated lotteries, which maintain marginal assign-
ment probabilities but increase the chance that students
from the same neighborhood are assigned together, can
significantly increase community cohesion. Dur and
Wiseman (2019) study the case where neighbors share a
subset of schools that they prefer to attend together
and, beyond that subset, each of them has an individual
ranking of schools. The authors show that a stable
matching may not exist, that the student-proposing DA
algorithm is neither stable nor strategy proof, and that
there exists a variation of this algorithm to alleviate
these problems. To our knowledge, the only paper that
studies complementarities in the context of school choice
with families is Dur et al. (2019). The authors focus on
the particular case where an assignment is feasible only
if all family members submit the same preference list
and all of them are assigned to the same school (or all of
them are unassigned). These constraints may be too re-
strictive in a large system like the Chilean one, especially
considering that most schools offer only a limited subset
of school grade levels. Therefore, our paper expands
their setting by introducing the family application and
using lotteries at the family level to increase the probabil-
ity that siblings are assigned to the same school. More-
over, we contribute to this literature by showing that a
stable matching may not exist when there are family ap-
plications and by introducing a new heuristic that can
solve this problem.

3.4. Tie Breaking
A common approach to breaking ties between stu-
dents in the same priority group is to use random tie-
breaking rules, such as single tie breaking (STB)—all
schools use the same ordering for breaking ties—and
multiple tie breaking (MTB)—each school uses a
different random order. Abdulkadiroğlu et al. (2009)
are the first to compare these tie-breaking rules

empirically, and they find that there is no stochastic
dominance between these tie-breaking rules in New
York City’s school choice system. De Haan et al.
(2015) obtain a similar result for Amsterdam. These
findings are consistent with the theoretical results in
Arnosti (2015) and Ashlagi et al. (2019). Arnosti (2015)
shows that there is no first-order stochastic dominance
among these two tie-breaking rules when preferences
are short, as STB assigns more students to their top
preferences, whereas MTB leads to more students be-
ing assigned. Similarly, Ashlagi et al. (2019) find no
stochastic dominance when there is low competition.
However, they also show that when there is a short-
age of seats, STB almost dominates MTB and leads to
a lower variance in students’ assignment preferences.
We contribute to this literature by studying the effect
of breaking ties at the family level to increase the
probability that the mechanism assigns siblings to the
same school.

3.5. Implementation of Large-Scale
Clearinghouses

Our paper also contributes to the literature on design-
ing large-scale clearinghouses. Laws, institutional de-
tails, and special requirements often forbid the use of
tools directly taken from the theory, and other engi-
neering aspects become relevant in the design and im-
plementation. Special attention has been devoted to
redesigning medical labor markets (Roth and Peran-
son 1984, Alon et al. 2018), college admissions systems
(Biró 2008, Baswana et al. 2019, Rios et al. 2020), kid-
ney exchange programs (Roth et al. 2004, Anderson
et al. 2015), and the assignment to (pre)military
branches and programs (Sönmez and Switzer 2004,
Gonczarowski et al. 2019). We contribute to this litera-
ture by adding an example of successful implementa-
tion of a large-scale clearinghouse in the school choice
context, and we also share some lessons that can be
useful to other practitioners implementing large-scale
clearinghouses.

4. Model
The Chilean school choice problem can be formalized
as follows. Let S be a set of students and T be a set of
traits. Each student s has a subset of traits τ(s) ⊆ T,
which captures special characteristics of the student,
such as socioeconomic status, academic performance,
and more. We say that τ(s) is the type of student8 s,
and we denote by St " {s ∈ S : t ∈ τ(s)} the set of stu-
dents with trait t ∈ T. In addition, let F be a partition
of students into families, and let f (s) ∈ F be the family
of student s. Then, we say that students s and s′ are
siblings if and only if f (s) " f (s′), and we say that s is
an only child if f (s)≠ f (s′) for all s′ ∈ S \ s{ }. Finally,
let G be the set of all grade levels from pre-K to 12th
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grade. Each student s ∈ S belongs to a grade in G that
we denote by g(s), and we denote by Sg the set of stu-
dents in grade g.

On the other side of the market, let C be the set of
schools. Without loss of generality, we assume that
each school c ∈ C offers a number of seats qcg in each
grade g ∈ G, and we use qcg " 0 to represent that grade
g is not offered at school c. In addition, each school c
in each grade g has a number of seats reserved—also
referred to as quotas—for each student trait t, ptcg, and
so

∑
t∈T p

t
cg ≤ qcg.

In a slight abuse of notation, we assume that each
family f " f1, : : : , f| f |

{ } ∈ F can be ordered and written
as a tuple ( f1, : : : , f| f |). Then, each (ordered) family f
has a preference order ≻f over possible assignments of
its members, that is, over tuples in the set (C ⋃ {∅})f ,
where the symbol ∅ represents that a student is unas-
signed. For instance, if f " (f1, f2), then for any
c, c′, c′′, c′′′ ∈ C⋃ ∅{ }, (c, c′)≻ f (c′′, c′′′) implies that fami-
ly f prefers that students f1 and f2 attend schools c and
c′ over schools c′′ and c′′′, respectively. On the other
side of the market, each school has a preference order
≻ c over feasible subsets of assigned students, that is,
over sets in the power set of S, P(S). This preference
order can be obtained as a result of considering priori-
ty groups, tie-breaking rules, and reserved seats.

An assignment is a function µ : S⋃C→ S⋃C⋃ ∅{ }
such that (i) µ(s) ∈ C⋃ ∅{ } for every student s, (ii)
µ(c) ⊆ S⋃ ∅{ } for every school c, and (iii) µ(s) " c if and
only if s ∈ µ(c). In words, µ(s) represents the school
student s is assigned to, and µ(c) represents the set of
students assigned to school c. In another abuse of no-
tation, we denote by µ( f ) " µ( fi)

( )| f |
i"1 the assignment

of the members of family f , and by µcg "
s ∈ S : µ(s) " c, g(s) " g
{ }

the subset of students as-
signed to grade g in school c.

An assignment µ is feasible if |µcg| ≤ qcg; that is, no
school accepts more than the number of seats offered
in each grade. There are two additional properties
that are desirable in any assignment: envy-freeness and
nonwastefulness. Given a feasible assignment µ, we say
that a student s belonging to a family f has justified
envy toward another student s′ assigned to school c′ if

1. g(s) " g(s′),
2. (µ( f1), : : : , c′, : : : ,µ( f|f |))≻ fµ( f ), and,
3. (µ(c′) \ {s′})⋃{s}≻ c′µ(c′).
In words, student s has justified envy toward s′ if

both students are in the same grade, the family f (s)
prefers that student s be assigned to school c′ to µ(s)
given the assignment of the student’s siblings
µ( f (s) \ s{ }), and school c′ prefers to exclude s′ and ac-
cept s conditional on the other students admitted,
µ(c′) \ s′{ }. If there is no justified envy, we say that µ
is envy free. We say that µ is nonwasteful if no stu-
dent claims an empty seat, that is, there is no pair s ∈ S
and c ∈ C such that (µ(f1), : : : , c, : : : ,µ( f|f |))≻ f (s)µ( f ) and

|µcg(s)| < qcg(s). We say that a feasible assignment is sta-
ble if it is nonwasteful and there is no student that has
justified envy.

As we will later show, these preferences are so gen-
eral that a stable matching may not exist. Even if we
further restrict our model to account for the special
features of the Chilean case, the problem is still chal-
lenging due to the complementarities introduced by
families’ preferences and schools’ priorities.9 For this
reason, we make two simplifying assumptions. First,
to deal with families’ complementarities, we assume
that each student submits a preference list and that
some families prioritize the assignment of their chil-
dren in higher grades over the assignment of their
children in lower grades. As a result, we process
grades sequentially in decreasing order, updating
schools’ priorities and students’ preferences to ac-
count for the assignment in higher grades. Second, to
deal with the complementarities generated by re-
serves, we assume that each reserve in each school is an
independent subschool with its own priorities and num-
ber of seats available, and that students have preferences
for each subschool. In Sections 4.1 and 4.2, we describe
in detail the implementation of these assumptions.

4.1. Families
In Proposition 1, we show that a stable matching may
not exist if the allocation is based on the joint preferen-
ces reported by families.10

Proposition 1. If families’ preferences are arbitrary and
schools’ priorities are over students in each grade, then an
envy-free and nonwasteful assignment may not exist, even
with two schools and four students.

Another issue of allowing families to report prefer-
ences over any tuple of schools is that it may be too
complicated, as the number of combinations grows
exponentially with the number of schools and with
the number of siblings in a family. For instance, a
family with two children where each of them prefers
four schools to the outside option would require that
the family apply to 16 pairs of schools to cover all
combinations.

