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Abstract. Dynamic network flows, or network flows over time, constitute an important
model for real-world situations in which steady states are unusual, such as urban traffic
and the internet. These applications immediately raise the issue of analyzing dynamic net-
work flows from a game-theoretic perspective. In this paper, we study dynamic equilibria
in the deterministic fluid queuing model in single-source, single-sink networks—arguably
the most basic model for flows over time. In the last decade, we have witnessed significant
developments in the theoretical understanding of the model. However, several fundamen-
tal questions remain open. One of the most prominent ones concerns the price of anarchy,
measured as the worst-case ratio between the minimum time required to route a given
amount of flow from the source to the sink and the time a dynamic equilibrium takes to
perform the same task. Our main result states that, if we could reduce the inflow of the net-
work in a dynamic equilibrium, then the price of anarchy is bounded by a factor, parame-
terized by the longest path length that converges to e=(e− 1), and this is tight. This signifi-
cantly extends a result by Bhaskar et al. (SODA 2011). Furthermore, our methods allow us
to determine that the price of anarchy in parallel-link and parallel-path networks is exactly
4/3. Finally, we argue that, if a certain, very natural, monotonicity conjecture holds, the
price of anarchy in the general case is exactly e=(e− 1).

Funding: This work was supported by ANID Chile [Grants PFCHA/Doctorado Nacional/2018-
21180347, FONDECYT 1190043, and AFB-170001].

Keywords: flows over time • price of anarchy • dynamic equilibrium

1. Introduction
In the study of traffic in networks, it is often crucial to take the underlying dynamic nature of the problem into
account. In some contexts, steady states seem sufficient to deal with the most important situations, and therefore,
static models are enough. However, the situation is dramatically different when dealing with networks in which
a steady state is rarely observed, such as urban traffic or internet routing. In order to describe the temporal evolu-
tion of such systems, one has to consider the propagation of flow across the network by tracking the position of
each particle along time.

Probably the most basic model for network flows over time is the so-called fluid queuing model. Here, we are
given a directed graph G " (V,E), and each edge e ∈ E is characterized by a nonnegative delay τe and a capacity
per time unit νe. A continuous stream of particles is injected at a source s ∈ V at constant rate u0 and travels to-
ward a sink t ∈ V. Flow propagates according to the edge dynamics in which particles arriving to an edge e join a
queue with (deterministic) service rate νe and, after leaving the queue, move along the edge to reach its head after
τe time units.

The discrete version of the problem was initially studied from an optimization perspective. Indeed, Ford and
Fulkerson [9, 10] consider a fluid queuing model and design an algorithm based on time-expanded networks to
compute a flow over time carrying the maximum possible flow from the source s to the sink t within a given
time span. Shortly after, Gale [11] shows the existence of a flow pattern that achieves this optimum simultaneous-
ly for all time horizons. These results are extended to continuous time by Anderson and Philpott [1] and Fleischer
and Tardos [8]. We refer to the survey by Skutella [28] for a detailed exposition of these developments.

When network flows suffer from a lack of coordination among the participating agents, it is natural to consider
them from a game-theoretic perspective. In this setting, each infinitesimal inflow particle is interpreted as a play-
er that seeks to complete its journey in the least possible time so that equilibrium occurs when each particle trav-
els along a shortest s,t path. The travel time for a particle entering the network at any given time must take into
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account the queuing delays induced by other particles on the edges along its path. This requires particles to antic-
ipate the queue lengths by the time when an edge is reached.

This dynamic equilibriummodelwas initially considered, in a very simple network, by Vickrey [29], and shortly af-
ter in the transportation science community (Yagar [30]). Since then, it has attracted much attention as a showcase
model to understand the surprising behavior of dynamic routing games (Peeta and Ziliaskopoulos [22], Ran and
Boyce [23]). In the last decade, there have been significant efforts in understanding the structure and computational
properties of dynamic equilibria in the fluid queuing model (Bhaskar et al. [3], Cao et al. [4], Cominetti et al. [5, 6],
Graf and Harks [13], Ismaili [15], Kaiser [16], Koch and Skutella [18], Meunier and Wagner [21], Scarsini et al. [24],
Sering and Skutella [25], Sering and Vargas Koch [26]). Meunier and Wagner [21] prove, using functional analysis
tools, that such dynamic equilibria exist. Unfortunately, this result (andmany similar ones) is purely existential and
does not shed light on the structure of such equilibria. Later, Koch and Skutella [18] give an elegant characterization
of the derivatives (with respect to time) of a dynamic equilibrium and, thus, propose an algorithm to construct a dy-
namic equilibrium by concatenating static flows. Using this characterization, Cominetti et al. [5] give a constructive
proof of existence of equilibria and prove they are essentially unique.1 Despite these efforts, many fundamental
questions remain open, and several apparently obvious properties turn out to be notoriously hard to prove. For
instance, it is still unknownwhether a dynamic equilibrium can be computed in polynomial time, and furthermore,
we do not even know whether the evolution of the equilibrium has finitely many pieces. Indeed, until recently, it
was not even known whether the size of the queues remains bounded throughout the evolution of the dynamic
equilibrium. Along these lines, Cao et al. [4] establish this property (on a slightly different atomic model that does
not influence the result) for series-parallel networks, and Cominetti et al. [6] establish the result for general net-
works by proving that a steady state is always achieved in finite time (naturally, as long as u0 is at most the capacity
of the minimum cut). Quite surprisingly however, the latter results apply only for constant inflow rate u0; if the in-
flow varies over time, say it is u0 in all intervals of the form [2i, 2i+ 1) and u0=2 in all intervals of the form [2i− 1, 2i)
for i ∈ N, then the boundedness of the queues is still open.

Another seemingly innocent question regarding the dynamic equilibrium is what we call the monotonicity con-
jecture (cf. conjecture 1). This states that, given an instance of the problem, the time it takes for an amount of flow
to reach the sink t is a decreasing function of the inflow rate u0. In other words, if we consider two identical in-
stances, one with constant inflow rate u0 and the other with constant inflow rate u0 − ε, then the time it takes for
M flow units to arrive at t in the latter instance is at least that in the former. As we show in this paper, this conjec-
ture is intimately connected to one of the most prominent open problems in the area, namely, the quality of the
equilibrium (measured as the time required to send a given amount of flow from s to t) when compared with the
optimal solution. Our main result, which can be seen as an improvement upon a result of Bhaskar et al. [3], im-
plies that, if the monotonicity conjecture holds for the dynamic equilibrium, then the price of anarchy (PoA), de-
fined as the worst-case ratio of the quality of an equilibrium to that of an optimal solution, is exactly e=(e− 1).

1.1. The Price of Anarchy
The usual way of quantifying the inefficiency of selfish behavior is the PoA. It is defined as the worst possible ra-
tio between the quality of an optimal solution and the quality of an equilibrium (Koutsoupias and Papadimitriou
[19]). In the context of fluid queuing networks, there are two natural and related goals that induce two natural
possible definitions for the PoA. On the one hand, we have the throughput objective, under which we are given a
time window and are asked to maximize the amount of flow that can reach the sink t within that time. On the
other hand, we have the makespan objective, under which we are given an amount of flow M that needs to be
routed to t in the shortest possible time.

The existence of an earliest arrival flow, established by Gale [11], implies that, from an optimization viewpoint,
both goals are equivalent. Nevertheless, they induce different notions for the PoA. In the former case, the
throughput PoA is, as usual, defined as the supremum over all single s,t graphs, all possible inflows, all possible
capacities, all possible transit times, and all possible time windows of the ratio between the amount of flow the
optimal solution can send and the amount of flow a dynamic equilibrium sends. In the latter case, the makespan
PoA is defined as the supremum over all single s,t graphs, all possible inflows, all possible capacities, all possible
transit times, and all possible amounts of flowM of the ratio between the time the optimal solution takes to route
M units of flow toward t and the time it takes in a dynamic equilibrium.

The first to study the PoA in this context are Koch [17] and Koch and Skutella [18], who prove that the
throughput PoA is unbounded. They also show that, if the delays of all edges are zero, then the dynamic equilib-
ria are optimal, implying that both the throughput and the makespan PoA are one. Interestingly, it has long been
conjectured that the makespan PoA is bounded by a small constant (Skutella [27]). The study of this makespan
PoA measure is the main focus of this paper, which, from now on, we just call PoA for short.
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Beyond the zero delay case, Bhaskar et al. [3] study this question from a mechanism design perspective and
find that there is a way of reducing the capacities in the network so that the makespan of an equilibrium under
the reduced capacities is within a factor e=(e− 1) of the optimal solution with the original capacities. Naturally,
as the following example demonstrates, this capacity reduction can improve the behavior of a dynamic equilibri-
um by blocking particles from taking bad routes.

However, the result still requires a subtle analysis because reducing the capacities too much may also block
good routes significantly, increasing the makespan of a dynamic equilibrium. More precisely, Bhaskar et al. [3]
consider reducing the capacity of every edge e to be exactly the amount of flow rate the optimal solution propa-
gates through e. Our main result implies that the same bound still holds by doing this only for the inflow, that is,
leaving all capacities unchanged but only reducing the inflow.

