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Abstract. In this paper we study a large class of resource allocation problems
with an important complication, the utilization cost of a given resource is private
information of a profit maximizing agent. After reviewing the characterization of
the optimal bayesian mechanism, we study the informational cost introduced by
the presence of private information. Our main result is to provide an upper bound
for the ratio between the cost under asymmetric information and the cost of a
fully informed designer, which is independent of the combinatorial nature of the
problem and only depend on the statistical distribution of the resource costs. In
particular our bounds evaluates to 2 when the utilization cost’s distributions are
symmetric and unimodal and this is tight. We also show that this bound holds
for a variation of the Vickrey-Clark-Groves mechanism, which always achieves
an ex-post efficient allocation. Finally we point out implementation issues of the
considered mechanisms.
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1 Introduction

A wide class of problems of the form min{ctx|x ∈ Γ} have been analyzed in the liter-
ature and their applications to real world problems are vast. In this paper, we consider
such a class of problems with an important and realistic complication, the utilization
cost of a given resource xi is private information of a profit maximizing agent.

For example, let us consider a natural situation in supply chain management. A
large company needs to procure quantities Di of a given good for its various loca-
tions t1, . . . , tk. The good is produced at various locations s1 . . . , sl, each of them with
a maximum production capacity Qj . The delivery of the goods is done through a trans-
portation network in which each link has a cost that is publicly known. This problem,
when the production facilities are owned by the company, reduces to a standard mini-
mum cost flow through a network. If, however, the production facilities are owned by
private contractors, whose production cost is private information, there is an added layer
of difficulty to the problem. Now the company must design a mechanism to minimize
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expected procurement cost, subject to the feasibility constraints on the network, and
inducing contractors to reveal their costs in exchange of a profit.

The main contribution of this paper is to study the informational cost introduced by
the presence of private information. Such a consideration is important, because it lies at
the heart of an old economic question: To make or to buy? If this cost is small, the orga-
nizational cost of acquiring small producers may be high and not worth it. If big, such an
acquisition may turn out to be profitable for the company trying to procure goods or ser-
vices. Our main result is to provide an upper bound for the ratio between the cost under
asymmetric information and the cost of a fully informed designer. Specifically, we show
that for a large class of distributions, containing those that are symmetric and unimodal,
the expected cost of an optimal mechanism is at most twice the cost of an optimal so-
lution obtained by a fully informed planner. Neither this bound nor its tightness depend
on the combinatorial nature of the problem, but only on the statistical distribution of
private information. The latter bound holds for a variation of the Vickrey-Clark-Groves
(VCG) mechanism as well, and becomes significantly better in some special situations.

Related questions were studied by Bulow and Klemperer [2], who analyze the sub-
optimality, in terms of revenue, of VCG for a single unit auction. They show that one
extra bidder in a VCG format gives more revenue than the Myerson mechanism. Re-
cently, Aggarwal et al. [1] study the suboptimality, in terms of efficiency, of the My-
erson auction, showing that Θ(log k) extra bidders suffice to match the efficiency of a
VCG mechanism with k bidders, and generalize the result to multiunit auctions. Also,
Elkind et al. [4] establish bounds on the payments of the VCG and optimal mechanisms
in path auctions, and point out that these may differ significantly. Finally, Hartline and
Roughgarden [5] consider similar issues in the context of money burning mechanisms.

We also study the computational cost of calculating an optimal mechanism. We show
that such a problem is equivalent to performing parametric linear programming over the
set Γ , which is in general of exponential complexity, even if optimization over Γ is sim-
ple. For the important class of problems where the set Γ is a 0-1 polytope, however, we
give a simple algorithm with the same complexity of the original optimization problem
with complete information. For the other problems, we point out that a simple sam-
pling technique, which takes advantage of the owners’ risk neutrality, gives a random
mechanism yielding the same expected cost as the deterministic one.