These issues suggest that we may need some more
structure in families’ preferences to guarantee the ex-
istence of a stable assignment and facilitate the report-
ing language to elicit families’ preferences. Dur et al.
(2019) analyze a particular case of our model where
families prefer having their siblings unassigned to
having them assigned to different schools. By adapt-
ing the concept of justified envy to that setting, the au-
thors show that an assignment satisfying their notion
of stability always exists, and they propose an algo-
rithm to find it. Although their assumption guarantees
some notion of stability, the requirement that all sib-
lings be assigned to the same school is too restrictive
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for our setting. For instance, many schools offer only a
subset of grades, considerably reducing families’
choice sets if we restrict ourselves to the setting in Dur
et al. (2019). In the next section, we discuss a different
assumption on families’ preferences that better fits the
Chilean school choice problem and that guarantees
the existence of a stable assignment.

4.1.1. Higher-First. To circumvent the aforementioned
difficulties, we make further assumptions on families’
preferences. In particular, we assume that families ei-
ther (i) prioritize the assignment of their children in
higher grades to the best possible schools and then
prioritize the assignment of their siblings in lower
grades to the same school, or (ii) prioritize the individ-
ual assignment of each child based on the child’s
individual preferences and not their joint preferences.
If the former holds, we say that the family has higher-
first preferences. To capture this, we make two
important considerations. First, we simplify (and
consequently restrict) the reporting language. In par-
ticular, we assume that each student s reports a strict
preference order ≻s over schools c ∈ C⋃ ∅{ }. In addi-
tion, we assume that each family f has the option to
state whether their preferences satisfy higher-first, in
which case we say that they submit a family applica-
tion, or whether they prefer that the system treats
each of their members independently.

Definition 1. Consider a family f " ( f1, : : : , f| f |) with
preference order ≻f , and suppose that g( f1) ≥ g( f2): : :
≥ g( f| f |). Then, we say that ≻f satisfies higher-first if
there exist individual preferences ≻fi

{ }| f |
i"1 such that for

any c→ , c→
′ ∈ C⋃ ∅{ }( ) f , c→ ≻ f c

→ ′
if and only if, given

i " argmin j : cj ≠ c′j , j ∈ 1, : : : , | f |{ }{ }
, one of the follow-

ing conditions holds:
1. ci≻ fi c′i , and either (i) ci, c′i ∈ c1, : : : , ci−1{ } or (ii)

ci, c′i ∉ c1, : : : , ci−1{ }; or
2. ci ∈ c1, : : : , ci−1{ } and c′i ∉ c1, : : : , ci−1{ }.
Second, we process grades sequentially and in de-

creasing order. More specifically, if grades g1, : : : ,
{

g|G|} are ordered in decreasing order (i.e., g1 " 12 th
grade and g|G| " pre-K), we start by obtaining an as-
signment for g1 using DA, while considering students’
individual preferences and the siblings’ priority for
students with siblings enrolled in the corresponding
school. Before processing g2, we update schools’ prior-
ities for g2 to account for the siblings’ new priorities
that result from the allocation in grade g1. In addition,
we update the individual preferences of students in g2
who have siblings assigned in g1 and who are part
of a family application, by moving the schools
where their siblings were assigned to the top of their
preference list while preserving their original order
(see Example 1). Then, considering the updated

students’ preferences and schools’ priorities, we ob-
tain the allocation for g2, then move to the next grade,
and then repeat the process until we obtain the assign-
ment for grade g|G|. Notice that, when updating stu-
dents’ preferences and schools’ priorities in grade gi,
we consider the allocation of students in grades
g1, : : : ,gi−1
{ }

, and preserve the original relative order of
students and schools for priorities and preferences,
respectively.

We jointly decided with MINEDUC to focus on a
mechanism for higher-first preferences for three rea-
sons. First, this mechanism increases the probability
that siblings are assigned together. Second, it consider-
ably simplifies the reporting language, making it easier
to understand and reducing the complexity for families
to build their preferences. Finally, it captures the fact
that many families prioritize quality for their children’s
assignment in higher grades. By contrast, they prioritize
convenience for their children’s assignment in lower
grades. The reason is that, to apply to most of the
universities in Chile, students undergo a series of stan-
dardized national exams whose results are heavily cor-
related with the quality of the school that the students
attended for their secondary education. Besides, stu-
dents in lower grades are more dependent on their pa-
rents and older siblings for their transportation. Hence,
families prioritize quality for their older children and
convenience for their younger ones.11

Example 1. Consider a family f " f1, f2, f3
( )

with three
members, and suppose that g( f1) > g( f2) > g( f3). In ad-
dition, suppose that the individual preferences are
given by:

f1 : c1 ≻ f1c2≻ f1c3, f2 : c2≻ f2c3≻ f2c1, f3 : c3≻ f3c1≻ f3c2:

Suppose that f1 is assigned to school c1. Then, if the
family submits a family application, the preference list
of f2 is updated and becomes c1≻ f2c2≻ f2c3. Notice that,
in addition to this, f2 receives the sibling priority in
school c1, which further increases f2’s chances of being
assigned to the same school as f1. If f2 is assigned to c1,
then the preference list of f3 becomes c1≻ f3c3≻ f3c2, and
f3 also receives the sibling priority in school c1. On the
other hand, if f2 is assigned to c2, then the preference
list of f3 becomes c1≻ f3c2≻ f3c3, that is, f3’s preference
list is updated to account for the assignment of f1 and
f2 in schools c1 and c2, respectively, but preserves the
relative order between these two options (defined by
f3’s original preferences), and f3 receives the sibling
priority in both c1 and12 c2.

In Proposition 2, we show that a stable assignment
always exists if preferences satisfy higher-first and
grade levels are processed sequentially in decreasing
order.
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Proposition 2. If grade levels are processed sequentially in
decreasing order and the preferences of families satisfy
higher-first, then the obtained assignment is stable.

4.1.2. Tie-Breaking. As discussed in Section 2, the pri-
ority groups included in the system define a partial
order over students, and we must use a multiple ran-
dom tie-breaking rule to obtain a strict order for each
grade in each school. However, the School Inclusion
Law does not further specify how to implement it.
Since one of our primary goals is to favor the joint as-
signment of siblings, we propose to break ties at the
family level in each school—using family lotteries—
instead of breaking ties using student lotteries. Under
this new approach, we first break ties between fami-
lies and later use lotteries at the student level to break
ties within each family. More precisely, for each
school independently, we draw a uniformly random
ordering over the families, and then we draw a uni-
formly random ordering over the members of each
family. As a result, we obtain a strict ordering of stu-
dents for each school and each grade.

Example 2. Suppose there is a school c and three
families, f " f1, f2

{ }
, f ′ " f ′1, f

′
2

{ }
, and f (s) " s{ } (an

only-child student). Then, our procedure first draws
an ordering of families uniformly at random, say
f ′ ≻ cf (s)≻ cf . Then, we draw an ordering of the mem-
bers of each family also uniformly at random, say
f1≻ cf2 for f and f ′2≻ cf ′1 for f ′. The resulting ordering
over all applicants is then f ′2≻ cf ′1≻ cs≻ cf1≻ cf2. The
same procedure is repeated independently for each
school.

If there are no families with two or more applicants
in the same grade, family lotteries induce the same
distribution of assignments as the regular multiple tie-
breaking rule within each grade. In Proposition 3, we
show that using family lotteries increases the proba-
bility that families are assigned together if no family
has two or more members in the same grade. This re-
sult implies that we can use family lotteries to increase
the probability that siblings are assigned together
without harming families with an only child partici-
pating in the system.

Proposition 3 (Informal Statement). Consider a family
f " f1, f2

{ }
such that g( f1) > g( f2). Given (and fixed) the

students’ preferences and schools’ priorities, the probability
that these siblings are assigned to the same school is larger
under family lotteries than under student lotteries.

To ease exposition, we defer the formal statement
and proof of the latter proposition to Appendix A.3.
Analyzing the case with siblings in the same grade is
technically much more challenging, but arguably their
effect in the system is small, as less than 2% of the

applicants have a sibling applying to the same grade.
Notice that the proposition works for a stylized case
that simplifies many of the complexities of our prob-
lem. Nevertheless, this result sheds some light on why
using family lotteries works, complementing the em-
pirical analysis provided in Section 5.3.