Example 1. Consider the network in Figure 1, in which an edge e is labeled (νe,τe), let the total flow M to be sent
through the network be two, and let u0 " 1. We claim that the optimal flow sends 1

2 units of flow along both the
path (s, u, t) and the path (s, v, t) until time 2. Therefore, the makespan of the optimal flow is three. On the other
hand, the equilibrium first sends one unit of flow along the path (s,u,v, t) from time 0 until time 1. Then, from
time 1 to 2, it sends 1

2 units of flow along both the path (s,u,v, t) and the path (s, v, t). Because a particle originat-
ing at s at time 2 encounters a queue time of one on edges (s, u) and (v, t), the makespan of the equilibrium is
four, and hence, the PoA of this instance is 4

3. Note that, if we set νuv " 0 (as in Bhaskar et al. [3]), the equilibrium
in the modified network does exactly the same as the optimal flow, and the new PoA is one.

Finally, Cominetti et al. [6] prove the existence of a steady state and, furthermore, establish that the derivative
of this steady-state flow is the solution of the static minimum cost problem in which the cost of edge e is given by
τe and the capacity by νe. This result readily implies that the price of anarchy converges to one as the amount of
flow to be routed grows to infinity.

1.2. Our Results
As mentioned, our main contribution is to improve upon the result of Bhaskar et al. [3], who prove a bound of
e=(e− 1) for the price of anarchy if one can control the capacity of every link in the network. To prove this, they
find an expression for the price of anarchy that depends on the ratio between the equilibrium flow and the opti-
mal flow in each edge. In this paper, we show that the same bound can be obtained under the milder assumption
that the inflow rate of the equilibrium is equal to the (initial) inflow rate of the optimum flow. This is a theoretical
improvement because it potentially makes further progress (e.g., on multicommodity settings) on this problem
easier. Moreover, it can be of practical relevance because inflow-limiting mechanisms are easier to implement
and currently used in many places, such as metered ramps on highways.

For a network G and a total amount of flow M, denote by TOPT the time the optimal flow takes to route the M
units from s to t (cf. Section 2.1 for a formal definition). The simplest algorithm to compute this quantity is that of
Ford and Fulkerson [9], which we describe in Section 2.1. The basic idea is to guess T " TOPT and then find a static
flow f maximizing | f | T−∑

e∈Eτefe, where | f | denotes the size of the flow and is constrained to be at most u0. We
denote the inflow rate of the optimal flow by uOPT "| f |. Because, in the dynamic equilibrium, particles are selfish,
its inflow rate uEQ always equals u0.

Similarly, let TEQ be the time it takes for the equilibrium to route the M units of flow. Denote by mG the
maximum number of nodes in a simple s, t path in G. Our main result (cf. Theorem 2) establishes that
TEQ · 1− (uEQ=uOPT)=e

( ) ≤ TEQ · 1− uEQ=uOPT
( )

1− 1=mG( )mG
( ) ≤ TOPT. In particular, if uEQ " uOPT, then

TEQ ≤ e=(e− 1)[ ] ·TOPT. We also establish that this bound is the best possible. Note that uEQ " u0 ≥ uOPT; there-
fore, to establish that the price of anarchy equals e=(e− 1), the missing case is when uEQ > uOPT. We note that
the bound holds in general if the following intuitive conjecture holds.

Figure 1. An illustration of the network of Example 1.
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Conjecture 1: Consider a network G and two fixed inflow rates u1 < u2 with their corresponding dynamic equi-
libria in G and their corresponding makespans T1

EQ and T2
EQ for routingM units of flow. Then, T1

EQ ≥ T2
EQ.

For the special case of series composition of parallel-path networks, in which all s,t paths are edge-disjoint, it
turns out that the monotonicity conjecture holds (cf. Theorem 3). As a consequence of this result, we obtain that,
in parallel-path networks, the PoA is equal to 4=3. We do this by showing that they behave essentially as if each
path comprises only one direct link from s to t, in which case we can apply the general bound with mG " 2.

The proof of the main result proceeds in three basic steps. First, we establish that the difference between the
makespans TEQ −TOPT is upper bounded by the overall sum of the queues at equilibrium divided by its inflow.
This follows from the linear program that computes the optimal solution, combined with the equilibrium condi-
tions stating that particles are routed through (currently) shortest paths. Second, we establish a formula for com-
puting this sum of the queues at equilibrium in terms of the derivatives of the dynamic equilibrium (thin flows).
Finally, the formula can be used to upper bound the sum of the queues at equilibrium by an expression in terms
of mG, uEQ and uOPT.

1.3. Further Related Literature
We wrap up this section by mentioning some further related work and variants of the model.

Hoefer et al. [14] study a similar atomic model with multiple sources and sinks and different policies (edge dy-
namics) and establish different existential and computational results for pure Nash equilibria. Ismaili [15] consid-
ers a similar atomic model with the first in, first out (FIFO) policy and establishes that even deciding the existence
of a pure Nash equilibrium is hard.

Although most work about dynamic equilibrium in the fluid queuing model, including ours, applies to single-
source, single-sink networks, there are some recent efforts to carry over the results to more general multicom-
modity networks. In particular, Garrido [12] is able to extend some of the results for dynamic equilibria to the
case of multiple sinks, and Sering and Skutella [25] do it for the much more involved multisource, multisink
case. However, we are still lacking a good understanding of the general multicommodity case.

As mentioned earlier, the issue of bounded queues is studied by Cao et al. [4], who prove that, in the atomic
model and series-parallel networks, queues do remain bounded throughout the evolution of the dynamic equi-
libria. For the precise model of this paper, Cominetti et al. [6] establish this result in general networks by proving
the existence of a steady state that is achieved in finite time. On a different line, Macko et al. [20] study new types
of Braess’ paradox appearing in the dynamic equilibrium.

Some very recent work considers other aspects of the problem. In particular, Sering and Vargas Koch [26] con-
sider spillback effects, which is the study of how an a priori bound on the amount of flow that can be waiting on a
queue affects the equilibrium behavior. Graf and Harks [13] consider a related model in which flow particles are
myopic in that they make local routing decisions based on the current status of the network without anticipating
the whole future evolution. Finally, Scarsini et al. [24] consider a discrete variant of the problem and look at the
simpler parallel-link networks but add the complication that the inflow varies over time in a periodic fashion.

To close these comments, we note that a remarkable open problem concerns the polynomial time computation
of the dynamic equilibria. By the work of Koch and Skutella [18] and Cominetti et al. [5], this boils down to com-
puting in polynomial time a normalized thin flow, a special type of static flow with some complementary con-
straints (see Section 2.2). This problem can be solved in polynomial time in some special cases (Koch and Skutella
[18]) by parametric flow techniques, and in general, it can be written as a nonlinear complementarity problem
(Cominetti et al. [5], Koch [17]). Very recently, Kaiser [16] noted that the problem is actually a linear complemen-
tarity problem and that it can be solved efficiently in series-parallel networks.

1.4. Outline of the Paper
In Section 2, we describe the model and the behavior of the dynamic equilibrium and the optimal flow. Then, in
Section 3, we prove our main result and establish its tightness. Section 4 shows how the monotonicity conjecture im-
plies the general price of anarchy result and outlines some difficulties in trying to establish it. Section 5 contains a proof
for themonotonicity conjecture for series compositions of parallel-path networks. Finally, in Section 6, we present com-
putational experiments, alternative conjectures, and the implications of our results on the total delay price of anarchy.

2. The Model
Let G " (V,E) be a directed graph, in which each edge e ∈ E has a positive capacity νe and a nonnegative delay τe.
Let s, t ∈ V be two vertices that we refer to as the source and the sink, respectively. A total amount of flow M has
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to travel from s to t; flow departs from s at a network inflow rate denoted by u0.2 The flow propagates through
the network as described by the following edge dynamics.

Let f+e : R≥0 → R≥0 be the function associated with an edge e ∈ E that maps a nonnegative time θ to the inflow
rate into e at time θ. In case the inflow rate f+e (θ) exceeds the edge capacity νe, a queue grows at the tail of the
edge at rate f+e (θ)− νe. The queue mass at time θ is denoted by ze(θ), and if f+e (θ) < νe, the queue depletes at a
rate equal to f+e (θ)− νe until the inflow rate changes again or until ze " 0. Therefore, a particle that enters edge e
at time θ waits in the queue ze(θ)=νe units of time and, subsequently, travels across the edge, taking time τe.
Hence, this particle has link exit time

Te(θ) " θ+ ze(θ)
νe

+ τe :

This determines outflow rate functions f−e : R≥0 → R≥0 as follows.

f−e (θ+ τe) "
νe if ze(θ) > 0,
min { f+e (θ),νe} if ze(θ) " 0:

{

Moreover, the evolution of the queues can be characterized by the following equation.

dze(θ)
dθ

" f+e (θ) − νe if ze(θ) > 0,
max { f+e (θ) − νe, 0} if ze(θ) " 0:

{
(1)

A flow over time is a collection of edge inflow rates ( f+e )e∈E that satisfy the following flow conservation constraints
for all vertices V\{t} and for almost all θ ≥ 0. For a vertex v ∈ V, define δ+(v) " {w ∈ V : (v,w) ∈ E} and
δ−(v) " {u ∈ V : (u,v) ∈ E}.

