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Abstract
There is growing awareness and concern about
fairness in machine learning and algorithm de-
sign. This is particularly true in online selection
problems where decisions are often biased, for
example, when assessing credit risks or hiring
staff. We address the issues of fairness and bias
in online selection by introducing multi-color ver-
sions of the classic secretary and prophet problem.
Interestingly, existing algorithms for these prob-
lems are either very unfair or very inefficient, so
we develop optimal fair algorithms for these new
problems and provide tight bounds on their com-
petitiveness. We validate our theoretical findings
on real-world data.

1. Introduction
The sharp growth in data availability that characterizes mod-
ern society challenges our processing capabilities, not only
because of its massiveness, but also because of the increas-
ing strict social norms that society seeks in the algorithms
processing it. For instance, machine learning algorithms
are now used to make credit and lending decisions, to es-
timate the success of a kidney transplant, to inform hiring
decisions, to recommend schools to pupils, among others.
Therefore there is a funded concern over the use of algo-
rithms that may violate social norms. Two basic such norms,
that are receiving significant attention are fairness and pri-
vacy, and while a formalization of the latter is relatively
well established through the notion of differential privacy
(Dwork et al., 2006), the former is much more unexplored
from an algorithmic perspective (Kearns & Roth, 2019).

In this paper we are particularly interested in the study of
fairness in machine learning algorithms in the context of
sequential decision making under stochastic input. Not only
the area has seen many recent theoretical developments, but
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also it naturally encompasses many real-world decision mak-
ing processes where biased evaluations should be avoided,
such as those mentioned earlier.

Specifically we consider the basic single item selection mod-
els given by the secretary and prophet problems in which
items are classified into different groups. In our secretary
model, two candidates from different groups are incompa-
rable, while in our prophet problem the decision maker is
constrained to pick from each group with a prespecified
probability. A precursor of the study of fairness in the
secretary problem is the work of Buchbinder et al. (2014)
who studied, among other things, an incentive compatible
version of the secretary problem in which the selection prob-
ability does not depend on the arrival position of a candidate.
More recently, Gupta & Salem (2020) have studied machine
learning algorithms for biased versions of the secretary prob-
lem, whereas Cayci et al. (2020) studies similar issues from
the perspective of online learning. The fairness term has
been used for various concepts in machine learning com-
munity. We adopt here the common notion used in various
previous works Halabi et al. (2020); Celis et al. (2018a;b;c);
Chierichetti et al. (2019; 2017), where we ask that the so-
lution obtained is balanced with respect to some sensitive
attribute (e.g., race, gender).

1.1. Our Results

We consider two fundamental problems in fair online se-
lection, both concerned with selecting a single candidate.
Candidates are partitioned into different groups or colors.
The candidates arrive sequentially and upon arrival of a can-
didate we have to irrevocably decide whether we want to
select the candidate or not. In the first problem we consider,
which we call the multi-color secretary problem, candidates
arrive in uniform random order and we can rank candidates
within a group, but we cannot compare candidates across
groups. There is also a prior probability that the best candi-
date from a group is the best candidate overall. The problem
models situations in which different qualities of the candi-
dates make them largely incomparable (this could arise in
some form due to gender, race, social origin, type of edu-
cation, etc.). The goal is to maximize the probability with
which we stop at the best overall candidate and compare it
with that for the offline optimum. Note that here the offline
optimum simply picks the best candidate from the group
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of largest prior probability. Thus, it is extremely unfair.
One may think that the best possible online algorithm is to
mimick the offline optimum; namely to select the group of
largest prior probability and then run the classic secretary al-
gorithm on that group. We prove that this is not the case and
indeed our main result is to obtain the best possible online
algorithm for the problem and to establish that it satisfies
very desirable fairness properties. Hence, for this variant on
online selection, fairness follows as a consequence of being
online optimal.

In our second problem, which we call the multi-color
prophet problem, candidates have values drawn indepen-
dently from given distributions and arrive in an arbitrary
order. The goal is to maximize the expectation of the value
of the selected candidate, while selecting from each color
with probability proportional to a prescribed vector. We
compete with fair opt, the optimal offline algorithm satisfy-
ing the same fairness constraint. So the underlying paradigm
here is that although we can compare we understand that
the scores may be biased and want to correct the selection
process using the prior probabilities. Our main results are
the design of fair competitive algorithms. In the most gen-
eral version we prove that an approximation factor of 1/2
is best possible while improved factors can be obtained by
making natural assumptions on the prior probabilities and
the arrival order.

