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Network games can be used to model competitive situations in which agents select routes to minimize
their cost. Common applications include traffic, telecommunication, and distribution networks. Although

traditional network models have assumed that realized costs only depend on congestion, in most applications
they also have an uncertain component. We extend the traffic assignment problem first proposed by Wardrop
in 1952 by adding random deviations, which are independent of the flow, to the cost functions that model
congestion in each arc. We map these uncertainties into a Wardrop equilibrium model with nonadditive path
costs. The cost on a path is given by the sum of the congestion on its arcs plus a constant safety margin that
represents the agents’ risk aversion. First, we prove that an equilibrium for this game always exists and is
essentially unique. Then, we introduce three specific equilibrium models that fall within this framework: the
percentile equilibrium where agents select paths that minimize a specified percentile of the uncertain cost; the
added-variability equilibrium where agents add a multiple of the variability of the cost of each arc to the expected
cost; and the robust equilibrium where agents select paths by solving a robust optimization problem that imposes
a limit on the number of arcs that can deviate from the mean. The percentile equilibrium is difficult to compute
because minimizing a percentile among all paths is computationally hard. Instead, the added-variability and
robust Wardrop equilibria can be computed efficiently in practice: The former reduces to a standard Wardrop
equilibrium problem and the latter is found using a column generation approach that repeatedly solves robust
shortest path problems, which are polynomially solvable. Through computational experiments of some random
and some realistic instances, we explore the benefits and trade-offs of the proposed solution concepts. We show
that when agents are risk averse, both the robust and added-variability equilibria better approximate percentile
equilibria than the classic Wardrop equilibrium.
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1. Introduction
Network games model the interaction between agents
who select routes to go from their origins to their
destinations. The most common applications can be
found in modeling transportation, telecommunica-
tion, and logistic systems. Although for some applica-
tions decisions may be dictated by a system manager,
agents frequently select routes on their own, giving
rise to competition for the network resources. It is typ-
ically assumed that agents are independent and wish
to optimize some individual performance measure—
such as utility, delay, cost, or profit—until they all
collectively achieve an equilibrium situation in which
no agent has any incentive to deviate. In network
games—or more generally, in congestion games—the
dependence that forces agents to strategize their deci-
sions is manifested through a travel time function
(also known as latency, cost, or link performance func-
tion, depending on the specific application). In their
simplest form, these functions map the flow on a link

to the time needed to traverse it. More complicated
versions consider tolls and other arc attributes.
Realistically, however, travel time functions are

rarely known exactly prior to making a decision.
Agents may have estimates of the travel time based
on past experience, but even if all decisions made by
agents can be forecasted accurately, there are exter-
nal factors that make travel times uncertain. A way
to resolve this deficiency is to consider an imperfect
information game in which agents consider uncertain
variations from a nominal travel time function and
make a decision taking this uncertainty into account.
Regardless of the solution concept used, however,
agents will have some degree of a posteriori regret
because any outcome is unlikely to be exactly at
equilibrium with respect to the realized travel times
because agents made their decisions before uncer-
tainty is revealed. We therefore make two postulates
about how users behave in network games under
uncertainty: (1) Different users estimate the effect
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of uncertainty according to their respective attitudes
toward risk (2) Solutions whose realized travel times
are subject to more variability are less stable, thus fur-
ther away from an equilibrium.
In this article, we generalize the notion of Wardrop

equilibria by proposing a solution concept for net-
work games with uncertain travel times where risk-
averse agents pad the expected travel time along
paths with a constant safety margin that repre-
sents the uncertainty. For this reason, the model
belongs to the class of nonadditive equilibriummodels
(Gabriel and Bernstein 1997). Extensions of results by
Aashtiani and Magnanti (1981) imply that this model
always possesses an equilibrium which is, in addi-
tion, essentially unique when the expected travel time
functions are increasing with the use of arcs. Under
this model, the risk aversion of agents may lead them
to take longer but more reliable routes, instead of
short but extremely variable ones, potentially provid-
ing solutions that are more stable.
To use this framework, we have to explicitly define

the safety margin that is added to each path. Our
model assumes that we can decompose travel times
in a nominal term that depends on decisions made by
others, and a flow-independent error term that cap-
tures random effects not explicitly incorporated in the
model. In the context of transportation, deviations in
travel time can be caused by accidents, traffic signals,
road work, weather, or varying traffic conditions; and
in the context of telecommunication networks, they
can be caused by malfunctioning equipment, noise,
interference, signal degradation, or retransmissions.
Although the assumption that the deviation from the
nominal value is independent from the flow is rea-
sonable in some situations (e.g., the waiting time for
a green light in a traffic signal), it is an approximation
of reality in other cases. To put this in perspective,
though, commonly used tools such as linear regres-
sion make a similar assumption: The error is inde-
pendent from the magnitude of explanatory variables.
Similarly to when one uses a regression model, this
is an assumption that needs to be verified empirically
for the data set used.
We model the uncertainty in travel times with ran-

