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Abstract. A central object of study in optimal stopping theory is the single-choice prophet
inequality for independent and identically distributed random variables: given a sequence
of random variables X1, : : : ,Xn drawn independently from the same distribution, the goal
is to choose a stopping time τ such that for the maximum value of α and for all distribu-
tions, E[Xτ] ≥ α ·E[max tXt]. What makes this problem challenging is that the decision
whether τ " t may only depend on the values of the random variables X1, : : : ,Xt and on
the distribution F. For a long time, the best known bound for the problem had been
α ≥ 1− 1=e ≈ 0:632, but recently a tight bound of α ≈ 0:745 was obtained. The case where F
is unknown, such that the decision whether τ " t may depend only on the values of the
random variables X1, : : : ,Xt, is equally well motivated but has received much less atten-
tion. A straightforward guarantee for this case of α ≥ 1=e ≈ 0:368 can be derived from the
well-known optimal solution to the secretary problem, where an arbitrary set of values
arrive in random order and the goal is to maximize the probability of selecting the largest
value. We show that this bound is in fact tight.We then investigate the case where the stop-
ping time may additionally depend on a limited number of samples from F, and we show
that, even with o(n) samples, α ≤ 1=e. On the other hand, n samples allow for a significant
improvement, whereasO(n2) samples are equivalent to knowledge of the distribution: spe-
cifically, with n samples, α ≥ 1− 1=e ≈ 0:632 and α ≤ ln (2) ≈ 0:693, andwithO(n2) samples,
α ≥ 0:745− ε for any ε > 0.
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1. Introduction
The theory of optimal stopping is concerned with sequential decision making given imperfect information about
the future, in order to maximize a reward or minimize a cost. Two canonical problems in the field are the secre-
tary problem and the prophet problem. Both problems have over the past few years also received considerable atten-
tion from theoretical computer science and operations research, at least in part due to their relevance to the
design of posted-price mechanisms for online sales.

In the secretary problem, we are given n distinct, nonnegative numbers from an unknown range. These numbers
are presented in random order, and the goal is to stop at one of these numbers in order to maximize the probabil-
ity with which we select the maximum. The problem has a surprisingly simple, and surprisingly positive, an-
swer: by discarding a 1=e fraction of the numbers, and then selecting the first number that is greater than any of
the discarded numbers, one is guaranteed to select the maximum with probability 1=e (e.g., Gilbert and Mosteller
[29]. The guarantee of 1=e achieved by this simple stopping rule is best possible, and it remains best possible, for
example, when numbers come from a uniform distribution with unknown and randomly chosen endpoints and
are therefore correlated random variables (Berezovskiy and Gnedin [8], Ferguson [28]). When numbers are inde-
pendent and identically distributed (i.i.d.) from a known distribution, a better guarantee of around 0.58 can be
obtained (Gilbert and Mosteller [29]), and this bound is again tight.
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In the prophet problem, we are again shown n nonnegative numbers, one at a time, but now these numbers are
independent draws from known distributions, and our goal is to maximize the expected value of the number on
which we stop relative to the expected maximum value in the sequence. Two central results for this problem con-
cern the case where the distributions are distinct and the case where they are identical. For the former, a tight
bound of 1/2 was given by Krengel and Sucheston [38], [39] and Samuel-Cahn [44]. For the latter, a lower bound
of 1− 1=e ≈ 0:632 due to Hill and Kertz [33], corresponding to a stopping rule with this guarantee, was improved
only very recently, first to around 0.738 by Abolhassani et al. [1] and then to around 0.745 by Correa et al. [15].
The lower bound of Correa et al. [15] is in fact known to be tight due to an impossibility result of Hill and Kertz
[33] and Kertz [36] that implies a matching upper bound.

A natural variant of the prophet problem, for both identical and nonidentical distributions, can be obtained if
we assume that the distributions from which values are drawn are unknown. Despite its obvious appeal, which
was noted for example by Azar et al. [6], precious little is known about this variant.

1.1. Our Contribution
We consider the prophet problem in which values are drawn independently from a single unknown distribution,
and we ask which approximation guarantees can be obtained relative to the expected maximum value in hind-
sight. It is worth pointing out that, in contrast to the case where the distribution is known and an optimal stop-
ping rule can be obtained via backward induction, there is no clear candidate for an optimal stopping rule. The
case of identical distributions seems particularly interesting, as here one may hope to be able to learn something
about later values from earlier ones.

A guarantee of 1=e for the problem can be obtained in a relatively straightforward way from the well-known
optimal stopping rule for the secretary problem (see Theorem 1 in Section 3). The rule is guaranteed to stop on
the maximum value with probability at least 1=e, and one can show that this implies a 1=e-approximation relative
to the expected maximum. Note that such an analysis, however, does not take into account that all values come
from the same distribution and thus ignores any possibility of the aforementioned learning.

We show that no learning of the distribution is possible and that the straightforward guarantee of 1=e is in fact
best possible in the prophet setting (see Theorem 2 in Section 3). The main difficulty in showing an impossibility
result of this kind is that the set of stopping rules to which it applies is very rich. We will see, however, that for
every stopping rule there exists a set V ⊆ N of arbitrary size and with an arbitrary gap between the largest and
second-largest element on which the stopping rule is what we call value-oblivious: for random variables X1, : : : ,Xn
supported on V, the decision to stop at Xi when Xi >max {X1, : : : ,Xi−1} does not depend on the values of the ran-
dom variables X1, : : : ,Xi but depends only on whether Xi is the largest among these values. We will then con-
struct a distribution F with support V such that n values drawn independently from F are pairwise distinct with
probability arbitrarily close to 1 and the expectation of their maximum is dominated by the largest value in V.
The objective of the prophet problem on F is thus identical, up to a small error, to that of the secretary problem,
and any stopping rule with a guarantee better than 1=e for the former would yield such a stopping rule for the
latter. To understand why stopping rules must be value-oblivious, it is useful to consider the special case where
n " 2. In this case, we may focus on rules that always stop at X2 whenever they have not stopped at X1, and every
such stopping rule can be described by a function p : R→ [0, 1] such that p(x) is the probability of stopping at X1
when X1 " x. By the Bolzano–Weierstrass theorem, the infinite sequence (p(n))n∈N contains a monotone subse-
quence and thus, for some q ∈ [0, 1] and every ε > 0, a subsequence of values contained in the interval
[q− ε,q+ ε]. For random variables that only take values in the index set of that latter subsequence, the stopping
rule will therefore stop at the first random variable with what is essentially a fixed probability. When n > 2, the
set of possible stopping rules becomes much richer, and identifying a set V on which a particular stopping rule is
value-oblivious becomes much more challenging. Rather than the Bolzano-Weierstrass theorem, our proof uses
the infinite version of Ramsey’s theorem [40] to establish the existence of such a set.

Motivated by this impossibility result, we then turn to the case where the stopping rule has access to a limited
number of additional samples from the distribution, which it may use in deciding when to stop. An extension of
our impossibility result shows that o(n) samples are not enough to improve on the bound of 1=e. The interesting
case, therefore, is the one with Ω(n) samples, and we show that a simple stopping rule achieves a guarantee of
1− 1=e ≈ 0:632 with n – 1 samples (see Theorem 3 in Section 4). The rule starts by drawing n – 1 samples. Then,
when considering the ith random variable for i ≥ 1, it also considers a random subset of size n – 1 drawn uni-
formly from the n – 1 initial samples and the i – 1 random variables seen so far. If the ith random variable is
greater than the maximum of that random subset, then the rule stops; otherwise, it continues with the next ran-
dom variable. Whereas the stopping rule itself is easy to describe, its analysis relies on an insight that is some-
what subtle. Indeed, each of the sets of random variables used to set a threshold for acceptance is distributed like
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a set of n – 1 fresh samples from the distribution. The expected value collected from each random variable, condi-
tioned on its acceptance, thus equals the expected maximum value of n independent draws from the distribution,
and the probability of accepting a random variable conditioned on reaching it is exactly 1=n. The approximation
guarantee is then equal to the overall probability of stopping, which is at least 1− 1=e. By a straightforward ex-
tension, Corollary 2 in Section 4, we obtain a lower bound of 1+γ

2 (1− 1=e) on the guarantee achievable with γn
samples for any γ ∈ [0, 1].

We complement the lower bound of 1− 1=e with matching upper bounds for two different classes of stopping
rules that share specific properties of the aforementioned stopping rule. These bounds limit the types of
approaches that could conceivably be used to go beyond a performance guarantee of 1− 1=e. We then give a
parametric upper bound that applies to any stopping rule with access to γn samples for γ ≥ 0, see Theorem 4 in
Section 4. For rules that use at most n samples this upper bound is equal to ln (2) ≈ 0:693 and thus nearly tight.

We finally show that O(n2) samples are enough to get arbitrarily close to the optimal guarantee of around
0.745 that is attainable when the distribution is known (see Theorem 5 in Section 5). This is achieved by mimick-
ing the stopping rule that attains that bound, which uses a decreasing sequence of thresholds corresponding to
conditional acceptance probabilities that increase over time, but using quantiles of the empirical distribution
rather than the actual one. By discarding a constant initial fraction of the values, and using the inequality of
Dvoretzky et al. [21] to show simultaneous concentration of all empirical quantiles, we reduce the number of re-
quired samples from O(n4) to O(n2) relative to the obvious approach that potentially stops on any of the values
and uses Chernoff and union bounds to show concentration.

Taken together, our results reveal a phase transition from secretary-like to prophet-like behavior when going
from o(n) to Ω(n) samples and show that O(n2) samples are equivalent to full knowledge of the distribution. We
give an overview of the results in Figure 1.

1.2. Follow-Up Work
Rubinstein et al. [43] subsequently showed that a guarantee arbitrarily close to 0.745 can in fact already be
achieved with O(n) samples. Kaplan et al. [35] and Correa et al. [14] studied generalizations of the problem that
we consider here. The results of Kaplan et al. imply a lower bound for our problem with γn samples of e−e−γ

when 0 ≤ γ ≤ 0:567 and of around γ(1− γ− e−γ) when 0:567 ≤ γ ≤ 1. This improves on our lower bound when
γ < 1 and matches our lower bound when γ " 1. The results of Correa et al., on the other hand, imply an im-
proved lower bound of 0.635 when γ " 1, that is, for a situation with n samples.

1.3. Further Related Work
For early work on the classic single-choice prophet inequality in mathematics, the reader is referred to a survey
of Hill and Kertz [34]. Starting from the work of Hajiaghayi et al. [32], the prophet problem and extensions to
richer feasibility conditions have seen a surge of interest in theoretical computer science. This has produced
prophet inequalities for matroids and polymatroids (e.g., Alaei [2], Anari et al. [4], Chawla et al. [12], Dütting
and Kesselheim [18], Feldman et al. [26], Kleinberg and Weinberg [37], Rubinstein and Singla [42]), settings
where feasible solutions are given by an arbitrary downward-closed set system (e.g., Rubinstein [41], Rubinstein
and Singla [42]), matching problems (e.g., Chawla et al. [12], Ezra et al. [24], Gravin and Wang [31], Kleinberg
and Weinberg [37]), knapsack constraints (e.g., Dütting et al. [20], Feldman et al. [26]), resource-allocation prob-
lems involving intervals and paths (e.g., Chawla et al. [11]), and combinatorial auctions (e.g., Feldman et al. [25];
Dütting et al. [19], [20]).