The paper is organized as follows. In section 2 we quickly review the characterization
of the optimal bayesian (i.e., utilization costs are random variables) mechanism for the
whole class of problems with a linear cost function and a fixed constraint set. Our main
results concerning the informational cost are found in section 3, while the computational
considerations are discussed in section 4.

2 The Model

2.1 The Environment

We consider a setting in which scarce resources must be allocated to carry out a given
project. The cost of each resource may be public or private information. Depending on
the situation, the planner’s goal is to minimize her own expected cost, or the social cost
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of the project. To this end, she can design a mechanism where the owners with private
information have incentives to reveal their private information.

In our framework each resource a ∈ A is represented by a variable xa, and is asso-
ciated with a marginal cost of utilization ca. The set A is partitioned into two sets A1

and A2. Costs of resources a ∈ A1 are private, and thus ca is private information and
is distributed according to Fa, whose bounded support is the interval [ca, ca] ⊂ R+.
The distribution Fa is assumed to have a density fa which is continuous and strictly
positive in [ca, ca]. For simplicity we also assume that Fa(ca)/fa(ca) is nondecreasing
(satisfied among others by the family of logconcave distributions). Costs of resources
a ∈ A2 are public information and equal ca. Resources are scarce and subject to an ex-
ogenous feasibility constraint x ∈ Γ ⊆ R

|A|, which we assume compact. Therefore, if
all costs ca, a ∈ A were known, the planner would solve min{cT x : x ∈ Γ}. However,
costs of resources in A1 are unknown and thus the planner must design a mechanism to
elicit this information in order to achieve her goal.

We now give a key property that holds in this environment. It states that if the cost
of a resource increases, the value of the corresponding variable, in a cost-minimizing
solution, does not increase. This intuitive and simple result turns out to be critical for
characterizing the optimal mechanism.

Lemma 1. Let x(c) = {xa(c)}a∈A be the minimum cost assignment in Γ for a cost
vector c. Then xa(·, c−a) is non-increasing for all a ∈ A.

Proof. Consider a cost vector c and let c′ be defined as c′e = ce for all e ∈ A−{a} and
c′a = ca+ε for some ε > 0. From the definition of x(c) we have that: cT x(c) ≤ cT x(c′)
and c′T x(c′) ≤ c′T x(c). Summing both terms we obtain (cT − c′T )[x(c) − x(c′)] ≤ 0
which is equivalent to xa(c) ≤ xa(c′). ��

As usual, if x ∈ R
n, x−i denotes the vector in which the i−th component is removed.

We also define: f(c) =
∏

a∈A1
fa(c), f−a(c) =

∏
e∈A1−{a} fa(c), C =

∏
a∈A1

[ca, ca],

C−a =
∏

e∈A1−{a}[ca, ca].

2.2 Mechanisms

In order to achieve her objectives, the planner designs a mechanism. In other words,
the planner chooses a message space Ma for each a ∈ A1, together with assignment
and payment rules. Given messages from resource owners, these rules determine the
amount of each resource used by the planner and the payment received by each owner.
Due to the revelation principle it is enough to set Ma = [ca, ca] and consider truthful
mechanisms.

Therefore, a mechanism is given by assignment rules {xa}a∈A, indicating how much
of resource a will be used, and a family of payment rules {ta}a∈A1 , indicating the
total payment to the owner of resource a ∈ A1. Naturally, these values depend on
the cost revelations of each owner, therefore xa : C −→ R and ta : C −→ R. Our
framework allows the payment received by the owner of resource a, given revelations
c, to be random. If this is the case, ta denotes the total expected payment to the owner



On the Planner’s Loss Due to Lack of Information in Bayesian Mechanism Design 75

of resource a ∈ A1. The payoff of the owner of resource a, with cost ca, when reporting
a cost c′a is given by:

Ua(ca, c′a) =
∫

C−a

[ta(c′a, c−a) − caxa(c′a, c−a)]f−a(c−a)dc−a. (1)

The payoff of a resource owner with cost ca is then:

Va(ca) = max
c′a∈Ca

Ua(ca, c′a). (2)

We must also consider mechanisms that give a positive utility to owners and satisfy the
feasibility constraints. We can thus give the following definition.

