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Abstract. Motivated by the recent emergence of the so-called oppor-
tunistic communication networks, we consider the issue of adaptivity in
the most basic continuous time (asynchronous) rumor spreading process.
In our setting a rumor has to be spread to a population; the service
provider can push it at any time to any node in the network and has
unit cost for doing this. On the other hand, as usual in rumor spreading,
nodes share the rumor upon meeting and this imposes no cost on the ser-
vice provider. Rather than fixing a budget on the number of pushes, we
consider the cost version of the problem with a fixed deadline and ask for
a minimum cost strategy that spreads the rumor to every node. A non-
adaptive strategy can only intervene at the beginning and at the end,
while an adaptive strategy has full knowledge and intervention capabili-
ties. Our main result is that in the homogeneous case (where every pair
of nodes randomly meet at the same rate) the benefit of adaptivity is
bounded by a constant. This requires a subtle analysis of the underlying
random process that is of interest in its own right.

1 Introduction

A basic question in the study of social networks concerns the diffusion of a
rumor, which may refer to adopting a new technology, updating content on a
cell phone, or buying a new product or service. In this setting we are given
a network in which vertices represent agents and edges represent social links.
Initially, a single agent knows the rumor and we would like to estimate the time
by which the full network is informed. The flow of information is governed by
a certain stochastic process which may evolve in discrete or continuous time.
The most widely studied discrete time models are the push model and the pull
model; in the former at each time step a vertex knowing the rumor pushes it to a
random neighbor, while in the latter a vertex not knowing pulls the rumor from
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a random neighbor. On the other hand, in the continuous time (asynchronous)
model, every pair of connected vertices meet at random times following a Poisson
process. The latter model was first formulated by Boyd et al. [8] as a way around
the unrealistic time-synchronization issue implicit in discrete time models.

The diffusion of information through a social network has also posed a num-
ber of fundamental algorithmic questions, particularly in so-called viral market-
ing campaigns. The study of how the initial selection of vertices (who adopt a
new product or gets it for free) influences further adoption through a cascading
effect was pioneered by Domingos and Richardson [14], and rigorously addressed
by Kempe et al. [20], who designed approximation algorithms for the influence
maximization problem subject to a budget constraint on the number of initial
nodes to which the rumor is pushed. Interestingly, these viral marketing ideas
have permeated not only the technological industry, but also more traditional
markets like automotive ones [4]. Unlike the rumor spreading process described
above, Kempe et al. [20] consider “static” diffusion models, particularly the
independent cascade model, in which the spread of the rumor is probabilistic,
but time plays no role. An alternative approach, which we take in this paper
(see also [17]), is to keep the standard rumor spreading process, but rather than
fixing a budget on the initial set of selected vertices, fix a time horizon and only
account for the vertices that receive the rumor within this time.

When working with a dynamic diffusion model a new problem pops up,
namely that of adaptivity. Already Domingos and Richardson [14] identify this
issue and state that: A more sophisticated alternative would be to plan a mar-
keting strategy by explicitly simulating the sequential adoption of a product by
customers given different interventions at different times, and adapting the strat-
egy as new data on customer response arrives. Along these lines, Seeman and
Singer [24] consider a two stage extension of the Kempe et al. model.

The central concern of this paper is that of adaptivity when speeding up
rumor spreading on a social network. More precisely, we are given a network
and a fixed deadline. As stated above, the diffusion model is the standard for
asynchronous rumor spreading. Thus, every pair of connected vertices meet at
random times following a Poisson process, and the rumor is spread whenever,
upon meeting, one vertex knows the rumor and the other one does not. Along
the way we are able to push the rumor to any vertex in order to speed up
the diffusion process. We consider both the profit maximization and the cost
minimization versions of the problem, which are equivalent from an optimization
viewpoint. When maximizing profit we get zero profit for every vertex to which
the rumor is pushed (say because we are giving the product for free) and get
unit profit whenever a vertex gets the rumor through the diffusion process. The
objective is thus to maximize the number of vertices that got the rumor through
the diffusion process within the time horizon. The cost minimization version is
exactly the opposite; every time we push the rumor we make a unit payment and
if a vertex gets the rumor through the diffusion process this cost is not realized.
The goal is to minimize the total payment made by the time horizon subject to
the constraint that everyone should be informed by then.