∑

e∈δ+(v)
f+e (θ)−

∑

e∈δ−(v)
f−e (θ) "

u0 if v " s,
0 if v≠ s, t:

{
(2)

Finally, for a time θ, we define F+e (θ) "
∫ θ

0
f+e (ξ)dξ and F−e (θ) "

∫ θ

0
f−e (ξ)dξ.

2.1. Optimal Flows over Time
In a directed graph G " (V,E) with edge capacities νe and source and sink s, t ∈ V, a static flow is a function f : E→
R≥0 of flow values fe that satisfies fe ≤ νe for all e ∈ E and the following flow conservation constraints:

∑

e∈δ+(v)
fe −

∑

e∈δ−(v)
fe " 0 for all v≠ s, t:

The size of such a flow f is denoted | f |" ∑
e∈δ+(s) fe. Because we have an inflow of u0 in our model, we restrict the

size of the flow to be at most this quantity, that is, | f |≤ u0.3 If G is acyclic and P denotes the set of all s,t paths, a
static flow f can be decomposed into path flows (fp)p∈P such that fe " ∑

p∈P:e∈p fp (Ahuja et al. [2]).
In the maximum flow over time problem (Ford and Fulkerson [9, 10]) with throughput objective, a time horizon

T is given, and the objective is to maximize the amount of flow that arrives at t by time T. An optimal solution
can be obtained by computing a static flow f̂ that solves the following linear program (Ford and Fulkerson [9]).

max T | f | −
∑

e∈E
τefe

s:t: 0 ≤ fe ≤ νe,
| f |≤ u0: (3)

This solution can be decomposed into a path decomposition P such that flow enters every path p ∈ P at rate f̂ p
until time T− τp, where τp " ∑

e∈pτe is the total travel time of the path without queues. Such a flow pattern is
called a temporally repeated flow, and f̂ is called its underlying static flow. We define the flow rate or inflow of this
temporally repeated flow as | f̂ |.

For the makespan objective, we are given an amount of flowM, and a quickest flow is a flow over time that min-
imizes the time at which all flow arrives to t. A quickest flow can also be obtained by a temporally repeated flow
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(see, e.g., Bhaskar et al. [3]), whose underlying static flow is the static flow f̂ that solves the following minimiza-
tion problem in which T is now a variable.

min T

s:t: T | f | −
∑

e∈E
τefe ≥M,

0 ≤ fe ≤ νe,
| f |≤ u0: (4)

We define TOPT as the optimal value of this problem. Note that, even though this is a nonlinear problem, its solu-
tion can be found with a binary search. First guess a time T and solve (3). Decrease T if the objective function val-
ue exceeds M; otherwise, increase it. The minimum value of T such that the maximum flow over time with time
horizon T routesM units of flow is, thus, the optimal solution that we denote by TOPT.

Hence, there is a quickest flow that is a temporally repeated flow. We also refer to a quickest flow as an opti-
mal flow over time f̂ . Finally, throughout the paper, we refer to the inflow or flow rate of this quickest flow over
time f̂ as its size | f̂ |, and we denote it by uOPT. Therefore, uOPT is equal to the inflow rate of this quickest flow for
the limit of θ to zero. Note, in particular, that uOPT ≤ u0.

An earliest arrival flow is a flow over time that maximizes the amount of flow that arrives at t by time θ for all
θ ≤ T. An interesting fact is that such a flow always exists (Gale [11]), which justifies the binary search procedure.
We refer the interested reader to the survey by Skutella [28] for more details regarding earliest arrival flows.

2.2. Equilibrium Flows
In our definitions, we follow the refined notion of dynamic equilibria from Cominetti et al. [5]. An equilibrium
flow is a flow over time such that no flow particle can choose another route and arrive earlier at t given the fixed
flow pattern of all other flow particles. More formally, consider a particle departing from s at time θ. We denote
by ℓv(θ) the earliest time at which this particle can arrive at node v.4 Hence, ℓs(θ) " θ, and for all v≠ s, we have

ℓv(θ) " min
u:e"(u,v)∈E

Te(ℓu(θ)):

For any time θ, these labels induce a dynamic shortest path network Gθ with edge set

E′
θ " e " (u,v) ∈ E : ℓv(θ) " Te(ℓu(θ)){ }:

The edges in E′
θ are called the active edges at time θ. We also define the set of edges that have a queue at time θ

as E∗
θ " e " (u,v) ∈ E : ze(ℓu(θ)) > 0{ }.

A feasible flow over time is called a dynamic equilibrium if and only if, for all e " (v,w) ∈ E and almost all
θ ∈ R≥0, we have f+e (ℓv(θ)) > 0⇒ e ∈ E′

θ. In other words, in a dynamic equilibrium flow is sent along shortest
paths.

Cominetti et al. [5] prove that, for a dynamic equilibrium, we can equivalently write the sets of active edges
and edges with queue as the simpler expressions

E′
θ " e " (u, v) ∈ E : ℓv(θ) ≥ ℓu(θ) + τe{ }, and

E∗
θ " e " (u, v) ∈ E : ℓv(θ) > ℓu(θ) + τe{ }:

From this, it is immediate that E∗
θ ⊆ E′

θ.
It turns out that an equivalent characterization of a dynamic equilibrium is given by the condition that, for

each e " (v,w) ∈ E and all θ, we have F+e (ℓv(θ)) " F−e (ℓw(θ)) (Cominetti et al. [5]). It is convenient to define the cu-
mulative flow induced by an equilibrium f on an edge e " (v,w) ∈ E at time θ ∈ R≥0 as

xe(θ) " F+e (ℓv(θ)) " F−e (ℓw(θ)):
Integrating the flow conservation constraints in Equation (2) over the interval [0, ℓv(θ)] yields that the cumulative
flow x(θ) is a static s,t flow of value u0θ for every θ ∈ R≥0. Now define

x′e(θ) "
dxe(θ)
dθ

" f+e (ℓv(θ))ℓ′v(θ),
where

ℓ′v(θ) "
dℓv(θ)
dθ

"
1 if v " s,
min
(u,v)∈E

T′
uv(ℓu(θ))ℓ′u(θ) if v≠ s:

{

Correa, Cristi, and Oosterwijk: On the Price of Anarchy for Flows over Time
6 Mathematics of Operations Research, Articles in Advance, pp. 1–18, © 2021 INFORMS



Observe that, because x(θ) is a static flow of value u0θ, for almost all θ ∈ R≥0, x′(θ) " (x′e(θ))e∈E is a static s,t flow
of value u0, for which x′e(θ) " 0 for all e ∈ E′

θ. x
′(θ) is called a normalized thin flow with resetting, and the following

theorem states some important properties.

Theorem 1 (Characterization of Dynamic Equilibrium (Cominetti et al. [5], Koch and Skutella [18])).Consider a dynamic
equilibrium f and a time θ such that x′e(θ) and ℓ′v(θ) exist for all e ∈ E and v ∈ V. Then, the static flow x′(θ) satisfies

ℓ′w(θ) ≤ ℓ′v(θ) ∀e " (v,w) ∈ E′
θ\E∗

θ : x
′
vw(θ) " 0, (5)

ℓ′w(θ) "max ℓ′v,
x′e(θ)
νe

{ }
∀e " (v,w) ∈ E′

θ\E∗
θ : x

′
vw(θ) > 0, (6)

ℓ′w(θ) "
x′e(θ)
νe

∀e " (v,w) ∈ E∗
θ: (7)

Moreover, it turns out that, for a given pair (E′
θ,E

∗
θ),5 if E∗

θ ⊆ E′
θ ⊆ E, E′

θ is acyclic and for all v ∈ V, E′
θ contains an

s,v path, then there always exists a pair (‘′,x′) that satisfies Equations (5)–(7) such that x′ " (x′e(θ))e∈E is a static s, t
flow of value u0 with support in E′

θ. Furthermore, the ℓ′v labels are unique (Cominetti et al. [5]).
Therefore, the derivatives ‘′ " (ℓ′v(θ))v∈V only change if the shortest path network changes or if the set of edges

with positive queue changes. This can be used to prove that the shortest path labels are unique throughout the
evolution of the dynamic equilibrium (Cominetti et al. [5]).6 The dynamic equilibrium, thus, consists of a se-
quence of phases, in which the edge inflow rates and the dynamic shortest path network are constant during
each phase. These phases last a positive amount of time, and one can show that phase transitions only happen
when new paths enter the dynamic shortest path network or when queues deplete. The rate at which the lengths
of the paths and the queues change within one phase are completely determined by the ‘′ labels, and therefore,
the length of each phase can be computed, integrating the derivatives, with the α-extension algorithm of Koch
and Skutella [18].