Definition 1. A mechanism (x, t) ≡ ({xa}a∈A, {ta}a∈A1) is feasible if and only if for
all cost realizations c the following hold:

(IC) Va(ca) = Ua(ca, ca) for all a ∈ A1,

(PC) Va(ca) ≥ 0 for all a ∈ A1,

(F) x(c) ∈ Γ .

The Optimal Bayesian Mechanism. With the previous definition, we can write the
problem of a cost-minimizing designer as

min

{∫
c∈C

(∑
a∈A1

ta(c) +
∑

a∈A2

caxa(c)

)
f(c)dc : (x, t) is feasible

}
. (3)

Using by now standard arguments introduced by Myerson [9] and extended among
others by Elkind et. al. [4] (see [10, Chapter 13] for a detailed treatment) we can char-
acterize the optimal Bayesian mechanism relying on Lemma 1. A proof can be found
in the full version of this paper. Indeed, the optimal mechanism can be written as the
solution to the following control problem

min
{xa(c)}a∈A

∫
c∈C

(∑
a∈A1

xa(c)
[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xa(c)ca

)
f(c)dc

s.t. x(c) ∈ Γ and νa(ca) non-increasing for all a ∈ A1.

Here, νa(ca) :=
∫

C−a
xa(ca, c−a)f−a(c−a)dc−a is the expected utilization of resource

a for a ∈ A1.
Because of Lemma 1, and the assumption that Fa(ca)/fa(ca) is increasing, we

can relax the constraint asking for νa(ca) non-increasing and solve the above prob-
lem pointwise to obtain a feasible solution. Therefore, we can characterize the optimal
mechanism.
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Proposition 1. The optimal assignment rules x̄(c) = {x̄a(c)}a∈A are those solving,
for each cost revelations {ca}a∈A1 , the following optimization problem:

min
y∈Γ

∑
a∈A1

(
ca +

Fa(ca)
fa(ca)

)
ya +

∑
a∈A2

caya,

and an optimal payment rule is given by t̄a(c) = cax̄a(c) +
∫ c̄a

ca
x̄a(t, c−a)dt. In

other words, x(c) is the minimum cost assignment in Γ with virtual costs c′a = ca +
Fa(ca)/fa(ca) for all a ∈ A1, and c′a = ca for all a ∈ A2.

The Truncated Vickrey-Clark-Groves Mechanism. On the other hand, a planner in-
terested in achieving ex-post efficiency may consider the standard VCG mechanism,
which solves, for every cost realization c, the problem min{ctx|x ∈ Γ} and assigns
according to the solution rule xV

a (c): It pays agent a ∈ A1, ta(c) = caxa(c) +
(
∑

b∈A cbx
−a
b (c)−∑b∈A cbxb(c)), where x−a(c) is a solution of min{ctx|x ∈ Γ, xa =

0}. It is well known that such a mechanism is incentive compatible, but can involve in-
finite costs. However, if the support of the cost distribution is known, payments can be
bounded without losing incentive compatibility (and thus efficiency). We denote such
a mechanism, with payments given by ta(c) = min{caxa(c) + (

∑
b∈A cbx

−a
b (c) −∑

b∈A cbxb(c)), c̄axa(c)}, the Truncated Vickrey-Clark-Groves (TVCG) mechanism.

3 Loss Due to Lack of Information

The presence of private information among resource owners increases the cost of per-
forming a given task. A natural problem, with relevant practical implications, is to quan-
tify the relationship between the cost under complete and incomplete information. The
former corresponds to a situation where the planner owns the different resources and the
technology needed for their production, therefore knowing exactly the production costs.
The latter corresponds to a decentralized situation, where the planner has outsourced the
production of necessary inputs, and therefore does not know precisely their production
costs. Since outsourcing can imply important savings in terms of managerial effort, it is
critical to know how much is a firm losing by spinning off some of its components, or
how much is a central planner losing by privatizing some key components of a planned
economy. Moreover, with incomplete information, a cost-minimizing planner does not
necessarily assign resources efficiently (since he considers modified costs), so we con-
sider the question of the expected cost of an efficient mechanism, the TVCG, and its
comparison to the cost-minimizing one and the fully informed solution.