274 J. Correa et al.

A non-adaptive policy does not track the evolution of the process and there-
fore can only push the rumor at the starting time (and also at the deadline in the
cost minimization version). In contrast, an adaptive policy may monitor the evo-
lution of the diffusion process and intervene by pushing the rumor to additional
vertices. The main contribution of this paper is to show that the advantage of
adaptivity is small (in terms of cost or profit) in the setting of homogeneous
networks, where interactions occur at the same rate between any pair of nodes.
While the homogeneous case seems unrealistic, it is already highly nontrivial and
we believe it will be a useful first step towards tackling more general situations.

The seemingly less natural cost minimization version of our problem actually
constitutes our main motivation and finds its roots in opportunistic communi-
cation networks. The widespread adoption of networked mobile devices and the
deployment of new technologies (3G, 4G), through which ever increasing data
intensive services can be delivered, has generated an explosion of mobile data
traffic. This trend is likely to continue, thus exacerbating current cellular network
data overload [12]. Therefore, it is critical for operators and service providers to
design networks and communication mechanisms that can not only handle the
current traffic overload, but also allow rapid data dissemination that will be
required by next-generation mobile-enabled devices and applications. A promis-
ing, less than a decade old, proposal to address the cellular network data overload
consists in offloading traffic through so-called opportunistic communications.
The key idea is for service providers to push mobile application content to a small
subset of interested users through the cellular network and let them opportunis-
tically spread the content to other interested users upon meeting them. Oppor-
tunistic communication can occur when mobile device users are (temporarily) in
each others proximity, making it possible for their devices to establish local peer-
to-peer connections (e.g., via Wifi or Bluetooth). Opportunistic communication
based services have been proposed across several domains. For instance, studies
have been done in the dissemination of dynamic content such as news using real
world data sets, as well as that of traffic update information using dataset of
the municipality of Bologna [19,25]. In several of the aforementioned application
scenarios, the usefulness and/or relevance of the disseminated content crucially
depends on it being opportunely delivered. Moreover, quality of service contrac-
tual obligations in subscription based contexts might entail strict deadlines for
the delivery of data. Another key issue that arises in this context is the presumed
feedback capabilities of network nodes and the service providers’ knowledge of
how data has propagated through the network up to a given moment of time.

Whitbeck et al. [25] were the first to study a fixed deadline scenario. They
propose a Push-and-Track framework, where a subset of users receive the content
from the infrastructure and start disseminating it epidemically. The main feature
of Push-and-Track is the closed control loop, this supervises the injection of
copies of the content via the infrastructure whenever it estimates that the ad
hoc mode alone will fail to achieve full dissemination within the target horizon.
Upon reaching the deadline, the system enters into a “panic zone” and pushes
the content to all nodes that have not yet received it. Sciancalepore et al. [23]
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initiate a more rigorous analysis of Push-and-Track type proposals. In particular,
they derive formulas (although not explicit algebraic expressions) for the optimal
number of nodes to initially push data in order to minimize the overall number
of pushes. Furthermore, they propose a control theory based adaptive heuristic.

Our work is thus motivated by the natural question left open by Sciancalepore
et al. [23]: whether or not an adaptive strategy, that harnesses the accrued informa-
tion of how data has propagated through the network up to any given instant, can
actually outperform an optimal non-adaptive strategy, and to what extent.

Model and Main Contributions. Consider a network of n nodes labeled by
the elements of [n] := {1, . . . , n}. Nodes are presumed mobile and such that the
encounters of any two nodes i and j, i �= j, are governed by a Poisson process
of rate λi,j . Thus the time elapsed between two consecutive encounters of i
and j is distributed as an exponential random variable of rate λi,j , henceforth
denoted by Exp(λi,j). All these random variables are independent, including
those associated to distinct inter-encounter intervals for the same pair of nodes.
As usual, if upon encountering each other one node is informed (i.e., is active)
and the other is not, then the information is spread. We refer to the case where
all the rates are identical as the homogeneous case; our main positive result will
be for this setting.

We assume that there is a service provider who wishes to cost efficiently
disseminate one unit of information to all nodes within a deadline of time τ > 0.
The set of nodes that posses the unit of information at time t will be denoted
S(t) ⊆ [n] and referred to as the set of active notes at time t. Initially (at time
t = 0), the service provider selects a set of nodes S(0) and activates them by
pushing to them the unit of data of interest. Subsequently, nodes become active
by either one of the following two mechanisms:

– Opportunistic communication: If nodes i �= j encounter each other at time
t and either i or j belong to S(t−), say j, then i becomes informed at
time t, i.e., i belongs to S(t′) for all t′ ≥ t. Here we used the convention
S(t−) := ∪0≤t′<tS(t′). When a node becomes informed via opportunistic com-
munication, it signals the service provider that his state has changed.