dom variables that represent the deviation from the
expected travel time on each arc. However, a solu-
tion concept that depends on the distributions of
these random variables faces significant practical chal-
lenges. The distributions may be difficult to measure,
and if estimated with sampling, it is not clear how
solutions could be affected by the precision of the
sampling procedure. In addition, the estimation pro-
cedures may not be realistic from the point of view
of agents’ capabilities. Another alternative would be
to use scenarios to capture uncertainty. However, the
combination of scenarios creates a massive number of

cases, leading to computationally intensive methods.
Finally, uncertain parameters are sometimes replaced
by their expected values to get first-order effects. This
approach leads to a solution, henceforth referred to
by nominal equilibrium, that ignores the uncertainty
altogether. It is unlikely that these solutions are good
when agents are risk-averse because they consider the
variability explicitly when making decisions.
A natural model that captures the risk aversion of

agents considers generalized costs that are defined
as a specified percentile of travel times along each
path. The corresponding solution concept is referred
to by percentile equilibrium. Even though it is appealing,
this model seems to be computationally hard to solve
because, even under simple assumptions such as flow-
independent i.i.d. random variables in every arc, one
may need to enumerate all paths to find the one that
minimizes the percentile of the travel time. We there-
fore propose two other solution concepts based on the
same framework and evaluate them in terms of how
well they approximate percentile equilibria. These two
simpler approaches require estimating a single param-
eter per arc that measures the maximum additive devi-
ation from the nominal travel time, assumed to be
independent of the flow. This is appealing from the
point of view of the agent because data requirements
are lighter and more in line of what an agent may
know in practice: it is not likely that agents know the
distribution of travel times exactly although they prob-
ably have some idea of the variation present in each
link.
The first approximation to percentile equilibria we

consider is an equilibrium model proposed by Uchida
and Iida (1993) that adds a fixed fraction of the
maximum deviation to the nominal value in each
arc, henceforth referred to by added-variability equi-
librium. Computationally, this model has the same
complexity as computing a nominal equilibrium. The
problem with this solution concept is that it cannot
be used when agents have heterogenous preferences
toward risk, or when some origin-destination (OD)
pairs are much further away than others because an
additive model like this one fails to consider risk-
diversification effects.
The second approximation considers that agents

react to the uncertainty present in the system by solv-
ing a robust optimization problem. Robust optimiza-
tion has become a popular paradigm in mathematical
programming, gaining a wide acceptance in a number
of applications such as portfolio optimization, sup-
ply chain management, and network design, to name
a few. This paradigm addresses optimization prob-
lems with uncertain parameters by finding a solu-
tion that has optimal worst-case objective. Instead of
using distributions, it is considered that the uncer-
tain parameters belong to a bounded convex set. Such
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sets can represent the estimation confidence intervals
of the uncertain parameters and also model interac-
tions or correlations between them. Intuitively, these
sets prohibit all parameters from taking their worst-
case values simultaneously because such an event is
extremely unlikely. Indeed, although we take a worst-
case perspective, to avoid being overly pessimistic,
we omit unlikely situations where a large number of
links encounter large deviations from their nominal
travel times. Another positive feature of this method-
ology is that for many types of problems and uncer-
tainty sets, solving the robust optimization problem
has the same computational complexity as solving the
deterministic version of the problem.
In our case, agents solve robust shortest path prob-

lems: each agent selects the path that has the best
worst-case travel time. Here, the worst-case travel
time is computed assuming that the number of arcs
that deviate from the nominal value does not exceed
the budget of uncertainty of the model, and that the
deviation is maximal. This budget of uncertainty is a
parameter associated with every agent that captures
her degree of risk aversion. We call the resulting solu-
tion a robust equilibrium.
We present a column generation approach for com-

puting robust equilibria that uses the robust short-
est path problem to select the paths to be added
to the restricted master problem. This approach puts
together several pieces existing in the literature: we
use the framework of nonlinear complementary prob-
lems of Aashtiani and Magnanti (1981), the col-
umn generation algorithm for nonadditive travel
time functions of Gabriel and Bernstein (1997), and
the robust shortest path problem put forward by
Bertsimas and Sim (2003). The complexity of the algo-
rithm is exactly the work required to compute a deter-
ministic equilibrium for a problem with nonadditive
costs. This means, however, an increase in complex-
ity when the deterministic problem has additive costs.
For the important subcase of separable travel time
functions, the restricted master problem can be sim-
plified from a nonlinear complementary problem to a
convex optimization one.
We perform extensive computational experiments

to study how robust and added-variability equilib-
ria compare to each other and how close they are to
percentile equilibria. We therefore introduce measures
to quantify the distance of a solution to a percentile
equilibrium, as well as graphical and statistical tools
to help compare the solutions. For instance, we say
that a solution is more stable or closer to equilib-
rium if the distribution of travel time is more concen-
trated. In addition, we define the regret of an agent
as the ratio between the percentile of travel time of
her path over the smallest percentile among all paths.
Under a percentile equilibrium, all agents experience