2. The Multi-Color Secretary Problem
In the multi-color secretary problem n candidates arrive in
uniform random order. Candidates are partitioned into k
groups C = {C1, · · · , Ck}. We write n = (n1, . . . , nk) for
the vector of group sizes, i.e., |Cj | = nj , for all 1 ≤ j ≤ k.
We identify each of the groups with a distinct color and
denote by c(i) the color of candidate i. We can compare
candidates of the same color, but we cannot compare candi-
dates across groups. We assume comparisons are strict, and
use i � i′ to denote that candidate i is better than candidate
i′. We write maxCj for the best candidate of color j, and
maxC for the best candidate overall. A natural assumption
is that the best candidate from a group is the best candidate
overall with equal probability 1/k, but we can also consider
the case where these probabilities are different. We denote
the probabilities with which the best candidate of group j is
the best candidate overall by pj , and write p = (p1, . . . , pk)
for the vector of these probabilities. Since candidates are
incomparable across groups this can be modeled by tossing
a coin after the fact to decide whether the best candidate
of group j is the best candidate overall. The goal is to de-
sign an online algorithm that maximizes the probability of
selecting the best candidate overall.

Even though they do not take a fairness perspective, our
model is related to the ones considered by Kumar et al.

(2011) and Feldman & Tennenholtz (2012). Kumar et al.
(2011) study the problem of selecting a maximal secretary
from a partially ordered set of candidates. Feldman & Ten-
nenholtz (2012) study the problem of selecting candidates
in parallel: each candidate is randomly assigned to a queue
and candidates can only be compared with other candidates
in the same queue. The objective is to select a maximal
candidate. The two models treat all maximal candidates
equally so their results apply only to the case where all pj’s
are equal.

2.1. Key Definitions

Competitive ratio. We evaluate online algorithms by
means of their competitive ratio. Consider some online algo-
rithm ALG. The algorithm selects the best candidate over-
all, if it selects the best candidate of a given color and this
color has the best candidate overall. For an instance of the
multi-color secretary problem with group sizes n and proba-
bilities p, we denote by ALG(n,p) ∈ {1, ..., n} ∪ {φ}
the random index at which the algorithm stops, where
φ denotes the case when the algorithm does not stop.
The success probability of ALG is E[1ALG(n,p)=maxC ] =
E[pc(ALG(n,p)) · 1ALG(n,p)=maxCc(ALG(n,p))

]. We compare
this to the optimal offline algorithm OPT, i.e., the best al-
gorithm that can select a candidate after all candidates have
arrived. An optimal strategy is to choose a color j with
maximum pj , and then, choose the best candidate of that
color. We denote by OPT(n,p) ∈ {1, ..., n} the random
index that OPT selects. The success probability of OPT is
E[1OPT(n,p)=maxC ] = max{p1, . . . , pk}.

Definition 1 (competitive ratio). Fix k and p =
(p1, . . . , pk). An online algorithm ALG is β(k,p)-
competitive if for all input lengths n and partition sizes
n = (n1, . . . , nk),

E[1OPT(n,p)=maxC ]

E[1ALG(n,p)=maxC ]
≤ β(k,p).

Note that β(k,p) ≥ 1, and the smaller β(k,p) the better
the approximation guarantee.

Unbiased selection. We also examine the extent to which
online or offline algorithms are biased, where ideally se-
lection should be unbiased. One way to measure this is
by quantifying how much the probability of selecting from
any given color class j can differ from the corresponding
probability pj .

Definition 2 (fairness). Fix k and p = (p1, . . . , pk). An
offline or online algorithm ALG is α(n,p)-fair, where
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α(n,p) ≥ 1, if for all colors j ∈ [k],

pj
α(n,p)

≤ P(c(ALG(n,p)) = j | ALG(n,p) 6= φ)

≤ α(n,p) · pj .

Uniform arrival times. We model uniform random ar-
rival order through uniform random arrival times. For this,
we sample n independent realizations of the Uniform[0, 1]
distribution, and denote them by τ1 < τ2 < . . . < τn
indexed in increasing order.

2.2. Optimal Online Algorithm

We derive the optimal online algorithm (without fairness
considerations), and observe that—in sharp contrast to the
optimal offline algorithm—it is robustly fair and provides
an “equal treatment of equals” guarantee.

2.2.1. THE ALGORITHM

We show that the optimal online algorithm is from the class
of algorithms given by Algorithm 1. Algorithms from this
class receive as input a vector of thresholds t = (t1, . . . , tk),
one for each color j ∈ [k]. When a candidate i arrives the
algorithm first checks if the candidate arrived after the time
threshold for its color tc(i), and if it did, then it accepts the
candidate if it is the best candidate of that color so far.