To be more precise, fix a time θ, and let (‘′,x′) be a solution to Conditions (5)–(7). Then, for the pair (E′
θ,E

∗
θ),

there exists an α > 0 such that, if one integrates the ‘′ labels, all inactive edges remain inactive and positive
queues remain positive. In other words, for all ∆ ∈ [0,α],

ℓw(θ) +∆ℓ′w − ℓv(θ)−∆ℓ′v ≤ τe, for all e " (v,w) ∉ E′
θ,

ℓw(θ) +∆ℓ′w − ℓv(θ)−∆ℓ′v ≥ τe, for all e " (v,w) ∈ E∗
θ:

Note that if Equation (5) holds with strict inequality for an edge e " (v,w), integrating ‘′ makes e inactive immedi-
ately; that is, if ℓw(θ)− ℓv(θ) " τe and ℓ′w − ℓ′v < 0, then ℓw(θ) +∆ℓ′w − ℓv(θ)−∆ℓ′v < τe for any ∆ > 0. If this happens,
(‘′,x′) is still a solution at time θ+∆ because there are no conditions on inactive edges. Also, if ℓ′v < x′e=νe for an
edge e satisfying Equation (6), a queue starts to grow immediately after θ. This does not pose a problem either
because, in this case ℓ′w " x′e=νe, so e also satisfies Equation (7). As a result, the derivatives in [0,α] are constant
and equal to ‘′, so the equilibrium can be extended to [θ,θ+ α] by integration.

Taking the maximum possible value of α, the current phase lasts until time θ+α, and the same procedure can
be iterated. Therefore, assuming that the dynamic equilibrium does not exhibit Zeno-type behavior—that is, that
the sequence defined by the α-extension algorithm does not have accumulation points—we can enumerate all
the phases as 0, 1, 2, : : : , where each phase i lasts from time θi to θi+1. Within the interval (θi,θi+1), the configura-
tion (E′

θ,E
∗
θ), the ‘′ labels, and the static flow x′ remain constant. Our main results hold, however, without this as-

sumption of the absence of Zeno-type behavior in the dynamic equilibrium.

3. The Price of Anarchy
In this section, we present our main result. First, in Section 3.1, we prove the upper bound on the price of anarchy
in terms of the ratio between the inflow rate of the equilibrium uEQ and the inflow rate of the optimal flow uOPT
and obtain as a corollary that, if uEQ " uOPT, then the price of anarchy is at most e=(e− 1). Later, in Section 3.2, we
present a family of instances that match this upper bound.

3.1. Upper Bound
For a single-source, single-sink network G with inflow u0 and a total amount of flow M, denote by TOPT the time
the quickest flow takes to route the M units from s to t. Denote the inflow rate of the quickest flow over time by
uOPT. For the dynamic equilibrium with inflow rate uEQ " u0, denote by θ̂ the first time at which M flow units
have departed from the source s, that is, θ̂ "M=uEQ. Thus, because dynamic equilibria satisfy FIFO (Koch and
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Skutella [18]), the time at which M units of flow have arrived at the sink t is ℓt(θ̂) " TEQ. Our result about the
price of anarchy is the following.

Theorem 2. Let mG be the maximum number of nodes in a simple s, t path in G. It holds that

TEQ · 1− uEQ
uOPT

· 1
e

( )
≤ TEQ · 1− uEQ

uOPT
1− 1

mG

( )mG
( )

≤ TOPT:

Corollary 1. If uEQ " uOPT, then

TEQ ≤ TOPT · 1− 1− 1
mG

( )mG
( )−1

≤ TOPT ·
e

e− 1
:

The corollary as well as the first inequality in the theorem are direct. To prove the second, we prove two main
lemmata that together form the heart of the proof of Theorem 2. The first lemma relates the completion time of
the optimal and equilibrium flow. It assumes the inflow rate of the optimum and equilibrium flow are equal.

Lemma 1. The completion time of the optimal flow TOPT and of the equilibrium TEQ are related as follows:

TEQ −TOPT ≤
1

uOPT

∑

e"(v,w)∈E
ze(ℓv(θ̂)) : (8)

Proof. Consider a path decomposition P of the optimal flow. From Linear Program (3), it follows that
M " uOPTTOPT −∑

p∈P f̂ pτp, where τp " ∑
e∈pτe. Moreover, from the equilibrium flow, we knowM " uEQθ̂. Therefore,

uOPTTOPT − uEQθ̂ "
∑

p∈P
f̂ pτp : (9)

We rewrite the right-hand side as follows. Note that, for an edge e " (v,w) ∈ E, ℓw(θ) ≤ ℓv(θ) + ze(ℓv(θ))=νe + τe,
and hence, τe ≥ ℓw(θ)− ℓv(θ)− ze(ℓv(θ))=νe. Considering a path p, summing over all edges e ∈ p gives τp ≥ ℓt(θ)−
ℓs(θ)−∑

e∈pze(ℓv(θ))=νe. Applying this inequality for θ " θ̂ to Equation (9) and using that ℓt(θ̂) " TEQ, yields

uOPTTOPT − uEQθ̂ ≥
∑

p∈P
f̂ p TEQ − θ̂ −

∑

e"(v,w)∈p

ze(ℓv(θ̂))
νe

( )
: (10)

By the definition of f̂ , ∑p f̂ p " uOPT. Taking this out of the sum for the first two terms, we get

uOPTTOPT − uEQθ̂ ≥ uOPTTEQ − uOPTθ̂ −
∑

p∈P
f̂ p
∑

e∈p

ze(ℓv(θ̂))
νe

,

and hence,

uOPT(TEQ −TOPT) + θ̂(uEQ − uOPT) ≤
∑

p∈P
f̂ p
∑

e∈p

ze(ℓv(θ̂))
νe

"
∑

e∈E
f̂ e
ze(ℓv(θ̂))

νe

≤
∑

e∈E
ze(ℓv(θ̂)) :

The equality follows by summing over all edges instead of all paths, and the last inequality is implied by f̂ e ≤ νe.
The result follows from the fact that uOPT ≤ uEQ. w

To complete the proof of Theorem 2, it remains to bound the sum in the right-hand side of Equation (8). The
following lemma does exactly this.

Lemma 2. In the dynamic equilibrium, for all θ ≥ 0,
∑

e"(v,w)∈E
ze(ℓv(θ)) ≤ uEQ · 1− 1

mG

( )mG

· (ℓt(θ)− ℓt(0)) :

We prove this lemma using two technical claims. For those claims, we need the following two auxiliary proposi-
tions. The first proposition states that, if flow is sent along an edge, the derivatives of the distance labels of both
its vertices are positive. The second proposition is a bit technical.
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Proposition 1. In the dynamic equilibrium, for all θ ≥ 0 and all e " (v,w) ∈ E′
θ such that x′e(θ) > 0, we have that both

ℓ′v(θ) > 0 and ℓ′w(θ) > 0.

Proof. Consider some θ ≥ 0 and an edge e " (v,w) ∈ E′
θ with x′e(θ) > 0. If e ∈ E∗

θ, then ℓ′w(θ) " x′e=νe > 0 by Thin
Flow Condition (7). If e ∈ E′

θ\E∗
θ, then ℓ′w(θ) "max ℓ′v(θ),x′e=νe

{ } ≥ x′e=νe > 0 by Thin Flow Condition (6). The claim
is proved for vertex w. Now, if v " s, then the result follows immediately because ℓ′s(θ) " 1. On the other hand, if
v≠ s, because x′(θ) satisfies the flow conservation constraints, there must be an edge e′ " (u,v) ∈ E′

θ with
x′e′(θ) > 0. Following the same reasoning as before, we conclude that ℓ′v(θ) > 0. w

Proposition 2. For all k ∈ N\{0} and all reals y0,y1, : : : ,yk > 0 such that y0 " 1, it holds that
∑k

i"1
1− yi−1

yi

( )
≤ yk · 1− 1

k+ 1

( )k+1
:

Proof. Define yk+1 :" 1= 1− 1= k+ 1( )( )k+1, and let us prove the equivalent statement ∑k+1
i"1 yi−1=yi ≥ k. Indeed, by the

arithmetic-geometric inequality,

∑k+1

i"1

yi−1
yi

≥ (k+ 1)
∏k+1

i"1

yi−1
yi

( )1=(k+1)
" (k+ 1) 1

yk+1

( )1=(k+1)
" (k+ 1) k

k+ 1
" k: w

With these two propositions at hand, we can prove the two claims that imply Lemma 2.
Claim 1 states that, in the dynamic equilibrium, for all θ ≥ 0,

∑

e"(v,w)∈E
ze(ℓv(θ)) ≤

∫ θ

0

∑

e"(v,w)∈E′
ξ

x′e(ξ) 1−
ℓ′v(ξ)
ℓ′w(ξ)

( )
dξ:

In the following proof of claim 1, by an edge e we mean an edge e " (v,w) unless indicated otherwise. We begin
by writing the queue length in terms of its derivative by using Equation (1).