4.1.3. Example: Family Applications and Lotteries. To
illustrate the benefits of the family application and the
lotteries by family we present the following example.
Consider two schools, c and c′, that have a single seat
in grades g1 and g2, where the former is processed
first. In addition, suppose that there is one family f "
f1, f2

{ }
and two only-child students, s1, s2, so that

g1 " g( f1) " g(s1) > g(s2) " g( f2) " g2. Finally, suppose
that c≻ sc′ for all s ∈ f1, f2, s1, s2

{ }
; that is, all students

prefer school c to c′. To illustrate the impact of the pro-
posed policies, we compute the probability that the
family is assigned together in each of the following
four scenarios:

i. Lotteries by student, no family application. The
probability that the siblings are assigned together is
equal to the probability that they are both assigned to
either school c or c′. Since the probability that f1 is as-
signed to c (or c′) is 1

2 and the probability that f2 is as-
signed to c (or c′) is also 1

2, the overall probability that
the siblings are assigned together is 1

2 · 12+ 1
2 · 12 " 1

2.
ii. Lotteries by family, no family application. There

are three possible lottery outcomes for the family in
school c, namely, being ranked first, second, or last.
Each outcome has probability 1

3. If the family is ranked
first in c, f1 and f2 are assigned together in school c. If
the family is ranked last in school c, both f1 and f2 are
assigned to school c′. Finally, if the family is ranked
second in school c, one child is assigned to school c and
the other to c′. Then, the overall probability that the sib-
lings are assigned together is 1

3 · 1+ 1
3 · 1+ 1

3 · 0 " 2
3.

iii. Lotteries by student, with family application. As
in case (i), the probability that the siblings are assigned
together in school c is 1

4. However, the probability that
the family is assigned to school c′ is now 1

2. The reason
is that, once student f1 is assigned to c′ (which happens
with probability 1

2), we update f2’s preferences so that
the student now prefers c′, and thus gets assigned there
for sure. Therefore, the overall probability that the sib-
lings are assigned together is 1

2 · 12+ 1
2 · 1 " 3

4.
iv. Lotteries by family, with family application. As in

case (ii), the family may be ranked first, second, or last.
Also, we know that the family is assigned together if it
is ranked first or last. When the family is ranked sec-
ond, either s1 or s2 is ranked first. In the former case,
the family is assigned together because f1 is assigned to
school c′ and so we update the preferences of f2 (as in
(iii)). In the latter case, the family is not assigned to-
gether because f1 is assigned to school c and f2 is
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assigned to c′. As a result, the overall probability that
the siblings are assigned together is 1

3 · 1+ 1
3 · 1+ 1

3 · 12 " 5
6.

4.1.4. Incentives. In this section, we analyze whether
families have incentives to report their preferences truth-
fully. Certainly, this question is relevant only for families
whose preferences are consistent with the reporting lan-
guage, that is, those with higher-first preferences. Recall
that, under higher-first preferences, families report a
preference list for each child (individual preferences)
and whether they want to prioritize that their children
are assigned together (by submitting a family applica-
tion). The mechanism is not strategy proof in the general
sense. However, as we point out in the following obser-
vations, the range of profitable deviations from report-
ing truthfully is relatively limited.

Observation 1. A family f with higher-first preferen-
ces cannot improve the assignment of one of its mem-
bers s ∈ f by misreporting the individual preference of
s, given that f submits a family application. This comes
from two facts: (1) if the individual preference of s is
reported truthfully, then the true preference of f over
assignments where only s goes to a different school is
exactly the updated preference in the mechanism; and
(2) using the updated preferences, the mechanism
runs a student-proposing DA in each grade, which is
incentive-compatible for the students.

Observation 2. If a family f " ( f1, f2) with higher-first
preferences reports the individual preferences of f1
and f2 truthfully, then it is weakly optimal for them to
submit a family application. This is because the only
effect of submitting a family application is that the
mechanism generates an updated preference for f2 by
moving to the top the school f1 was assigned to, which
is the true preference of f once the assignment of f1 is
fixed. Therefore, the same argument as in Observation
1 holds.

Observation 3. Consider a family f " ( f1, f2), with
g( f1) > g( f2), that has higher-first preferences. Under
certain conditions, f may improve the assignment of f2
without changing the assignment of f1 by misreport-
ing the individual preference of f1.

Observation 4. A family f of three or more siblings
with higher-first preferences may improve the assign-
ment of one of its members without changing the
assignment of the others by not submitting a family
application, even if all individual preferences are re-
ported truthfully.

Observation 5. In a large market with higher-first
preferences, our mechanism is essentially strategy
proof. In general, a stable matching can be character-
ized by market-clearing cutoffs per school such that a
student is assigned to the student’s most preferred

school when the student surpasses the cutoff (Biró
2008). When the market grows large, the effect of a
single student’s preferences over the cutoffs vanishes
(Abdulkadiroğlu et al. 2015, Azevedo and Leshno
2016). Therefore, the possible benefit a family gets
from misreporting, which comes from manipulating
the assignment in a higher grade to take advantage of
the sibling priority in lower grades (as noted in Obser-
vations 3 and 4) also vanishes.

4.2. Quotas
As shown by Kurata et al. (2017), when student types
overlap, the general concepts of stability with soft
lower bounds proposed in the literature (Hafalir et al.
2013, Ehlers et al. 2014) are insufficient to guarantee
the existence of a stable matching. To overcome this
difficulty, Kurata et al. (2017) propose a new model
based on matching with contracts (Hatfield and Mil-
grom 2005). In this model, schools provide separate
reserved seats for each student trait, and assignments
are interpreted as contracts that explicitly state that a
student is assigned to a particular reserved seat at a
school, in contrast to previous models where a student
is assigned to all the reserved seats for which the stu-
dent is eligible.

Due to its simplicity, we adapt their approach to
our setting. First, we update students’ preferences so
that each student s has a strict preference order ≻ s
over contracts of the form (c, t) ∈ C × T( )⋃ ∅{ }. Second,
we assume that each pair (c, t) ∈ C × T—which we re-
fer to as a subschool—has a weak priority profile ≽ct
over students in13 S⋃ ∅{ }. Then, a matching is a func-
tion µ : S⋃ C × T( )→ S⋃ C × T( )⋃ ∅{ } such that

1. µ(s) ∈ C × T{ }⋃ ∅{ } for all s ∈ S,
2. µ(c, t) ⊆ S for all (c, t) ∈ C × T,
3. µ(s) " (c, t) if and only if s ∈ µ(c, t), for all s ∈ S and

for all (c, t) ∈ C × T and
4. |µ(c, t)| ≤ ptc for all (c, t) ∈ C × T.
In words, µ(s) represents the contract (or subschool)

to which student s is assigned; µ(c, t) represents the
subset of students assigned to school c using the re-
serve for trait t. Note that this definition does not re-
quire matching students with trait t to seats reserved
for this trait, providing extra flexibility if the reserves
for some traits in some schools are not over-
demanded. Another advantage of this formulation is
that, based on the new preferences and priorities, the
standard definition of stability directly applies, that is,
a matching is stable if and only if there is no pair
(s, (c, t)) ∈ S⋃ C × T( ) such that, for some s′ ∈ S \ s{ },

µ(s′)≻ sµ(s) and s≽ cts′:

In Section 4.2.1, we discuss in detail how we construct
the preferences ≻s and the priorities ≽ct.
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4.2.1. Combining Quotas, Priorities, and Current Stu-
dents. As discussed in Section 2, there are three
priority groups (sibling, working parent, and return-
ing student) and three quotas (special needs, academic
excellence, and disadvantaged). In addition, the sys-
tem must guarantee that students who aim to transfer
to a different school have the option to enroll in their
current school if they are not assigned to the other
school they prefer. This feature of the problem has
been previously studied in other settings, such as in
house allocation (Guillen and Kesten 2012) and teach-
ers’ assignment (Combe et al. 2016). Both cases use the
same variant of DA to accommodate this requirement:
they modify all houses/schools’ priorities to rank
their initial “owners” at the top of their priorities. In a
recent paper, Combe (2018) shows that this variant of
DA (called DA∗) is a justified-envy minimal mecha-
nism in the set of individually rational and strategy-
proof mechanisms (Abdulkadiroğlu et al. 2017),14 that
is, there is no other algorithm such that its set of block-
ing pairs (relative to the original preferences) is a sub-
set of that of DA∗. For this reason, we adopt a similar
approach and make two important changes to adapt
it: (1) we rank all students with current school at the
top of their schools’ priorities, and (2) we add their
current school to the bottom of the preference list of
each student seeking to transfer to another school that
participates in the system.