There also exists a relatively small but important body of prior work on the case of unknown distributions.
Most relevant for us is the aforementioned work by Azar et al. [6], which focuses on richer feasibility structures
such as matchings and matroids, and the work by Babaioff et al. [7], who consider a setting similar to ours but
focus on a different objective (revenue maximization), apply different techniques, and obtain results that are
qualitatively different from ours. Independently from our work, Rubinstein et al. [43] studied the case of random
variables that are drawn independently from unknown nonidentical distributions and showed that a single sam-
ple from each distribution is enough to achieve a guarantee of 1/2, which matches the best possible guarantee
that can be achieved when the distributions are known.

In another variant of the prophet problem, the so-called prophet secretary problem, random variables are
drawn from known nonidentical distributions and observed in random order. The goal is again to immediately
and irrevocably choose random variables with large value. Esfandiari et al. [23] gave a lower bound of 1− 1=e for
the version of the problem where a single random variable must be chosen, which was subsequently improved
to 1− 1=e+ 1=400 by Azar et al. [5]. The best bounds currently known for the single-choice version are a lower
bound of 1− 1=e+ 1=27 ≈ 0:669 and an upper bound of

!!
3

√
− 1 ≈ 0:732 due to Correa et al. [13]. Combinatorial
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versions of the prophet secretary problem have been studied by Ehsani et al. [22]. The aforementioned bounds of
Kaplan et al. [35] and Correa et al. [14] also apply to a single-choice prophet secretary problem with unknown
distributions and additional samples.

Optimal stopping with unknown distributions has also been studied in operations research and management
science, but the types of problems, objectives, and techniques differ significantly from ours and typically involve
regret minimization (see, e.g., the results of Goldenshluger and Zeevi [30] and the recent survey of den Boer
[16]). The literature in operations research and management science, moreover, contains results on a broad range
of stochastic optimization problems, which share certain features of the basic prophet inequality problem and its
combinatorial extensions. These problems include constrained Bayesian online selection (e.g., Anari et al. [4]),
Bayesian assortment optimization (e.g., Feng et al. [27]), and certain models of network revenue management
(e.g., Alijani et al. [3]). To the best of our knowledge, they have not been studied from the perspective of sample
complexity.

A final line of related work, in economics and theoretical computer science, has studied posted pricing and
prophet inequalities with inaccurate priors (Bergemann and Schlag [9], [10]; Dütting and Kesselheim [17]). This
line of work assumes access to prior distributions that are close in terms of some metric to the actual distributions
and seeks either max-min optimal mechanisms or performance guarantees that are parameterized by the dis-
tance between the assumed and actual priors.

2. Preliminaries
Denote by N the set of positive integers, and let N0 " N⋃{0}. For i ∈ N, let [i] " {1, : : : , i}, and denote by Si the set
of permutations of [i].

Let k ∈ N0 and n ∈ N. We consider (k, n)-stopping rules that sequentially observe random variables X1, : : : ,Xn
and have access to samples S1, : : : ,Sk and for each i " 1, : : : ,n decide whether to stop on Xi based on the values of
X1, : : : ,Xi and S1, : : : ,Sk. We assume that X1, : : : ,Xn and S1, : : : ,Sk are i.i.d., and respectively denote by f and F the
probability density function and cumulative distribution function of their distribution. Formally, a (k, n)-stopping
rule r is a family of functions r1, : : : , rn where ri : Rk+i

+ → [0, 1] for all i " 1, : : : ,n. Here, ri(s1: : : , sk,x1, : : : ,xi) for s ∈
Rk

+ and x ∈ Rn
+ is the probability of stopping at Xi conditioned on having received S1 " s1: : : ,S " sk as samples

and X1 " x1, : : : ,Xi " xi as values and not having stopped on any of X1, : : : ,Xi−1. The stopping time τ of a (k, n)-
stopping rule r, given S1, : : : ,Sk and X1, : : : ,Xn, is thus the random variable with support {1, : : : ,n}⋃{∞} such
that for all s ∈ Rk

+ and x ∈ Rn
+,

Pr τ " i | S1 " s1, : : : ,Sk " sk,X1 " x1, : : : ,Xn " xn[ ] "
∏i−1

j"1
(1− rj(s1, : : : , sk,x1, : : : ,xj))

( )
· ri(s1: : : , sk,x1, : : : ,xi):

For a given stopping rule, we will be interested in the expected value E Xτ[ ] of the variable at which it stops,
where we use the convention that X∞ " 0, and we will measure its performance relative to the expected maxi-
mum E max{X1, : : : ,Xn}

[ ]
of the random variables X1, : : : ,Xn. We will say that a stopping rule achieves an ap-

proximation guarantee α, for α ≤ 1, if, for any distribution, E Xτ[ ]≥ αE max {X1, : : : ,Xn}
[ ]

.
For ease of exposition, we will assume continuity of F in proving lower bounds and mainly use discrete distri-

butions to prove upper bounds. All results can be shown to hold in general by standard arguments, to break ties
among random variables and to approximate a discrete distribution by a continuous one.

3. Sublinear Number of Samples
We begin by showing that, for o(n) samples, the prophet problem with an unknown distribution behaves like the
secretary problem. As we will see in Section 3.1, a straightforward baseline can be obtained from the optimal so-
lution to the secretary problem, which discards a 1=e fraction of the values and then accepts the first value that
exceeds the maximum of the discarded values. The algorithm does not require any samples, is guaranteed to
stop at the maximum of the sequence with probability 1=e, and can be shown to also provide a 1=e approxima-
tion for our objective. Our main result in this section, which we prove in Section 3.2, shows that the bound of 1=e
is in fact best possible. This result continues to hold with o(n) samples.

3.1. A 1=e-Approximation Without Samples
The following result translates the guarantee of 1=e for the secretary problem to a prophet inequality for indepen-
dent random variables from an unknown distribution.

Correa et al.: Prophet Inequalities for I.I.D. Random Variables from an Unknown Distribution
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Theorem 1. Let X1,X2, : : : ,Xn be i.i.d. random variables drawn from an unknown distribution F. Then there exists a
(0,n)-stopping rule with stopping time τ such that

E Xτ[ ] ≥ 1
e
·E max X1,X2, : : : ,Xn{ }]:

[

The result can be shown in a straightforward way, based on the idea that the realizations of the random variables
X1, : : : ,Xn can be obtained by drawing n values from their common distribution and then permuting them uniformly
at random. The classic analysis of the secretary problem (Ferguson [28]) implies that for each realization of the n draws,
the optimal stopping rule for this problem obtains the maximum value with probability 1=e. It thus also obtains at least
a 1=e fraction of the expected value of this maximum.We formalize this idea and prove Theorem 1 in Appendix A.

3.2. A Matching Upper Bound
We next show that it is impossible to improve on the straightforward lower bound of 1=e.

Theorem 2. Let δ > 0. Then there exists n0 ∈ N such that, for any n ≥ n0 and any (0,n)-stopping rule with stopping time
τ, there exists a distribution F, not known to the stopping rule, such that when X1, : : : ,Xn are i.i.d. random variables drawn
from F,

E[Xτ] ≤
(
1
e
+ δ

)
·E[max {X1,: : : ,Xn}]:

The main difficulty in showing an impossibility result of this kind is that it applies to the set of all possible
(0,n)-stopping rules, which a priori is very rich. Indeed, recall that a (0,n)-stopping rule r can be any family of
functions r1, : : : , rn, where ri : Ri

+ → [0, 1] for all i " 1, : : : ,n. Our main structural insight will be that we can restrict
attention to a much simpler class of stopping rules r that are in a certain sense oblivious to the values of the ran-
dom variables that they observe. For random variables X1, : : : ,Xn supported on arbitrarily large sets V ⊆ N, under
the condition that X1, : : : ,Xi are pairwise distinct and Xi >max{X1, : : : ,Xi−1}, and up to an arbitrarily small error
ε, the probability that r stops on Xi will not depend on the values of any of the random variables X1, : : : ,Xi. This
is made precise by the following definition. Although it is not needed for proving Theorem 2, we will consider
the more general case of (k, n)-stopping rules for any k ∈ N0. The structural result extends easily to the more gen-
eral case, and we will use it later to generalize Theorem 2.

Definition 1. Let ε > 0, k ∈ N0, and let V ⊆ N. A (k, n)-stopping rule r is an ε-value-oblivious on V if, for all i ∈ [n],
there exists qi ∈ [0, 1] such that, for all pairwise distinct s1, : : : , sk,v1, : : : ,vi ∈ V with vi >max{s1, : : : , sk,v1, : : : ,vi−1},
it holds that ri(s1, : : : , sk,v1, : : : ,vi) ∈ [qi − ε,qi + ε).

Whereas value-obliviousness significantly restricts the expressiveness of a stopping rule, this restriction turns
out to be essentially without loss when it comes to the ability of achieving a certain guarantee across all possible

Figure 1. (Color online) Overview of results. The number of samples is displayed along the horizontal axis, the performance
guarantee along the vertical axis. Lower bounds, shown as a solid line and two dots, result from stopping rules with a certain
performance guarantee. Upper bounds, shown as dashed lines, correspond to impossibility results that no stopping rule can im-
prove upon. The results for o(n) and Θ(n2) samples are tight. With the exception of the upper bound of approximately 0.745, all
results are new to this paper.

!(n) "n n Ω(n) Θ(n2)

1#e
Theorem 2

Hill and Kertz [33], Kertz [36]

Theorem 1

ln(2) Theorem 4
1$1#e Theorem 3

Corollary 2

0%745
Theorem 5

Correa et al.: Prophet Inequalities for I.I.D. Random Variables from an Unknown Distribution
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 1287–1309, © 2021 INFORMS 1291

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
71

:e
ca

1:
6c

5d
:c

80
8:

cb
c4

:2
dc

d]
 o

n 
12

 A
pr

il 
20

24
, a

t 1
5:

00
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



distributions: for any stopping rule and any ε > 0, there exists a stopping rule with the same guarantee that is
ε-value-oblivious for some infinite set V ⊆ N. This is made precise by the following lemma, which we prove in
Section 3.3.

Lemma 1. Let ε > 0 and k ∈ N0. If there exists a (k, n)-stopping rule with guarantee α, then there exists a (k, n)-stopping
rule r with guarantee α and an infinite set V ⊆ N such that r is ε-value-oblivious on V.

With Lemma 1 at hand, it is not difficult to prove Theorem 2. For any (0,n)-stopping rule and an appropriate
value of ε, we identify a (0,n)-stopping rule r with the same performance guarantee that is ε-value-oblivious on
an infinite set V ⊆ N. We then define a distribution Fwith finite support S ⊆ V such that (i) there is a large gap be-
tween the largest and second-largest elements of S, (ii) n independent draws from F are pairwise distinct with
probability close to 1, (iii) r is ε-value-oblivious on S, and (iv) the performance guarantee of r on the distribution
is dominated by the probability of selecting the largest element of S. By (i) and (ii), the prophet problem for the
unknown distribution F is then equivalent up to a small error to a secretary problem, and by (iii) and (iv), r be-
haves on F essentially like a stopping rule for the secretary problem. A performance guarantee for r of more than
1=e would thus contradict the optimality of this bound for the secretary problem.