a regret equal to one. We provide evidence that under
robust and added-variability equilibria, agents have
lower regrets than under the nominal counterpart.
Hence, when travel times are uncertain and agents are
risk averse, the proposed solution concepts may be a
better representation of the outcome of the network
game.
We structured the paper in the following way. In

the remainder of this introductory section we discuss
the literature related to this work. Section 2 presents
a generic framework for network games that incorpo-
rate uncertainty in traversal times of arcs, and shows
that equilibria exist and are essentially unique. Sec-
tion 3 then presents three models that fit the frame-
work introduced earlier. It presents some examples
that compare these models and also discusses how
to calibrate a model and estimate its parameters.
We discuss an efficient column-generation algorithm
that finds robust equilibria in §4. In §5, we describe
the measures used to compare solutions whereas §6
presents our computational results. Finally, we sum-
marize and indicate further lines of research in §7.

1.1. Related Work
Our model considers network games with an infi-
nite number of infinitesimally small agents and the
traditional solution concept of Wardrop equilibria.
Wardrop (1952) introduced this game when he pos-
tulated that agents in a transportation network select
routes of minimal delay with respect to the prevailing
conditions. Beckmann, McGuire, and Winsten (1956)
were the first to prove that a Wardrop equilibrium
always exists and is essentially unique. Because of
its simplicity, practitioners have extensively used this
model and some of the extensions that have been
introduced since its creation. For more details and ref-
erences in the context of traffic networks, we refer the
reader to the book by Sheffi (1985), and in the con-
text of telecommunication networks, to the survey by
Altman et al. (2006).
Most of the network models developed to date

assume that delays can be predicted accurately. How-
ever, it has been recognized that this is not neces-
sarily the case in practice. For example, Liu et al.
(2002) develop a dynamic traffic assignment model
with stochastic components, building on the work
of Mirchandani and Soroush (1987). In their model,
decision makers minimize the expected travel time
and errors are normally distributed. Furthermore,
Uchida and Iida (1993) added a safety margin to
expected travel times on each arc. This safety mar-
gin is dependent on the degree of risk aversion of
agents and proportional to the standard deviation of
travel time on the arc. Most related to our framework
of robust equilibria, Bell and Cassir (2002) propose
a model in which a demon tries to maximize agents’
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travel time by congesting a worst-possible single arc
in the path of the agents. This is related to a robust
shortest path when only one arc can deviate. The
two approaches are not equivalent, though, because
Bell and Cassir consider a game theoretical setting in
which the demon plays a mixed strategy randomiz-
ing over actions that increase the congestion in one
arc at a time; the robust equilibrium that we introduce
considers worst-case deviations for every path and an
arbitrary number of arcs. Finally, Lo and Tung (2003)
introduce a probabilistic user equilibrium model for
networks with stochastic capacity. This equilibrium
model requires that used routes not only have the
same mean travel time value but that its variance is
bounded by given performance guarantees. The per-
centile equilibrium concept differs in that we require
that any route with positive flow has a constant per-
centile of travel time.
The robust optimization approach was introduced

to the mathematical programming community by Ben-
Tal and Nemirovski (1998) and El-Ghaoui, Oustry,
and Lebret (1998). The robust solution for an opti-
mization problem under uncertainty is defined as the
solution with the best objective value in its worst-
case uncertainty scenario. An attractive feature of a
robust solution is that it behaves “well” for all likely
uncertainty, in particular the actual realization of the
uncertain variables, which is impossible to predict a
priori. For many problems, finding the robust solution
is not harder than solving the deterministic counter-
part (Ben-Tal and Nemirovski 1998). Robust optimiza-
tion has provided interesting answers to applications
on structural design (Ben-Tal and Nemirovski 1997),
least-square optimization (El-Ghaoui and Lebret 1997),
portfolio optimization problems (Goldfarb and Iyen-
gar 2003; El-Ghaoui, Oks, and Oustry 2003), supply
chain management problems (Bertsimas and Thiele
2004; Ben-Tal et al. 2005; Bertsimas and Thiele 2006),
and integer programming and network flows (Bert-
simas and Sim 2003; Atamtürk and Zhang 2007;
Ordóñez and Zhao 2007b).
Game theorists have long considered that agents

may not have complete information at the time of
making their decisions. The first to explicitly consider
incomplete information games was Harsanyi (1967,
1968). In these games, agents are assumed to base
their decisions on a probability distribution that mod-
els what is unknown to them. Harsanyi’s solution
concept, called a Bayesian equilibrium, assumes that
agents compute their expected payoffs using these
prior distributions. A shortcoming of this model is
that it is not obvious how agents can estimate the
prior distribution. Holmström and Myerson (1983)
refined Bayesian games by considering the case where
agents need not know the distribution. Indeed, in an