– Pushes: Because of the network’s feedback capabilities, at any time 0 ≤ t ≤ τ ,
the service provider has full knowledge of the evolution of the set of active
nodes, i.e., of (S(t′))0≤t′<t, and based on this knowledge she decides whether
or not, and which nodes to activate. Formally, at time t a set of nodes C(t) ⊆
[n] \ S(t−) is chosen and added to S(t), in which case we say that at time t
the nodes in C(t) are activated and |C(t)| pushes performed.

For most of the paper we deal with the cost minimization version of the prob-
lem, in which the service provider incurs a unit cost for activating a single node,
independent of the nodes label and the time it happens. When the deadline is
reached, all nodes not in S(τ) must be activated at a total cost of n−|S(τ)|. Note
that this is equivalent, from an optimization perspective, to the maximization
problem where the service provider gets unit profit for each node informed via
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opportunistic communication and zero profit for the pushes she makes. We say
that the service provider’s strategy is non-adaptive if it can only activate nodes
at time t = 0 and t = τ . Otherwise, we say that its strategy is adaptive.

Of course, the cost of an optimal adaptive strategy is at most that of a non-
adaptive strategy that initially activates an optimal number of nodes. A natural
question is thus to determine the adaptivity gap, defined as the ratio between
the cost of an optimal non-adaptive strategy and that of an optimal adaptive
strategy. This question is certainly of practical significance – if the adaptivity
gap turns out to be close to 1 for realistic ranges of the relevant parameters (n,
τ , and λi,j ’s), then at least from a purely cost effective point of view there is
no justification for incurring the overhead of relying in the network’s feedback
capabilities, nor the extra cost required to implement a more computational
demanding adaptive on-line strategy. Our main result is the following.

Theorem 1. In the homogeneous case, i.e., λi,j = λ for all i, j ∈ [n], the adap-
tivity gap is bounded by a small constant, irrespective of n and the deadline.

We also show that the adaptivity gap with respect to the profit objective, defined
in the obvious way, is at most (1 + o(1)).

From a technical viewpoint, our analysis turns out to be significantly different
for small, intermediate and large values of τ .

– For sufficiently large values of τ (say τ ≥ 1
λn (2 + o(1)) log n), activating a

single node initially will cause, with high probability, the entire network to be
active by the deadline. This follows from classical work on stochastic epidemic
models (for an overview, see [16] and [1]). So the optimal nonadaptive policy
pays essentially 1, and the advantage of adaptivity is negligible.

– For the case of small τ we use a coupling argument to formalize the intu-
ition that the process is “too deterministic” for adaptivity to win much. This
already implies a (1 + o(1)) bound on the adaptivity gap of the profit maxi-
mization version of the problem.

– The case of intermediate values of τ is by far the most challenging. Unlike
in the case of small τ , the number of nodes initially activated by an opti-
mal nonadaptive policy is relatively small. The implication of this is that the
behaviour of the process is initially not very concentrated, moreover, fluctua-
tions in the rumor spreading behaviour in this initial phase can have a large
impact on the cost. Since the optimal adaptive policy can be rather compli-
cated, we consider a relaxation of an adaptive strategy which may push for
free when certain conditions (which are always satisfied by an optimal adap-
tive strategy) are met; understanding the optimal behaviour of this relaxation
turns out to be more tractable. The analysis then involves understanding an
underlying martingale accounting for the expected final cost given the current
situation.

The result holds also in the synchronous setting with the push protocol,
in fact the argument is substantially easier than for our asynchronous setting.
The reason for this is that the spreading process is much more predictable,
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even in the initial phase where few nodes are active. For example, the time
required to activate all nodes starting from a single active node is very tightly
concentrated [13], whereas, in the asynchronous case, even the time needed to go
from one to two active nodes has substantial variance. As such, the result follows
along the same lines as the small τ case in the asynchronous model. We defer
further discussion on the synchronous model to the full version of this paper.