Proof of Theorem 2. It suffices to show that the guarantee of any (0,n)-stopping rule is bounded from above by
1=e+ o(1), where, implicitly, n→∞.

To this end, consider an arbitrary (0,n)-stopping rule with guarantee α. Let ε " 1=n2. By Lemma 1, there then ex-
ists a (0,n)-stopping rule r with guarantee α and an infinite set V ⊆ N on which r is ε-value-oblivious. Denote by τ
the stopping time of r. Let v1, : : : ,vn3 ,u ∈ V be pairwise distinct such that u ≥ n3max {v1, : : : ,vn3}. For each i ∈ [n], let

Xi "

v1 with probability
1
n3

1− 1
n2

( )
,

⋮

vn3 with probability
1
n3

1− 1
n2

( )
,

u with probability
1
n2

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

We proceed to bound E[max{X1, : : : ,Xn}] from below and E[Xτ] from above. For i ∈ [n], let X(i) denote the ith
order statistic of X1, : : : ,Xn, such that X(n) "max {X1, : : : ,Xn}. Then,

E[max X1, : : : ,Xn{ }] ≥ Pr[X(n) " u] · u " 1− o(1)
n

· u: (1)
On the other hand,

E[Xτ] " Pr[X(n) " u!X(n−1) ≠ u] · E[Xτ | X(n) " u!X(n−1) ≠ u]
+Pr[X(n) " u!X(n−1) " u] · E[Xτ | X(n) " u!X(n−1) " u] + Pr[X(n) ≠ u] · E[Xτ | X(n) ≠ u]

≤ 1
n

(
Pr[Xτ " X(n) | X(n) " u!X(n−1) ≠ u] · u

+Pr[Xτ ≠ X(n) | X(n) " u!X(n−1) ≠ u] ·O(n−3) · u
)
+O(n−2) · u + 1 ·O(n−3) · u

≤ 1
n
Pr[Xτ " X(n) | X(n) " u!X(n−1) ≠ u] · u + o

1
n

( )
· u

≤ 1
n
Pr[Xτ " X(n) | X(n) " u!X1, : : : ,Xn distinct] · u + o

1
n

( )
· u,

(2)

where for the first inequality we have applied the law of total expectation to E[Xτ | X(n) " u!X(n−1) ≠ u] to addi-
tionally condition on whether Xτ " X(n), and for the last inequality we have applied the law of total probability to
Pr[Xτ " X(n) | X(n) " u!X(n−1) ≠ u] to additionally condition on whether X1, : : : ,Xn are distinct.

Given (1) and (2), to show that α ≤ 1=e+ o(1), it now suffices to show that

Pr[Xτ " X(n) | X(n) " u!X1, : : : ,Xn distinct] ≤ 1=e+ o(1): (3)

Note that in the event where X(n) " u and X1, : : : ,Xn are pairwise distinct, the relative ranks of X1, : : : ,Xn are
distributed uniformly at random. For a 0-value-oblivious stopping rule r̂ with stopping time τ̂, it thus follows
from the well-known optimal solution to the secretary problem (Ferguson [28, section 2]) that

Pr[Xτ̂ " X(n) | X(n) " u!X1, : : : ,Xn distinct] ≤ 1=e+ o(1): (4)
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To show this claim for stopping rule r, which is only ε-value-oblivious with ε > 0, we construct from r a 0-val-
ue-oblivious stopping rule r̂ and show through a coupling argument that the probability that r stops at X(n) is
bounded by the probability that r̂ stops at X(n) plus nε " 1=n.

Since r is ε-value-oblivious on V, ri(s1, : : : , si) ∈ [qi − ε,qi + ε) for all i ∈ [n], some qi ∈ [0, 1], and all distinct
s1, : : : , si ∈ V with si >max{s1, : : : , si−1}. Let r̂ be the stopping rule such that for all s1, : : : , si ∈ V, r̂i(s1, : : : , si) " qi if
si >max {s1, : : : , si−1} and r̂i(s1, : : : , si) " 0 otherwise. Denote by τ̂ the stopping time of r̂.

Let s1, : : : , sn ∈ V be distinct and assume that X1 " s1, : : : ,Xn " sn. To compare the performance of r and r̂, we
can view τ and τ̂ as being coupled via n independent draws c1, : : : , cn from the uniform distribution on [0, 1]. For
every i ∈ [n], and under the condition that τ ≥ i, we can assume that τ " i if and only if si >max {s1, : : : , si−1} and
ri(s1, : : : , si) > ci. Similarly, for every i ∈ [n], and under the condition that τ̂ ≥ i, we can assume that τ̂ " i if and
only if si >max {s1, : : : , si−1} and r̂i(s1, : : : , si) " qi > ci. For i ∈ [n], let ξi be the event that occurs if and only if si >
max{s1, : : : , si−1} and ci ∈ [min {ri(s1, : : : , si), r̂i(s1, : : : , si)},max {ri(s1, : : : , si), r̂i(s1, : : : , si)}]. Then Pr[ξi] ≤ ε, while
Xτ " X(n) ≠ Xτ̂ requires ξi to occur for some i ∈ [n]. Thus, by the union bound,

Pr[Xτ " X(n) | X1 " s1, : : : ,Xn " sn] ≤ Pr[Xτ̂ " X(n) | X1 " s1, : : : ,Xn " sn] + nε:

Because this statement holds pointwise for all distinct s1, : : : , sn ∈ V,

Pr[Xτ " X(n) | X(n) " u!X1, : : : ,Xn distinct] ≤ Pr[Xτ̂ " X(n) | X(n) " u!X1, : : : ,Xn distinct] + nε: (5)

Substituting (5) into (4) yields (3), which completes the proof. w

3.3. Proof of Lemma 1
The lemma claims that, for every ε > 0, the existence of a (k, n)-stopping rule with performance guarantee α im-
plies the existence of a (k, n)-stopping rule rwith the same performance guarantee and the existence of an infinite
set V ⊆ N on which r is ε-value oblivious. Since we can interpret a (k, n)-stopping rule as a (0,n′)-stopping rule
with n′ " k+ n that never stops on the first k values, it will be sufficient to consider (0,n)-stopping rules with this
additional constraint. We prove the lemma through a sequence of steps that successively restrict the expressive-
ness of the stopping rules that we have to consider. First, we show a restriction to what we call order-oblivious
rules, which in the decision to stop at random variable Xi, and conditioned on having reached Xi, may take into
account the values of random variables X1, : : : ,Xi−1 but not the order in which they were observed.

Definition 2. A (0,n)-stopping rule r is order-oblivious if for all j ∈ [n], all pairwise distinct v1, : : : ,vj ∈ R+, and all
permutations π ∈ Sj−1, ri(v1, : : : ,vj) " ri(vπ(1), : : : ,vπ(j−1),vj).

The following result is rather intuitive.

Lemma 2. If there exists a (0,n)-stopping rule r with guarantee α, then there exists a (0,n)-stopping rule r′ with guarantee
α that is order-oblivious and that, for any i ∈ [n], never selects Xi if r never selects Xi.

A naive attempt to prove this lemma would be to construct an order-oblivious stopping rule from an arbitrary
stopping rule r by permuting X1, : : : ,Xi−1 uniformly at random upon observing Xi and accepting Xi if and only if
r would accept it under the random permutation. The resulting stopping rule may, however, have a different
guarantee than r, because the probability that r arrives at Xi may vary depending on the permutation. Some addi-
tional care is therefore required.

Proof of Lemma 2. For i ∈ [n], let ~i be the equivalence relation on Ri
+ such that (v1, : : : ,vi)~i(w1, : : : ,wi) if

v1, : : : ,vi−1 is a permutation of w1, : : : ,wi−1 and vi " wi. Note that a stopping rule r with stopping time τ is order-
oblivious if and only if, for all i ∈ [n] and v1, : : : ,vi,w1, : : : ,wi ∈ R+, it holds that ri(v1, : : : ,vi) " ri(w1, : : : ,wi) when-
ever (v1, : : : ,vi)~i(w1, : : : ,wi). We will refer to the equivalence classes of ~i as states, and we will say that r arrives
at s ∈ Ri

+=~i in the event that τ ≥ i and X1 " v1, : : : ,Xi−1 " vi−1, where [v1,: : : ,vi]~i
" s.

Let r be an arbitrary stopping rule with stopping time τ, and define a stopping rule r′ with stopping time τ′

such that r1(v1) " r′1(v1) and, for all i ∈ {2, : : : ,n} and v1, : : : ,vi ∈ R+ with Pr r arrives at [v1,: : : ,vi]~i

[ ]
> 0,

r′i (v1, : : : ,vi) " Pr
[
τ " i | r arrives at [v1,: : : ,vi]~i

]
:

Because [v1,: : : ,vi]~i
is invariant under permutations of the sequence v1, : : : ,vi−1, r′ is indeed order-oblivious.

Moreover, for any i ∈ [n], if r never selects Xi, then neither does r′. It remains to be shown that r′ provides guar-
antee α.
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As an intermediate step, we show by induction that, for all i ∈ [n] and s ∈ Ri
+=~i,

Pr[r arrives at s] " Pr[r′ arrives at s]: (6)

This holds trivially for i " 1, so we assume that it holds for i " k− 1 ≥ 1 and show then that it holds for i " k.
For any v1, : : : ,vk ∈ R+ and s " [v1,: : : ,vk]~k

, we write v−j " (v1, : : : ,vj−1,vj+1, : : : ,vk−1) for the sequence of length k – 2
in which vj has been left out and (v−j,vj) " (v1, : : : ,vj−1,vj+1, : : : ,vk−1,vj) for the sequence of length (k− 1) obtained
by appending vj to v−j. Then,

Pr[r arrives at s] "
∑k−1

j"1
Pr[r arrives at [v−j,vj]~k−1] · Pr[τ≠ i | r arrives at [v−j,vj

]
~k−1] ·Pr[Xk " vk

]

"
∑k−1

j"1
Pr[r′ arrives at [

v−j,vj
]
~k−1] ·Pr[τ′ ≠ i | r′ arrives at [v−j,vj]~k−1] ·Pr[Xk " vk

]

" Pr
[
r′ arrives at s

]
,

where the first and last equalities hold by definition of ~k−1 and the second equality holds by the induction hy-
pothesis and by definition of r′.