Given the treatment of reserves described earlier,
we model each trait as a separate subschool with its
number of seats (equal to the number of reserved
seats for that trait) and its weak priority order. In
Table 1, we describe the subschools’ weak priorities
over students depending on their traits. In each

subschool (c, t), students currently enrolled at the
school (who aim to transfer) have the highest priority
in all reserves. Students with special needs and aca-
demic excellence have the second-highest priority in
the corresponding reserves. The remaining students
are ordered according to the priority groups defined
by law (i.e., sibling, working parent, and returning
student). Notice that as required by law, students
with siblings at the school have higher priority than
disadvantaged students, even in seats reserved for
that trait. Finally, in Table 2, we describe the preferen-
ces of students, which depend on their set of traits.

5. Results
In this section, we report the implementation results.
We start by describing how the system evolved from
2016 to 2018. Then, we focus on the admissions pro-
cess of 2018 and report the results of the main and
complementary rounds in Sections 5.1 and 5.2, respec-
tively. In Section 5.3, we study the impact of the fami-
ly application and having lotteries at the family level.
Finally, in Section 5.4, we analyze the effect of the
quota for disadvantaged students.

In Table 3, we summarize the evolution of the
admissions system. For 2016, we considered only the
entry grades of the Magallanes region, located in
the extreme south of the country. For 2017, the system
was extended to all grades in Magallanes, and to entry
grades in four more regions. For the 2018 admissions
process, all the aforementioned regions’ grades were
added, and all the remaining regions (except for the
metropolitan area) were included in their entry
grades. For 2020, the system was implemented in the
entire country and for all grades, that is, from pre-K to

Table 1. Weak Priorities by Type-Specific Seats

Priority Special needs Academic excellence Disadvantaged No trait

1 Current school Current school Current school Current school
2 Special needs Academic excellence Siblings Siblings
3 Siblings Siblings Disadvantaged Working parent
4 Working parent Working parent Working parent Returning students
5 Returning students Returning students Returning students No priority
6 No priority No priority No priority

Note. Lower numbers indicate higher priority.

Table 2. Preferences of Students

Currently enrolled Disadvantaged Special needs Siblings Preferences

Yes Yes Yes Any Special needs ≻ Disadvantaged ≻ Regular ≻ Academic excellence
No Any Disadvantaged ≻ Regular ≻ Academic excellence ≻ Special needs

No Yes Any Special needs ≻ Regular ≻ Disadvantaged ≻ Academic excellence
No Any Regular ≻ Disadvantaged ≻ Academic excellence ≻ Special needs

No Yes Any Any Special needs ≻ Academic Excellence ≻ Disadvantaged ≻ Regular
No Any Yes Special needs ≻ Academic Excellence ≻ Regular ≻ Disadvantaged

Any No Special needs ≻ Academic Excellence ≻ Disadvantaged ≻ Regular
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12th grade. As the table shows, most of the main
round’s relevant performance metrics—fraction of
students assigned to their top choice and unas-
signed—have remained stable over time.15

5.1. Main Round
In 2018, 274,990 students and 6,421 schools—divided
into 32,198 sections, that is, school-grade pairs—
participated in the system, with a total of 522,859
available seats (average of 16.2 seats per section). In
Table 4, we classify students based on (1) their gender,
(2) whether they have any priority in the schools they
applied to, and (3) whether they are eligible for any
quota in the schools of their choice. Notice that the
percentage of disadvantaged students exceeds 50% of
the total number of applicants. As the quota for this
group is only 15%, an interesting design question is
whether having a quota has any impact when the tar-
geted population is relatively large. We analyze this
in Section 5.4.

Analyzing the submitted preferences, we observe
that students apply on average to 3.18 schools. Con-
sidering that there is no limit on the number of
schools that students can include in their preference
list, this number seems relatively low. One potential
explanation is that students skip schools where they
believe that their chances of being admitted are close
to zero (Larroucau and Rios 2018). Another potential
reason is that students make application mistakes due
to lack of information, poor understanding of the
mechanism, and other reasons. Recent literature has

explored similar application mistakes in other con-
texts, including college admissions (Artemov et al.
2017, Shorrer and Sóvagó 2017, Larroucau et al. 2021),
the National Residency Match (Rees-Jones 2018, Rees-
Jones and Skowronek 2018), and the Israeli Market for
Psychologists (Hassidim et al. 2021), among others.
Understanding the drivers of this behavior in the
school choice context is an interesting avenue for
future research.

Overall, 73.1% of the applications are to public
schools and 26.9% to voucher schools, although only
11% of the total seats available are of the latter type.
Out of the 485,905 applications submitted by disad-
vantaged students, 22.0% are to voucher schools,
which is significantly less than the general population.
These differences are not surprising considering that
disadvantaged students have fewer resources, and
therefore their willingness to pay is probably lower.

In Figure 2(a) we present the distribution of assign-
ments by preference. We observe that 59.2% and 12.8%
of the applicants are assigned to their first and second
preference, respectively. In addition, 8.6% are assigned
to their current school, and 8.9% are left unassigned
(recall that these students—the unassigned—have the
chance to participate in the complementary process,
whose results are described in Section 5.2).

5.2. Complementary Round
Overall, 46,698 students participated in the comple-
mentary round, including new applicants, unassigned
students from the main round, and students who
rejected their assignment from the main round. In
Table 4, we characterize these students based on their
gender, priority type, and eligibility for the disadvan-
taged quota, as the other quotas are not considered in
the complementary round. In general, we observe that
there are no significant differences relative to the main
round. In Figure 2(b), we present the distribution of
preferences of assignment in the complementary
round. We observe that the results are not as good as
in the main round, as 47% are assigned to their top
choice, 28% are assigned by distance, and 3.6% are left
unassigned.

Recall that the unassigned students from the com-
plementary round are assigned to the nearest public
school (within 17 kilometers (km)) with remaining
open seats—referred to as a distance assignment. In-
deed, 13,064 students were assigned by distance. The
average distance for these students was 2.17 km, com-
pared with 2.19 km for those assigned to one of their
preferences in the complementary process and 3.35
km for those assigned to their current school. Finally,
only 1,691 students—0.6% of the total number of ap-
plicants in both rounds—were unassigned and were
manually allocated by MINEDUC.

Table 3. Evolution of the System

Main round Complementary round

2016 2017 2018 2016 2017 2018

Regions 1 5 15 1 5 15
Schools 63 2,174 6,421 63 2,174 6,421
Students 3,43676,821274,990 439 9,507 46,698
First preference (%) 57.0 56.2 59.2 81.3 81.8 46.7
Other preference (%) 27.4 26.8 23.4 12.5 14.3 19.0
Current school (%) 6.8 8.3 8.6 3.0 1.5 2.7
Not assigned/distance (%) 8.8 8.7 8.9 3.2 2.4 31.6

Table 4. Characterization of Applicants

Main round Comp. round

N % N %

Gender Female 134,973 49.1 23,063 49.4
Male 140,016 50.9 23,635 50.6

Priority Siblings 66,743 24.3 5,443 11.7
Working parent 3,700 1.3 328 0.7
Returning students 9,165 3.3 2,441 5.2

Quota Special needs 1,631 0.6 — —
Academic excellence 6,534 2.4 — —
Disadvantaged 150,287 54.7 23,414 50.1
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In Appendix B.5, we report the results of the enroll-
ment process. Overall, 72.7% (214,209) of the students
who applied to the system enrolled in the school they
were assigned to (either in the main or in the comple-
mentary round). Among the remaining 60,139 stu-
dents, 8.6% (5,192) did not enroll in any school, 20.1%
(12,076) enrolled in a school that did not participate in
the centralized system, and 71.3% (42,871) enrolled in
a school that participated. The latter includes students
who enrolled in the closest school with remaining
seats after the complementary round, students who
remained in their current school, and students who di-
rectly contacted a school to request a seat.

5.3. Assignment of Families
Besides finding a fair allocation as required by law,
one of our primary goals is to favor the joint allocation
of siblings. In 2018, a total of 21,424 students were part
of 10,301 family applications in the main round, with
2,869 (27.9%) having students belonging to the same
grade and 7,432 (72.1%) having at least two students in
different grades.16 Out of these family applications,
6,725 (65.3%) were fully successful—that is, all siblings
that were part of these were assigned to the same
school—and 307 (3%) were partially successful—that
is, a subset of the siblings (among families with three
or more applicants) were assigned to the same school.