Interestingly, both comparisons can be done independently of the combinatorial
structure of the problem (given by the set Γ ), and depend only on the nature of the
incomplete information (given by the distribution functions Fa). The critical lemma is
the following:

Lemma 2. If the distribution F , with F (a) = 0 and density f , satisfies that E(X |X ≤
y) ≥ y/α, where X is drawn according to F , then for [a, b] ⊂ R+ and g(·) a nonneg-
ative, non-increasing real-valued function defined on [a, b] we have:
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∫ b

a

g(c)F (c)dc ≤ (α − 1)
∫ b

a

g(c)cf(c)dc.

Proof. Let g(·) be any nonnegative non-increasing real-valued function and F be a dis-
tribution, with density f , satisfying the conditions in the proposition. Note that as g(·)
is monotone, it is differentiable almost everywhere [7], thus g′(c) ≤ 0 a.e., implying
that∫ b

a

g(c)(F (c) − (α − 1)cf(c))dc = g(b)
∫ b

a

(F (s) − (α − 1)sf(s))ds

−
∫ b

a

g′(c)
∫ c

a

(F (s) − (α − 1)sf(s))dsdc,

is nonpositive if
∫ y

a F (c)dc ≤ (α − 1)
∫ y

a cf(c)dc holds for all y ∈ [a, b]. This latter
condition is equivalent to E(X |X ≤ y) ≥ y/α, since integrating by parts∫ y

a

F (c)dc − (α − 1)
∫ y

a

cf(c)dc = yF (y) − α

∫ y

a

cf(c)dc,

which is nonpositive so long as E(X |X ≤ y) ≥ y/α. ��

3.1 Cost Loss Due to Lack of Information

We now turn compare the planner’s expected cost when using the cost-minimizing and
the TVCG mechanisms to that in case she had complete information. From the descrip-
tion in Section 2.2 (see full version for details), and noting that the worst type c̄a gets 0
rents in both the cost-minimizing and the TVCG mechanism, we can write the expected
cost of both mechanisms as:

CI = min
x(c)∈Γ

∫
c∈C

(∑
a∈A1

xa(c)
[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xa(c)ca

)
f(c)dc. (4)

CV CG =
∫ [∑

a∈A1

xV
a (c)

[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xV
a (c)ca

]
f(c)dc, (5)

On the other hand, when complete information is available to the planner, her cost is
given by:

CC = min
x(c)∈Γ

∑
a∈A1

∫
c∈C

caxa(c)f(c)dc +
∑

a∈A2

∫
c∈C

caxa(c)f(c)dc. (6)

Observe that if A1 = A, that is all costs are private information, and Fa is uniform in
[0, s] for all a ∈ A, the planner’s problem given by (4) is exactly the same as that in
(6) with the costs doubled. Therefore the planner’s expected cost in the optimal mech-
anism is twice as much as that in the complete information setting. Moreover, since the
assignment rules of TVCG coincide with the fully informed solution, in this setting the



78 J.R. Correa and N. Figueroa

cost of the TVCG mechanism is also twice CI . In what follows, we extend this result to
a very general class of distribution functions, and prove that such a bound is also true
for the comparison between the TVCG (which in general has a higher cost than CC) and
the complete information mechanism.

With Lemma 2 at hand, the proof of the next result becomes remarkably simple. Its
full significance though, will be evident in the next section, once we establish that large
and natural classes of distributions satisfy the hypothesis.