We now claim that

E Xτ[ ] "
∑n

i"1
E[Xi | τ " i] · Pr τ " i[ ]

"
∑n

i"1

∫ ∞

0
: : :

∫ ∞

0

∏i

j"1
f (vj) · vi

· 1
(i − 1)! ·

∑

π∈Si−1

Pr τ " i | X1 " vπ(1), : : : ,Xi−1 " vπ(i−1),Xi " vi
[ ]

dv1: : :dvi

"
∑n

i"1

∫ ∞

0
: : :

∫ ∞

0

∏i

j"1
f (vj) · vi · Pr

[
τ " i | r arrives at [v1,: : : ,vi]~i

]

· Pr[r arrives at [v1,: : : ,vi]~i

]
dv1: : :dvi

"
∑n

i"1

∫ ∞

0
: : :

∫ ∞

0

∏i

j"1
f (vj) · vi · r′i (v1, : : : , vi) · Pr

[
r′ arrives at [v1,: : : ,vi]~i

]
dv1: : :dvi

"
∑n

i"1
E[Xi | τ′ " i] · Pr τ′ " i[ ] " E[X′

τ]:

Indeed, the second equality can be seen to hold by imagining that X1, : : : ,Xi are drawn by first drawing i val-
ues independently and then permuting the first i – 1 of these values uniformly at random. The fourth equality
holds by definition of r′ and by (6). This completes the proof. w

To further restrict the class of stopping rules from order-oblivious to value-oblivious ones, we will now
construct, for every order-oblivious rule r and any ε > 0, an infinite set V ⊆ N on which r is ε-value-oblivi-
ous. The set V will depend on r and will be obtained by starting from N and identifying smaller and smaller
subsets on which the behavior of r is more and more limited. By induction on i ∈ [n], we will identify a set
on which value-obliviousness holds with respect to the ith random variable. We need the following
definition.

Definition 3. Consider a (0,n)-stopping rule r. Let ε > 0, i ∈ [n], and V ⊆ N. Then r is (ε, i)-value-oblivious on V if
there exists q ∈ [0, 1] such that, for all pairwise distinct v1, : : : ,vi ∈ V with vi >max {v1, : : : ,vi−1}, it holds that
ri(v1, : : : ,vi) ∈ [q− ε,q+ ε).

Note that (ε, i)-value-obliviousness for all i ∈ [n] is equivalent to ε-value-obliviousness. In establishing
(ε, i)-value-obliviousness for a particular value of i, we will appeal to the infinite version of Ramsey’s theorem
to show the existence of an appropriate set V.

Lemma 3 (Ramsey [40, Theorem A]). Let c,d ∈ N, and let H be an infinite complete d-uniform hypergraph whose hyper-
edges are colored with c colors. Then there exists an infinite complete d-uniform subhypergraph of H that is monochromatic.

Proof of Lemma 1. Suppose that there exists a (k, n)-stopping rule with guarantee α. By interpreting this rule as
a (0,n′)-stopping rule with n′ " k+ n, and by Lemma 2, there then exists a (0,n′)-stopping rule r that is
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order-oblivious and never stops on X1, : : : ,Xk. We fix ε > 0 for the entire proof and show by induction on j ∈ [n′]
that there exists an infinite set Sj ⊆ N such that, for all i ∈ [j], r is (ε, i)-value-oblivious on Sj.

For j " n′, this implies that the stopping rule r is (ε, j)-value-oblivious on Sn for all j ∈ N and hence is ε-value-
oblivious on Sn. The claim then follows by reinterpreting r as a (k, n)-stopping rule, which is possible, because it
never stops on X1, : : : ,Xk.

It is clear that S0 " N clearly satisfies the claim for j " 0, and we proceed to show the claim for j " ℓ > 0 assum-
ing that it holds for j < ℓ.

Note that it suffices to find an infinite set Sℓ ⊆ Sℓ−1 such that r is (ε,ℓ)-value-oblivious on Sℓ, as the induction
hypothesis then implies (ε, i)-value-obliviousness on Sℓ as a subset of Si for all i ∈ [ℓ− 1].

Toward the application of Lemma 3, we construct a complete ℓ-uniform hypergraph H with vertex set Sℓ−1.
Consider any set {v1, : : : ,vℓ} ⊆ Sℓ−1 of cardinality ℓ such that vℓ >max {v1, : : : ,vℓ−1}. Note that there exists a
unique u ∈ {1, 2, : : : , ⌈1=(2ε)⌉} such that rℓ(v1, : : : ,vℓ) ∈ [(2u− 1) · ε− ε, (2u− 1) · ε+ ε). Color the hyperedge
{v1, : : : ,vℓ} of Hwith color u.

By Lemma 3 with c " ⌈1=2ε⌉ and d " ℓ, there exists an infinite set of vertices that induces a complete monochro-
matic subhypergraph of H. Define Sℓ to be such a set inducing a monochromatic subhypergraph of H with color
u. Set q " (2u− 1)ε, and consider distinct v1, : : : ,vℓ ∈ Sℓ with vℓ >max {v1, : : : ,vℓ−1}. Since the edge {v1, : : : ,vℓ} in H
has color u, rℓ(vπ(1), : : : ,vπ(ℓ−1),vℓ) ∈ [q− ε,q+ ε) for some permutation π ∈ Sℓ−1. But since r is order-oblivious, also
rℓ(v1, : : : ,vℓ−1,vℓ) ∈ [q− ε,q+ ε). So r is (ε,ℓ)-value-oblivious on Sℓ. This completes the induction step and the
proof. w

3.4. Extension of the Upper Bound to o(n) Samples
We conclude this section by showing that, even with o(n) samples, the guarantee of 1=e is still best possible. To
gain some intuition as to why this is true, assume that there existed an (o(n),n)-stopping rule r with guarantee
greater than 1=e by some constant. We could then obtain a (0,n)-stopping rule r′ that interprets, for a suitable
choice of n′, the first o(n′) values as samples and the following n′ values as actual values on which it may stop,
and then runs r in this setting. If we choose n′ " (1− o(1)) · n, then the expected maxima of n and n′ draws from
any distribution are identical up to a (1− o(1)) factor. The guarantee of r would thus carry over to r′, contradict-
ing Theorem 2.

Corollary 1. Let δ > 0 and f : N→ N with f (n) " o(n). Then there exists n0 ∈ N such that, for any n ≥ n0 and any
(f (n),n)-stopping rule with stopping time τ, there exists a distribution F, not known to the stopping rule, such that when
X1, : : : ,Xn are i.i.d. random variables drawn from F,

E[Xτ] ≤
1
e
+ δ

( )
·E[max{X1,: : : ,Xn}]:

Proof. For δ > 0, choose γ > 0 such that (1+ γ)=e ≤ 1=e+ δ=2 and γ=(1+ γ) ≤ 1=e. By Theorem 4, there exists an n1
such that, for all n ≥ n1 and every (γn,n)-stopping rule with stopping time τ, there exists a distribution F, not
known to the stopping rule, with the following property. When X1, : : : ,Xn are i.i.d. random variables drawn
from F, we have

E[Xτ] ≤
1+ γ

e
+ δ

2

( )
·E[max X1, : : : ,Xn{ }] ≤ 1

e
+ δ

( )
·E[max {X1,: : : ,Xn}],

where the second inequality follows by our choice of γ.
Now let n0 be such that f (n) ≤ γn for all n ≥ n0. As every (f (n),n)-stopping rule can be interpreted as a

(γn,n)-stopping rule when n ≥ n0, the aforementioned bound for (γn,n)-stopping rules applies to
(f (n),n)-stopping rules as well when n ≥max {n0,n1}. This proves the claim. w

4. Linear Number of Samples
The previous section has revealed a strong impossibility: even with o(n) samples, it is impossible to improve over
the straightforward lower bound of 1=e ≈ 0:368 achieved by the well-known optimal stopping rule for the secre-
tary problem. We proceed to show that there is a sharp phase transition when going from o(n) samples to Ω(n)
samples, by giving an algorithm that uses as few as n – 1 samples and improves the lower bound from 1=e to
1− 1=e ≈ 0:632. We also show that the bound of 1− 1=e is in fact tight for two different classes of algorithms that
share certain features of our algorithm. This illustrates that our analysis is tight and limits the types of ap-
proaches that could conceivably be used to go beyond 1− 1=e. We also show a parametric upper bound for
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algorithms that use γn samples for any γ ≥ 0. For algorithms that use at most n samples, this bound is equal to
ln (2) ≈ 0:693 and thus nearly tight.

4.1. Warm-Up: A 1=2-Approximation with n21 Samples
To gain some intuition, let us first consider the natural approach to sample n – 1 values S1, : : : ,Sn−1 from F and to
use the maximum of these samples as a uniform threshold for all of the random variables X1, : : : ,Xn, accepting
the first random variable that exceeds the threshold. It is not difficult to see that the expected value we collect
from any random variable Xt conditioned on stopping at that random variable is at least E max {X1, : : : ,Xn}

[ ]
,

since, under this condition, Xt is the maximum of at least n i.i.d. random variables. We can thus understand the
approximation guarantee provided by this approach by understanding the probability that it stops on some ran-
dom variable. It turns out that this probability, and hence the approximation guarantee, is 1=2+ 1=(4n− 2). A de-
tailed analysis of the approach is provided for completeness in Appendix B.

4.2. A (121=e)-Approximation with n21 Samples
We proceed to show that it is indeed possible to obtain an improved bound of 1− (1− 1=n)n ≥ 1− 1=e ≈ 0:632
with just n – 1 samples. Our algorithm improves over the naive approach that obtains a factor of 1/2 by increas-
ing the probability that we stop at all, while maintaining the property that the expected value that we collect
when we do stop is at least E max {X1, : : : ,Xn}

[ ]
.

Theorem 3. Let X1,X2, : : : ,Xn be i.i.d. random variables from an unknown distribution F. Then there exists an
(n− 1,n)-stopping-rule with stopping time τ such that

E Xτ[ ] " 1− 1− 1
n

( )n( )

·E max X1, : : : ,Xn{ }
[ ]

:

Note that a guarantee of 1− 1=e− ε with Oε(n) samples follows from a result of Ehsani et al. [22] by observing
that Oε(n) samples provide a sufficiently good approximation to the 1=e-quantile of the distribution of
max{X1, : : : ,Xn}. Here we take a different route that yields the bound exactly and that, more importantly, can be
developed further to work with only n – 1 samples.

Suppose that we were given access to n(n− 1) ∈Θ(n2) samples. Then we could partition the n(n− 1) samples
into n sets of size n – 1 each and use the maximum of the ith set as a threshold for the ith random variable. Upon
acceptance of any random variable, that random variable would have a value equal to the expected maximum of
n i.i.d. random variables, which is equal to E max{X1, : : : ,Xn}

[ ]
. Conditioned on reaching the ith random variable,

it would be accepted with probability 1=n, for an overall probability of acceptance of∑n
i"1(1− 1=n)i−1 · 1=n " 1− (1− 1=n)n.
Algorithm 1 mimics this approach, but, instead of using n – 1 fresh samples for each of the n random variables,

it constructs n – 1 fresh-looking samples for each of the n random variables from a single set {S1, : : : ,Sn−1} of n – 1
samples.

Algorithm 1
Data: Sequence of i.i.d. random variables X1, : : : ,Xn sampled from an unknown distribution F,

sample access to F
Result: Stopping time τ
S1, : : : ,Sn−1 ← n− 1 independent samples from F
S← {S1, : : : ,Sn−1}
for t " 1, : : : ,n do

if Xt ≥maxS then return t
else S← random subset of size n− 1 of {S1, : : : ,Sn−1,X1, : : : ,Xt}

end
return n + 1

The algorithms starts by drawing n – 1 samples S1, : : : ,Sn−1. Then, for each time step t, it compares the current
random variable Xt to the maximum maxS of a random subset S of size n – 1 of the set {S1, : : : ,Sn−1,X1, : : : ,Xt−1}
containing the initial samples and the random variables seen previously. If Xt ≥maxS, then the algorithm ac-
cepts Xt and stops. Otherwise, it continues to the next random variable.