ex post equilibrium no agent has an incentive to devi-
ate from the selected strategy even after learning the
realization of all the uncertainty. Although appeal-
ing from the modeling perspective, many games—
including the one considered in this paper—generally
do not admit equilibria of this type. A few recent
papers have explored the application of robust opti-
mization to game theory. Hayashi, Yamashita, and
Fukushima (2005) characterize robust Nash equilib-
ria in simple games as solutions to a second-order
cone complementarity problem. Aghassi and Bertsi-
mas (2006) also consider robust games and prove that
robust Nash equilibria always exist. These articles on
robust game theory consider finite number of agents
and do not concentrate on robust equilibria in net-
work settings. Therefore, their findings on the unique-
ness of equilibria and their algorithms to compute
them do not directly apply to our games.
In our case, each agent needs to solve a shortest

path problem under uncertainty. These problems are
typically difficult to solve, especially when errors are
correlated or when the objective is more complex than
a combination of the expected value and the variance
of the travel time. An example of the latter is minimiz-
ing the percentile of the travel time, as we are going
to consider in §3.1. We refer the reader to Andreatta
and Romeo (1988) and Bertsekas and Tsitsiklis (1991)
for some classic references, and to Fan, Kalaba, and
Moore (2005a, b), Nikolova, Brand, and Karger (2006),
and Nie and Wu (2009) for some newer ones. All these
algorithms either require a knowledge of the distri-
butions or make strong assumptions on their struc-
ture. In the context of robust optimization that we are
going to use in §3.3, Bertsimas and Sim (2003) study
the robust shortest path problem. This problem consid-
ers distribution-less instances; the required input for
each arc is the maximum deviation from the nomi-
nal length. The structure perfectly fits our formulation
and, therefore, it will be the subproblem that agents
solve in our network game.
Another source of potential uncertainty is on the

demand side. Traditionally, this has been modeled
with the help of a demand function that links the
delay experienced and the demand. The reasoning
being that there is a latent demand that will be real-
ized when the utility of traveling is low enough
because otherwise agents can use external options like
other networks or modes of transportation, or even
not traveling at all. There is recent work that mod-
els demand uncertainty using game-theoretic tech-
niques. Ashlagi, Monderer, and Tennenholtz (2006)
and Ukkusuri and Waller (2010) consider network
games in which agents have incomplete information
about the demand.
Finally, there are transportation models that con-

sider a different type of uncertainty. Stochastic user
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equilibrium models, first proposed by Dial (1971) and
Daganzo and Sheffi (1977), incorporate uncertain vari-
ations in the perception of costs by different agents.
Instead of considering that the experienced travel
time is unknown to the agents as we do, these mod-
els assume that it is known but different agents
may extract different utility from it. This is modeled
by summing independent and identically distributed
perturbations to the nominal travel time of each
agent. Moreover, it is assumed that these identical dis-
tributions are known. For certain distributions, these
equilibria are tractable and can be readily computed;
for more details, see Sheffi (1985). This approach and
ours complement each other, and one could model
the two sources of uncertainty together (see, e.g., Liu
et al. 2002).

2. General Wardrop Equilibrium
Model with Uncertain
Travel Times

This section presents a general, nonadditive equilib-
rium model that considers uncertain travel times, and
proves the existence of this type of equilibrium. The
following section proposes three concrete models that
specify explicitly how to represent the uncertainty.
We consider a directed graph, G = �N�A�, together

with a set of OD pairs, K ⊆ N × N . For each termi-
nal pair, k = �sk� tk� ∈ K, let �k be the set of directed
(simple) paths in G from sk to tk, and let dk > 0 be the
demand rate associated with commodity k. We refer to
the set of all paths by � �= ⋃

k∈K �k. A feasible flow h
assigns a nonnegative and possibly fractional value hP

to every path P ∈� such that
∑

P∈�k
hP = dk for all k ∈

K. The total flow, or load, along arc a ∈ A can be easily
computed by summing over paths: fa �=∑

Q∈�� Q�a hQ.
The expected travel time along an arc a is given by a

(deterministic) load-dependent nominal value. This is
measured by a nonseparable function la� �

�A�
≥0 → �≥0,

assumed to be positive and continuous. Moreover,
we assume that the mapping �la�a∈A is strictly mono-
tone.1 With a slight abuse of notation, we also use
la�h� �= la�f � for the arc load f defined above. Travel
time functions that depend on the full vector of flows
arise frequently in practice, the most common exam-
ples in the domain of transportation being two-way
streets and multimodal networks, and in the domain
of telecommunications being interference. Using the
additivity of expectations, the nominal travel time of
a path P ∈ � under a given flow h is simply lP �h� �=∑

a∈P la�h�.
We consider a situation in which users take uncer-

tainty into account by adding a padding to the

1 A function F � D →�n�D ⊂�n is called strictly monotone on D if,
for any two distinct x ∈ D and y ∈ D, �x − y�T �F �x� − F �y�� > 0.