Algorithm 1 GROUPTHRESHOLDS(t)
Input: t ∈ [0, 1]k, a threshold in time for each group
Output: i ∈ [n], index of chosen candidate

/* assuming arrival times τ1 < . . . < τn */
for i← 1 to n do

if τi > tc(i) then
if i � max{i′ | τi′ ≤ τi, c(i′) = c(i)} then

return i
end

end
end

Notice that the time based arrival model considered in this
section is equivalent to the random order arrival model and is
used for the sake of simplicity of presentation and proofs. If
we are given an algorithm in the time-based model (such as
Algorithm 1), then we can translate it into the random arrival
model by having the algorithm draw n arrival times from
Uniform[0, 1], and assign the i-th smallest arrival time to the
i-th candidate in the input stream. If, on the other hand we
are given an algorithm in the uniform arrival model, then we
can translate it into the time-based model by just ignoring
the time component and just using that the candidate that
arrived at τi was the i-th candidate to arrive.

Therefore any algorithm in one model can be easily used in

the other model with identical properties.

2.2.2. COMPETITIVE RATIO

Surprisingly, we can show that for any probabilities p =
(p1, . . . , pk) there exist optimal thresholds t∗ = (t∗1, . . . , t

∗
k)

that achieve the best competitive ratio. Later on, we
show how these thresholds can be computed explicitly
(see Lemma 4). Using these thresholds in Algorithm 1
results in the promised optimal online algorithm. Let us
start by presenting the success probability of our algorithm
for general probabilities and then for the special case that
p = (1/k, . . . , 1/k). Afterwards we provide an overview
of the proof of these results.

Theorem 1 (competitive ratio, general probabilities). Fix k
and p = (p1, . . . , pk). Assume wlog that pj ≥ pj+1 for all
j < k. Then there exist thresholds t∗ = (t∗1, . . . , t

∗
k) such

that t∗j ≤ t∗j+1 for all j < k that depend only on the number
of colors k and the probabilities p but not on the number
of candidates n or the partition sizes n = (n1, . . . , nk)
such that Algorithm 1 with thresholds t∗ succeeds with
probability at least

k∑
j=1

∫ t∗j+1

t∗j

 j∑
j′=1

pj′

 T ∗j
τ j

dτ ,

where T ∗j =
∏j

j′=1 tj′ . For all k and p = (p1, . . . , pk), no
online algorithm can achieve a better competitive ratio in
the worst-case over all number of candidates n and partition
sizes n = (n1, . . . , nk).

For the special case where p = (1/k, . . . , 1/k) we obtain
the following corollary. It shows that in this case we can set
a single threshold, and it also provides a simpler-to-parse
formula for the competitive ratio.

Corollary 1 (competitive ratio, equal probabilities). Fix
k and p = (1/k, . . . , 1/k). Then there exists a sin-
gle threshold t∗ such that Algorithm 1 with thresholds
t∗ = (t∗, . . . , t∗) achieves a competitive ratio of

k
1

k−1 .

This is 2 for k = 2,
√
3 for k = 3, and 1 + O( log k

k ) as
k → ∞. For all k and p = (1/k, . . . , 1/k), no online
algorithm can achieve a better competitive ratio in the worst-
case over all number of candidates n and partition sizes
n = (n1, . . . , nk).

We note that a bound of k
1

k−1 +O(k/n) for the special case
where pj = 1/k for all k also follows from (Kumar et al.,
2011).

The main difficulty in proving Theorem 1 and Corollary 1 is
that in the point-wise optimal online algorithm, which can



Fairness and Bias in Online Selection

be obtained by backward induction, thresholds depend on
the number of candidates of each color that have already
arrived. This dependency leads to a blow-up in algorithm
complexity, and complicates the analysis of the success
probability. Our high-level approach is to argue that in the
worst-case all nj’s are large, and that in this case the point-
wise optimal online algorithm is well approximated by the
optimal algorithm from the class of algorithms desbribed in
Algorithm 1, which simply sets time-dependent thresholds.
So we can optimize over these.

A first ingredient in our proof is Lemma 1, which shows that
for the class of algorithms in Algorithm 1, for any vector of
thresholds t the worst-case arises when all nj’s are large .
Lemma 1. Fix the probabilities p = (p1, . . . , pk) and a
vector of thresholds t ∈ [0, 1]k. For all j = 1, . . . k, the suc-
cess probability of GROUPTHRESHOLDS(t) is decreasing
in nj .