As discussed in previous sections, we make three
important decisions to favor the joint assignment of
siblings:

1. Update preferences of younger siblings to accom-
modate the assignment of older siblings.

2. Use lotteries at the family level as opposed to the
student level.

3. Process grades sequentially in decreasing order, that
is, starting from 12th grade and finishingwith pre-K.

To assess the impact of these decisions, in Table 5 we
compare the fraction of family applications that are ful-
ly and partially successful obtained from (i) updating/
not updating the preferences of younger siblings, and

(2) using lotteries at the family/student level. For sim-
plicity, we focus on the main round, and for each com-
bination we report the mean and standard deviation (in
parentheses) obtained from 10,000 simulations.17

First, we observe that using lotteries at the family
level increases the number of successful family appli-
cations by 3.9% when combined with updating prefer-
ences. The improvement is 4.4% when no updating of
preferences occurs. On the other hand, the number of
partially successful applications remains almost the
same when a family lottery is combined with updat-
ing of preferences, whereas it increases by 0.06%
when no updating is in place. These results suggest
that using family lotteries can largely increase the
number of successful family applications. Second,
comparing the results of updating/not updating pref-
erences (for a fixed type of lottery), we observe that
our proposed mechanism significantly increases the
fraction of fully successful family applications (by
8.2% and 8.7% for family and student lotteries, respec-
tively). At the same time, it slightly decreases the
number of partially successful family applications (by
0.44% and 0.4% for family and student lotteries,
respectively).

To assess whether the order in which grades are
processed matters, we also ran simulations where we
sequentially process grades in increasing order, that
is, from pre-K to 12th grade. We do not find a signifi-
cant effect, as this results in 65.48% and 2.82% fully

Figure 2. Distribution of Preference of Assignment: (a) Main Round, (b) Complementary Round

Table 5. Effect of Lotteries and Updating of Preferences in
Family Application: Simulation

Updating No updating

By
family

By
student

By
family

By
student

Fully successful (%) 65.50 61.56 57.34 52.87
(0.21) (0.23) (0.25) (0.27)

Partially successful (%) 2.94 3.00 3.34 3.40
(0.07) (0.07) (0.08) (0.08)
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and partially successful applications, respectively.
Overall, these results suggest that updating preferen-
ces of younger siblings and using lotteries at the fami-
ly level explain the improvement obtained from our
mechanism, and that the former explains a higher
fraction of the improvement.

Although the School Inclusion Law requires that
each school has its own lottery to break ties (i.e., it en-
forces the use of a multiple tie-breaking (MTB) rule),
in Table 6 we compare this to using a single tie-
breaking (STB) rule combined with updating prefer-
ences and holding lotteries at the family and student
levels.

Similar to previous findings in the literature, we ob-
serve that STB leads to more students assigned to their
top choice, whereas MTB leads to fewer unassigned
applicants. In addition, given a fixed tie-breaking rule
(MTB or STB), we observe no significant effect of us-
ing lotteries by family on the outcomes of interest that
are not related to family applications (i.e., on the dis-
tribution of preferences of assignment). This suggests
that using lotteries at the family level significantly in-
creases the number of siblings assigned to the same
schools without having a major effect on other aggre-
gate outcomes of interest. Finally, we observe that us-
ing lotteries at the family level increases the rate of
success of family applications regardless of the tie-
breaking rule considered (STB or MTB).

5.4. Quotas
As discussed in previous sections, another require-
ment by law is the inclusion of a quota for disadvan-
taged students. If the goal is to benefit the group that
is targeted by the quota, previous literature suggests
that preferences should be updated to process it after
the “regular” seats (see Dur et al. 2016b, Hassidim
et al. 2018, Rios et al. 2020). All these papers focus on
settings where the quota serves a minority of students,

and thus the goal is to increase their admission chan-
ces. However, in our setting, the quota serves the ma-
jority of students—disadvantaged students represent
54.7% of the participants in the system—and the goal
is to reduce school segregation and increase diversity
within schools. For this reason, we decided to process
the quota first.

To assess the effect of this decision and the overall im-
pact of including the quota, we compare three policies:

1. Quota first: This policy corresponds to the actual
implementation described in Section 4.2, that is, assign-
ing the quota seats first and then the regular seats in
the applicants’ preference lists.

2. No quota: This policy assumes that there is no
quota.

3. Quota last: This policy simulates the opposite case,
that is, assigning first the regular seats and then the
quota in the applicants’ preference lists.

In Table 7, we report the results obtained from 10,000
simulations of each policy, where we consider only the
main round of the process for simplicity.18 For each pol-
icy, we report the average and the standard deviation
of the percentage of students (1) assigned to their top
choice, (2) assigned to a lower preference, (3) assigned
to their current school, and (4) not assigned. Also, for
each policy, we compute a measure of school diversity
given by the percentage of disadvantaged classmates
students have in their school and grade (see Appendix
B.3 for more details).

First, comparing the actual implementation with
the case with no quotas (i.e., quota first vs. no quota),
we observe that disadvantaged students perform bet-
ter when there is a quota, but the differences are rela-
tively small. One possible reason is that, by processing
the quota first, disadvantaged students with high pri-
ority fill the quota. However, these students would
also be admitted under the regular admissions pro-
cess, and thus other disadvantaged students would
benefit by processing the quota last. This becomes
clear when comparing the results of our implementa-
tion with those in the last two columns in Table 7 (i.e.,
quota first vs. quota last). We observe that disadvan-
taged students are significantly better off when the
quota is processed last. For instance, the fraction of
disadvantaged students assigned to their top choice
increases by 2.5%, whereas the fraction that is unas-
signed decreases by 1.3%. Finally, we observe that
processing the quota first helps improve the diversity
of schools, which is the main objective of having the
quota in our setting. Specifically, quota first has a di-
versity of 0.566 (similar to no quota) whereas quota
last has a diversity of 0.574, where a number close to
0.54 would be optimal.19 But we also observe that
processing the quota last reduces the variance in the
fraction of disadvantaged classmates, which is also
desirable. These results confirm that the order in

Table 6. Effect of Lotteries and Tie-Breaking Rule in Family
Application: Simulation

MTB STB

By
family

By
student

By
family

By
student

First preference (%) 59.21 59.12 62.05 62.05
(0.04) (0.04) (0.03) (0.03)

Other preference (%) 23.31 23.40 20.14 20.14
(0.05) (0.05) (0.04) (0.04)

Current school (%) 8.57 8.57 8.51 8.51
(0.02) (0.02) (0.02) (0.02)

Not assigned (%) 8.91 8.90 9.31 9.30
(0.02) (0.02) (0.02) (0.02)

Fully successful (%) 65.50 61.56 65.47 61.94
(0.21) (0.23) (0.21) (0.23)

Partially successful (%) 2.94 3.00 2.93 3.00
(0.07) (0.07) (0.07) (0.07)
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which quotas are processed matters. Processing the quo-
ta last helps the group of students targeted by this policy,
even when they represent most of the process partici-
pants, but can diminish the diversity of the schools.

6. Conclusions
Centralized procedures to assign students to schools
are becoming the norm in many countries. This trend
highlights the need to study these systems beyond the
stylized models in the literature, as specific practical
nuances can play a critical role. In this paper, we de-
scribe the design and implementation of the new
school choice system in Chile, which expands previ-
ous applications by focusing on increasing the chances
that siblings are assigned to the same school. In partic-
ular, we propose using two lotteries, one to order fam-
ilies and the other to break ties among siblings. Also,
our mechanism updates students’ preferences to pri-
oritize siblings getting assigned to the same school if
they are part of a family application. Our results show
that these features improve the fraction of siblings as-
signed to the same school by 13% compared with the
standard approach of breaking ties at the student level.
Apart from facilitating the joint allocation of siblings,
our solution accounts for all the other requirements that
are part of the system, including different priorities, quo-
tas, and the assignment of students currently enrolled.

The experience of implementing a large-scale na-
tionwide system stresses the importance of having a
continuous collaboration with policymakers, and the
need of implementing changes in small steps. Having
a gradual implementation allows us to learn from the
experience, continuously improve the system, and
gives time to the general public—and final users of
the system—to get information, learn, and understand
the new system’s benefits. Overall, we will continue
working to improve the system, increasing its efficien-
cy and fairness to give all students equal opportuni-
ties, regardless of their background.
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Appendix A. Proofs

A.1. Proof of Proposition 1
Consider an instance with two schools and two grades,
C " {c1, c2}, G " {g1,g2}, where g1 is the higher grade; and
two families f " ( f1, f2) and f ′ " ( f ′1, f ′2), where the subindex
denotes the grade the student belongs to. Suppose each
school has exactly one seat in each grade. Suppose also
that both schools’ priorities are simply rankings over stu-
dents in each grade, and that both prefer f2 to f ′2 in grade
g2, and both prefer f ′1 to f1 in grade g1. Moreover, suppose
the preferences of the families are

f : (c1, c2)≻ f (c2, c1)≻ f (c1, c1)≻ f (c2, c2)
f ′ : (c1, c1)≻ f ′ (c2, c2)≻ f ′ (c2, c1)≻ f ′ (c1, c2):

Assume µ is a stable assignment. Since there are
enough seats, every student should be assigned to one of
the two schools in µ. We consider two possible cases:

1. If µ(f ′2) " c1, then f ′1 should be assigned also to school c1,
because family f ′ prefers (c1, c1) to (c1, c2), and f ′1 has priority
over f1 in both schools. Then, f2 and f1 are in school c2, but
(c1, c2)≻ f (c2, c2) and f2 has priority in grade g2, so µ cannot be
envy free.