expected travel time of a path. A user that plans
on taking path P ∈ � when the prevailing flow is h
realizes that the travel time may deviate from lP �h�
because of uncertainty. We assume users will add a
deterministic value of �P to penalize the path for its
uncertainty. Hence, the modified travel time of the
path P will be lP �h� + �P . The value of �P can include
considerations about the structure of the path, its
uncertainty, and the users’ attitude toward risk. For
example, if the distribution of travel times on path P
were known, �P could represent a desired percentile
level. The following section provides more details of
this interpretation as well as others.
Because expected travel times depend on the con-

gestion level, users compete with each other. Wardrop
(1952) postulated that users in a network game select
routes of minimal travel time. This concept leads to
the so-called Wardrop equilibrium, which is a route
pattern in which users do not have an incentive to
deviate because all users are assigned to paths that
are shortest. Actually, this solution is a Nash equilib-
rium in the game with an infinite number of users
(see de Palma and Nesterov 1998). We generalize this
solution concept by incorporating the uncertain travel
times to the model. The following definition states
that a Wardrop equilibrium with uncertain travel
times optimizes the users’ objective introduced above
for all users simultaneously.
Definition 2.1. A flow h is called a Wardrop equi-

librium with uncertain travel times if and only if

lP �h� + �P ≤ lQ�h� + �Q

for all P� Q ∈�k� k ∈ K with hP > 0�

In other words, this is a (regular) Wardrop equilib-
rium with respect to modified costs l̃P �h� �= lP �h�+�P .
The lack of separability with respect to the sum is typ-
ically referred to as a model with “nonadditive costs”
(Gabriel and Bernstein 1997).
It is well known that the Wardrop equilibrium

condition can be expressed as a nonlinear comple-
mentarity problem (NCP) in the space of arc-flows
(Aashtiani and Magnanti 1981). For the case of non-
additive costs, it is necessary to consider an NCP
that uses a path formulation, as shown in the follow-
ing proposition. The complementarity condition is the
key element of this formulation as it says that paths
can only route flow if they are shortest with respect
to the users’ objective. Under the assumption that
travel times are strictly monotone, although one can
have multiple equilibria arising from different flow
decompositions, the corresponding load on arcs coin-
cide and, thus, also their generalized costs for each
OD pair. Hence, equilibria are said to be “essentially
unique.”
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Proposition 2.2. A flow h is at equilibrium if and
only if it solves

0≤ hP ⊥ lP �h� + �P − wk ≥ 0

for all P ∈�k� k ∈ K� (1)

where the notation ⊥ means that at least one of the two
constraints on either side must be tight, and the free
variable wk ∈ � represents the minimal objective function
values for the users’ objective. Moreover, an equilibrium
always exists and is essentially unique.

The NCP displayed in the previous equation
expresses that: (i) flows need to be nonnegative
(0≤ hP ), (ii) the inequality lP �h� + �P ≥ wk guarantees
that wk is a lower bound for the objective of all users
corresponding to OD pair k ∈ K, and (iii) there is com-
plementarity condition between not using a path and
the path being shortest.2

Proof of Proposition 2.2. To prove the equiva-
lence and the existence, we rely on Proposition 4.1
and Theorem 5.4 of Aashtiani and Magnanti (1981).
The uniqueness part can be derived along the lines
of Theorem 6.2 in the same reference. Indeed, let us
assume that two distinct flows h1 and h2 are at equi-
librium. Then, hi

P �lP �hi� + �P − wi
k� = 0 for all P ∈

�k, k ∈ K, and i = 1�2. Using vector notation for l,
�, and w, the previous equation and the nonneg-
ativeness of all the factors implies that �h1 − h2�T

��l�h1� + � − 	w1� − �l�h2� + � − 	w2�
 ≤ 0, where 	
denotes the path-OD pair incidence matrix. Notice
that the left-hand side equals �h1−h2�T ��l�h1�−	w1�−
�l�h2� − 	w2�
 = �h1 − h2�T �l�h1� − l�h2�
 + �h1 − h2�T

	�w2−w1
. Using the arc-path incidence matrix � and
removing the very last term in the previous equation
because both flows h1 and h2 satisfy demands, 0 ≥
�h1 −h2�T �T �l��h1�− l��h2�
 = �f 1 − f 2�T �l�f 1�− l�f 2�
,
where the right-hand side is indexed by arcs. This
contradicts the strong monotonicity of l, and implies
that f 1 = f 2 as we wanted to show.
To conclude, consider arbitrary paths P i that carry

flow under hi for i = 1�2 for an arbitrary OD pair
k ∈ K. Because h1 is at equilibrium and hP 1 > 0,
lP 1�h1�+�P 1 ≤ lP 2�h1�+�P 2 = lP 2�h2�+�P 2 . This inequal-
ity together with the converse one proves that gener-
alized costs under both equilibria are the same. �

We note that similar results can be obtained using
the more general framework of variational inequali-
ties (Smith 1979; Dafermos 1980) if one uses a path
formulation as we have done here. In fact, the NCP