More General Networks. The adaptivity gap cannot be bounded by a con-
stant in the general inhomogeneous setting. It can be shown that taking a 2-level,
k-regular tree, with unit rates on the tree and all other rates 0, and a deadline
of k log(k log k), yields an adaptivity gap of Ω(log k/ log log k). A slight variant
of this construction, with higher rates on the edges adjacent to the leaves, yields
an adaptivity gap of Ω(

√
n). Despite this, there remains a large scope for better

understanding what network features affect the adaptivity gap. In particular, we
leave bounds on the adaptivity gaps in the following settings as open questions.

– Good expansion: communicating pairs are described by a graph with good
expansion, and all communicating pairs interact at the same rate. The lower
bound constructions crucially exploit very poor connectivity.

– Metric constraints: the inverse rate λ−1
i,j describing the expected time

between interactions between i and j satisfy the triangle inequality. This cap-
tures the natural idea that if i and j are frequently in the same vicinity, and
likewise for j and k, then i and k are likely also frequently nearby.

Further Related Work. The existing literature on rumor spreading is vast,
particularly in the discrete time (synchronous) model. The natural problem here
is to estimate the time at which every node in the network has the rumor. This
question is quite well understood and extremely precise estimates are known
when the network is a complete graph [13]. These estimates state that the time
is highly concentrated around a logarithmic function of n, depending on the
specific protocol. The arguably more realistic continuous time (asynchronous)
model is not as well understood [8]. This is possibly due to inherent additional
randomness of this process, particularly in the beginning, although logarithmic
estimates for the expected time to activate the whole network, starting with one
node, have been obtained for various classes of graphs [6].

Viral marketing is also an area of much interest, where models for the dif-
fusion of information have received a lot of attention [22]. Closest to our work
is the influence maximization problem, in which the goal is to find a subset,
of at most k nodes, maximizing the total final number of informed nodes. The
most studied underlying diffusion model is that of independent cascades: when
node v becomes informed it has a single chance of informing each currently unin-
formed neighbor w and succeeds with probability pvw. This problem was studied
by Kempe et al. [20], who showed that the underlying optimization problem is
a monotone submodular maximization problem, and therefore can be approx-
imated efficiently within a factor of 1 − 1/e. A long list of follow-up papers
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have studied the problem (see e.g. [7,9,10,21]) as well as several variations (see
e.g. [2,11,15,18,24]).

Note. Due to lack of space, proofs are omitted from this extended abstract.

2 Preliminaries

In this section we further specify the model and the notation we will work with.
While introducing the model we try to build some intuition and elicit how it
behaves. We also establish some basic facts, which both capture some of the
aforementioned intuition and will be needed in subsequent sections.

Recall that our study concerns the homogeneous case, i.e., when the rate λi,j

is a fixed value independent of the pair of nodes i �= j. Moreover, everything is
invariant if the rates and the deadline τ are both scaled by the same amount, so
we assume λi,j = 1/n for all i �= j.

Because of symmetry considerations, the specific labels of active nodes is
irrelevant and only their number at any given time matters. We henceforth
denote by K(t) the number of active nodes at time t for a non-adaptive scheme.
Observe that K(·) is right continuous (i.e., K(t−) ≤ K(t) = K(t+)). Also, define

uk(t) := E(n − K(τ)|K(t) = k),

i.e., the expected number of pushes to be made at the end of the process given
K(t) = k. We will need some information about the optimal non-adaptive choice
kN := kN(τ) for the number of initially active nodes, i.e., the value of k ∈ [n−1]
that minimizes k+uk(0). For small values of n, one can compute kN and ukN(0)
explicitly. To do so, it is convenient to consider the elapsed time between the i-th
and (i+1)-th node activation, henceforth denoted Xi. Since Xi is the minimum
of i(n− i) random variables distributed according to Exp(1/n), well known facts
imply that Xi is distributed as Exp(λi) for λi := i(n − i)/n.

Analogously, let K∗(t) be the number of active nodes at time t for an opti-
mal adaptive scheme, still assuming an explicit deadline τ . Since exponentially
distributed random variables are memoryless, the optimal adaptive scheme is
completely determined by a sequence 0 ≤ t∗0 ≤ . . . ≤ t∗n−1 ≤ τ (depending on
τ), so if at time t ∈ {t∗0, . . . , t∗n−1} it holds that K∗(t−) ≤ k, where k is the
largest index for which t∗k = t, then the optimal scheme makes k + 1 − K∗(t−)
pushes at time t. We interpret t∗k as the first time when it is optimal to push
more than k rumors. Let P (t) denote the number of pushes performed by the
optimal scheme up to (and including) time t, but excluding pushes made at the
deadline τ (so P (τ) = P (τ−)). Clearly, the cost of an optimal adaptive scheme
must equal E(n−K∗(τ−)+P (τ−)). Hence, on average E(K∗(τ−)−P (τ−)) nodes
are activated via opportunistic communication.