∑

e"(v,w)∈E
ze(ℓv(θ)) "

∑

e∈E

∫ θ

0

dze(ℓv(ξ))
dξ

1ze(ℓv(ξ))>0dξ "
∫ θ

0

∑

e∈E∗
ξ

dze(ℓv(ξ))
dξ

dξ: (11)

Denoting the flow underlying the dynamic equilibrium by f, for e ∈ E∗
ξ, we have z′e(ξ) " f+e (ξ)− νe and ℓ′w(ξ) "

x′e(ξ)=νe. Then, we can write
dze(ℓv(ξ))

dξ
" z′e(ℓv(ξ))ℓ′v(ξ)

" f+e (ℓv(ξ))ℓ′v(ξ)− νeℓ
′
v(ξ)

" x′e(ξ)− νeℓ
′
v(ξ)

≤ x′e(ξ)− νeℓ
′
v(ξ)

( )
1x′e(ξ)>0

" x′e(ξ) 1− νeℓ′v(ξ)
x′e(ξ)

( )
1x′e(ξ)>0

" x′e(ξ) 1− ℓ′v(ξ)
ℓ′w(ξ)

( )
1x′e(ξ)>0:

Here, the inequality follows because, if x′e(ξ) " 0, the expression is negative. Because x′e(ξ) > 0, we can take it out
of the brackets in the next step. Plugging the preceding expression into Equation (11) yields

∑

e∈E
ze(ℓv(θ)) ≤

∫ θ

0

∑

e∈E∗
ξ

x′e(ξ) 1− ℓ′v(ξ)
ℓ′w(ξ)

( )
1x′e(ξ)>0dξ:

Note that, for edges e " (v,w) ∈ E′
ξ\E∗

ξ, we have ℓw(ξ) " ℓv(ξ) + ze(ℓv(θ))=νe + τe, so ℓ′w(ξ) " ℓ′v(ξ) + z′e(ℓv(θ))
ℓ′v(θ)=νe " ℓ′v(ξ) + 0 almost everywhere. Using Lemma 1, this gives 1− ℓ′v(ξ)=ℓ′w(ξ) " 0 almost everywhere, and
hence,

∑

e∈E
ze(ℓv(θ)) ≤

∫ θ

0

∑

e∈E′
ξ

x′e(ξ) 1−
ℓ′v(ξ)
ℓ′w(ξ)

( )
1x′e(ξ)>0dξ:

The proof of claim 1 is complete. The next claim bounds the integral on the right-hand side.
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Claim 2 states that, in the dynamic equilibrium, for almost all ξ ≥ 0,
∑

e"(v,w)∈E′
ξ

x′e(ξ) 1−
ℓ′v(ξ)
ℓ′w(ξ)

( )
1x′e(ξ)>0 ≤ uEQ · 1− 1

mG

( )mG

· ℓ′t(ξ) :

The proof of claim 2 begins by considering a path decomposition P of the dynamic equilibrium x′ at time ξ. Note
that paths in P only traverse edges e ∈ E′

ξ having x′e(ξ) > 0, and note that edges e ∈ E′
ξ either have x′e(ξ) " 0 or are

contained in paths in P. Then, we can rewrite the left-hand side as
∑

e∈E′
ξ

x′e(ξ) 1−
ℓ′v(ξ)
ℓ′w(ξ)

( )
1x′e(ξ)>0 ≤

∑

p∈P
x′p(ξ)

∑

e∈p
1− ℓ′v(ξ)

ℓ′w(ξ)

( )
:

For a path p ∈ P, denote by | p | the number of links in p. Because of Lemma 1 and the fact that ℓ′s(ξ) " 1, we can
apply Proposition 2 for each path p, taking k "| p | and yi " ℓ′w(ξ) with w the head of the ith link in the path.
Hence, we obtain that

∑

p∈P
x′p(ξ)

∑

e∈p
1− ℓ′v(ξ)

ℓ′w(ξ)

( )
≤
∑

p∈P
x′p(ξ) 1−

1
| p | +1

( )|p|+1
· ℓ′t(ξ) :

Now, note that 1− 1
|p|+1

( )|p|+1
≤ 1− 1

mG

( )mG
for all p ∈ P because the expression is increasing in | p | and | p | +1 ≤mG

for all p ∈ P. Using that x′(ξ) is a flow of size uEQ, we conclude the proof of the claim.
We now show how Lemma 2 follows from these claims.

Proof of Lemma 2. From claims 1 and 2, we see that
∑

e"(v,w)∈E
ze(ℓv(θ)) ≤ uEQ 1 − 1

mG

( )mG∫ θ

0
ℓ′t(ξ)dξ " uEQ 1 − 1

mG

( )mG

ℓt(θ) − ℓt(0)( ),

where the last factor comes from the integration of ℓ′t(ξ). w

Theorem 2 follows in a straightforward manner from the two main lemmata.

Proof of Theorem 2. Applying Lemma 2 for θ " θ̂ to the bound of Lemma 1 yields

TEQ −TOPT ≤
uEQ
uOPT

· 1− 1
mG

( )mG

(ℓt(θ̂)− ℓt(0)) ≤
uEQ
uOPT

· 1− 1
mG

( )mG

ℓt(θ̂) :

The result follows by writing ℓt(θ̂) " TEQ and rearranging this inequality to the desired expression. w

3.2. Tightness
Consider the family of instances described in Koch [17, section 7.4], in which it is proved that the price of anarchy of
these instances is at most e=(e− 1). We prove tightness of our results by showing that, for a given choice of the edge ca-
pacities, the price of anarchy of these instancesmatches the bound of Theorem2,which tends to e=(e− 1) in the limit.

For completeness, we describe the family of instances here, and they are illustrated in Figure 2. Fix the parame-
ter m ∈ N. Denote the capacity of edges ei and ei, respectively, by ui and ui " ∑i

k"1ui. Set the delay of ei and ei to
τi " um 1− 1=ui

( )
and τi " 0, respectively. The equilibrium inflow rate is um.

We consider the instance in which we set u1 " 1 and ui " m=(m− 1)( )i−1. Note that this is a feasible choice as it
is strictly increasing in i, and therefore, ui > 0. We set the total amount of flow to send through the network to
M " um.

Figure 2. An illustration of the tight instance.

vm
s

v4 v3 v2 v1
t

v0 v0
em e3 e2 e1 = e1
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. . .

e3
e2
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The following lemmata show that the price of anarchy for this instance tends to e=(e− 1) for m→∞.

Lemma 3. The completion time of the equilibrium is TEQ " um.

Proof. Because τi " 0 for all i, the total delay of the straight path is zero. Therefore, in the first phase of the equi-
librium, all particles take the straight path, and we get

x′e "
0 for e " ei i " 2, : : : ,m
um for e " ei i " 1, : : : ,m and ℓ′vi "

um

ui
for i " 1, : : : ,m:

{

This yields

ℓ′v1 − ℓ′vi "
um

u1
− um

ui

( )
" τi for all i,

and therefore, the first phase lasts until time θ " 1, when all paths enter the dynamic shortest path network.
Because the equilibrium inflow rate is um, we have θ̂ "M=um " 1. Therefore,

TEQ " ℓt(θ̂) " ℓt(1) " 1+ τm " 1+ um 1− 1
um

( )
" um: w

Lemma 4. The completion time of the optimum flow is TOPT " um 1− (m− 1)=(mum)( ).
Proof. See Figure 3 for an illustration of f−t (θ), the inflow rate into t of the optimum flow as a function of θ. Note
that, becauseM equals the area under this curve,

M "
∑m−1

i"1
(τi+1 − τi)ui + (TOPT − τm)um : (12)

Now observe that, for all i " 1, : : : ,m− 1,

(τi+1 − τi)ui " um
1
ui
− 1
ui+1

( )
ui " um 1− ui

ui+1

( )
" um 1− m

m− 1

( )−1( )
" um

m
:

Replacing this in Equation (12), we conclude that

TOPT " M
um

−m − 1
m

+ τm " 1
m
+ um 1 − 1

um

( )
" um 1 −m − 1

mum

( )
: w

Lemma 5. The price of anarchy of 1− 1− 1
mG

( )mG
( )−1

is tight.

Proof. From Lemmas 3 and 4, we see that the price of anarchy of this instance equals
TEQ

TOPT
" um

um 1 − m−1
mum

( ) " 1
1 − m−1

mum
" 1

1 − m−1
m

( )m :

The proof is finished by noting that m "mG: w

It follows that the bound of e=(e− 1) is tight in the limit as well.

Figure 3. The inflow rate into t of the optimum flow for the tight instance.

θ

f −t (θ)
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4. Monotonicity Conjecture
In this section, we discuss how the monotonicity conjecture would establish that our main result holds in general
and discuss some difficulties in proving it that appears already in series-parallel graphs.

Conjecture 1: Consider a network G and two fixed inflow rates u1 < u2 with their corresponding dynamic equi-
libria in G and their corresponding makespans T1

EQ and T2
EQ for routingM units of flow. Then, T1

EQ ≥ T2
EQ.

The following lemma demonstrates how the universal bound on the PoA would follow from Conjecture 1.