Our next pair of lemmas, Lemma 2 and Lemma 3, allow
us to bound the success probability of the point-wise op-
timal online algorithm by the limit success probability of
the best algorithm which sets time-dependent thresholds
(Algorithm 1).
Lemma 2. Denote by GT(p, t) the limit of the success
probability of GROUPTHRESHOLDS(t) for a given vec-
tor of probabilities p. If minj tj ≥ c > 0, then the
success probability of GROUPTHRESHOLDS(t) is at most
GT(p, t) + k · (1− c)z , where z = minj nj .
Lemma 3. For any vector of probabilities p and sizes n,
denote by ON(n,p) the optimal success guarantee of an
online algorithm. Then for every p,n there exists a vector t
such that ON(n,p) ≤ GT(p, t) + o(1), where minj tj ≥
1/(2e).

The final ingredient is the following pair of lemmas,
Lemma 4 and Lemma 5, which solve for the optimal time-
dependent thresholds and give a formula for evaluating the
limit success probability in terms of these thresholds.
Lemma 4. Consider a vector p such that pj ≥ pj+1 for all
j < k. The optimal thresholds t∗ are given by

t∗k = (1− (k − 1)pk)
1

k−1 ,

t∗j = t∗j+1 ·

( ∑j
r=1

pr

j−1 − pj∑j
r=1

pr

j−1 − pj+1

) 1
j−1

, for 2 ≤ j ≤ k − 1

t∗1 = t∗2 · e
p2
p1
−1 .

Lemma 5. Consider vectors of probabilities p and thresh-
olds t, and assume ti ≤ ti+1 for all i < k. The limit success
probability of GROUPTHRESHOLDS(t) is given by

GT(p, t) =
k∑

j=1

∫ tj+1

tj

 j∑
j′=1

pj′

 Tj
τ j
dτ ,

where Tj =
∏j

j′=1 tj′ .

Putting together these lemmas yields Theorem 1. Their
proofs are deferred to the full version of the paper.

2.2.3. FAIRNESS

The optimal offline algorithm is 1-fair for p =
(1/k, . . . , 1/k), but as soon as probabilities are unbalanced
it will choose only from the colors which have maximum
pj . In the worst case, |pj − pj′ | < ε for all j, j′, but the op-
timal offline algorithm is forced to choose from the unique
color j which has maximum pj . We show that in the case
where pj = 1/k for all j, the optimal online algorithm is
not exactly 1-fair, but approaches 1-fairness exponentially
fast in the minimum group size minj nj .

Theorem 2 (fairness result, equal probabilities). For any
k and p = (1/k, . . . , 1/k), Algorithm 1 with the optimal
single threshold t∗ is 1 +O(k2(1− 1

e )
minj nj )-fair.

Moreover, we show that the optimal online algorithm is
robust and degrades gracefully as we move away from per-
fectly balanced probabilities.

Theorem 3 (fairness result, general probabilities). Fix k
and p = (p1, . . . , pk). Algorithm 1 with the optimal choice
of thresholds t∗ = (t∗1, . . . , t

∗
k) ensures that if pj = pj′ then

t∗j = t∗j′ . Moreover, t∗ is a continuous function of p. So if pj
and pj′ are close so are t∗j and t∗j′ and so is the probability
of selection. More precisely, if pj > pj′ > (1− ε)pj , then
t∗j′ > t∗j > (1− ε)t∗j′ , and furthermore,

0 < P(GROUPTHRESHOLDS(t∗) selects color j)

−P(GROUPTHRESHOLDS(t∗) selects color j′) < ε.

To exemplify the conclusion of the last theorem consider that
we have two colors, say men and women, and that the prior
is such that the top candidate is a woman with probability
60% and a man with probability 40%. This translates into
having ε = 1/3 in the statement of the theorem, which
implies that the algorithm will pick a woman at most 33%
more often than a man. See Section 4.1 for more examples
and empirical validations of these results.

Both Theorem 2 and Theorem 3 follow from analyzing the
optimal thresholds in the respective cases, as established
in Lemma 4. The complete proofs are deferred to the full
version of the paper.