2. If µ(f ′2) " c2, then f ′1 should be assigned to school c2, be-
cause (c2, c2)≻ f ′ (c2, c1) and f ′1 has priority over f1 in both
schools. But then both f2 and f1 are in school c1. Student f2 has
priority in grade g2 and (c2, c1)≻ f (c1, c1), so µ cannot be envy
free. w

A.2. Proof of Proposition 2
We show that the updated preference over schools that
the algorithm uses for students is exactly the one implied
by their family’s preference if it is higher-first, and there-
fore, the grade-level stability implies overall stability.

Table 7. Sensitivity to Different Variants of Socioeconomic Quota: Simulations

Quota first No quota Quota last

Disadvantaged Nondisadvantaged Disadvantaged Nondisadvantaged Disadvantaged Nondisadvantaged

First preference (%) 66.02 51.01 65.82 51.24 68.50 48.73
(0.06) (0.07) (0.06) (0.07) (0.06) (0.07)

Other preference (%) 21.03 26.05 20.98 26.14 20.00 26.26
(0.06) (0.08) (0.06) (0.08) (0.06) (0.07)

Current school (%) 7.30 10.10 7.38 10.01 7.06 10.41
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03)

Not assigned (%) 5.65 12.84 5.82 12.60 4.44 14.60
(0.03) (0.05) (0.04) (0.05) (0.03) (0.05)

Diversity of schools

Mean Standard deviation Mean Standard deviation Mean Standard deviation

Fraction of disadvantaged classmates 0.566 0.217 0.565 0.220 0.574 0.211
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Let µ be the resulting assignment from running the al-
gorithm. Denote by ≻s,ALG the ranking over schools that
the DA algorithm uses for student s in grade g(s) and ≻s
the individual preference of student s in the definition of
higher-first preferences. For a pair of schools c, c′ ∈ C, we
show that c≻ s,ALGc′ if and only if (c,µ( f (s) \ {s}))≻ f (s)
(c′,µ( f (s) \ {s})). In fact, note that the latter holds if either

1. {c, c′} ∩ µ({s′ ∈ f (s) : g(s′) > g(s)}) " {c}, or
2. |{c, c′} ∩ µ({s′ ∈ f (s) : g(s′) > g(s)})| ∈ {0, 2} and c≻ sc′.
For ≻s,ALG, in the first case the algorithm before process-

ing grade g(s) moves c to the beginning of the ranking of
s because it assigned a sibling of s in a higher grade to c.
In the second case, s has a sibling in a higher grade in
both c and c′ or in neither, in which case the algorithm re-
spects the originally reported preference of s. Thus, the
ranking implied by the family preference and the one
used by the algorithm are equal.

On the other hand, the priority in each school that the
algorithm uses in grade g, ≻c,ALG,g, is fixed once the as-
signment in grades g′ > g is fixed and is by definition the
real priority in the school within grade g. Therefore, since
DA produces a stable assignment within each grade g ac-
cording to {≻s,ALG}s∈Sg and {≻c,ALG,g}c∈C, and in general
seats can be claimed and there can be justified envy only
within grades, µ is stable in general. w

A.3. Proof of Proposition 3
In this section, we formally state and prove Proposition 3.
Consider a family with two children, f1 and f2, applying
to grades g1 and g2, respectively. As usual, the set of
schools is C (|C| "m). School c ∈ C has qcg1 ,qcg2 available
seats in grades g1 and g2, respectively. Without loss of
generality, we assume there are no specific quotas or
priorities.

Let Sg be the set of students applying to grade
g ∈ g1,g2

{ }
. Each student s ∈ Sg1

⋃Sg2 has a preference pro-
file over a subset Cs ⊆ C denoted by ≺s. For ease of pre-
sentation, the priorities of a student s in schools in C is
given by a vector us " (usc)c∈C ∈ [0,1]C so that the higher
usc, the higher the priority of student s in school c (in the
random priority model these numbers can be thought to
beindependent and identically distributed (i.i.d.) U[0,1]
random variables, and in the following analysis we can
obviate the null set where two students applying to the
same grade get equal lottery numbers in the same school).

The following result concerns only grade g1 and is relat-
ed to lemma 4 of Abdulkadiroğlu et al. (2015).

Lemma 1. Given ≺s and us for all s ∈ Sg1 \ { f1}, there exists a
vector of cutoffs (τc)c∈C such that for all preference profiles ≺f1
and all vectors uf1 , if µ( f1) denotes the assigned school of f1 in
the DA mechanism, then µ( f1) " c if and only if uf1c′ < τc′ for
all c≺f1c′ and uf1c > τc.

Proof. Recall that as proved by Dubins and Freedman
(1981), the DA mechanism is truthful in the following
sense: given the preferences of all students but f1 and all
priorities, for all pairs of preference profiles ≺f1 and ≺′

f1 , if
we denote as µ and µ′ the assignments when student f1
declares ≺f1 and ≺′

f1 , respectively, then µ′(f1) ≼ f1µ(f1).

As is also known from the standard literature on de-
ferred acceptance, the student-optimal assignment is
unique and therefore independent of the order in which
the student proposals are processed. Thus we may assume
that an initial stable assignment has been reached without
the participation of f1, who is then assigned the student’s
corresponding lottery number and inserted to allow the
process to run to completion.
For each c ∈ C, we define τc as the minimum value that

uf1c can take to get f1 accepted to c if the student were to
apply to it as the first preference (note that these are well
defined since the acceptance or rejection to c as a first
preference does not depend on the next ones). In this
case, it is clear that any value of uf1c higher than τc would
also result in acceptance to c, and a priority number lower
than τc would result in rejection by construction.
We will now show that this same vector (τc)c∈C also

works for an arbitrary preference profile ≺f1 .
First we claim that if uf1c < τc, then f1 cannot be accepted

to c. Indeed, suppose by contradiction that uf1c < τc and f1
is accepted to c. Noting that the definitions of the τc’s do
not depend on ≺f1 , we can assume that the altered profile
≺′
f1 , given by restricting ≺f1 to start from school c, was the

real preference profile and that ≺f1 is a deviation from
the truth. By definition of τc, f1 will be rejected from c if
the student applies with profile ≺′

f1 , but accepted with
profile ≺f1 by hypothesis, which contradicts the truthful-
ness of the mechanism.
Returning to the proof of the lemma, to prove the right-

hand implication suppose that f1 is assigned to c. The inequal-
ity uf1,c > τc follows from the previous claim. If uf1c′ > τc′ for
some c≺f1c′, then once again f1 could alter the preference pro-
file to start from c′ and by definition be accepted to the stu-
dent’s more preferred option c′, contradicting the truthfulness
of the mechanism.
For the left-hand implication, suppose by contradiction

that the inequalities hold and there is a school c′ ≠ c such
that f1 would be assigned to c′ instead. From the claim
and the inequalities uf1c′ < τc′ we get that it is not possible
that c≺f1c

′. Also, if c′≺f1c, we can once again consider the re-
stricted preference profile starting from c and the inequality
uf1c > τc to contradict the truthfulness of the mechanism. w

With this lemma in hand we want to compare the prob-
ability that f1 and f2 get assigned to the same school if on
the one hand we draw uf1 and uf2 as vectors of i.i.d. uni-
form random variables U[0, 1], or on the other hand we
draw uf1 as a vector of i.i.d. random variables U[0, 1] and
set uf2c " uf1c. To this end, we denote by PS the probability
measure induced by the former situation (student lottery)
and by PF the one for the latter situation (family lottery).

Proposition 3 (Formal Statement). Given ≺s and us for all
s ∈ Sg1

⋃Sg2 \ {f1, f2}, then PS µ(f1) " µ(f2)
( ) ≤ PF µ(f1) " µ(f2)

( )
.

Proof. We proceed by partitioning the event µ( f1) " µ( f2)
over the possible common school assignment c ∈ C. From
Lemma 1 we know that the event µ( f1) " c is equivalent
to uf1c′ < τc′ for all c≺f1c′ and uf1c > τc. Therefore, since uf1
is a vector of uniform i.i.d. random variables in [0, 1], con-
ditional on the event µ( f1) " c, we have that uf1 is a vector
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of independent random variables but with uf1c ~U[τc,
1], uf1c′ ~U[0,τc′ ] for c′ ≻ f1c, and uf1c′ ~U[0, 1] for c′≺f1c.

