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We study the asymptotic behavior of the expectation of the maximum of n i.i.d. random variables drawn
from a fixed distribution F, with finite expectation. In this setting, Downey (1990) [4] showed that this
expectation grows as o(n). We provide an alternative simpler proof of Downey’s result together with a
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1. Introduction

In this paper we study the asymptotic behavior of the expec-
tation of the maximum order statistic X, = max;=1,. , X; of an
independent sample X1, ..., X; drawn from a fixed distribution F,
with finite expectation. The problem we address is to determine
the worst case growth rate of E(X(n)) as n increases to infinity.
This question is indeed quite natural and has been considered ex-
tensively in the applied probability and statistics communities in
the past fifty years (see e.g. [1], [3], [4], [6]).

Note first that, since the maximum is upper bounded by the
sum, we have that E(X)) < nE(X1]), so E(Xu) = 0(n). Sim-
ilarly if E(X1)P < oo, it is easy to derive that E(X@n) = 0(¥/n)
using Jensen’s inequality. Moreover, when the distribution F from
where X, ..., X, are drawn can depend on n, explicit bounds that
depend on F where obtained by e.g. Arnold [1] and Downey [4],
among others. However, when F is fixed and does not depend on
n a much stronger and general bound can be obtained. Indeed,
Downey [4] established that E (X)) = o(n).!

Specifically, to establish that E(Xq)) = o(n), Downey studies
the sequence X/ 4/n, and uses a result by Freedman [5] to es-
tablish the convergence in probability of the sequence. Then he
turns to prove that the sequence also converges in LP. To this end,
he shows that for p =1 the sequence is uniformly integrable and
thus, by Vitali convergence theorem (see e.g. [2, Theorem 4.5.4]),
obtains L!-convergence. For general p > 1, and under the assump-
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tion IE(]X|P) < oo, Downey uses Holder inequality to reduce to the
p =1 case and concludes that E(|X()|) = o(&/n). Finally, Downey
also argues that this bound is best possible in a certain sense.

In this note we present an elementary proof for the o(n) bound
for E(X)), which only uses the dominated convergence theorem
and a basic calculus result. We also obtain Downey'’s result for gen-
eral p as a corollary. Finally, we construct a lower bound that is
stronger than Downey’s, and conclude that o(n) is indeed best pos-
sible.

2. Main result

In this section, we present our simple proof of Downey’s result
and use Jensen’s inequality to state it in Downey’s general form.

Theorem 1. Let X1,..., X, be independent random variables drawn
from a common distribution F. Suppose E (| X1|) < oo, then
E(X
lim —( ™) =

n—00 n

0.

Proof. First note that it is enough to consider non-negative ran-
dom variables, since E(X(;)) < E (maxi—1,..n|Xil). Now, as X ~
F™ and it is also non-negative, its expectation can be written as

o0 o

n—1
E(X(m) :/1 - F”(x)dx:/(l —F)) Y FYxdx.

5 5 k=0

The linearity of the integral implies that
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]E(Xm)) 1szk(x)(1 — F(x))dx.

k= 00

To conclude the proof recall that the arithmetic mean of a con-
vergent sequence, converges to the same limit (see e.g. [7, Corol-
lary 1.5]). Thus, to establish the theorem it is enough to argue that

nlLrgo/ F*x)(1 = F(x))dx =0
0

This follows by the dominated convergence theorem since the se-
quence (Fk(1 — F))k=0 converges pointwise to 0 and it is domi-
nated by the integrable function 1 — F.2 O

Note that by Vitali convergence theorem, the L!-convergence of
the sequence (X(n)/n)n=1, is equivalent to its convergence in prob-
ability, and also to its uniform integrability. Therefore, the conver-
gence in expectation we just showed also implies the convergence
in probability and the uniform integrability shown by Downey. Fur-
thermore, using Jensen’s inequality for a convex function h, we get

.....

Thus we immediately obtain the following more general result:

Corollary 1.1. For any convex function h, if E(h(X1)) < oo, then
h(E(Xm))) = o(n). In particular, for all p > 1, if E(|X1|P) < oo, then
E(X@n)) =o(¥n).

3. Lower bound

Downey states that the bound E (X)) =o(n) is best possible
in the following sense. He proves that for all £ > O there exists
a distribution F, such that E(X@)) = Q(n'—¢). However, this does
not rule out the possibility of having a result stronger than that
in Theorem 1, such as E(X)) = 0(n/log(n)). In this section, we
argue that the bound from Theorem 1 is indeed best possible.

Theorem 2. For any function g with sublinear growth, namely such
that g = o(n), there is a finite expectation distribution F such that if
X1, ..., Xy are independently drawn from F, then

E(X,
lim inf (Xn)

> g(n)

> 0.

Proof. We establish the statement by constructing a distribution F
such that for all sufficiently large n.

E(Xm) = gn).

For k > 1, define a, = g(k) — g(k—1). It is clear that a, — 0. We
may assume wlog that (ay)k=>1 is a positive and non-increasing se-
quence. For otherwise we may take dx = maxm>k(g(m) — g(m —1))
and g(n) = Y j_;dx + g(0), which satisfies g(n) > g(n) and g =
o(n).? Thus it is enough to show E(Xm)) = g(n). Also, as we only
need to show the inequality for sufficiently large n, we may as-
sume that ay <1 for all k > 1 and that g(0) > 0.

2 Note that the sequence actually decreases to 0, so monotone convergence can
also be invoked.

&— lim —

3 Indeed, lim
n—oo n—oo n

n
Z&k = lim a, =limsupg(k) — g(k —1)=0.
Pt n—oo k—00
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Therefore we construct a distribution F of the form
Fo=Y (1—-a)1;, (0,
k>0

for some disjoint intervals I € R with length &, > 0. Letting

k(m) = min{k > 1 :ay < 1/m} for each m > 1, allows us to set
gm) _ gm+D )\ _1 ifJe —
5 = (T—m—JH)m if k = k(m) for somem e N,
0, otherwise.

Note that since the sequence ay is non-increasing we have that
8k > 0. To establish this we need to show that (m + 1)g(m) —
mg(m+1) > 0, which easily follows by induction because g(0) > 0.

With the previous choice of §; we immediately get that F has
finite expectation. Indeed,

i _ o 8&m  gm+1)
/(l—F(x))dx_gakék_ZlT mil 2(1) < 00.
0 z m=

On the other hand, if Yq,...,Y, are independent random vari-
ables drawn from F, we have that

E(Y@m) = f(l — F)dx =Y (1= (1 —a)").

k>0

To wrap up the proof we lower bound the latter expression. First
recall that (1 — 1/x)* grows to e~! as x — co. Also, from the strict
convexity of the exponential function, we have that if x € (0, 1),
then exp(—x) <1 — (1 —1/e)x <1 — x/2. Thus, since by definition
of k(n) we have that 0 < nay < 1, for all k > k(n), we obtain

n_ _ 1

Putting all together we derive the lower bound

n gm) gm+1) 1
22w mat =™

1/a;\ @
) ) <exp(—nay) <1 —nay/2.

n
EY@w) >3 ) Qb=
k>k(n)

which concludes the statement by taking X; =2Y;. O
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