2 Concretely, hP ⊥ lP �h� + �P − wk means that when hP > 0 then
lP �h�+�P −wk = 0, and when lP �h�+�P −wk > 0 then hP = 0. Hence,
used paths have generalized cost equal to wk and paths with more
cost than wk are not used.

displayed in (1) is equivalent to the following varia-
tional inequality:

�lP �h� + �P �xP − hP�P∈� ≥ 0

for any feasible flow x� (2)

where � � �P∈� denotes the standard inner product in
����.
Finally, in the case of separable functions la�·� for

which the travel time on an arc a ∈ A depends only on
the flow fa on the same arc, the equilibrium problem
can be formulated as a convex optimization problem.
This approach was pioneered by Beckmann, McGuire,
and Winsten (1956) and consists of finding an objec-
tive function such that its first-order optimality con-
ditions match those that define the equilibrium (see
Altman et al. (2006) for a background on potential
functions). In this case, this is achieved by minimizing

∑
a∈A

∫ fa

0
la�z� dz + ∑

P∈�
�P hP (3)

over the space of feasible flows. Notice that (3)
includes both path- and arc-variables, which makes
the mathematical program exponentially large in the
worst case. The optimal solution of this convex pro-
gram verifies Definition 2.1, which implies that an
equilibrium always exists. Moreover, if travel time
functions are strictly increasing, the problem is strictly
convex and hence there is a unique equilibrium in the
space of arc-flows (although there may be multiple
decompositions into path-flows).

3. Specific Wardrop Equilibrium
Models with Uncertain
Travel Times

In this section we present three equilibrium models
that allow for uncertain travel times and risk-averse
users. To that effect, we incorporate explicit represen-
tations of uncertainty into the model introduced in
the previous section. The following three equilibrium
models provide solutions that incorporate uncertainty
in different ways. When users are risk-neutral, they
prefer to minimize expected costs. In that case, our
three solution concepts coincide with a nominal equi-
librium, which ignores the travel time variability. The
three models also coincide in the case of extremely
risk-averse users, because in that situation users con-
sider the maximum possible travel times for all arcs
and ignore the uncertainty as well. Between those
extremes, the solutions may be different, as illustrated
by the examples in §3.4.
Although users have arbitrary risk tolerances, we

consider that all users that belong to one OD pair
are homogeneous. This is without loss of generality,
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because we can group users in copies of the same
OD pair, according to their risk preferences. We will
consider users that are risk-neutral or risk-averse;
risk-seeking behavior could be also handled follow-
ing similar methods, but we do not do it here for
simplicity.
It is important to highlight that all users will experi-

ence the same travel time, as opposed to the assump-
tions of stochastic user equilibrium models, in which
each user extracts a different utility from the same
travel time. In practice, this is implemented with a dif-
ferent realization of a random variable for each user.
Our model of uncertainty represents the deviation

from the nominal travel time in each arc a as uaZa.
Here, Za is a random variable with expected value
equal to zero and support in �−1�1
, and ua ≥ 0 is
an upper bound on the maximum possible devia-
tion from the nominal value.3 Although we make no
assumptions on the distribution or its independence
from other distributions, the deviation on each arc is
assumed to be independent of the flow on the net-
work. This assumption fits some situations well and
is an approximation of reality in other cases (see §3.5
for a discussion on modeling assumptions). Overall,
the actual travel time experienced by all users that
selected arc a equals la�h�+zaua, where za is a realiza-
tion drawn from the distribution Za.

3.1. Percentile Equilibrium
One way to capture the risk tolerance of users is to
assume that they want to ensure that they arrive at
their destination on time. A risk-neutral user mini-
mizes the expected travel time, but a risk-averse user
prefers to consider a margin of error. Hence, she is
more likely to minimize a higher-than-50th percentile
of the experienced travel time. To capture this behav-
ioral assumption with the deterministic model intro-
duced in the previous section, we will let the padding
for paths be a percentile of the travel time. Indeed,
users of OD pair k traveling along a path P ∈�k will
set �P to a percentile of the total deviation from the
nominal travel time along P . The percentile level is
chosen according to the risk tolerance of the user; risk-
neutral users will choose the 50th whereas risk-averse
ones may, for example, choose the 90th. Behaviorally,
although users are unlikely to know the distributions
of travel times in each arc, they may have enough
experience in the network to determine the likelihood
of making it on time for each possible route. This
leads us to the following definition, which is based
on Definition 2.1.

3 The discussion below also assumes that Za is symmetric so the
50th percentile, that is, the median equals the mean, which is zero.
This property is only used to claim that a percentile equilibrium
equals a nominal equilibrium, but it is otherwise not required.

Definition 3.1. An �-percentile equilibrium is a
Wardrop equilibrium with uncertain travel times
where the padding along path P ∈ �k is set to �P =
G−1

P ��� and GP is the cumulative distribution function
of the deviation along path P given by the random
variable

∑
a∈P uaZa.