3. The Multi-Color Prophet Problem
We next consider the following multi-color prophet prob-
lem. In this model n candidates arrive in uniform ran-
dom order. Candidates are partitioned into k groups C =
{C1, · · · , Ck}. We write n = (n1, . . . , nk) for the vector
of group sizes, i.e., |Cj | = nj , for all 1 ≤ j ≤ k. We
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identify each of the groups with a distinct color and let
c(i), vi denote the color and value of candidate i, respec-
tively. The value vi that is revealed upon arrival of i, and is
drawn independently from a given distribution Fi. We use
F = (F1, . . . , Fn) to refer to the vector of distributions. We
are also given a probability vector p = (p1, . . . , pk). The
goal is to select a candidate in an online manner in order
to maximize the expectation of the value of the selected
candidate, while selecting from each color with probability
proportional to p. We distinguish between the basic setting
in which pj is the proportion of candidates that belong to
group j, i.e., pj = nj/n, and the general setting in which p
is arbitrary. We compare ourselves with the fair optimum,
the optimal offline algorithm that respects the pj’s.

3.1. Key Definitions

Fair optimum. We define FAIROPT(n,C,F,p) as the
optimal offline algorithm that selects a candidate of
group j with probability pj for all j, and we write
E[FAIROPT(n,C,F,p)] for the expected value it achieves.
More precisely, among the class of randomized rules to se-
lect a candidate that choose a candidate from each color j
with probability pj , and can observe the realizations of all
values, FAIROPT(n,C,F,p) is the one that maximizes the
expectation of the value of the selected candidate.

Intuitively, one can think of FAIROPT as the limit of the
following experiment. We draw m times, with m >> 1,
an independent sample of the vector (v1, . . . , vn), so we
obtain {(vi,s)ni=1}ms=1. In each of the vectors we select a
candidate i∗(s) so that 1

m

∑m
s=1 vi∗(s),s is maximized and

i∗(s) belongs to color j in m · pj of the vectors.

Ex-ante relaxation. We denote by qi the probability with
which FAIROPT(n,C,F,p) selects candidate i. Using
these probabilities we can obtain the following upper bound
on the performance of FAIROPT, which is known in the
prophets literature as the ex-ante relaxation (e.g. Feldman
et al., 2016),

EXANTE(n,C,F,p) =

n∑
i=1

qi ·E(vi | vi ≥ F−1i (1− qi)).

Fair selection. We say that an online algorithm ALG is
fair if it selects a candidate of each color j with probability
proportional to pj .
Definition 3 (fair online algorithm). We say that an online
algorithm ALG is fair if

P(c(ALG) = j | ALG stops) = pj ∀1 ≤ j ≤ k.
Note that this is analogous to being 1-fair in Definition 2.

Approximation ratio. Our goal is to find the fair on-
line algorithm FAIRALG, with best possible approxima-

tion ratio with respect to FAIROPT. To formally define
this, let E[FAIRALG(n,C,F,p)] denote the expected value
achieved by FAIRALG.
Definition 4 (approximation ratio). We say that online al-
gorithm FAIRALG provides an α-approximation if

sup
n,C,F,p

E[FAIROPT(n,C,F,p)]

E[FAIRALG(n,C,F,p)]
≤ α.

Note that the smaller α ≥ 1 the better. Specifically, if
α = 1, then the expected value achieved by the fair online
algorithm matches that of the fair offline algorithm.

3.2. Optimal Online Algorithms

We develop optimal fair online algorithms with surprisingly
small competitive ratio under different assumptions on the
setting. In the first setting (Section 3.2.1) we consider an
arbitrary fixed order of the candidates, non-identical dis-
tributions, and general probabilities p. In the second, we
assume that variables are i.i.d., and make the natural ad-
ditional assumption that the pj’s are proportional to the
group sizes (Section 3.2.2). In the third setting we relax the
i.i.d. assumption to hold only within groups, and assume
that candidates arrive in uniform random order. The analysis
of this setting is deferred to the full version of the paper.

Our high-level approach is the following: We design online
algorithms that accept each candidate iwith probability α·qi,
where q = (q1, . . . , qn) are the marginal probabilities with
which the optimal fair offline algorithm FAIROPT accepts
candidate i = 1, . . . , n. Note that for a fixed choice of α
this uniquely determines thresholds t = (t1, . . . , tn) that
we have to set for candidate i = 1, . . . , n. We are still free
to choose the parameter α, and we choose it to optimize the
worst-case approximation ratio.

Intuitively, choosing a smaller α makes us accept less fre-
quently, but conditional on stopping we choose higher val-
ues. The right trade-off between these two forces and hence
the right choice of α turns out to be different in each of the
three settings. We find that in each of the three settings the
optimal approximation ratio is equal to 1/α∗ where α∗ is
the optimal choice of α.