Proposition 2. If for all a ∈ A1 the distribution Fa satisfies that E(X |X ≤ y) ≥ y/α,
where X is drawn according to Fa, then CI ≤ CV CG ≤ α · CC ≤ α · CI .

Proof. The first and last inequalities are direct since we first compare the optimal mech-
anism to TVCG, and the fully informed optimal solution to an optimal mechanism. For
the second one, we apply Lemma 2 to expression (5). Note that Lemma 2 holds even if
the function g(·) is not continuous, as it may be the case for xV (·), for instance, when
the underlying set Γ is polyhedral or discrete. Thus we can write:

CV CG =
∫ [∑

a∈A1

xV
a (c)

[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xV
a (c)ca

]
f(c)dc

≤ α

∫ ∑
a∈A

xV
a (c)caf(c)dc = αCC .

The last equality holds since TVCG assigns efficiently. ��

Note that the previous bound is related only to the distribution of private informa-
tion about costs, and not to the particular problem Γ being considered. As we already
pointed out, in any instance of a combinatorial problem defined by Γ , when all re-
sources are private and the information is distributed uniformly on [0, a], this bound is
tight, since for a E(X |X ≤ y) = y/2.

Observation. A natural question is whether there is a better bound for the comparison
between CI and CV CG than just CV CG ≤ α · CI . If such a bound holds true when we
consider the full information mechanism, is it possible to do better when considering
the optimal mechanism under incomplete information? The answer is no, as sometimes
the incomplete information planner has the same cost as the fully informed planner,
while the TVCG mechanism performs badly at a cost α · CC . Consider for example
the case where the planner must send one unit of flow between two nodes, in a two
link network. One of the links is public while the other is private, i.e., A1 = {a1},

A2 = {a2}, and Γ = {(xa1 , xa2) ≥ 0 : xa1 + xa2 = 1}. Consider {F (n)
a1 } a family

of symmetric and unimodal distributions for resource a1, and assume that their support
is the full interval [0, 1] and that F

(n)
a1 −→ δ1/2, where δ1/2 is the mass distribution

putting probability 1 to ca1 = 1/2. Assume also that ca2 = 1. Then, we have that

C(n)
V CG = 1, but C(n)

I −→ CC ≡ 1
2 , while the value of α for these distributions is, as we

will see next, 2. Therefore our bound is tight.
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r sy

F (x)

Fig. 1. For α = 2 the condition of Proposition 2 states that the area under the curve is at most
half of the gray area

3.2 Distributions

Having established that Proposition 2 holds independently of the combinatorial struc-
ture of the problem, the main question is thus to determine the distributions satisfying
the hypothesis, and how small their corresponding value of α is. Note first that the
proposition can be applied to densities which are non-decreasing with α = 2. There-
fore, for situations where agents are concentrated among “bad” providers, we can do as
well as in the case with a uniform distribution.

Let us give a geometric interpretation of the inequality E(X |X ≤ y) ≥ y/α, where
X is a random variable drawn according to a distribution F defined in an interval [r, s].
Writing down the expression and integrating by parts we note that the condition is
equivalent to

(α − 1)yF (y) ≥ α

∫ y

r

F (x)dx. (7)

Thus the condition states that for any y in [r, s] the area defined by the rectangle of
width y and height F (y) is at least a fraction α/(α − 1) of the area comprised under
the curve F (x) between r and y. Figure 1 depicts the situation.

With the intuition provided by the above interpretation we are able to find a number
of distributions for which Proposition 2 can be applied. A particularly relevant example
occurs when the distribution which is a minimum between m draws of a uniform dis-
tribution. Here, we capture a situation where providers have a try at m different tech-
nologies and select the best of them. Such an environment is biased towards “good”
providers through “natural selection”, but even in this case we can provide a tight upper
bound.

Proposition 3. Consider agents whose cost is given by the minimum of m draws
from a uniform distribution in [0, 1]. Their cost distribution is then given by
F (x) = 1 − (1 − x)m, and it satisfies E(X |X ≤ Y ) ≥ Y/(m + 1).