The key ingredient in our analysis is the following lemma, which concerns the distribution of the unordered
set of values seen before step t under the condition that the algorithm has reached that step.
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Lemma 4. If Algorithm 1 arrives at step t, then the distribution of the set {S1, : : : ,Sn−1,X1, : : : ,Xt−1} is identical to the dis-
tribution of a set of n+ t− 2 fresh samples from F.

Proof. We show the claim by induction on t, and we start by observing that it clearly holds for t " 1, as
{S1, : : : ,Sn−1} is a set of n – 1 fresh samples from F.

Now assume that the claim holds for t " 1, : : : , t? − 1. Then, by the induction hypothesis and under the condi-
tion that the algorithm arrives at step t? − 1, the set T " {S1, : : : ,Sn−1,X1, : : : ,Xt?−2} has the same distribution as a
set of n+ t? − 3 fresh samples from F. We now consider the set T ′ " {S1, : : : ,Sn−1,X1, : : : ,Xt?−1}, which additionally
includes Xt?−1, and claim that, conditioned on arriving at step t?, this set is distributed like a set of n+ t? − 2 fresh
samples. Note that the latter is true before the decision to stop or not to stop at step t? − 1 is taken. To show the
claim, we will argue that the decision of the algorithm to stop or not to stop at step t? − 1 does not depend on the
realization of the set T ′.

Fix any realization {y1, : : : ,yn+t?−2} of T ′, and assume that the algorithm has arrived at step t? − 1. Since F is
continuous, we may assume that the values y1, : : : ,yn+t?−2 are pairwise distinct and, without loss of generality,
that y1 < y2 < : : : < yn+t∗−2. Since T is distributed like a set of fresh samples and Xt?−1 is a fresh sample, it must be
the case that Xt?−1 is distributed uniformly over {y1, : : : ,yn+t?−2} and the elements of T are equal to the remaining
values in {y1, : : : ,yn+t?−2}. The algorithm now stops at step t? − 1 if Xt?−1 " yn+t?−2, and this happens with probabil-
ity 1=n. w

Proof of Theorem 3. The value E Xτ[ ] obtained by Algorithm 1 can be written by summing over all possible
stopping times t " 1, : : : ,n the product of the probability of stopping at Xt and the expectation of Xt upon stop-
ping. Writing St for the random subset used in step t, we thus have

E Xτ[ ] "
∑n

t"1

(
Pr Xt ≥max {St}!Xj <max {Sj} for j < t
[ ] · E[Xt | Xt ≥max {St}!Xj <max {Sj} for j < t]

)
: (7)

For any t ∈ {1, : : : ,n},
Pr Xt ≥max {St}!Xj <max {Sj} for j < t
[ ]

" Pr Xt ≥max {St} | Xj <max{Sj} for j < t
[ ] ·

∏

ℓ<t
Pr Xℓ <max {Sℓ} | Xj <max{Sj} for j < ℓ
[ ]

" 1
n

1− 1
n

( )t−1
,

(8)

where the first equality can be obtained by repeated application of the definition of conditional probabilities and
the second equality follows from Lemma 4.

Denoting by {T1, : : : ,Tn−1} a set of fresh samples from F, we claim that

E[Xt | Xt ≥maxSt !Xj <maxSj for j < t]
" E[Xt | Xt ≥max {T1, : : : ,Tn−1}!Xj <maxSj for j < t]
" E[Xt | Xt ≥max {T1, : : : ,Tn−1}]
" E[max {X1, : : : ,Xn}]:

(9)

Indeed, the first equality holds because, under the condition that Xj <maxSj for j < t and by Lemma 4, St is dis-
tributed like {T1, : : : ,Tn−1}. The second equality holds because Xt itself is independent of whether Xj <maxSj for
j < t, and the third equality holds because Xt is distributed like a fresh sample.

By substituting (8) and (9) into (7), we obtain

E Xτ[ ] "
∑n

t"1

1
n

1 − 1
n

( )t−1( )

· E[max X1, : : : ,Xn{ }] " 1 − 1 − 1
n

( )n( )

· E[max X1, : : : ,Xn{ }],

as claimed. w

4.3. Going Beyond 121=e
We proceed to show an upper bound of 1− 1=e for two different classes of algorithms that share certain charac-
teristics of Algorithm 1. This shows that our analysis of Algorithm 1 is tight and limits the class of algorithms
that could conceivably improve on the guarantee of 1− 1=e.
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Algorithms in the first class, upon reaching the ith random variable, stop at this random variable with a proba-
bility that is independent of i. This is the case for Algorithm 1, which, by Lemma 4, stops with probability 1=n
upon reaching a particular random variable. The upper bound we obtain applies even in the case where the dis-
tribution F is known and to stopping rules that, like Algorithm 1, use dependent thresholds.

Proposition 1. Let δ > 0. Then there exists n ∈ N and a distribution F such that, for any stopping time τ for which
Pr τ " i | τ > i− 1[ ] is independent of i,

E Xτ[ ] ≤ 1− 1
e
+ δ

( )
·E[max X1, : : : ,Xn{ }]:

Proof. For n ≥ 3 and i ∈ [n], let

Xi "

!!
n

√

e− 2
with probability

1
n3=2

,

1 with probability
1!!
n

√ ,

0 otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

We begin by bounding E[max{X1, : : : ,Xn}] from below. For every ε > 0, there exists m ∈ N such that, for all
n ≥m,

E[max X1, : : : ,Xn{ }] " Pr Xi "
!!
n

√

e− 2
for some i

[ ]
·

!!
n

√

e− 2
+

Pr Xi <

!!
n

√

e− 2
for all i

[ ]
· Pr Xi " 1 for some i | Xi <

!!
n

√

e− 2
for all i

[ ]
· 1

" 1− 1− 1
n3=2

( )n( )
·

!!
n

√

e− 2
+
(
1− 1

n3=2

)n
·
(
1−

(1− 1!!
n

√ − 1
n3=2

1− 1
n3=2

)n)
· 1

≥ 1
e− 2

+ 1− ε " e− 1
e− 2

− ε:

In bounding E Xτ[ ]Xτ from above, we can restrict attention to stopping rules that always accept a value of
!!
n

√
e−2

and never accept a value of 0. Given the property that Pr τ " i | τ > i− 1[ ] is independent of i, any such stopping
rule is characterized by the probability with which it accepts a value of 1. Denoting this probability, which may
depend on n, by qn, and the corresponding stopping time by τqn ,

E Xτqn

[ ] "
∑n

i"1
Pr τqn > i− 1
[ ] ·Pr τqn " i | τqn > i− 1

[ ] ·E Xi | τqn " i
[ ]

"
∑n

i"1

(
1− qn!!

n
√ − 1

n3=2

)i−1( qn!!
n

√ · 1+ 1
n3=2

·
!!
n

√

e− 2

)

"
(
1−

(
1− qn!!

n
√ − 1

n3=2

)n)( qn=
!!
n

√

qn=
!!
n

√ + 1=n3=2
· 1+ 1=n3=2

qn=
!!
n

√ + 1=n3=2
·

!!
n

√

e− 2

)

"
(
1−

(
1− qn

!!
n

√ + 1=
!!
n

√

n

)n)qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√ :

We now distinguish three cases depending on the limit behavior of qn
!!
n

√
.

If limsup n→∞qn
!!
n

√ "∞, then, for every ε > 0 and m ∈ N, there exists n ≥m such that

E Xτqn

[ ] "
(
1−

(
1− qn

!!
n

√ + 1=
!!
n

√

n

)n)qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√

≤ qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√
≤ 1+ ε:

Indeed, the first inequality holds because (1− (1− 1
n (qn

!!
n

√ + 1=
!!
n

√ ))n) ≤ 1, and the second inequality holds be-
cause limsup n→∞qn

!!
n

√ "∞.
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If liminf n→∞qn
!!
n

√ " 0, then, for every ε > 0 and every m ∈ N, there exists n ≥m such that

E Xτqn

[ ] "
(
1−

(
1− qn

!!
n

√ + 1=
!!
n

√

n

)n)qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√

≤ (
qn

!!
n

√ + 1=
!!
n

√ )qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√

≤ 1
e− 2

+ ε:

For the first inequality, we have used that, for y " qn
!!
n

√ + 1=
!!
n

√
and by Bernoulli’s inequality, 1− (1− y=n)n ≤ y,

provided that y=n ≤ 1, which is satisfied because qn ≤ 1 and n ≥ 3. The second inequality holds because
liminf n→∞qn

!!
n

√ " 0.
Finally, if limsup n→∞qn

!!
n

√
<∞ and liminf n→∞qn

!!
n

√
> 0, then there exist constants c1, c2 with 0 < c1 ≤ c2 and in-

finitely many values of n such that qn
!!
n

√ + 1=
!!
n

√ ∈ [c1, c2]. Then, for every ε > 0 and m ∈ N, and for
ε′ " ε · (c2 + 1=(e− 2))=c1, there exists nwith n ≥m and qn

!!
n

√
1=

!!
n

√ ∈ [c1, c2] such that

E Xτqn

[ ] " 1− 1− qn
!!
n

√ + 1=
!!
n

√

n

( )n( )
qn

!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√

≤ (1− e−(qn
!!
n

√ +1= !!
n

√ ) + ε′)qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√

≤ (1− e−(qn
!!
n

√ +1= !!
n

√ ))qn
!!
n

√ + 1=(e− 2)
qn

!!
n

√ + 1=
!!
n

√ + ε

≤max
x≥0

(
(1− e−x)x+ 1=(e− 2)

x

)
+ ε

≤ (e− 1)2
(e− 2)e+ ε:

For the first inequality, we have used that, for every ε > 0, there exists m ∈ N such that, for all n ≥m and all
x ∈ [c1, c2], it holds that 1− (1− x=n)n ≤ 1− e−x + ε. The last inequality holds because the maximum of (1− e−x) ·
(x+ 1=(e− 2))=x is attained at x " 1, where it is equal to (e− 1)2=((e− 2)e).