3.2.1. GENERAL DISTRIBUTIONS

We start by considering the setting in which candidates
arrive in any fixed order, candidate values are drawn from
not-necessarily identical distributions, and the probabilities
p can be arbitrary.

Our algorithm for this case (Algorithm 2) receives as input
the probabilities q1, . . . , qn with which FAIROPT accepts
candidate 1, . . . , n. It then sets thresholds so that it accepts
each of the candidates with probability qi/2.

Note that for i = 1 we can achieve this by setting the thresh-
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old to t1 = F−11 (1 − q1/2). For i = 2 we have to set a
slightly lower threshold than F−12 (1− q2/2), because with
some probability namely q1/2 we stop at i = 1. Indeed, if
we set the threshold to t2 = F−12 (1− q2/2

1−q1/2 ) we reach can-
didate i = 2 with probability 1− q1/2 and conditional on
reaching it we accept it with probability q2/2

1−q1/2 , so we ac-
cept it with probability exactly qi/2 as desired. Continuing
like this yields the thresholds used in the algorithm.

Algorithm 2 FAIR GENERAL PROPHET

Input: Distributions F1, · · · , Fn, and q1, · · · , qn
Output: i ∈ [n], index of chosen candidate

s← 0
for i← 1 to n do

if vi ≥ F−1i (1− qi/2
1−s/2 ) then

return i
end
s← s+ qi

end

We show that this algorithm is fair, and that it achieves an
optimal approximation guarantee. Fairness follows quite di-
rectly from the fairness of FAIROPT, because our algorithm
accepts with the same marginal probabilities just scaled
down by 1/2. For the approximation guarantee we com-
pare the expected value collected by the online algorithm
to the expected value achieved by the ex-ante relaxation,
which is constrained to use the marginal probabilities q of
FAIROPT. Since the latter is only higher than the expected
value achieved by FAIROPT, it also implies an approxima-
tion guarantee with respect to FAIROPT.

Theorem 4. For general settings and general distribu-
tions, Algorithm 2 is fair and achieves a 2-approximation
to FAIROPT. No fair online algorithm can achieve a better
approximation ratio.

We remark that the bound of 2 in this theorem is incom-
parable to the well known factor 2 in the regular prophet
inequality (Samuel-Cahn, 1984), and indeed we prove it via
a substantially different technique.

3.2.2. I.I.D. DISTRIBUTIONS

We next consider the i.i.d. setting, where all values vi are
independent samples from a common distribution F . In this
case pj = nj/n for all groups j is a natural assumption,
because this is the probability with which the maximum
overall is from group j. Also note that in this case the
optimal offline algorithm is fair, and chooses each element
with probability 1/n. That is, qi = 1/n for all i.

Our Algorithm 3 tries to mimic the optimal fair offline
algorithm, but aims at slightly lower marginal acceptance
probabilities of 2/(3n). The derivation of the thresholds t

that achieve this follows the same logic as in our algorithm
for general distributions.

Algorithm 3 FAIR IID PROPHET

Input: Distributions F
Output: i ∈ [n], index of chosen candidate

for i← 1 to n do
if vi ≥ F−1(1− 2/3n

1−2(i−1)/3n ) then
return i

end
end

We prove that this algorithm is fair, and achieves an optimal
approximation ratio of 3/2. To show fairness we again
exploit that the algorithm accepts each candidate i with a
scaled-down version of the marginal probability qi = 1/n
with which FAIROPT accepts a candidate. We establish the
approximation factor via a stochastic dominance argument.

Theorem 5. For basic settings and i.i.d. distributions Al-
gorithm 3 is fair and achieves a 3/2-approximation to
FAIROPT. No fair online algorithm can achieve a better
approximation ratio.

The proofs of Theorem 4 and Theorem 5 and the discussion
of the third setting for which we prove a tight approximation
ratio of 1/(2−

√
2) ≈ 1.707 are deferred to the full version

of the paper. In Section 4.2 we experimentally validate
these results and compare them with other algorithms in the
literature.

4. Empirical Evaluation
In this section we empirically validate our results on synthet-
ical and real-world experiments1. We present experiments
for the multi-color secretary problem in Section 4.1 and the
multi-color prophet problem in Section 4.2.

4.1. Secretary Experiments

We compare our algorithm (Algorithm 1) with the following
two baselines, which are based on the optimal solution to
the classic secretary problem (e.g. Lindley, 1961; Dynkin,
1963; Ferguson, 1989):

1. Secretary algorithm (SA): This algorithm first com-
putes the maximum value in the first 1/e-fraction of
the stream, and then picks any element with higher
value afterwards. This algorithm does not consider the
colors of elements.