If we apply Lemma 1 to grade g2, we get certain cutoffs
(τ̄c)c∈C such that µ(f2) " c if and only if uf2c′ < τ̄c′ for all
c′≺f2c and uf2c > τ̄c. Now, since under family lotteries
uf1c′ " uf2c′ for all c′ ∈ C, we have that PF(uf2c′ < τ̄c′ |µ( f1) "
c) ≥ PS(uf2c′ < τ̄c′ |µ( f1) " c) " PS(uf2c′ < τ̄c′ ) for all c′ ≠ c and
PF(uf2c > τ̄c|µ(f1) " c) ≥ PS(uf2c > τ̄c|µ(f1) " c) " PS(uf2c < τ̄c).
Then, because the variables in the vector uf2 are indepen-
dent, we can multiply the inequalities and to obtain that

PF µ(f2) " c|µ(f1) " c
( ) ≥ PS(µ(f2) " c):

Note that for a given school c ∈ C, the marginal proba-
bilities PF(µ( f1) " c) and PS(µ( f1) " c) are equal since they
concern grade g1 only. Hence, we can multiply by
PF(µ( f1) " c) on both sides of the previous inequality and
sum over all c ∈ C to obtain that

∑

c∈C
PF µ( f2) " c,µ( f1) " c

( ) ≥
∑

c∈C
PS µ( f2) " c,µ( f1) " c

( )
,

and therefore, PF(µ( f1) " µ( f2)) ≥ P(µ( f1) " µ( f2)). w

A.4. Examples of Section 4.1.4

Example of Observation 3. Consider an instance with
two grades G " {g1,g2}, where g1 is the higher grade and
g2 the lower. We have three families f " ( f1, f2), f ′ " ( f ′1 , f ′2),
and s1 (an only-child family applying to grade g1) and
three schools c1, c2, and c3. Schools c1 and c2 have one
available seat in each grade and c3 only has a seat in
grade g1. The families have higher-first preferences given
by the following individual preferences:

f1 : c1 ≻ c2 ≻ ∅, f2 : c2 ≻ c1,
f ′1 : c3 ≻ c1 ≻ c2, f ′2 : c1 ≻ c2,
s1 : c2 ≻ c1 ≻ ∅:

The tie-breaking rules in each school are given by:

c1 : s1 ≻ f ′ ≻ f ,
c2 : f ≻ f ′ ≻ s1,
c3 : f ≻ f ′ ≻ s1:

If everyone reports truthfully, students go to their most
preferred school in g1 and there are no conflicts. If we de-
note the assignment by µ, we have that µ( f1) " c1,
µ( f ′1) " c3, and µ(s1) " c2. However, in g2 the mechanism
updates the preference of f2 to be c1 ≻ c2 because her sib-
ling was assigned to c1. Therefore, in the DA algorithm
both f2 and f ′2 propose to c1. Since f1 was assigned to c1 in
g1, f2 has now sibling priority, and so f ′2 is rejected and
the resulting assignment is µ( f2) " c1 and µ( f ′2) " c2.

We now consider the situation where all individual
preferences are reported truthfully, except for f ′1 , whose
reported preference is c1 ≻ c3 ≻ c2. Denote the new assign-
ment by µ′. In grade g1, in the DA algorithm, f1 proposes
to c1, f ′1 to c1, and s1 to c2. The proposal of f1 is rejected,
so the student proposes to c2. Then the proposal of s1 is
rejected, so the student proposes to c1. Finally, the propos-
al of f ′1 is rejected, and so the student proposes to c3.
Thus, the resulting assignment is µ′( f1) " c2, µ′( f ′1) " c3,
and µ′(s1) " c1. Note that the assignment of f ′1 is the same
as in the case where the student’s individual preference is

reported truthfully. In g2, the updated preference of f2 is
the same as the student’s original individual preference,
and so the assignment is µ′( f2) " c2 and µ′( f ′2) " c1.

Example of Observation 4. Consider the same instance
as in Observation 3, but add a higher level g0, a family s0
(which is an only-child family applying to g0), and a new
member of f ′, f ′0, so that we get f ′ " ( f ′0, f ′1, f ′2). In g0,
schools c1 and c3 have one available seat and c2 has no
available seats. The individual preferences of the new stu-
dents are given by

f ′0 : c3 ≻ c1
s0 : c3 ≻ c1,

and s0 has higher priority in all schools.
Assume all individual preferences are reported truthful-

ly and that f submits a family application. In g0, the as-
signment is µ( f ′0) " c1 and µ(s0) " c3, regardless of whether
f ′ submits a family application. However, if f ′ submits a
family application, the mechanism updates the preference
of f ′1 to be c1 ≻ c3 ≻ c2, and we obtain the same situation
as in the example of Observation 3.

Appendix B. Results

B.1. Main Round
B.1.1. Relation Between Outcome and Number of Sub-
mitted Preferences.
Figure B.1 shows the fraction of students who (1) are as-
signed to one of their preferences, (2) are assigned to their
current school, and (3) are left unassigned, conditional on
the number of reported preferences. We observe that when
the number of declared preferences increases so does the
probability of being assigned, but the average preference of
assignment also increases. Moreover, we find that students
who are unassigned apply on average to fewer schools
(3.36, with standard deviation 1.49) than those who are as-
signed (3.42, with standard deviation 1.83). Applicants as-
signed to their current school usually submit even fewer
preferences (3.05, with standard deviation 1.49), which is ex-
pected as they have a secured option.

B.1.2. Relation Between Number of Siblings and
Success of Family Application.
Figure B.2 shows that larger families are less likely to be
successful, which is intuitive as they require more stu-
dents to be allocated to the same school. We refer to Ap-
pendix B.4 for results on family applications based on the
number of same schools a family declares.

B.2. Other Quotas
Recall that students can belong to three quotas: (1) special
needs, (2) academic excellence, and (3) disadvantaged.
Students are indifferent between being assigned by any
quota and by none of them and schools only declare their
total available seats and the mechanism calculates seats
for the different types of quotas that are allowed by the
system. In Table B.1 we show the distribution of the
524,178 declared seats for the 2018 process.
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Figure B.3 shows the results for students belonging to
different quotas (recall that a student may belong to more
than one quota). It is clear to see that students belonging
to the special needs and disadvantaged quotas outperform
students belonging to the academic excellence quota
and students that do not belong to any quota in both per-
centage of students assigned to their first choice and per-
centage of unassigned students. The low performance of
the academic excellence quota compared with the other
two quotas could be explained by the fact that academic
excellence students apply to a subset of very over-
demanded schools.

B.3. Diversity Simulations
From the point of view of schools, MINEDUC seeks

to have balanced and diverse schools with respect to
the socioeconomic composition. In this sense, we ana-
lyze in both scenarios (with and without the quota) the
balance of disadvantaged students in schools. To this
end, we consider the following measure of diversity:
among all the students in the first round that get an as-
signment, we pick a student uniformly at random and
count the fraction of disadvantaged students that are as-
signed to the student’s grade. This defines a random
variable that depends both on the lottery used for the
tie-breaking rule and on the selected student.

Let Sdis be the set of disadvantaged students that partic-
ipate in the first round. Given an assignment µ, let S(µ) :"
{s ∈ S : µ(s)≠ ∅} be the set of all students that get an as-
signment in µ, and, similarly, let Sdis(µ) :" S(µ) ∩ Sdis be
the set of all the disadvantaged students that get an as-
signment in µ.
For a fixed lottery, let µlottery be the assignment obtained

from its induced tie-breaking and s be a student chosen at
random from among all the students that get an assign-
ment in µlottery. For a school c ∈ C with µ(c)≠ ∅, let
f lottery(c) :" |µlottery(c)∩Sdis |

|µlottery(c)| be the fraction of disadvantaged stu-
dents assigned to c in µ. Then, our random variable can
be expressed as f lottery(µlottery(s)). Its conditional expecta-
tion given the lottery turns out to be the ratio of all the
disadvantaged students assigned in µlottery to all the stu-
dents assigned in µlottery, since

E f lottery(µlottery(s)) | lottery[ ]

" 1
|S(µlottery)|

∑

t∈S(µlottery)
f lottery(µlottery(t))

" 1
|S(µlottery)|

∑

c∈C:µlottery(c)≠∅
f lottery(c)|µlottery(c)|

" |Sdis(µlottery)|
|S(µlottery)| :

Figure B.1. (Color online) Assignment Distribution and Average Rank Distribution by Number of Declared Preferences: Main
Round

Figure B.2. (Color online) Number of Successful and Partially Successful Families by Size: Main Round
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Its second moment, on the other hand, is given by

E f lottery(µlottery(s))( )2 | lottery
[ ]

" 1
|S(µlottery)|

∑

t∈S(µlottery)
(( f lottery(µlottery(t)))2

" 1
|S(µlottery)|

∑

c∈C:µlottery(c)≠∅
f lottery(c)
( )2

|µlottery(c)|

" 1
|S(µlottery)|

∑

c∈C:µlottery(c)≠∅

|µlottery(c) ∩ Sdis|2
|µlottery(c)| :

We estimate E f lottery(µlottery(s))[ ]
by computing the

average of E f lottery(µlottery(s)) | lottery[ ]
over the results of

the 10,000 simulations. Similarly, we estimate Var f lottery
[

(µlottery(s))]" E f lottery(µlottery(s))( )2[ ]
−E f lottery

[ (µlottery(s))]2

by averaging E f lottery(µlottery(s))( )2 | lottery
[ ]

over the 10,000

simulations and then subtracting the square of the estima-
tor for E f lottery(µlottery(s))[ ]

. Finally, we calculate the stan-
dard deviation as the square root of the variance.