We can now start formally stating results that will be useful later on. Our
first claim is that an optimal adaptive scheme will not perform pushes once
roughly half the network’s nodes become active. The intuition is that making
a push when i ≥ n/2 nodes are active reduces, to something less than λi, the
rate at which nodes become activated (implying higher expected time between
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successive node activations). Thus, in expectation, there will be less than 1 more
active node at time τ−, a saving that is less than the cost of the push.

Proposition 1. Optimal non-adaptive never starts with more than 	(n − 1)/2

active nodes. Furthermore, an optimal adaptive strategy never pushes at some
time t if K∗(t) ≥ �(n − 1)/2�, i.e., t∗k = τ for all k ≥ �(n − 1)/2�.
We can think of the optimal adaptive scheme as having a target minimum num-
ber of active nodes that depends only on the current time t. Our next result
essentially says that this target is not larger than kN(τ − t), the number of
initial pushes for the optimal non-adaptive strategy with deadline τ − t.

Proposition 2. Let k ∈ [n − 1] and 0 ≤ t < τ . If uk(t) − uk+1(t) < 1, then
t∗k > t, i.e., adaptive will not push at time t if K∗(t−) ≥ k.

To prove these two propositions, we need some information about the optimal
adaptive strategy. For this purpose, it is useful to consider u∗

k(t), defined as
the expected cost incurred by an optimal adaptive scheme K∗(·) in the remain-
ing time, conditioned on K∗(t−) = k. By exploiting certain recurrences involv-
ing the u∗

k’s and their derivatives, we are able to show that u∗
k(t)−u∗

k+1(t) ≤
uk(t)−uk+1(t) for all k ∈ [n − 1], 0 ≤ t ≤ t∗k. Intuitively, this is explained by the
enhanced control an adaptive scheme has over the underlying process, since it
could choose to push immediately after time t, hence the benefit of being given
this extra active node for free at time t is not more than one. From this, the
above propositions follow fairly easily.

3 Estimates on the Evolution of the Non-adaptive
Process

In this section we give a number of useful estimates on the evolution of the non-
adaptive process, as well as characterize the optimal non-adaptive strategy and
its cost.

Proposition 3. If t ∈ [0, τ ] and k ∈ [n−1], then uk(t) =
(1 + o(1))n

1 + k
n−k · eτ−t

+o (1).

This result is essentially well-known (see e.g., [3,5]), so we only briefly sketch
its proof. The evolution of the process starting from (say) n/ log n active nodes,
and all the way until all but n/ log n nodes are active, is highly concentrated.
With very high probability, it closely follows the solution of the deterministic
differential equation dx

dt = x(1 − x), where x(t) denotes the proportion of active
nodes at time t. This yields the logistic curve of the above proposition. When
there are very few active nodes, λi ≈ i, and the process is well approximated by
a linear birth process, for which exact analytic results are available. A similar
approximation holds when there are very few inactive nodes; stitching together
these estimates yields Proposition 3.

We need some more refined estimates on how uk(t) varies with k and t. These
do not follow from Proposition 3, but notice that they would follow immediately
if uk(t) was exactly described by the logistic curve.
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Lemma 1. For all k < n/2, uk(t + h) ≤ uk(t)eh for all h ≤ τ − t. Also, if
τ − t = ω(1), then uk+1(t) = uk(t)

(
1 − 1+o(1)

λk

)
.

The expected cost of a non-adaptive strategy starting with k pushes is k +
uk(0). This cost is in fact a convex function of k. Again, this would follow
immediately if uk(t) was precisely described by the logistic formula.

Lemma 2. For every t ∈ [0, τ ] the sequence {k + uk(t)}k∈[n] is convex. As a
consequence, kN can be taken to be the smallest k such that uk(0)−uk+1(0) < 1.