1An implementation of these experiments is avail-
able at https://github.com/google-research/
google-research/tree/master/fairness_and_
bias_in_online_selection.

https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
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(c) Feedback Maximization
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Figure 1. In this plot, we compare our fair secretary algorithm with the secretary algorithm (SA) and the single-color secretary algorithm
(SCSA) on (a) synthetic dataset, equal p values, (b) synthetic dataset, general p values, (c) feedback maximization dataset, and (d)
influence maximization dataset. Here Input is the number of elements from each color in the input, F-Pick and F-Max are the number of
elements picked by our fair secretary algorithm and the number of them that are the maximum among the elements of that color. Similarly,
U-Pick (S-Pick) and U-Max (S-Max) are the number of elements picked by SA and SCSA and the number of them that are the maximum
among the elements of that color.

2. Single-color secretary algorithm (SCSA): This algo-
rithm first picks a color proportional to the p values,
and then runs the secretary algorithm on the elements
of that color. This algorithm does not consider the
elements whose color is different from the chosen one.

For all the experiments in this section, we run all the algo-
rithms 20, 000 times. We report the number of times that
i) the algorithm selects an element from each of the colors,
ii) the number of times the selected element has the highest
value in its color.

Synthetic dataset, equal p values. In this experiment,
we create a synthetic dataset as follows. There are four col-
ors with 10, 100, 1000, and 10000 occurrences. The value
of each element is chosen independently and uniformly at
random from [0, 1], so the p values are the same for all the
colors, i.e., p = (1/4, 1/4, 1/4, 1/4). In Figure 1 (a), we
present the result for this dataset. We observe that our algo-
rithm and SCSA pick almost equal number of times from
each color,2 while SA picks almost only from the forth color.

2The slight difference is due to the random nature of the algo-
rithm.

Therefore both our algorithm and SCSA are fair while SA
does not satisfy the fairness expectations. We also observe
that the number of elements picked by our algorithm is
1.305 times higher than in SCSA (+30.5%), and it picks
the maximum element of the color and hence the best ele-
ment overall 1.721 times more often than SCSA (+73.1%).
Therefore the quality of the solution of our algorithm is
significantly higher than that of SCSA.

Synthetic dataset, general p values. In this experiment,
we create a synthetic dataset with four colors of sizes
10, 100, 1000, 10000 and p = (0.3, 0.25, 0.25, 0.2).. The
results are presented in Figure 1 (b). We observe that both
the distributions of the picked element for our algorithm and
SCSA is close to the p distribution while for SA it is clearly
different. Moreover, our algorithm performs significantly
better than SCSA since it picks 1.309 times more elements
(+30.9%) and 1.630 times more maximum element of the
picked color (+63.0%).

Feedback maximization. We consider a dataset contain-
ing one record for each phone call by a Portuguese banking
institution (Moro et al., 2014). The goal of this experiment
is to select a client and contact them and ask for their feed-
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(a) Uniform Distribution (b) Binomial Distribution

Figure 2. In this plot we present the number of times that our algorithms (Fair PA, Fair IID) and the baselines (SC, EHKS, DP) pick from
each position of the input prophet problem stream. In (a) the stream consists of 50 sample from the uniform distribution and in (b) the
stream consist of 1000 sample from the binomial distribution.

back. In order to achieve high quality feedback, we want to
maximize the length of the call phone call duration while
being fair with respect to the age of the interviewee. We di-
vide the clients into 5 colors: under 30, 31-40, 41-50, 51-60,
and more that 61 years old. For the sake of being fair, we let
p = (1/5, 1/5, 1/5, 1/5, 1/5). In Figure 1 (c), we present
the obtained results (along with the number of the records
in the input for each color). Similar to the previous experi-
ments, we observe that our algorithm and SCSA pick almost
equal number of the times from each color while SA picks
mostly (80% of the runs) from the forth color. Morevoer,
we observe that our algorithm picks 1.347 times more ele-
ments than SCSA (+34.7%), and that it picks the maximum
element of the color 1.760 times more often (+76.0%).