B.4. Family Application
We measure the success of family applications of size two
as a function of the number of schools their students de-
clare in common in their preference lists. Table B.2 shows,

as expected, that the success rate increases with the num-
ber of common preferences, having its greatest increment
when the number of common schools grows from one to
two. Furthermore, in both rounds, blocks (families) of size
two of the same grade were more successful in percentage
than those of different grades. Indeed, the main round
has 2,832 blocks of size two of the same grade and 6,719
of different grades, with success rates of 77.8% and 62.2%,
respectively. For the complementary round, there are 362
blocks of size two of the same grade, with a success rate
of 82.3%, and 1,059 of different grades, with a success rate
of 70.7%.

B.5. Enrollment
Notice that the assignment only grants the right to enroll
in the school of assignment. However, families are free to
look for better options of enrollment, for example, by di-
rectly visiting schools with remaining seats after the com-
plementary round or enroll in private schools. The School
Inclusion Law did not change any aspect of the admis-
sions process to private schools, so these are free to use
any mechanism they were using in the past, that is, inter-
views, entrance exams, and so on. Also, many private
schools carry out their admissions process all year around,
whereas other (in general more selective) private schools
run their admissions at the beginning of the academic
year (i.e., between March and April) to decide admissions
of students that start in the next academic year.
In Table B.3, we provide summary statistics of the num-

ber of students that participate in each part of the process.
Applied and Assigned represent the number of students that
applied to at least one school and that were assigned to one
of their reported preferences, respectively. Finally, Enrolled

Figure B.3. (Color online) Results by Quota: Main Round

Table B.1. Total Seats Declared by Schools: Main Round

Quota No. of seats Percentage of total

Special needs 15,324 2.9%
Disadvantaged 43,336 8.3%
Academic excellence 2,591 0.5%
No trait 462,927 88.3%

Table B.2. Results of Family Applications for Blocks of Size Two by Number of Schools in Common

No. of schools in common

Main round Complementary round

No. of blocks Percentage of success No. of blocks Percentage of success

1 1,291 38.5% 497 67.7%
2 3,216 69.8% 2,245 76.6%
3 2,441 71.7% 1,750 77.8%
≥4 2,603 72.6% 1,889 80.5%
Total 9,551 1,421

Correa et al.: School Choice in Chile
1084 Operations Research, 2022, vol. 70, no. 2, pp. 1066–1087, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
71

:e
ca

1:
6c

5d
:c

80
8:

cb
c4

:2
dc

d]
 o

n 
12

 A
pr

il 
20

24
, a

t 1
4:

20
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



represents the number of students that enrolled in the
school they were assigned to in the corresponding round.

From now on we will focus on the admissions process of
2018. First, we observe that 250,469 (91.1%) applicants in the
main round are assigned to one of their preferences, and
194,003 (77.5%) of these students enrolled in the school they
were assigned to. Of the students that were assigned but did
not enroll in their main-round assignment, only 10,605 partici-
pate in the complementary round, whereas the remaining
45,507 students look for other options outside the centralized
system. Specifically, 4,061 students do not enroll in any
school, 9,720 enroll in schools that are not part of the central-
ized system (including private schools and other special
cases), and 31,726 enroll in schools that are part of it. Most of
the cases in the latter group are students assigned by distance
(23,544 students are not assigned to any of their preferences
and are automatically assigned to the closest school with re-
maining seats), but it is also possible that some families di-
rectly contacted schools to check whether there were seats
available after the complementary round. Similarly, of the
students that apply and are assigned in the complementary
round (31,962), 917 end up not enrolling in any school, 21,212
enroll in the school they were assigned to, and 9,833 enroll in
a different school. Among the latter, 1,560 enroll in schools
that do not participate in the centralized system, whereas
8,273 enroll in schools that are part of it.

Overall, 294,768 students apply in at least one of the
rounds of the system, 274,348 get assigned, and 214,209
enroll in their assignment (either in the main or in the com-
plementary round). Of the remaining students, 5,192 do not
enroll in any school, 12,076 enroll in schools that are not
part of the centralized system, and 42,871 enroll in schools
that are part of it. Among the latter, a total of 24,797 stu-
dents are assigned to their current schools, and 13,064 are
assigned to the closest school with remaining seats.

Endnotes
1 The Law also radically changed the way in which families apply
and are assigned to schools, which made the transmission of infor-
mation essential to the implementation.
2 This 3% corresponds to 307 partially successful family applications.
However, only 750 family applications were of size three or more,
and therefore this represents 41% of the possibly successful ones.
3 The use of entrance exams is only a temporary policy. Once the
system reaches its full implementation, no entrance exams are al-
lowed. Instead, all students that are in the top 20% of their grade
will be eligible for the academic excellence quota.
4 The law explicitly states that each school must use a different ran-
dom order to break ties, forbidding the use of STB. This is because
authorities were concerned that a single tie-breaker would be un-
fair, as a low lottery number would harm students in all their

applications. Nevertheless, the law allows the use of the same ran-
dom tie-breaker for all members of the same family within each
school, and later breaks ties between siblings in the same grade
randomly.
5 If there are no schools with available seats within 17 km, students
remain unassigned and MINEDUC finds a solution for them.
6 If more than one older sibling is assigned or enrolled, then the
preferences of the younger siblings are updated by moving those
schools (if present) to the top of their preference list while keeping
their original order. By contrast, if a family with multiple children
does not submit a family application, the preferences of younger
siblings are not updated.
7 In 2018, there were 111,931 students with no trait; 133,198 disad-
vantaged students; 122,203 students of academic excellence; 530 stu-
dents with special needs; 16,027 students of academic excellence
and disadvantaged; 985 students with special needs and disadvan-
taged; 39 students of academic excellence and with special needs;
and 77 students with all three traits.
8 Where τ(s) " {∅}means s is a regular student with no trait.
9 For example, since the sibling priority applies to students with sib-
lings currently enrolled and for students whose siblings are apply-
ing to the system and are tentatively assigned, the priority that a
student gets depends on other students’ allocations. Similar comple-
mentarities between students are introduced by the existence of
multiple reserves with overlapping types.
10 All proofs are deferred to the Appendix.
11 In Section 5.3, we compare the results with processing grades se-
quentially in increasing order.
12 If f3 had not applied to c2, then the updated preferences of f3
would be c1≻ f3 c3 even if f2 was assigned to c2.
13 A strict priority order is obtained by combining these weak priority
orders with the random tie-breaking rule discussed in Section 4.1.2.
14 Kwon and Shorrer (2020) analyze the class of Pareto-efficient
mechanisms and show that efficiency-adjusted DA (EADA) is
justified-envy minimal.
15 The only major difference is found in the complementary pro-
cess of 2018. That year, there was a shortage of seats in pre-K in
one region, which significantly worsened overall results. This is
solvable by letting MINEDUC assign students to daycare institu-
tions (not in the system) instead of schools, where there are avail-
able seats.
16 Family applications with siblings applying to the same grade are
over-represented mostly because (i) families can decide whether to
apply as a family, and (ii) only pre-K, kindergarten, first, seventh,
and ninth grades are considered in the system, making it more like-
ly to have siblings in the same grade.
17 We keep all the other elements of the algorithm fixed; that is, we
keep the same priorities and quotas, we solve the allocation sequen-
tially in decreasing order starting from 12th grade, and we use dif-
ferent lotteries at each school.
18 For each policy and each simulation, we randomly drew the vec-
tor of family lotteries used to break ties in each school, and we
solved for the main-round assignment.
19 The fraction of disadvantaged students in the entire population is
0.54. Deviations from this number imply that some group is over-
represented in some schools.
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