For every stopping time τ such that Pr τ " i | τ > i− 1[ ] is independent of i, and for every ε ≥ 0 and m ∈ N, there
thus exists n ≥m such that

E Xτ[ ] ≤max 1+ ε,
1

e− 2
+ ε,

(e− 1)2
(e− 2)e+ ε

{ }

" (e− 1)2
(e− 2)e+ ε:

Let f : R→ R such that, for every ε ≥ 0,

f (ε) "
(e−1)2
(e−2)e+ ε
e−1
e−2− ε

:

Then, for every ε > 0, there exists n ∈N such that

E Xτ[ ]=E max{X1, : : : ,Xn}
[ ]

≤ f (ε):
Since f is continuous and lim ε→0 " 1− 1

e, there exists, for every δ > 0, a value ε > 0 such that f (ε) ≤ 1− 1
e + δ, and

thus n ∈ N such that

E Xτ[ ]=E max X1, : : : ,Xn{ }
[ ]

≤ 1− 1
e
+ δ,

as claimed. w

Algorithms in the second class have access to n – 1 samples S1, : : : ,Sn−1 from the underlying distribution and
satisfy the following two natural conditions: (i) if the value of the first random variable X1 is greater than all n – 1
samples, then they stop; and (ii) conditioned on reaching Xi, their probability of stopping at Xi is nondecreasing
in i. It is again easily verified that Algorithm 1 belongs to this class.
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Proposition 2. Let δ > 0. Then there exists n ∈ N and a distribution F such that, for any (n− 1,n)-stopping rule with stop-
ping time τ that satisfies conditions (i) and (ii),

E Xτ[ ] ≤ 1− 1
e
+ δ

( )
·E max X1, : : : ,Xn{ }

[ ]
:

Proof. Let ε > 0. Let Yi be distributed uniformly on [0,ε], and let Xi " 1+Yi with probability 1=n2 and Xi " Yi oth-
erwise. Consider a stopping rule r with stopping time τ that satisfies conditions (i) and (ii). Then, Pr τ " 1[ ] ≥ 1=n
and Pr τ " i | τ ≥ i[ ] ≥ Pr τ " 1[ ] ≥ 1=n. Moreover, it is easy to see by induction that Pr τ ≥ i[ ] ≤ (1− 1=n)i−1. Indeed,
Pr τ ≥ 1[ ] " 1; for i > 1, and assuming that the claim holds for i – 1,

Pr τ ≥ i[ ] " Pr τ ≥ i− 1[ ] ·Pr τ≠ i− 1 | τ ≥ i− 1[ ] ≤ (1− 1=n)i−2 · (1− 1=n) " (1− 1=n)i:
It follows that

E Xτ[ ] ≤
∑n

i"1
Pr τ ≥ i[ ] · 1

n2
+ ε ≤

∑n

i"1

(
1 − 1

n

)i−1 1
n2

+ ε " 1
n

(
1 −

(
1 − 1

n

)n)
+ ε:

On the other hand,

E max X1, : : : ,Xn{ }
[ ]

≥ 1 −
(
1 − 1

n2

)n
,

and, therefore,

E Xτ[ ]
E[max {X1, : : : ,Xn}]

≤
1
n 1 − 1 − 1

n

( )n( )

+ ε

1 − 1 − 1
n2

( )n :

The right-hand side tends to 1− 1=e as n→∞ and ε→ 0, so, for every δ > 0, there exists n ∈ N such that
E Xτ[ ] ≤ (1− 1=e+ δ) ·E[max{X1, : : : ,Xn}]. w

4.4. A Parametric Lower Bound
The lower bound of Theorem 3 can be generalized to a situation with γn samples when γ ∈ [0, 1]. The idea is to
interpret some of the values X1, : : : ,Xn as samples, so that the number of remaining values equals the number of
samples and Algorithm 1 can be applied.

Corollary 2. Let X1,X2, : : : ,Xn be i.i.d. random variables from an unknown distribution F. Let γ ∈ [0, 1] such that γn+ n
is an even number. Then there exists an (γn,n)-stopping-rule with stopping time τ such that

E Xτ[ ] ≥ 1+ γ

2
· 1− 1

e

( )
·E max X1, : : : ,Xn{ }

[ ]
:

Proof. Let n′ " 1+γ
2 n, and note that n′ ∈ N. Define S′i " Si for all i ∈ [γn], S′γn+i " Xi for all i ∈ [n′ − γn], and X′

i "
Xn′−γn+i for all i ∈ [n′]. Note that X′

n′ " Xn, so this assignment is well defined. We use Algorithm 1 with stopping
time τ on X′

1, : : : ,X
′
n′ with samples S′1, : : : ,S

′
n′−1. Then, by applying Theorem 3, we get

E X′
τ

[ ] ≥ 1− 1
e

( )
·E max X′

1, : : : ,X
′
n′

{ }[ ] ≥ 1+ γ

2
· 1− 1

e

( )
·E max X1, : : : ,Xn{ }

[ ]
,

as claimed. w

4.5. A Parametric Upper Bound
Whereas an improvement over the bound of 1− 1=e ≈ 0:632 remains conceivable via more complicated stopping
rules, such an improvement cannot go beyond ln (2) ≈ 0:693. This is a consequence of the following generaliza-
tion of Theorem 2, which provides a parametric upper bound for stopping rules that have access to γn samples
for some γ ≥ 0. We prove this result by generalizing the proof of Theorem 2 and bounding the performance of
the algorithm by bounding the probability that it accepts the maximum of the entire sequence of (1+ γ)n values.

Theorem 4. Let δ > 0, γ ∈ +. Then there exists n0 ∈ N such that, for any n ≥ n0 and any (γn,n)-stopping rule with stop-
ping time τ, there exists a distribution F, not known to the stopping rule, with the following property. When X1, : : : ,Xn are
i.i.d. random variables drawn from F,

E[Xτ] ≤ (b(γ) + δ) ·E[max{X1,: : : ,Xn}],
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where

b(γ) "
1+ γ

e
if

1
e
≥ γ

1+ γ
,

−γ · log γ

1+ γ
otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Proof. We will restrict attention to n ∈ N such that γn ∈ N. It suffices to show that the guarantee of any
(γn,n)-stopping rule is bounded from above by b(γ) + o(1), where implicitly n→∞. To this end, consider an arbi-
trary (γn,n)-stopping rule with guarantee α. Let ε " 1=n2. By Lemma 1, there then exists an infinite set V ⊆ N on
which r is ε-value-oblivious. Let v1, : : : ,vn3 ,u ∈ V be pairwise distinct such that u ≥ n3max {v1, : : : ,vn3}. For each
i ∈ [n], let

Xi "

v1 with probability
1
n3

· 1− 1
n2

( )
,

⋮

vn3 with probability
1
n3

· 1− 1
n2

( )
,

u with probability
1
n2

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

We proceed to bound E[max {X1, : : : ,Xn}] from below and E[Xτ] from above. Let X(i) denote the ith order sta-
tistic of X1, : : : ,Xn, such that X(n) "max {X1, : : : ,Xn}. Then,

E[max X1, : : : ,Xn{ }] ≥ Pr[X(n) " u] · u " 1− o(1)
n

· u: (10)

For i ∈ [(1+ γ)n], let
Ri " Si if i ≤ γn,

Xi−γn otherwise;

{

and let τ′ " τ+ γn be the stopping time of r viewed as a (0, (1+ γ)n)-stopping rule on R1, : : : ,R(1+γ)·n. Then, analo-
gously to the proof of Theorem 2,

E[Xτ] " Pr[R((1+γ)·n) " u!R((1+γ)·n−1) ≠ u] ·E[Rτ′ | R((1+γ)·n) " u!R((1+γ)·n−1) ≠ u]
+Pr[R((1+γ)·n) " u!R((1+γ)·n−1) " u] ·E[Rτ′ | R((1+γ)·n) " u!R((1+γ)·n−1) " u]
+Pr[R((1+γ)·n) ≠ u] ·E[Rτ′ | R((1+γ)·n) ≠ u]

≤ 1+ γ

n
·
(
Pr[Rτ′ " R((1+γ)·n) | R((1+γ)·n) " u!R((1+γ)·n−1) ≠ u] · u

+Pr[Rτ′ ≠ R((1+γ)·n) | R((1+γ)·n) " u!R((1+γ)·n−1) ≠ u] ·O(n−3) · u
)

+O(n−2) · u+ 1 ·O(n−3) · u
≤ 1+ γ

n
·Pr[Rτ′ " R((1+γ)·n) | R((1+γ)·n) " u!R((1+γ)·n−1) ≠ u] · u+ o

1
n

( )
· u

≤ 1+ γ

n
·Pr[Rτ′ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct] · u+ o

1
n

( )
· u:

(11)

Given (10) and (11), to show α ≤ b(γ) + o(1), it suffices to show that

Pr[Rτ′ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct] ≤ b(γ)=(1+ γ) + o(1): (12)

Note that, in the event where R((1+γ)·n) " u and R1, : : : ,R(1+γ)·n are distinct, the relative ranks of R1, : : : ,R(1+γ)·n
are distributed uniformly at random. The optimal stopping rule for accepting the value with the largest relative
rank is known to set, for some x ∈ [0, 1], qi " 0 for all i < x · (1+ γ) · n and qi " 1 for all i ≥ x · (1+ γ) · n (Gilbert and
Mosteller [29]). Then, for any (0, (1+ γ) · n)-stopping rule r̂ with stopping time τ̂ that does not accept any of the
values X1, : : : ,Xγn,

Pr[Xτ̂ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct] " −x · logx+ o(1),
which, subject to x ≥ γ=(1+ γ), is maximized for

x "max
1
e
,

γ

1+ γ

{ }
:
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Thus,

Pr[Xτ̂ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct] ≤ b(γ)=(1 + γ) + o(1), (13)

where

b(γ) "
1 + γ

e
if

1
e
≥ γ

1 + γ
,

−γ · log γ

1 + γ
otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Analogously to the proof of Theorem 2, r can be coupled with a (0, (1+ γ) · n)-stopping rule r̂ such that

Pr[Xτ′ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct]
≤ Pr[Xτ̂ " R((1+γ)·n) | R((1+γ)·n) " u!R1, : : : ,R(1+γ)·n are distinct] + nε:

(14)

Then, substituting (14) into (13) yields (12), completing the proof. w

A visualization of the upper bound of Theorem 4 and the lower bound of Corollary 2 is shown in Figure 2.
Note that the function b defined in Theorem 4 is continuous and that b(1) " ln (2) ≈ 0:693. Moreover, b meets the
tight bound of approximately 0.745 due to Correa et al. [15], which implies an upper bound in the setting where
the distribution is unknown, at γ ≈ 1:32.

5. Superlinear Number of Samples
Our final result is that we can, in fact, match the optimal guarantee achievable by a stopping rule that knows the
distribution, up to any ε > 0, if we have access to Oε(n2) samples.

Theorem 5. For every ε > 0, there exists an nε ∈ N such that the following holds for all n ≥ nε. Let X1, : : : ,Xn be i.i.d. ran-
dom variables drawn from an unknown distribution F. Then there exists an algorithm for choosing a stopping time τ̃ that
uses O(n2) samples from the same distribution with

E Xτ̃[ ] ≥ (β−1 − ε) ·E[max {X1, : : : ,Xn}],

where β−1 ≈ 0:745 is the guarantee shown by Correa et al. [15].