Now we obtain an estimate of the optimal non-adaptive strategy, i.e., the
number kN of nodes activated at the start. The rates λk are unimodal (increas-
ing until n/2, and then decreasing). Intuitively then, the optimal non-adaptive
strategy aims to have n/2 active nodes at time τ/2, so that the rates are on
average as large as possible during the evolution. The expected amount paid at
the end should be roughly the same as the cost paid at the start; cf. [23] (the
proof follows immediately by optimizing using the estimate of Proposition 3).

Proposition 4. Given a deadline τ , the optimal non-adaptive pick is such that

kN = (1 + o(1))
n

1 + eτ/2
and ukN(0) = kN(1 + o(1)).

Thus, the total expected cost of the optimal non-adaptive strategy is 2(1+o(1))kN.

4 Additive Gap for Small τ

In this section we consider the case in which τ is small, specifically, τ ≤
2 log log n. In this situation, thanks to Proposition 4, the optimal non-adaptive
strategy activates kN = kN(τ) = (1 + o(1)) n

1+eτ/2 = Ω( n
log n ) nodes initially.

This implies that the non-adaptive evolution is highly concentrated. Intuitively,
this should be enough to conclude that adaptive cannot obtain a significant
advantage; we use a coupling argument to make this precise.

Let S be any countable collection of points on R+, with an infinite number
of points, with at least one point at 0, and denote by Si the position of the i-th
point. Associate to S a counting process (KS(t))0≤t≤τ as follows. Let XS

i :=
(Si+1 − Si)/λi, and let TS

i :=
∑i−1

j=1 XS
j , so TS

1 = 0. Then, for i ≤ n − 1, set
KS(t) = i for all t ∈ [TS

i , TS
i+1) ∩ [0, τ ], and KS(t) = n for all t ∈ [TS

n , τ ].
Now, let N be a Poisson point process of unit intensity, and let N ′ be obtained

by adding kN additional points at the origin to N . Since the inter-activation
times XN ′

i are 0 for i < kN, and distributed exponentially of rate λi for kN ≤
i < n, we have that the law of (KN ′

(t) : t ∈ [0, τ ]) is precisely that of the
evolution of the non-adaptive process with kN pushes at time 0.

We can interpret an adaptive strategy directly in this perspective. For each s ∈
R+, it can decide whether to add a new point at position s, but based only on N ∩
[0, s]. In other words, it is a map ϕ that takes a set of points S and returns ϕ(S) ⊇
S, with 0 ∈ ϕ(S), and where ϕ(S) ∩ [0, t] depends only on S ∩ [0, t], for any t.
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The resulting evolution is simply Kϕ(S), where the points in ϕ(S) \ S correspond
to pushes. One can see that this has the correct law of an evolution of an adaptive
process, and that any adaptive strategy can be so described.

This provides a (somewhat non-obvious, but natural) coupling between the
evolution of non-adaptive and adaptive. To exploit this, we relax the provision
that adaptive may only look at the past when making its decisions. We define
a clairvoyant strategy as any function ξ where ξ(S) ⊇ S and 0 ∈ ξ(S). Clearly
the optimal clairvoyant strategy has lower cost than the optimal adaptive one.

Lemma 3. There is an optimal clairvoyant strategy which adds points only at
the origin.

So we are comparing the optimal non-adaptive strategy, which picks some
number kN of initial pushes without any knowledge of N , to the optimal clair-
voyant strategy, which picks some optimal number of initial pushes based on
N . A concentration argument shows that the extra information is very unlikely
to be useful. More precisely, we argue that for any number k of initial pushes,
the probability that the total cost paid is less than 2kN − O(

√
n polylog(n))

is polynomially small, and then apply a union bound to conclude the following
result.

Lemma 4. Let log2 n√
n

< τ ≤ 2 log log n. Then the expected cost of the optimal
clairvoyant strategy applied to N is 2kN − O(

√
n polylog(n)).

Consequences for the Profit Maximization Version. Note that the previ-
ous result already implies that for the profit maximization version of the problem
the adaptivity gap is 1+ o(1). Indeed, if τ ≥ 2 log log n then kN = o(n) and thus
the profit of non-adaptive is n − o(n) while adaptive certainly gets at most n.
On the other hand, if τ ≤ 2 log log n is at least a constant, Lemma 4 implies that
the activations that adaptive and non-adaptive make differ by a sub linear term,
and since both get a profit which is linear in n the ratio is 1 + o(1). Finally, if
τ = o(1) then kN = n/2 − o(n) so that throughout the rumor spreading process
the λi’s equal 4/(n + o(n)) and this cannot be changed by an adaptive strategy.