Lemma 6. Suppose Conjecture 1 holds. Then, in any instance,

TEQ ≤ 1 − 1 − 1
mG

( )mG
( )−1

· TOPT ≤ e
e − 1

· TOPT:

Proof. Let a graph G and a total amount of flow M be given and consider a dynamic equilibrium with inflow
rate uEQ > uOPT. By Conjecture 1, we know that TEQ ≤ T′

EQ, where T′
EQ is the makespan of the dynamic equilibri-

um in G with inflow rate uEQ′ " uOPT. Because the network itself does not change, neither does the makespan of
the optimal flow. Then, using Theorem 2, we obtain

TEQ ≤ T′
EQ ≤ 1− 1− 1

mG

( )mG
( )−1

·TOPT ≤
e

e− 1
·TOPT:

Even though there are good reasons to believe that Conjecture 1 is true, proving it would require a deeper un-
derstanding of the evolution of dynamic equilibria. Consider the following argument that illustrates where the
difficulty resides. If, for a network, the number of phases is finite regardless of the inflow rate, the continuity of
the derivatives of the equilibrium in terms of the inflow rate implies that we can partition R≥0 into intervals
[0,u1), [u1,u2), : : : such that, for all inflow rates u ∈ [ui,ui+1), the sequence of phases of the dynamic equilibrium,
that is, the sequence of configurations (E′

θ,E
∗
θ), is the same. Thus, if we can prove the monotonicity for a pair of

inflow rates within any of these intervals, we conclude the monotonicity in general again by continuity.
Now, denote by ‘u the labels of the dynamic equilibriumwith inflow rate u. For a fixed total amount of flowM, the

last particle arrives at the sink t at time ℓut (M=u), so Conjecture 1 states that ℓut (M=u) is a nonincreasing function of u.
Denoting by 0 " θu

0,θ
u
1 , : : : ,θ

u
J "M=u the times of the phase transitions for the inflow rate u, we have that

ℓut (M=u) "
∫ M=u

0
ℓut

′(θ)dθ

"
∑J−1

j"0
(θu

j+1 −θu
j ) · ℓut ′(θu

j )

"
∑J−1

j"0
(uθu

j+1 − uθu
j ) ·

ℓut
′(θu

j )
u

:

(13)

Here, the term ℓut
′(θu

j )=u is exactly the inverse of the outflow of the network, that is, the inflow into the sink t. At a
time θ, this quantity depends only on u and the configuration (E′

θ,E
∗
θ) and is known to be a decreasing function

of u (Kaiser [16, lemma 18]. Thus, if we look within any given phase, the outflow of the network is, in fact, larger
when the inflow is larger. However, Equation (13) also depends on the length of each phase, which, in turn, de-
pends on the labels and not only their instantaneous derivatives.

In the next section, we prove the monotonicity conjecture for a special class of networks that we call series composi-
tion of parallel paths. Essentially, we complete the previous argument by proving that, for this class of networks,
ℓut

′(θ)=u is decreasing in θ and that, for each phase j, uθu
j is decreasing in u. These two properties strongly rely on the

fact that, in these networks, all phase transitions correspond to the activation of new edges and none to queues deplet-
ing. A natural extension would be to prove that parallel composition preserves monotonicity, but this does not seem
to be as straightforward. The main reason for this stems from the fact that small graphs in the class of series-parallel
graphs can already exhibit quite intricate equilibrium behavior depending on the inflow rate.

In order to illustrate this, consider the graph known as the pulse gadget in Figure 4(a). It consists of three nodes,
s, v, and t, and four edges e1 " (s, t), e2 " (s,v), e3 " (v, t), and e4 " (v, t). The edge capacities are 1/3, 3/4, 1/3, and 1,
respectively, and their transit times are 2, 0, 0, and 2. There are three s,t paths, namely, P1 " (e1), P2 " (e2, e3), and
P3 " (e2, e4).
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In this rather uncomplicated series-parallel graph, the phases of the dynamic equilibrium depend on the inflow rate
in a nontrivial way. In the first phase, all flow is sent along path P2. It turns out that three events can occur that cause a
newphase of the equilibrium. First, it is possible that edge e1 enters the shortest path network. Second, edge e4might en-
ter the shortest path network. Finally, a queue that has grown on edge e2 might deplete. Let us define t1, t2, and t3 as the
time atwhich each of these events happen, respectively, as a function of u0. As an example, for an inflow rate of u0 " 1, it
holds that t1 " 1, t2 " 7=5, and t3 " 4. The dependence of t1, t2, and t3 on u0 has been visualized in the diagram in Figure
4(b). It shows for every value of u0 the value of t1, t2, and t3 if these events happen at all for this given inflow rate.

As one can observe in this diagram, the length and existence of the phases depends in a nontrivial way on u0. For
some values of u0, some eventsmight never occur. For u0 ≤ 1=3, the thinflownever changes. For 1=3 < u0 ≤ 3=4, edges
e1 and e4 enter the shortest path network at the same time. For 3=4 < u0 < 13=12, they enter sequentially, and more-
over, the edge on e2 depletes. Finally, for u0 ≥ 13=12, they enter sequentially, but the queue on e2 never vanishes.

Expressing the length of the phases depending on u0 for a general graph is hard. Especially for inflow rates
close to the bifurcation points in such an equilibrium diagram, it is not clear how to prove the monotonicity con-
jecture. These diagrams show the intricate subtleties one has to resolve in order to prove, for example, that paral-
lel composition of two graphs preserves monotonicity.

5. Series Concatenation of Parallel-Paths Networks
In this section, we prove the monotonicity for series concatenation of parallel-paths networks. We say a graph is a
parallel-paths network if all s,t paths are edge-disjoint. We sayG is a series concatenation of parallel-paths networks if
it results from taking parallel-paths networks G1,G2, : : : ,Gm−1 and identifying the sink of Gi with the source of Gi+1
for each i ≤m− 2.We denote by si the resulting node and by sm the sink ofGm−1.We prove the following theorem.

Theorem 3. Conjecture 1 holds when G is a series concatenation of parallel paths.

We start by showing that paths whose internal nodes have exactly one incoming and one outgoing edge can
be contracted to a single edge without changing the dynamic equilibrium. Therefore, we can focus on series con-
catenation of parallel-links networks, that is, in which all nodes of G are in {s1, s2, : : : , sm}.
Lemma 7. Let G1 " (V1,E1) be a graph with a vertex v ∈ V1 with exactly one incoming edge e1 " (u,v) ∈ E1 and exactly
one outgoing edge e2 " (v,w) ∈ E1. Let ( fe)e∈E1

be a flow over time in G1. Let G2 " (V2,E2) be the graph obtained by con-
tracting e1 and e2 into one edge e3, that is, removing the vertex v and the edges e1 and e2 and adding the new edge
e3 " (u,w). Let νe3 "min{νe1 ,νe2} and τe3 " τe1 + τe2 . Let (ge)e∈E2

be a flow over time in G2. Then, if g+e3(θ) " f+e1 (θ) for all
θ ≥ 0, then g−e3(θ+ τe3) " f−e2 (θ+ τe1 + τe2) for all θ ≥ 0.

Proof. The result follows from using the flow conservation constraint in v and concatenating the definition of the
outflows and the queue dynamics.

Figure 4. An example illustrating the intricacies involved in proving the monotonicity conjecture.
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Consider first the case in which νe1 ≤ νe2 . By definition, we have that f−e1 (θ) ≤ νe1 for all θ ≥ 0. By the flow conser-
vation constraint in v, we have that f−e1 (θ) " f+e2 (θ) for all θ ≥ 0. Thus, the inflow into e2 is always smaller than its
capacity, so ze2(θ) " 0 for all θ ≥ 0. Hence, f−e2 (θ+ τe1 + τe2) " f+e2 (θ+ τe1) " f−e1 (θ+ τe1). From the definition of f−e1 , we
obtain that

f−e2 (θ+ τe1 + τe2) "
νe1 if ze1(θ) > 0,
min{ f+e1 (θ),νe1} if ze1(θ) " 0:

{

Note that, if νe1 ≤ νe2 , then νe3 " νe1 , and thus, the queue ze1 satisfies the same dynamics as ze3 . Thus, ze1(θ) " ze3(θ)
for all θ, and then, g−e3(θ+ τe3) " f−e2 (θ+ τe1 + τe2), which concludes the proof for this case.