As our algorithm is related to that of Correa et al. [15], we first recall how that algorithm works. It computes a
decreasing sequence x1,x2, : : : ,xn. As n→∞, it can be shown that xi approaches y(i=n)1=(n−1) pointwise for all i ∈
[n] (Kertz [36, theorem C]), where y is the unique solution to the following ordinary differential equation:

y′ " y · ln (y)− y− β+ 1 and y(0) " 1,

Figure 2. Visualization of the parametric lower bound (solid) and the parametric upper bound (dashed).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

γ

Correa et al.: Prophet Inequalities for I.I.D. Random Variables from an Unknown Distribution
1302 Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 1287–1309, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
71

:e
ca

1:
6c

5d
:c

80
8:

cb
c4

:2
dc

d]
 o

n 
12

 A
pr

il 
20

24
, a

t 1
5:

00
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



where β ≈ 1:3414 ≈ 1=0:745. This solution turns out to be decreasing and convex. Then, conditional on reaching
random variable Xi, it chooses a quantile qi ∈ [1− xi−1, 1− xi] according to the probability density function

fi(q) "
(n− 1)(1− q)n−2

αi
where αi "

∫ 1−xi

1−xi−1
(n− 1)(1− r)n−2 dr ,

and sets F−1(1− q) as the threshold for accepting Xi.
Now let τ be the stopping time implied by the algorithm, and, for q ∈ [0, 1], define R(q) " E[X | X ≥ F−1(1− q)]

to be the expected value of random variable X conditioned on X exceeding threshold F−1(1− q). It can then be
shown that

E Xτ[ ] "
∑n

i"1
Pr τ ≥ i[ ]

∫ 1−xi

1−xi−1
fi(q)R(q)qdq

"
∑n

i"1
ρ ·αi

∫ 1−xi

1−xi−1
fi(q)R(q)qdq "

ρ

n
·E max X1, : : : ,Xn{ }

[ ]
,

(15)

where the ith term in the sum can be viewed as the contribution of Xi to the expectation E Xτ[ ]Xτ, and ρ=n ≥ β−1.
To simplify the presentation of our result, we first show that setting deterministic thresholds is also sufficient

to achieve a guarantee of β−1. In particular, for all i ∈ [n], define q̄i such that

q̄i "
∫ 1−xi

1−xi−1
fi(q)qdq :

Let τ̄ be the stopping time of the algorithm that sets deterministic thresholds F−1(1− q̄i). The following lemma
shows that we can also consider this algorithm.

Lemma 5. Let X1, : : : ,Xn be i.i.d. random variables drawn from a known distribution F. Then, for all i ∈ [n], we have

R(q̄i) · q̄i ≥
∫ 1−xi

1−xi−1
fi(q)R(q)qdq:

Proof. The left-hand side is E[X | X > Td] ·Pr X > Td[ ], where Td is the deterministic threshold F−1(1− q̄i) that cor-
responds to q̄i. The right-hand side is E[X | X > Tr] ·Pr X > Tr[ ], where Tr is the randomized threshold that arises
from first drawing q ∈ [1− xi−1, 1− xi]with probability fi(q) and then setting threshold F−1(1− q).

We have chosen q̄i so that Pr X > Td[ ] " Pr X > Tr[ ]; it thus suffices to show that E[X | X > Td] ≥ E[X | X > Tr].
Let us prove the stronger statement that, for all t, Pr X > t | X > Td[ ] ≥ Pr X > t | X > Tr[ ]. Indeed, if t > Td, then

the claimed inequality becomes

Pr X > t[ ]
Pr X > Td[ ] ≥

Pr X >max {t,Tr}
[ ]

Pr X > Tr[ ] ,

which holds because Pr X > Td[ ] " Pr X > Tr[ ] and Pr X > t[ ] ≥ Pr X >max {t,Tr}
[ ]

. On the other hand, if t ≤ Td,
then Pr X > t | X > Td[ ] " 1, and the claimed inequality applies as well. w

By applying Lemma 5 to (15), we obtain

E Xτ[ ]Xτ̄ "
∑n

i"1
Pr τ̄ ≥ i[ ] · R(q̄i) · q̄i "

∑n

i"1
ρ · αi · R(q̄i) · q̄i ≥

ρ

n
· E max X1, : : : ,Xn{ }

[ ]
, (16)

where we used that, conditioned on reaching step i, both τ and τ̄ accept Xi with the same probability, and so
Pr τ̄ ≥ i[ ] " Pr τ ≥ i[ ] " ρ · αi.

The algorithm that achieves the bound claimed in Theorem 5 starts by skipping some random variables until
the acceptance probability q̄i of algorithm τ̄ becomes sufficiently large, say, δ=n, where 0 < δ < 1 is some constant.
Such a step exists for sufficiently large n, because if all acceptance probabilities q̄1, : : : , q̄n were at most , then
would be at most 1− 1=e ≈ 0:632 in the limit for n→∞, contradicting Pr τ̄ ≤ n[ ]→ β−1 ≈ 0:745 (Correa et al. [15]).

So, assume that ℓ is the first such step with q̄ℓ ≥ δn. From then on, it uses the empirical distribution function of
the samples to estimate the quantiles q̄ℓ, : : : , q̄n used by the optimal algorithm that knows the distribution on the
remaining random variables. The algorithm then accepts random variable Xi conditional on reaching it with
probability q̃i, where q̃i is its estimate of q̄i. More formally, when the original algorithm chooses threshold
T̄i " F−1(1− q̄i), so that 1− F(T̄i) " q̄i, our algorithm will choose T̃i " F̃−1(1− q̄i), where F̃ is the empirical distribu-
tion function, and q̃i " 1− F(T̃i). Denote the stopping time of this algorithm by τ̃δ.
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The reason why we skip the first few random variables is because the initial acceptance probability of the opti-
mal algorithm that knows the distribution is of the order of 1=n2; therefore, with n2 samples, we cannot get a reli-
able estimate of the corresponding quantile.

We will lower-bound the performance of our algorithm τ̃δ in terms of the performance of algorithm τ̄ through
an intermediate algorithm, whose stopping time we denote by τ̄δ, that also skips the first few random variables
but then uses the actual quantiles q̄ℓ, : : : , q̄n.

Lemma 6. For every ε > 0, there exists an nε ∈ N such that the following holds for all n ≥ nε. Let X1, : : : ,Xn be i.i.d. ran-
dom variables drawn from an unknown distribution F. Then, for any δ such that 0 < δ < 1=2,

E Xτ̄δ

[ ] ≥ 1− 2δ( ) ·E Xτ̄[ ]:

Proof of Lemma 6. Note that if ℓ " 1, then there is nothing to show as τ̄δ and τ̄ are identical. Otherwise,
ℓ ≥ 2, q̄ℓ ≥ δ=n, and q̄ℓ−1 ≤ δ=n, which implies that 1− xℓ−2 < δ=n.

The expected value achieved by the algorithm that skips the first few random variables until the acceptance
probability becomes δ=n and then uses the actual quantiles q̄ℓ, : : : , q̄n is

E Xτ̄δ

[ ] "
∑n

i"ℓ
Pr τ̄δ ≥ i[ ] ·R(q̄i) · q̄i ≥

∑n

i"ℓ
Pr τ̄ ≥ i[ ] ·R(q̄i) · q̄i

while

E Xτ̄[ ] "
∑ℓ−1

i"1
Pr τ̄ ≥ i[ ] ·R(q̄i) · q̄i +

∑n

i"ℓ
Pr τ̄ ≥ i[ ] ·R(q̄i) · q̄i :

Now observe that

∑ℓ−1

i"1
Pr τ̄ ≥ i[ ] · R(q̄i) · q̄i ≤

∑ℓ−2

i"1
Pr τ̄ ≥ i[ ] + Pr τ̄ ≥ ℓ − 1[ ]

( )
· R(q̄ℓ) · q̄ℓ

≤ 2 ·
∑ℓ−2

i"1
Pr τ̄ ≥ i[ ] · R(q̄ℓ) · q̄ℓ " 2 · ρ ·

∑ℓ−2

i"1
αi

( )
· R(q̄ℓ−1) · q̄ℓ−1

" 2 · ρ ·
∫ 1−xℓ−2

0
(n − 1)(1 − q)n−2 dq

( )
· R(q̄ℓ) · q̄ℓ

" 2 · ρ · (1 − xℓ−2n−1) · R(q̄ℓ) · q̄ℓ ≤ 2 · ρ · (1 − (1 − δ=n)n−1) · R(q̄ℓ) · q̄ℓ
≤ 2 · ρ · (1 − e−δ) · R(q̄ℓ)q̄ℓ ≤ 2 · ρ · δ · R(q̄ℓ)q̄ℓ ,

where for the first inequality we used that R(q)q "
∫ q

0
F−1(1− r)dr is monotone, for the second inequality we

used that Pr τ̄ ≥ ℓ− 1[ ] ≤ Pr τ̄ ≥ ℓ− 2[ ], and for the third inequality we used that xℓ−2 ≥ 1− δ=n.
On the other hand,

∑n

i"ℓ
Pr τ̄ ≥ i[ ]R(q̄i)q̄i ≥

∑n

i"ℓ
Pr τ̄ ≥ i[ ]R(q̄ℓ)q̄ℓ

" ρ
∑n

i"ℓ
αi

( )
R(q̄ℓ)q̄ℓ

" ρ ·
∫ 1

1−xℓ−1
(n − 1)(1 − q)n−2 dq · R(q̄ℓ)q̄ℓ

" ρ · 1 −
∫ 1−xℓ−1

0
(n − 1)(1 − q)n−2 dq

( )
· R(q̄ℓ)q̄ℓ

" ρ 1 −
∑ℓ−1

i"1
αi

( )
· R(q̄ℓ)q̄ℓ

" ρ −
∑ℓ−1

i"1
Pr τ̄ ≥ i[ ]

( )
· R(q̄ℓ)q̄ℓ

≥ ρ · (1 − 2δ) · R(q̄ℓ)q̄ℓ ,
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where we again used the monotonicity of R(q)q for the first inequality and the upper bound for
∑ℓ−1

i"1 Pr τ̄ ≥ i[ ] de-
rived for the second inequality.

This shows that the ratio between the two terms is at most 2δ=(1− 2δ), which in turn implies that

E Xτ̄[ ] ≤ 1+ 2δ
1− 2δ

( )
· E Xτ̄δ

[ ]
,

and, after rearranging, shows the claim. w

Lemma 7. For every ε′ > 0 and δ ∈ (0, 1=2), there exist ε′′ > , γ > 0, and nε′ ∈ N such that the following holds for all
n ≥ nε′ . Let X1, : : : ,Xn be i.i.d. random variables drawn from an unknown distribution F. Then with k ≥ n2ln (2=ε′′)=(2γ2)
samples, it holds that

E Xτ̃δ

[ ] ≥ (1− ε′) ·E Xτ̄δ

[ ]
:

To prove this lemma, we make use of the following auxiliary lemma, which can be proven using the Dvor-
etzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., lemma 2 [21]).

Lemma 8. Fix ε′′ > 0 and γ > 0. Then, with k ≥ n2ln (2=ε′′)=(2γ2) samples,

Pr max
i

| q̄i − q̃i | >
γ

n

[ ]
< ε′′:

Proof. Let F denote the true underlying distribution, and let F̃ denote the empirical cumulative density function
from k samples. With k ≥ n2ln (2=ε′)=(2γ2) samples, the Dvoretzky-Kiefer-Wolfowitz inequality from [21] states
that

Pr sup
x

| F̃(x)− F(x) | > γ

n

[ ]
≤ 2 · e−2k(γ=n)2 ≤ ε′′:

So with probability at least 1− ε′′, we have that, for all pairs q̄i and q̃i " 1− F(T̃ i),

q̃i " 1− F(T̃i) ≤ 1− F̃(T̃i) +
γ

n
" 1− (1− q̄i) +

γ

n
" q̄i +

γ

n
, and

q̃i " 1− F(T̃i) ≥ 1− F̃(T̃i)−
γ

n
" 1− (1− q̄i)−

γ

n
" q̄i −

γ

n
,

as claimed. w

Proof of Lemma 7. Given ε′ > 0 and δ ∈ (0, 1=2), choose ε′′,ε′′′,γ > 0 such that γ ≤ δ, γ ≤ (1− β−1) · ε′′′ ≈
0:255 · ε′′′, and (1− ε′′) · (1− ε′′′) · (1− γ=δ) ≥ 1− ε′.