5 Bounding the Adaptivity Gap

We now consider the case where τ ≥ 2 log log n. Here we need to do more than
exploit the concentration of the evolution of the process. If the optimal non-
adaptive scheme starts with relatively few pushes at the starting time, there will
be a substantial amount of randomness at the beginning of the process, before
the epidemic phase transition. Our goal is to show that an adaptive scheme
cannot substantially exploit this.

The optimal adaptive strategy is difficult to handle, for example, the optimal
choices of t∗k are determined via an intricate recurrence. As in the last section, it
will be very useful to rely on a more tractable lower bound, however, the lower
bound we use here is quite different from the clairvoyant lower bound of Sect. 4.
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As seen in Proposition 2, conditioned on K∗(t−) = k, adaptive does not push
at t if uk(t) − uk+1(t) < 1. We consider a modified set of rules for adaptive.
Suppose it may push for free, however, if there are k active nodes at some
time t, it may only push if k < n/2 and uk(t) − uk+1(t) ≥ 1. Obviously the
optimal adaptive strategy satisfies these restrictions, hence just pays less under
these new rules. So the optimal strategy under these modified rules pays even
less. The optimal “modified adaptive” strategy is very simple to describe: Since
pushes are free, it will push whenever it is allowed to. We will show that the
cost of the optimal modified adaptive strategy, which is simply the expected
number of inactive nodes at time τ , is within a constant factor of the cost of
non-adaptive.

Let K̃(t) be the number of active nodes at time t using this optimal modified
adaptive strategy. Let T̃i := min{t : K̃(t) ≥ i}, and let P̃ (t) denote the number
of pushes up to and including time t. Observe that K̃(0) = kN, since kN is the
first k such that uk(t) − uk+1(t) < 1 by Lemma 2.

If one considers the non-adaptive evolution K(t), uK(t)(t) is precisely the
Doob martingale for the number of inactive nodes at time τ . It will be useful
to look at a variant of this for the modified adaptive process. Specifically at
Ũ(t) := uK̃(t)(t), i.e., the expected number of inactive nodes at time τ , given
that no pushes are made between time t and τ . It is a supermartingale, rather
than a martingale, since any pushes made by the modified adaptive strategy
will decrease the end payment. Since Ũ(0) = ukN(0) = (1 + o(1))kN, we will be
interested in how much smaller (in expectation) Ũ(τ) is compared to Ũ(0).

Define t̃k := inf{t ∈ [0, τ ] : uk(t) − uk+1(t) ≥ 1}, or t̃k = τ in the case the
infimum is taken over the empty set. Then, if K̃(t) = k and t < t̃k, the modified
adaptive strategy clearly cannot push, so t̃k is the first time when it is convenient
to activate more than k nodes. Since uk(t) is a strictly increasing function of t,
we can equivalently state this as: No push will occur at time t if Ũ(t−) < φK̃(t−),
where φk := uk(t̃k) for all k. Conversely, if Ũ(t−) = φK̃(t−), then the optimal
modified adaptive strategy will certainly push. This causes Ũ(t) to jump down
by precisely 1 unit. So we will refer to the values φk as thresholds; the process
Ũ(t) is always below the current threshold φK̃(t) and, if the threshold is reached,
a push will be performed. Moreover, by convexity of the sequence {uk(·)}k, the
times t̃k are increasing, so only a single push occurs at any moment in time.

The following proposition connects the number of pushes made, i.e., the
number of times Ũ reaches the current threshold, with the cost saved by the
modified adaptive strategy.

Proposition 5. The optimal modified adaptive strategy saves one unit of cost
with respect to non-adaptive for each push after t = 0, i.e.,

E(n − K̃(τ)) = ukN(0) − E(P̃ (τ) − P̃ (0)).

We use this as follows. Suppose E(P̃ (τ)− P̃ (0)) ≤ C. Call the non-adaptive cost
cN := kN + ukN(0), from Proposition 4 we know that cN = 2(1 + o(1))ukN(0).
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The adaptivity gap ρ(n, τ) is clearly bounded by cN/E(n − K̃(τ)), so by
Proposition 5

ρ(n, τ) ≤ cN

ukN(0) − E(P̃ (τ) − P̃ (0))
= 2(1 + o(1))

(
1 +

1
ukN(0)/C − 1

)
.