Assume now that νe1 > νe2 . From the definition of f−e1 and f−e2 and the fact that f+e2 (θ) " f−e1 (θ), we obtain that

f−e2 (θ+ τe1 + τe2) "
νe2 if ze2(θ+ τe1) > 0,
min{νe1 ,νe2} if ze2(θ+ τe1) " 0 and ze1(θ) > 0,
min{min {f+e1 (θ),νe1},νe2} if ze2(θ+ τe1) " 0 and ze1(θ) " 0:




Now, if we define z̄e3(θ) " ze1(θ) + ze2(θ+ τe1), we can simplify the preceding to

f−e2 (θ+ τe1 + τe2) "
νe2 if z̄e3(θ) > 0,
min{f+e1 (θ),νe2} if z̄e3(θ) " 0:

{

To complete the proof, we need to show that the z̄e3(θ) we defined in G1 has the same dynamics as ze3(θ) in G2.
From its definition, we see that the dynamics of z̄e3 are

dz̄e3(θ)
dθ

"

f+e1 (θ)− νe1 + νe1 − νe2 if ze1(θ) > 0,ze2(θ+ τe1) > 0,
f+e1 (θ)− νe1 + [νe1 − νe2]+ if ze1(θ) > 0,ze2(θ+ τe1) " 0,

[ f+e1 (θ)− νe1]+ +min f+e1 (θ),νe1
{ }

− νe2 if ze1(θ) " 0,ze2(θ+ τe1) > 0,

[ f+e1 (θ)− νe1]+ + min f+e1 (θ),νe1
{ }

− νe2

[ ]
+

if ze1(θ) " 0,ze2(θ+ τe1) " 0,




where [·]+ "max {·, 0}. Because νe1 > νe2 , the first two cases give the same expression f+e1 (θ)− νe2 . In the latter two
cases, a case distinction between f+e1 (θ) ≥ νe1 and f+e1 (θ) < νe1 reveals that we can simplify the preceding to

dz̄e3(θ)
dθ

"
f+e1 (θ)− νe2 if z̄e3(θ) > 0,
[ f+e1 (θ)− νe2]+ if z̄e3(θ) " 0:

{

Because ze3 satisfies the exact same dynamics, we obtain that z̄e3(θ) " ze3(θ) for all θ if the inflow pattern is the
same. Hence, we conclude that, also in this case, g−e3(θ+ τe3) " f−e2 (θ+ τe1 + τe2). w

Assume s1, s2, : : : , sm are ordered by increasing distance to s. Because of Lemma 7, to study dynamic equilibria
in G, we can assume without loss of generality (w.l.o.g.) that G is, in fact, a series concatenation of parallel-links
networks, that is, that all edges in G are of the form (si, si+1) for some 1 ≤ i <m. We also can assume w.l.o.g. that
all pairs of parallel edges have different delays.7 We say that a pair of nodes si, si+1 and all edges of the form
(si, si+1) form a component of G. We denote by E′

i,θ and E∗
i,θ the set of active edges, respectively, the set of edges

with positive queue in this component at time θ. As explained in the previous section, to prove the monotonicity
in a graph, we can restrict ourselves to the case in which the change in the inflow is so small that the sequence of
phases is the same. We prove some facts about dynamic equilibria in G that we later use to prove Theorem 3 and
conclude this section.

Lemma 8. Consider the dynamic equilibrium with inflow u in G. For all θ ≥ 0 and all 1 ≤ i <m, it holds that

ℓ′si+1(θ) "max ℓ′si(θ),
u∑

e∈E′
i,θ
νe





, (14)

and ℓ′s1(θ) " 1. Moreover, the set E′
i,θ is inclusion-wise increasing in θ, all phase transitions occur because a new edge be-

comes active, and there is a finite number of phases.
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Proof. By definition, we have that ℓ′s1(θ) " 1 for all θ. Recall that

E′
θ " e " (u,v) ∈ E : ℓv(θ) ≥ ℓu(θ) + τe{ }, and

E∗
θ " e " (u,v) ∈ E : ℓv(θ) > ℓu(θ) + τe{ }:

This immediately implies that, for every component i and all times θ, | E′
i,θ\E∗

i,θ |≤ 1, and that if ℓ′si+1(θ) ≥ ℓ′si(θ),
which is a consequence of Equation (14), then edges do not leave E∗

θ, and a phase transition can occur only when
a new edge enters E′

θ. If ℓ
′
si+1(θ) ≥ ℓ′si(θ) for all i and all θ, then we immediately obtain also that E′

θ is inclusion-
wise increasing, and therefore, the number of phases is finite.

At time θ " 0, there is only one edge per component that is active, the one with smallest delay, and no edge is
resetting. This means that there is only one s,t path, so x′e(0) " u for all e ∈ E′

0. Therefore, Equation (6) immediately
implies Equation (14). Before the first phase transition occurs, the set E′

θ remains unchanged, and the active edge
in a component i such that ℓ′si+1(0)− ℓsi

′(0) > 0 enters E∗
θ immediately after θ " 0.

Consider now θ > 0, and suppose that, for a component, it holds that

ℓ′si(θ) ≤
u∑

e∈E∗
i,θ
νe
: (15)

It is easy to check that, if this is true, then ℓ′si+1 "max
{
ℓ′si ,u=

∑
e∈E′

i,θ
νe

( )}
, x′e " ℓ′si+1 · νe for e ∈ E∗

i,θ, and x′e "
u−∑

e′∈Ei,θx
′
e′ for at most one edge e ∈ E′

i,θ\E∗
i,θ, satisfies the thin flow conditions in Equations (5)–(7) for the edges

of the ith component.
Now, inductively, assume that a phase transition occurs at time θ > 0, and assume that Equation (15) has held

for all θ′ < θ and all components. By the previous argument, we also have that Equation (14) has held for all θ′ <
θ and all components. Thus, for all times θ′ < θ and all components i < m, ℓ′si+1(θ

′) ≥ ℓ′si(θ
′), and therefore, the

phase transition at time θ was caused by an edge becoming active. This, in particular, means that the set E∗
θ is the

same as immediately before θ. Let i∗ be the component for which a new edge became active. In components
j < i∗, the sets E′

j,θ and E∗
j,θ are the same as immediately before θ, so the thin flow remains unchanged. Because of

this, in component i∗, ℓ′si∗ (θ) does not change, so Equation (15) still holds, and therefore, ℓ′si∗+1(θ) "
max

{
ℓ′si∗ (θ),u=

∑
e∈E′

i∗,θ
νe

( )}
. Because E′

i∗,θ grew by one element, ℓ′si∗+1(θ) decreased or remained constant. Consider

now a component j > i∗, and assume inductively that ℓ′sj(θ) decreased or remained constant. Clearly Equation
(15) still holds, and then also Equation (14) holds in component j, and ℓ′sj+1(θ) decreased or remained constant.

Right after the phase transition, it can happen that, in a component i, the edge in E′
i,θ\E∗

i,θ enters E∗
θ. This hap-

pens if ℓ′si+1(θ) > ℓ′si(θ). But note that, in this case, by Equation (14), u= ∑
e∈E′

i,θ
νe

( )
> ℓ′si(θ), and therefore, Equation

(15) continues to hold. w

Lemma 9. In a dynamic equilibrium in G, it holds that, for all 1 ≤ i ≤m, ℓ′si(θ) is a nonincreasing function of θ. w

Proof. This is a direct consequence of inductively applying Lemma 8. For i " 1, ℓ′s1(θ) " 1 is nonincreasing in θ.
Now, assume ℓ′si(θ) is nonincreasing in θ. Because E′

i,θ is inclusion-wise increasing in θ, u= ∑
e∈E′

i,θ
νe

( )
is nonin-

creasing in θ. Therefore, by Equation (14), ℓ′si+1(θ) is also nonincreasing in θ. w

Lemma 10. Consider a dynamic equilibrium in G and a component i of G. If E′
i,θ is constant for θ ∈ [θ1,θ2], then

ℓ′si+1(θ)− ℓ′si(θ) is a nondecreasing function in the same interval.

Proof. By Lemma 8,

ℓ′si+1(θ) − ℓ′si(θ) " max ℓ′si(θ),
u∑

e∈E′
i,θ
νe





 − ℓ′si(θ),

which is a decreasing function of ℓ′si(θ). Because u=
∑

e∈E′
i,θ
νe

( )
is constant and, by Lemma 9, ℓ′si(θ) is nonincreasing,

we conclude the statement of the lemma. w

Lemma 11. Let u0 < u1 be two inflow rates in G such that, up until a total flow M has entered the network, the sequence of
phases of the dynamic equilibrium, that is, the sequence of configurations (E′,E∗), is the same for both inflows. For j ≥ 1,
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denote by θu0
j and θu1

j the time of the jth phase transition when the inflow is u0 and when the inflow is u1, respectively.
Then, for all j ≥ 1, u1θu1

j ≤ u0θu0
j .

Proof. For an inflow u ∈ [u0,u1], denote by ‘u the corresponding time labels. In a given phase, we know, by
Lemma 8, that, for each component i, there is a component i′ < i such that ℓusi

′(θ) " u= ∑
e∈E′

i′,θ
νe

( )
, or ℓusi

′ " ℓus1
′ " 1,

and also that ℓusi+1
′ − ℓusi

′ ≥ 0. Therefore, (ℓusi+1 ′ − ℓusi
′)=u is increasing in u for any fixed θ > 0.