Under a percentile equilibrium, all users follow
paths that minimize the �-th percentile of travel time.
The results in §2 show that a percentile equilibrium
exists and is essentially unique. We note that although
users will experience a posteriori regret for any real-
ization of the uncertainty, if the description of the
uncertainty is accurate, the empirical �-th percentile
of the travel time on every used path P ∈ �k will
approach wk after enough time has elapsed. In other
words, even though the paths that are used may have
different distributions of travel time, users will expe-
rience the same percentile on the long run, causing no
long-term regret.
Computing this equilibrium, however, is consider-

ably difficult and not only because (1), (2), and (3)
consider path variables. To compute the percentile
one needs the full distributions along paths; this cal-
culation cannot be separated by arcs. If one assumes
that deviations in different arcs are independent of
each other, the distribution of the deviation on a given
path is equal to the convolution of all the random
variables along that path. Furthermore, computing a
shortest path with respect to percentiles is not easy
even under simplifying assumptions (such as with
normally distributed errors), as we explain in §1.1.
This difficulty makes developing an efficient column
generation procedure to compute the percentile equi-
librium a challenging task.
The next two sections propose computationally-

tractable models that are aimed at approximating per-
centile equilibria, because at least in principle it should
provide no regret for risk-averse users. As we shall
describe in §5, one of our criteria to evaluate flows will
be their similarity to a percentile equilibrium.

3.2. Wardrop Equilibrium with Added Variability
Uchida and Iida (1993) considered adding a safety
margin to the expected travel times on arcs to account
for user risk aversion. Although the standard devia-
tion of the travel time along a path does not separate
by arcs,4 this approach can be used as a crude repre-
sentation of the uncertainty of travel times in the net-
work. Percentiles of travel times along paths do not
separate by arcs and are not additive either, but we

4 The standard deviation of the travel time along path is not addi-
tive; in the case of independent errors, it equals the square root of
the sum of the variances of the travel times of the arcs along that
path. For this reason, the standard deviation of the sum of variables
is less than the sum of the standard deviations, situation normally
referred to as the risk diversification effect.
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shall see that solutions computed with this approach
provide reasonable approximations of percentile equi-
libria in some practical situations. Besides not taking
into account the risk diversification effect, the main
difficulty that prevents this method from being pre-
cise is that it is hard to incorporate arbitrary risk tol-
erances for different users.5 From the point of view
of information availability, a big benefit is that this
method does not require users to know the whole dis-
tribution of the travel times along paths; it is enough
that users know an estimate of the variability along
each arc. The formal definition of equilibria is based
on Definition 2.1 again.
Definition 3.2. A 
-added-variability equilibrium is

a Wardrop equilibrium with uncertain travel times
where the padding along path P ∈ �k is set to �P =∑

a∈P 
ua.
Here, the choice of the constant 
 depends

on the degree of risk aversion of users. When users
are risk neutral, one should choose zero, whereas
for extremely risk-averse users, 
 will be close to
one. From a computational perspective, computing
these equilibria has the same complexity as comput-
ing an equilibrium that ignores uncertainty, because
it is a standard (deterministic) Wardrop equilibrium
with respect to nominal travel times plus a constant
fraction of ua.

3.3. Robust Wardrop Equilibrium
Now, we introduce another model to approximate the
behavior of users that make decisions under uncer-
tain travel times. This model is more tractable than
computing a percentile equilibrium but more complex
than adding a fraction of the variability to all arcs.
The novel element about this approach is that users
use robust optimization to select robust shortest paths.
This means that users take a worst-case perspective
without being overly pessimistic and seek a short-
est path considering a reasonable estimate for the
maximum deviation of the travel time along paths.
Because it is unlikely that users face an extreme devi-
ation from nominal travel times in too many arcs, we
give users of OD pair k an uncertainty budget of �k.
We impose that the relative deviation from the nomi-
nal travel time is less than �k on any path. The budget
of uncertainty is meant to estimate the number of arcs
in which travel times can significantly deviate from
nominal values. Important factors that influence the
selection of �k are the risk preferences of users of that
OD pair and the average path length for that OD pair.

5 A possible way to implement arbitrary risk tolerances is to create
a copy of the network for each OD pair and to redefine costs to
depend on the total flow along all of the copies of the arcs. We
do not consider this possibility in this article because the computa-
tional study only considers separable instances.