Influence maximization. We consider a dataset contain-
ing the influence of the users of the Pokec social network
(Takac & Zábovský, 2012). The influence is computed as
the number of the followers for each user. Selecting influ-
encers has numerous applications, e.g., in advertising. In
this experiment we want to be fair with respect to the body
mass index (BMI) of the selected influencers. Therefore we
divide the users into 5 colors according to their BMI: under
weighted, normal, over weighted, obese type 1, and obese
type 2. We let p = (1/5, 1/5, 1/5, 1/5, 1/5). The results
are presented in Figure 1 (d).3 Similar to the previous exper-
iments our algorithm and SCSA picks almost equal number
of each color while the Secretary algorithm picks only from
two colors. Moreover, we observe that our algorithm picks
1.373 times more elements than SCSA (+37.3%), and picks
the maximum element of the color 1.756 time more often
than SCSA (+75.6%).

4.2. Prophet Experiments

In this section we evaluate our multi-color prophet algo-
rithms (Algorithm 2 (Fair PA) and Algorithm 3 (Fair IID)).
We focus on the case, where values are distributed i.i.d. and
each candidate is a group on its own. We compare with the
following baselines:

3For ease of representation, this experiment is ran 106 times.

• SC algorithm (Samuel-Cahn, 1984): This algorithm
sets a single threshold so that the maximum is above
this threshold with probability exactly 1/2. It achieves
an optimal 2-approximation for possibly non-identical
independent distributions and arbitrary arrival order.

• EHKS algorithm (Ehsani et al., 2018): This algorithm
sets a single threshold so that an individual candidate is
accepted with probability 1/n. It achieves an approxi-
mation of (e+ 1)/e ≈ 1.58 for possibly non-identical
independent distributions and random arrival order.

• CFHOV algorithm (Correa et al., to appear): This
algorithm sets a sequence of thresholds based on
acceptance probabilities that result from solving a
differential equation. It achieves an optimal 1.342-
approximation for IID distributions.

• DP algorithm (e.g. Chow et al., 1971): This algorithm
is the optimal threshold algorithm for the prophet prob-
lem, where thresholds are obtained by backward induc-
tion. This algorithm is optimal, even when distributions
are different and candidates arrive in arbitrary order.

We consider two settings. In the first one the input stream
consists of 50 samples from the uniform distribution in
range [0, 1], and in the second one the input consists of
1000 samples from the binomial distribution with 1000 trials
and 1/2 probability of success of a single trial. For better
comparability with existing algorithms, in both cases we
assume each candidate is a group on its own. We run each
algorithm 50, 000 times.

In Figure 2 we compare the number of times that our algo-
rithms, SC, EHKS, and CFHOV pick from each position
of the stream. The DP algorithm picks very unfairly and
almost exclusively from the very end of the stream. As
this would distort the readability of the figures we excluded
this curve from the plots. We observe that both the SC and
EHKS baselines pick candidates more from the first half
of the stream compared to the second half (by more than a
factor of 2), while DP picks mostly from the second half of
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the stream (by more than a factor of 4). So all these algo-
rithms are unfair. In contrast, our algorithms select the same
number of candidates throughout the stream. The average
value of the chosen candidate for our Algorithm 2 (Fair PA),
our Algorithm 3 (Fair IID), SC, EHKS, CFHOV, and DP
for the uniform distribution is 0.501, 0.661, 0.499, 0.631,
0.752, 0.751, while for the binomial distribution it is 298.34,
389.24, 277.63, 363.97, 430.08, 513.34, respectively.

In conclusion, for both settings, both our algorithms Algo-
rithm 2 and Algorithm 3 provide perfect fairness, while giv-
ing 66.71% and 88.01% (for the uniform case), and 58.12%
and 75.82% (for the binomial case), of the value of the
optimal, but unfair, online algorithm.

5. Conclusion and Open Problems
In this work, we explored questions of fairness and bias in
natural multi-color variants of the two canonical problems
of online selection, the secretary problem and the prophet
problem. We designed optimal fair online algorithms for
these problems, and validated the efficacy and fairness of
these new algorithms on synthetic and real-world data.

As in many real-world settings the online decisions go be-
yond the single selection model studied here, there is ample
opportunity for extending this line of work to combinatorial
settings. We expect that building on the respective lines of
work in the secretary, prophet and optimal stopping litera-
ture in general, could prove very fruitful.

Particularly exciting directions include an extension to
matching problems (Kesselheim et al., 2013; Ezra et al.,
2020; Gravin & Wang, 2019), allocation problems with ma-
troid structure (Babaioff et al., 2018; Feldman et al., 2015b;
Kleinberg & Weinberg, 2012; Dütting et al., 2020a), or even
general combinatorial allocation problems (Feldman et al.,
2015a; Dütting et al., 2020b).
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