Proof. Note first that, using condition 7, the inequality E(X |X ≤ y) ≥ y
m+1 is equiv-

alent to

max
y∈[0,1]

∫ y

0 (1 − (1 − s)m)ds

y(1 − (1 − y)m)
≤ m

m + 1
,

which in turn can be rewritten as y + (1− y)m+1 + my(1− y)m ≤ 1 for all y ∈ [0, 1].
Further cancelations lead to (1−y)m +my(1−y)m−1 ≤ 1 for all y ∈ [0, 1], and using
the change of variables s = 1−y, we obtain that G(s) = sm+mysm−1 ≤ 1 for all s ∈
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[0, 1]. Noting that G′(s) = msm−1 + m(m − 1)sm−2 − m2sm−1 = 0 implies s = 1,
and that G(0) = 0, G(1) = 1, the result follows. ��
Our result, as we show next, can also be applied to an important class of symmetric dis-
tributions, which in particular includes those that are symmetric and unimodal (SUD).
A distribution function is unimodal if it has a unique local maximum.

Proposition 4. Suppose that for all a ∈ A1 the distribution Fa with density fa has
support [0, 1], is symmetric, and satisfies Fa(y) ≤ yfa(y) for 0 ≤ y ≤ 1/2. Then we
have that CI ≤ CV CG ≤ 2 · CC .

Proof. Because of Proposition 2 we just need to show that if X is a random variable
drawn from a symmetric distribution F , whose density f has support [0, 1], and satisfies
F (y) ≤ yf(y) for 0 ≤ y ≤ 1/2, then E(X |X ≤ y) ≥ y/2. Using condition 7 this is
equivalent to showing

yF (y) ≥ 2
∫ y

0

F (x)dx for all y ∈ [0, 1].

Note first that the inequality holds for y = 0. Furthermore, we know that for all 0 ≤
y ≤ 1/2 we have 2F (y) ≤ (F (y) + yf(y)). The latter is equivalent to saying that the
derivative of the left hand side of the condition above is larger than the derivative of the
right hand side. Thus the condition holds for all y ∈ [0, 1/2].

Furthermore, note that F (y) ≤ y for all y ∈ [0, 1/2]. Indeed, by contradiction as-
sume that F (z) > z for some z ∈ [0, 1/2]. In this case let 1/2 ≥ z′ > z be a real
for which F (z′) ≥ z′ and such that F ′(z′) = f(z′) < 1 (which has to exist since
F (1/2) = 1/2). Now F (z′) ≥ z′ > z′f(z′) which is a contradiction. Using the sym-
metry of F , this implies that F (y) ≥ y for all y ∈ [1/2, 1].

Now, let y ∈ [1/2, 1] and observe that∫ y

0

F (x)dx =
∫ 1−y

0

F (x)dx +
∫ 1/2+(y−1/2)

1/2−(y−1/2)

F (x)dx.

Using that F (x) ≤ x for 0 ≤ x ≤ 1/2 to bound the first term and the symmetry of F
to evaluate the second, we can write:∫ y

0

F (x)dx ≤
∫ 1−y

0

xdx +
2y − 1

2
≤ (1 − y)2

2
+

2y − 1
2

≤ y2/2.

Using again that F (y) ≥ y for all y ∈ [1/2, 1] we conclude that y2/2 ≤ yF (y)/2,
which completes the proof. ��
It is straightforward to extend the previous proposition to the case when the support of
the distributions Fa is an interval [r, s] with r ≥ 0 and still satisfy the conditions of the
proposition. If this is the case the bound becomes CI ≤ 2s

r+s · CC . The intuition behind
this result is natural. For instance, if r is very close to s, the cost under incomplete in-
formation approaches that of a fully informed planner. Also, if s = r + K , for constant
K , the bound also goes to one as r goes to infinity. This is because the amount of infor-
mation the planner ignores is irrelevant when compared to the total cost of the project.
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Furthermore, if the distributions Fa for all a ∈ A1 are symmetrical and unimodal, then
fa is nondecreasing in the interval [0, 1/2]. This implies that Fa(y) ≤ yfa(y) for all
y ∈ [0, 1/2]. Thus we have the following corollary.