We also have the trivial upper bound ρ(n, τ) ≤ cN = 2(1+o(1))kN, just because
an adaptive strategy will certainly need to push at least once. The required
constant bound on ρ(n, τ) for the case τ ≥ 2 log log n thus follows.

The aim for the rest of the section is to bound E(P̃ (τ)− P̃ (0)) by a constant.
To exploit the characterization of modified adaptive we will use some of the
estimates on uk(t) that we derived in Sect. 3. Recall Lemma 1, which states that
uk+1(t) = uk(t)(1 − 1+o(1)

λk
) and uk(t + h) ≤ uk(t)eh for t + h ≤ τ . This has a

very straightforward interpretation in terms of Ũ(t): Between activations Ũ(t)
grows sub-exponentially, but if at time t there was an activation, then roughly
Ũ(t) is multiplied by the factor 1 − 1/λK̃(t−).

We have now all the ingredients to bound how many times the process Ũ(t)
hits the thresholds φK̃(t), which is exactly the number of pushes. We proceed by
transforming the process in a number of ways. First, given the (sub)exponential
growth, taking logarithms yields a process that between jumps grows no faster
than a linear function with unit slope. Secondly, we locally shift the resulting
process so that the threshold at any moment of time is moved to zero. This
process will always be non-positive; we will be interested in the number of times
that it hits zero. Finally, we locally rescale time, as in Sect. 4, so that the dis-
tribution of the times of random activations are described by a Poisson point
process of unit intensity. We locally rescale the value at the same time, so that
still the process increases linearly at unit rate in between jumps. Formally, we
define the following transformed process H(s):

H(L(t)) := λK̃(t)

(
log Ũ(t) − log φK̃(t)

)
, where L(t) :=

∫ t

0

λK̃(x)dx.

An illustration of the evolution of Ũ and the corresponding transformed
process H is shown in Fig. 1. Notice how upon each random activation or push
the threshold increases, while Ũ jumps down.

We are interested in the number of times that H reaches 0, as this corresponds
to the number of pushes after time 0. It is convenient to consider instead

H ′(L(t)) := H(L(t)) + P̃ (t) − P̃ (0).

The process H jumps down immediately whenever it reaches 0, and in fact
the size of this jump is larger than 1. Very roughly speaking, H ′ cancels out
these jumps (actually it may still jump down, but by a smaller amount), while
the jumps corresponding to random activations are unaffected. It can easily be
shown that the number of pushes is bounded by max{0, 1+sup0≤r≤t H ′(L(r))}.

So all that remains is to bound the expected supremum of H ′. The reason
that this is possible is very simple: Through most of its evolution, the process has
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t

Ũ(t)

φkN

φkN+1

φkN+2

Ũ(0)

t t̃kN+1

L(t)
L(t ) L(t̃kN+1)

H(L(t))

H(0)

Fig. 1. A sample evolution of Ũ , and the corresponding evolution of the transformed
process H. A random activation occurred at time t′, and a push occurred at time t̃kN+1.

a negative drift. More precisely, we have the following proposition. Here and for
the remainder of this section, N will denote a Poisson process of unit intensity.

Proposition 6. For any constant 0 < c ≤ 1/2, there is a c′ = (1 + o(1))c
so that for any σ ≤ L(T̃cn), H ′(s + σ) − H ′(σ) is stochastically dominated by
s − 2(1 − c′)N(s) on the interval [0, L(T̃cn) − σ].

Note in particular that s − 2(1 − c)N(s) has negative drift for any c < 1/2.
Unfortunately, the bound we obtain on the drift gets worse as the number of

active nodes increases. So some care is required; here we will sketch the argument.
First, on the interval [0, L(T̃n/4)], H ′(s) is dominated by s− 3

2N(s). This process
starts from 0 and has negative drift (since E(s− 3

2N(s)) = −s/2). Proving that its
expected maximum value is constant reduces to a straightforward concentration
bound. Since τ ≥ 2 log log n, so that kN = O(n/ log n), this negative drift also
implies that the process will be very negative (below say −n/64) at time L(T̃n/4),
with very high probability. On the interval [L(T̃n/4), L(T̃n/2)], H ′(s) can be dom-
inated by s − N(s) conditioned on N(L(T̃n/4)) = H ′(L(T̃n/4)) ≤ −n/64. Again
a concentration argument shows that with very high probability the process
remains negative in this interval, and so the expected number of further pushes
is again at most a constant.
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