Now, inductively, consider the jth phase transition and assume that all previous phase transitions j′ < j satisfy
that uθu

j′ is nonincreasing in u. This transition happens when a new edge e becomes active. Let i be the component
containing e, and let e′′ be the last edge that became active in i before e. Let j′′ be the phase transition when that
happened. The transition times satisfy

τe − τe′′ "
∫ θu

j

θu
j′′

ℓusi+1
′(θ)− ℓusi

′(θ)dθ

"
∑

j′′≤j′<j
(θu

j′+1 −θu
j′)(ℓusi+1 ′(θ

u
j′)− ℓusi

′(θu
j′)) "

∑

j′′≤j′<j
(uθu

j′+1 − uθu
j′)(ℓusi+1 ′(θ

u
j′)− ℓusi

′(θu
j′))=u :

But, in this time interval, E′
i,θ stays constant, so by Lemma 10, ℓusi+1

′(θ)− ℓusi
′(θ) is nondecreasing in θ. As we al-

ready proved, (ℓusi+1 ′(θ
u
j′)− ℓusi

′(θu
j′))=u is increasing in u, so if uθu

j′′ increased with u, then the right-hand side would
become strictly larger than τe − τe′′ , causing a contradiction. w

We are now ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 8, there are finitely many phases, so it suffices to prove the monotonicity for any
pair of inflow rates u0 < u1 such that the sequence of phases of the dynamic equilibrium is the same. Now, if
we send a total amount of flow ofM and we denote by ‘u the time labels for an inflow of u ∈ [u0,u1], the last par-
ticle arrives at the sink t at time ℓut (M=u). Denoting by θu

j the time of the jth phase transition, for which we take
the last to be θu

J "M=u, recall from Equation (13) that

ℓut (M=u) "
∑J−1

j"0
(uθu

j+1 − uθu
j ) ·

ℓut
′(θu

j )
u

:

By Lemma 8, we have that ℓu
′

t (θ)=u is decreasing in u,and, by Lemma 9, that it is decreasing in θ. Finally, by
Lemma 11, uθu

j is nonincreasing in u for every j, including j " J, as uθu
J " uM=u "M. These facts combined imply

that ℓut (M=u) is decreasing in u. w

Note that, by Lemma 7, a parallel-path network behaves exactly as a parallel-link network. Therefore, Theorem
2 implies that the price of anarchy for parallel-path networks is at most (1− (1− 1=2)2)−1 " 4=3. Furthermore, this
bound is tight because Figure 2 provides a tight example for a two-link network.

6. Discussion
In this section, we provide some computational evidence to support the monotonicity conjecture, show alterna-
tive conjectures that would imply a universal bound on the price of anarchy, and extend our results to the total
delay price of anarchy.

6.1. Computational Experiments
Monotonicity is an important basic property of the fluid queuing model that seems intuitive yet appears to be no-
toriously hard to prove. Although a formal proof still eludes us, we provide computational experiments to sup-
port the conjecture.

We consider a small graph outside of the class of graphs for which we prove the monotonicity conjecture in
Theorem 3, namely, the graph for Braess’ paradox visualized in Figure 1. This graph consists of the nodes s, u, v,
and t connected by five edges e1 " (s,u), e2 " (s,v), e3 " (u,v), e4 " (u, t), and e5 " (v, t). We check the monotonicity
in this graph computationally for every possible combination of the values νj ∈ {0:5, 1} and τj ∈ {0, 1}, where νj
and τj are the capacity respectively the delay of edge ej for j " 1, : : : , 5. This covers many different scenarios and
equilibrium flows with bottlenecks at different locations in the graph. We check the conjecture for each of these
210 different underlying graphs for the values M ∈ {2, 5}. For each combination of parameters, we compare the
makespan for the values uEQ " 1, uEQ " 1:01, and uEQ " 1, which are denoted by T1

EQ, T
1:01
EQ , and T1:1

EQ, respectively.
Everything was computed using the Nash Flow Computation Tool developed by Max Zimmer [31].
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It turns out, computationally, that, for every possible combination of parameters νj, τj, and M, it holds that
T1:1
EQ ≤ T1:01

EQ ≤ T1
EQ. This suggests that the monotonicity conjecture holds in the Braess graph, which lies beyond

the class of series-parallel graphs.

6.2. Alternative Conjectures
Although we strongly believe that the monotonicity conjecture holds, this is not the only way to establish the de-
sired price of anarchy result. Specifically, it seems plausible that the time it takes for a particle to travel from s to
t in the dynamic equilibrium (not accounting for the time spent at the source) is less than the makespan of the op-
timal solution. In other words, ℓt(θ)−θ < TOPT for all 0 ≤ θ ≤ θ̂. The next lemma establishes that, if this property
holds, then our bound on the price of anarchy remains true.

Lemma 12. Suppose that M > 0 and that, for all 0 ≤ θ ≤ θ̂, we have that ℓt(θ)−θ < TOPT, and then

TEQ · 1− uEQ
uOPT

· 1e
( )

≤ TEQ · 1− uEQ
uOPT

1− 1
mG

( )mG
( )

≤ TOPT.

Proof. Consider a network G in which uEQ > uOPT with makespan TOPT for the optimal flow and TEQ for the dy-
namic equilibrium. Now, consider a network G′ that is obtained from G by adding an edge e from s to twith νe "
uEQ − uOPT and τe " TOPT − ε.

Because τe < TOPT, the optimum flow in G′ sends a positive amount of flow along edge e, and it sends flow along
the same paths as in G at the same rate for a shorter period of time (provided ε is small enough). This implies that
uOPT

′ " uOPT + νe " uEQ, and moreover, TOPT
′ < TOPT. On the other hand, because of our assumption that ℓt(θ)−

θ < TOPT and the choice of τe, edge e is never active in the dynamic equilibrium (for sufficiently small ε). Therefore,
uEQ′ " uEQ and T′

EQ " TEQ, and we can write TEQ=TOPT ≤ T′
EQ=TOPT

′. The result follows from Theorem 2. w

Finally, we present a third conjecture that would imply the universal bound on the PoA. Indeed, suppose that,
for any instance and θ̂ > 0, we had that

∑

e"(v,w)∈E
f̂ e
ze(ℓv(θ))

νe
< uEQθ̂: (16)

Then, we could follow the beginning of the proof of Lemma 1, and we can write the following similar to Equa-
tion (10).

uOPTTOPT − uEQθ̂ ≥
∑

p∈P
f̂ p ℓt(θ̂) − θ̂ −

∑

e∈p

ze(ℓv(θ̂))
νe

( )

" uOPTℓt(θ̂) − uOPTθ̂ −
∑

e"(v,w)∈E
f̂ e
ze(ℓv(θ))

νe

> uOPTℓt(θ̂) − uOPTθ̂ − uEQθ̂:

Here, the last inequality is obtained by assuming the conjecture given by Equation (16). Then, by cancelling on
both sides and dividing by uOPT, we obtain that TOPT > ℓt(θ̂)− θ̂. Because the choice of θ̂ (or that of M) is arbi-
trary, we obtain that the previous conjecture holds, and therefore, the result follows from Lemma 12.

6.3. Total Delay Price of Anarchy
Our results regarding the price of anarchy with respect to the makespan objective can be extended to bounds on
the price of anarchy with respect to the total delay. Given a time horizon T, the total delay is defined as the total
travel time of all particles that arrive at the sink t before this time horizon, that is,

∫ T
0
θf−t (θ)dθ.

Bhaskar et al. [3] prove that the total delay price of anarchy is at most twice the makespan price of anarchy for
any temporal routing game. Assuming the monotonicity conjecture, the bounds we obtain in this paper not only
hold for the makespan, but, in fact, for every particle. This implies that our bounds would also hold for the total
delay price of anarchy with the same factor.

Acknowledgments
The authors thank Dario Frascaria, Marcus Kaiser, Neil Olver, Leon Sering, and Laura Vargas Koch for fruitful discus-
sions as well as Max Zimmer and Leon Sering for their software tool that aided the computational experiments. The au-
thors also thank two anonymous reviewers for helping improving the exposition of the paper. An earlier version of this
paper was presented at the 20th ACM conference on Economics and Computation 2019 (Correa et al. [7]).

Correa, Cristi, and Oosterwijk: On the Price of Anarchy for Flows over Time
Mathematics of Operations Research, Articles in Advance, pp. 1–18, © 2021 INFORMS 17



Endnotes
1 To be precise, they proved that the distance labels are unique among the class of right-linear equilibria (Cominetti et al. [5, theorem 6]. Note
that the equilibrium flow is not unique in general as, in a graph consisting of two identical parallel links with large enough capacity, the flow
may split arbitrarily.
2 We could also model this inflow as a capacity. Indeed, if we add an extra source at which all the flow M resides and add an edge from this
extra source to swith capacity u0, the situation remains unchanged.
3 This makes the situation compatible when adding the extra source in the model.
4 These labels are well-defined because of Cominetti et al. [5, equation (11)].
5 In a given instance, (G,ν,τ,u0).
6 This is assuming right-continuity of the ℓ′-labels of the dynamic equilibrium or that there is no Zeno-type behavior.
7 It is easy to see that, if two parallel links have the exact same delay, then they behave as one link with the same delay and capacity equal to
the sum of the capacities.
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