Corollary 1. If Fa is SUD for all a ∈ A1, then CI ≤ 2 · CC . Moreover, if Fa is SUD on
[r, s] ⊂ R+ for all a ∈ A1, then CI ≤ 2s

r+s · CC .

Finally, observe that unfortunately, one cannot expect to obtain a general bound for any
class of distributions, and this is particularly bad in situations where most providers are
“good”. For some decreasing distributions, the bound becomes arbitrarily bad. Indeed,
consider the case where the planner must send one unit of flow from an origin to a
destination, in a two link network. One of the links is private information with cost
distribution proportional to f(c) = 1/(c + ε) in [0, 1], while the other is public and its
cost equals 1 (so Γ = {(x, y) ≥ 0 : x + y = 1} ). A simple calculation shows that

CI > 1/2 and CC = (ln(1 + 1/ε))−1 − ε.

Thus, the ratio can be made arbitrarily large for small enough ε.
Furthermore, even for symmetric distributions the ratio can be arbitrarily large.

To see this, consider a single good procurement auction with n sellers, i.e., Γ =
{(x1, . . . , xn) ≥ 0 :

∑n
i=1 xi = 1}, where each seller has a symmetric distribution

putting half of the mass at or close to 0, and half at or close to 1. In this situation CC

is approximately (1/2)n, while CI = CV CG is roughly (n + 1)/2n. The ratio grows to
infinity with n.

4 Computation and Implementation

In general, implementing TVCG is no harder than solving |A1| times the original prob-
lem min{cT x : x ∈ Γ}, with the additional constraint that xa = 0. In some situations
this latter problem can be solved even more efficiently [6]. The situation is different
for optimal mechanisms. In fact, to implement an optimal mechanism the planner must
compute the assignment and the payments only for a specific cost realization. Note that
this is simpler than computing the whole assignment and payment rules, which require
the assignment and payments for every cost realization.

Given a cost realization c, Proposition 1, states that the assignment can be computed
as min{c′T x : x ∈ Γ} for some virtual nonnegative cost vector c′. This problem is the
same as solving one instance of the complete information problem. However, to com-
pute the payments t̄a(c) = cax̄a(c)+

∫ c̄a

ca
x̄a(t, c−a)dt for a specific cost realization, in

principle one needs to compute x̄a(t, c−a) for all t ∈ [ca, c̄a]. That is we need to solve
|A1| parametric optimization problems of the form:

gi(θ) =
(

arg min
x∈Γ

(c + θei)T x

)
i

, (8)

where (·)i denotes the i−th component. The computational complexity of such a prob-
lem heavily depends on the structure of Γ and determines the complexity of computing
the optimal mechanism under incomplete information. We now analyze three cases.
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4.1 Case I: Parametric Optimization Is Easy

If the parametric optimization problem (8) can be solved in polynomial time, then the
whole mechanism can be computed in polynomial time as well. This includes the case
in which Γ is the set of all paths from a given source to a given sink, proved to be
computationally easy in [4,6].

Observe that a wider class of problem where parametric optimization turns out to be
efficient is when Γ = P ⊆ [0, 1]|A|, with P being an integral polytope. Of course a
special case of this is Γ = {x : Ax = 11, x ≥ 0}, with A totally unimodular. Shortest
s − t path is included in this class since it can be formulated imposing that the total
flow across every s − t cut equals one. Other problems in this class include minimum
spanning tree and minimum perfect matching.

Proposition 5. If Γ = P ⊆ [0, 1]|A|, with P an integral polytope, then (8) can be
computed in polynomial time, by solving exactly two linear programming problems
over P .