Toward relating E[Xτ̃δ] and E[Xτ̄δ], denote by ω the event that max i | q̄i − q̃i |≤ γ=n. Note that we can lower-
bound the expected value obtained by our algorithm by only considering the case that ω occurs and then sum-
ming over all steps:

E[Xτ̃δ] ≥ Pr ω[ ] ·
∑n

i"ℓ+1
Pr τ̃δ ≥ i | ω[ ] ·Pr Xi ≥ F̃−1(1− q̄i) | ω! τ̃δ ≥ i

[ ]
·E[Xi | ω! τ̃δ ≥ i!Xi ≥ F̃−1(1− q̄i)]: (17)

Fix some i ∈ [n] with i ≥ ℓ+ 1. We first bound Pr τ̃δ ≥ i | ω[ ] with respect to Pr τ̄δ ≥ i | ω[ ] " Pr τ̄δ ≥ i[ ]. First note
that, for any j ≤ ℓ, it holds that Pr τ̄δ " j

[ ] " Pr τ̃δ " j
[ ] " 0. Furthermore, note that, for all ℓ+ 1 ≤ j < i and condi-

tioned on ω, we have | q̄j − q̃j |≤ γ=n. Thus, conditioned on ω, the probability that precisely one of τ̄δ, τ̃δ is j is
bounded by γ=n. By the union bound, we therefore have

Pr τ̃δ ≥ i | ω[ ] ≥ Pr τ̄δ ≥ i[ ]− (i− ℓ− 1) · γ=n ≥ Pr τ̄δ ≥ i[ ]− i · γ=n:
Now note that Pr τ̄δ ≥ i[ ] ≥ Pr τ̄δ > n[ ]; that is, the probability that τ̄δ stops at step i or later is lower-bounded by

the probability that τ̄δ does not stop at all. Moreover, Pr τ̄δ > n[ ] ≥ Pr τ > n[ ]; that is, the probability that τ̄δ does
not stop at all is at least the probability that τ does not stop at all. Since Pr τ > n[ ] " 1− β−1 ≈ 0:255, if we choose γ
such that γ ≤ (1− β−1) · ε′′′, then

Pr τ̃δ ≥ i | ω[ ] ≥ (1− ε′′′) ·Pr τ̄δ ≥ i[ ]: (18)
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Next, we bound Pr[Xi ≥ F̃−1(1− q̄i) | ω! τ̃δ ≥ i] ·E[Xi | ω! τ̃δ ≥ i!Xi ≥ F̃−1(1− q̄i)], that is, the value extracted
from Xi conditioned on ω and arriving in step i. We obtain

Pr Xi ≥ F̃−1(1− q̄i) | ω! τ̃δ ≥ i
[ ]

·E[Xi | ω! τ̃δ ≥ i!Xi ≥ F̃−1(1− q̄i)]

" E
∫ 1

q̃ i

F−1(q)dq | ω! τ̃δ ≥ i

[ ]

" E
∫ 1

q̄ i

F−1(q)dq−
∫ q̃ i

q̄ i

F−1(q) dq | ω! τ̃δ ≥ i

[ ]

≥ E 1− γ

δ

( )
·
∫ 1

q̄ i

F−1(q)dq | ω! τ̃δ ≥ i

[ ]

" 1− γ

δ

( )
·
∫ 1

q̄ i

F−1(q)dq

" 1− γ

δ

( )
· Pr Xi ≥ F−1(1− q̄i) | τ̄δ ≥ i

[ ]
·E[Xi | τ̄δ ≥ i!Xi ≥ F−1(1− q̄i)],

(19)

where in the third-to-last step we used that F−1(q) is monotonically increasing in q. Note that the inequality holds
independently of how q̄i and q̃i are ordered.

We now substitute the two bounds given in (18) and (19) into (17) and apply Lemma 8 to obtain

E[Xτ̃δ] ≥ Pr ω[ ] · 1 − ε′′′( ) ·
(
1 − γ

δ

)
· E[Xτ̄δ] ≥ (1 − ε′′) · (1 − ε′′′) ·

(
1 − γ

δ

)
· E[Xτ̄δ] ≥ (1 − ε′) · E[Xτ̄δ],

as claimed. w

We are now ready to prove the theorem.

Proof of Theorem 5. First choose ε′ > 0 and δ ∈ (0, 1=2) such that (1− ε′)(1− 2δ) ≥ 1− ε. Then, by combining
Lemma 6 with Lemma 7, we obtain that there exist ε′′,γ > 0 such that, for sufficiently large n, with k ≥
n2ln (2=ε′′)=(2γ2) "O(n2) samples,

E[Xτ̃δ] ≥ (1− ε′)(1− δ) ·E[Xτ̄ ] ≥ (1− ε) ·E[Xτ̄] ≥ (β−1 − ε) ·E[max {X1, : : : ,Xn}],
where the last step follows from (16). w
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Appendix A. Proof of Theorem 1
Let τ be the stopping time corresponding to the optimal stopping rule for the secretary problem, which rejects a certain
fraction of the random variables and uses their maximum as a threshold for the remaining ones. Since X1,X2, : : : ,Xn are
drawn independently from the same distribution, we can assume that their realizations are obtained by independently
drawing n values from the distribution and then ordering them according to a random permutation π. Denoting the den-
sity of the distribution from which X1, : : : ,Xn are drawn by f,

E[Xτ] "
∫ ∞

0
: : :

∫ ∞

0

∏n

i"1
f (vi) ·Eπ[vπ(τ)]dv1 ⋯ dvn

≥
∫ ∞

0
: : :

∫ ∞

0

∏n

i"1
f (vi) ·Prπ[vπ(τ) "max {v1, : : : ,vn}] ·max {v1, : : : ,vn}dv1 ⋯ dvn

≥ 1
e
·
∫ ∞

0
: : :

∫ ∞

0

∏n

i"1
f (vi) ·max v1, : : : ,vn{ }dv1 ⋯ dvn

" 1
e
·E max X1, : : : ,Xn{ }

[ ]
,

where the second inequality holds because the values v1, : : : ,vn have been randomly ordered and τ is thus guaranteed to
select max {v1, : : : ,vn} with probability at least 1=e for any realization (Ferguson [28]). This proves the claim.
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Appendix B. A 1=2-Approximation with n – 1 Samples
We formalize the discussion in Section 4.1. We show that if the stopping rule has access to n – 1 samples, then we can
simply take the maximum of these samples as a single, non-adaptive threshold for all random variables to obtain a factor
1/2-approximation.

Theorem B.1. Let X1,X2, : : : ,Xn be i.i.d. draws from an unknown distribution F. Then there exists a (n− 1,n)-stopping-rule with
stopping time τ such that

E Xτ[ ] ≥ 1
2
·E max X1, : : : ,Xn{ }

[ ]
:

To prove Theorem B.1, we will analyze Algorithm B.1 a slight variation of Algorithm 1 that only uses the maximum of
n – 1 samples as a threshold for the first n – 1 random variables and stops on the nth random variable with certainty.
The advantage of this is that it becomes even clearer when and why our analysis is tight.

Algorithm B.1
Data: Sequence of i.i.d. random variables X1, : : : ,Xn sampled from an unknown distribution F, sample access to F
Result: Stopping time τ
τ← n
S1, : : : ,Sn−1 ← n− 1 samples from F
for t " 1, : : : ,n− 1 do

if Xt ≥max {S1, : : : ,Sn−1} then
τ← t
Break

end
end
return τ

Proof of Theorem B.1. The expected value achieved by Algorithm B.1 is the sum over all time steps i " 1, : : : ,n of the
product of the probability of stopping at this time step and the expected value of the random variable conditioned on be-
ing above the threshold

E Xτ[ ] "
∑n−1

i"1

(
E Xi | τ " i[ ] ·Pr τ " i[ ]

)
+E Xn[ ] ·Pr τ " n[ ]

≥
∑n−1

i"1

(
E Xi | τ " i[ ] ·Pr τ " i[ ]

)
:

(B.1)

We stop at time step i if the maximum among the n – 1 samples and the first i random variables happens to be the ith
random variable, and if, conditioned on this, the second maximum is among the n – 1 samples and not the other i – 1
random variables. Hence,

Pr τ " i[ ] " 1
n − 1 + i

· n − 1
n − 2 + i

:

Summing this over all i from 1 to n – 1 shows that the probability of stopping at one of the first n – 1 random variables
is precisely

∑n−1

i"1
Pr τ " i[ ] "

∑n−1

i"1

1
n − 1 + i

· n − 1
n − 2 + i

" 1
2
: (B.2)

We conclude the proof by showing that, for all i " 1, : : : ,n− 1, the conditional expectation E Xi | τ " i[ ] is at least
E max {X1, : : : ,Xn}
[ ]

. Let T "max {S1, : : : ,Sn}. The algorithm stops at time step i if Xi ≥ T >max {X1, : : : ,Xi−1}. So, under
this event, Xi is the maximum of n− 1+ i random variables. And so

E Xi | τ " i[ ] " E max of n− 1+ i i:i:d: RVs[ ] ≥ E max {X1, : : : ,Xn}
[ ]

: (B.3)

Substituting (B.2) and (B.3) into (B.1) completes the proof. w

As we have argued in the proof of Theorem B.1, the probability that Algorithm B.1 stops on one of the first n – 1 varia-
bles is precisely 1/2. The two potentially lossy steps are that we dropped the contribution from the final random variable
and that we lower-bounded the contribution from each of the first n – 1 random variables by E max {X1, : : : ,Xn}

[ ]
.

It turns out that both of the potentially lossy steps are, in fact, lossless in the limit as n→∞ if F is the exponential distribution.

Proposition B.1. Let X1, : : : ,Xn be drawn independently from the distribution with F(x) " 1− e−x. Then, for the stopping time τ
determined by Algorithm B.1,

lim
n→∞

E Xτ[ ]
E[max {X1, : : : ,Xn}]

" 1
2
:
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Proof. It is a well-known fact that the maximum of n independent, exponentially distributed random variables X1, : : : ,Xn
is equal to the nth harmonic number, that is, that

E[max {X1, : : : ,Xn}] "Hn:

As we have argued in the proof of Theorem B.1, the expected value obtained by Algorithm B.1 can be written as

E Xτ[ ] "
∑n−1

i"1

(
Hn−1+i ·

1
n − 1 + i

· n − 1
n − 2 + i

)
+ 1
2
:

Tedious calculations allow us to express the expected value via the digamma function and the Euler-Mascheroni cons-
tant γ as

E Xτ[ ] " ψ(0)(n) − 1
2
H2n−2 + γ + 1,

which can be used to show that

lim
n→∞

E Xτ[ ]
E[max {X1, : : : ,Xn}]

" lim
n→∞

ψ(0)(n) − 1
2H2n−2 + γ + 1
Hn

" 1
2
:

This proves the claim. w
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