Proof. From Lemma1 gi(·) is non-increasing. Also, since Γ is a {0, 1} polytope we
conclude that gi(θ) is either 0 or 1, for all θ ≥ 0. Therefore, to fully determine gi(θ) (and
thus obtain the optimal mechanism), it suffices to compute θ∗ = max{θ : gi(θ) = 1}.

To this end we first compute

Z = min{(c + θei)T x : x ∈ Γ, xi = 0} = min{cT
−ix−i : (0, x−i) ∈ Γ}.

Analogously we compute

θ + Z ′ = min{(c + θei)T x : x ∈ Γ, xi = 1} = θ + min{cT
−ix−i : (1, x−i) ∈ Γ}.

Obtaining that θ∗ = Z ′ − Z . ��
Remark that the previous proposition can easily be extended to the case in which Γ
is an integral polytope in [0, K]|A| for fixed K , or even for K of polynomial size in
the input. in this case we would need to solve K linear programming problems over Γ .
Furthermore, even for general Γ but satisfying that the optimal solutions to minx∈Γ cT x
lie in {0, . . . , K}|A|, the optimal mechanism can be obtained by solving (K + 1)|A1|
such problems.

4.2 Case II: Optimization Is Easy but Parametric Optimization Is Hard

Even if optimizing over Γ is easy, the parametric optimization counterpart does not
need to be so. For instance, for parametric linear programming, i.e., Γ = {Ax =
b, x ≥ 0}, the function gi(θ) can attain exponentially (in |A| ) many different values
[8]. Additionally, even for more structured problems such as minimum cost flow, gi(θ)
can have a superpolynomial number of values [3].

However, since resource owners are risk-neutral, we can easily obtain a randomized
mechanism that is truthful and gives in expectation the same value, therefore it is also
optimal.
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Indeed, for a given a cost realization c, the assignment x̄(c) is computed exactly
as before (i.e., by solving min{c′T x : x ∈ Γ}), but the payments are computed using
randomization. The payments to the owner of resource a, is given by t̄a(c) = cax̄a(c)+
(c̄a − ca)x̄a(Y, c−a), where Y is a random variable uniformly distributed in [ca, c̄a]. In
expectation, which is all that matters to a risk-neutral resource owner, the latter payment
equals

cax̄a(c) + (c̄a − ca)
∫ c̄a

ca

x̄a(t, c−a) · 1
c̄a − ca

dt = cax̄a(c) +
∫ c̄a

ca

x̄a(t, c−a)dt,

and thus the mechanism is truthful and optimal. We conclude the following result.

Lemma 3. An optimal and truthful mechanism can be implemented by solving, for each
a ∈ A1, two problems of the form min{cT x : x ∈ Γ}.

Naturally the mechanism just described can be implemented in polynomial time so long
as the optimization problem over Γ can be solved in polynomial time. This enables
us to implement a desirable mechanism even if the parametric optimization 8 is hard.
However, this mechanism introduces high risk for the resource owners. To avoid this
issue we could simply take a larger number N of uniform samples Yi and compute
t̄a(c) = cax̄a(c)+(c̄a−ca)

∑N
i=1 x̄a(Yi, c−a)/N . With this the dispersion of payments

will be reduced, though the computational effort will increase with N , leading to a
tradeoff between risk and computational efficiency.

4.3 Case III: Optimization is Hard

We now study what happens when optimizing over Γ is NP-hard, which is the case
for a large number of combinatorial problems [11]. As one may expect, computing an
optimal mechanism in such a case is also hard, so we can turn to search for truthful
mechanism that are approximately optimal.

Suppose that we have an algorithm ALG for solving minx∈Γ cT x, with an approxi-
mation guarantee of β. That is an algorithm returning a solution whose cost is at most β
times the optimal cost. Suppose furthermore that ALG is monotone, that is the returned
solution xALG

a (ca, c−a) is decreasing in ca. Then the mechanism that for each cost re-
alization c assigns according to xALG(c) is truthful. Moreover the expected cost for the
planner of this mechanism is at most β · CI .
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