For instance, the case of �k = 0 corresponds to risk-
neutral users, because they ignore uncertainty and
only consider the expected travel time. On the other
extreme, for extremely risk-averse users, we can con-
sider large values of �k that will make the model use
the worst-case realization of uncertainty on every arc.
Mathematically, a user traveling between OD pair k

decides the route by selecting the path that has the
best worst-case travel time. This amounts to solving
the following optimization problem:

min
P∈�k

max
z

{∑
a∈P

�la�h� + zaua��
∑
a∈P

�za� ≤ �k� −1≤ za ≤ 1
}

= min
P∈�k

max
z

{∑
a∈P

�la�h� + zaua��

∑
a∈P

za ≤ �k� 0≤ za ≤ 1
}

� (4)

where h is the flow that encodes the collective deci-
sions made by all users. Notice that the robust per-
spective assumes that each element za is a decision
variable and not a realization of random variable Za

as previously. Definition 3.3 says that a Wardrop equi-
librium is robust when all flow goes along robust
shortest paths.
Definition 3.3. A � -robust Wardrop equilibrium

(RWE) is a Wardrop equilibrium with uncertain travel
times where the padding along path P ∈�k is set to

�P �=max
{∑

a∈P

zaua�
∑
a∈P

za ≤ �k� 0≤ za ≤ 1
}

�

As with the previous two equilibria, all results in
§2 apply. Hence, a robust equilibrium exists and is
essentially unique. Note that deviations from nom-
inal travel times are measured in relative terms
because absolute deviations would lead to �P =
min��k�

∑
a∈P ua�. In that case, we either add the uncer-

tainty budget or add all uncertainties to the nominal
travel times along all paths. Both alternatives seem
to be of limited interest because users do not end up
using the information provided by the uncertainty to
select paths.
Robust equilibria and the solution method that

we describe can also accommodate more complicated
forms of travel-time uncertainty as long as it depends
only on the path and is not influenced by the flow.
For example, if the uncertain vectors belong to an
ellipsoid �z�

∑
a� b∈A zazbQab ≤ � 2

k �, then the worst-case
deviation on a path, as given by Definition 3.3, has
a closed form solution with optimal value equal to
�P = �k

√

T

P �Q�P �−1
P , where 
P = �ua�a∈P and Q�P is
the submatrix corresponding to path P .
After presenting a few examples that fit our model

of uncertainty, §4 discusses how such an equilibrium
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can be computed efficiently, and later on we study
how these three equilibrium notions compare with
each other.

3.4. Some Illustrative Examples
In this section we provide two examples that illustrate
the three equilibria under uncertainty defined earlier.
We start with a concrete application that fits the pre-
sented framework and then provide a stylized exam-
ple that will allow us to discuss some of the details
of the model.
While driving in cities, an important source of

uncertainty is waiting at traffic lights. The time until a
light changes to green can be modeled as a uniformly
distributed random variable. Notice that in this exam-
ple the waiting time is independent from the flow
because the random component is how long to wait
in the first cycle; the wait time associated with mul-
tiple full cycles is not as uncertain and thus is incor-
porated in the nominal travel time function. Under
this example, a percentile equilibrium considers per-
centiles of the total wait time during red lights, an
added-variability equilibrium considers a determin-
istic time for each traffic light equal to the expected
wait plus a fraction of its total time in red, and a
robust equilibrium considers that �k traffic lights will
have changed to red a moment before the arrival
whereas the rest are green. Here, the parameter �k can
be calibrated using that the number of red lights can
be approximated with a binomial distribution, if we
ignore green waves and correlations between cycles
times. This binomial would have the number of tri-
als equal the number of traffic lights on paths of OD
pair k and the probability equal to time in red over
the cycle time.
The following example consists of a simple instance

that is related to the classic Braess’ paradox network
(Braess 2005). The network has a single OD pair
�s� t�, connected by a direct arc, by a path with two

Figure 1 Equilibria for the Braess-Like Network
Note. Line widths are proportional to flows. Top left: nominal equilibrium (and 50th-percentile equilibrium). Top center: 90th-percentile equilibrium. Top right:
robust equilibria for � = 1�2�3. Bottom: added-variability equilibria for � = 0�25�0�32�0�375�0�5�0�625.

intermediate nodes �s� a� b� t�, and by another two
paths �s� a� t� and �s� b� t�, each of which skips one
node (see Figure 1 where the four nodes are located
on the horizontal line). The direct path �s� t� corre-
sponds to a safe (i.e., zero variability) but long high-
way between s and t. The other paths are composed of
arcs that represent local streets. Deviations from nom-
inal travel times in them are because of events such
as cabs stopping to pick up or drop off passengers,
cars that double park, deliveries to stores, emergency
vehicles, etc. Suppose that the uncertainty along paths
composed of local streets follows a uniform random
variable with support in �−���
. This assumption fits
the model introduced in §2 and makes it easy to
determine the percentile equilibrium. Because users
are risk averse, we are interested in a 90th-percentile
equilibrium. To compute it, we simply set �P = 0�8�

for paths composed of local streets, and �P = 0 for the
path consisting of only arc �s� t�.
Figure 1 shows the three types of equilibrium for

this instance. A nominal equilibrium does not make
use of the highway because it is too long, but a 90th-
percentile equilibrium makes use of all four paths
because the risk reduction justifies the extra dis-
tance to be traveled. To compute robust and added-
variability equilibrium, we need to create a model of
variability for arcs. A possibility is to set ua to a posi-
tive value for arcs with uncertainty (local streets) and
set u�s� t� = 0 (the highway). A reasonable choice is
to use the percentile of the travel time for the path
on the local streets that compose it. Indeed, in this
case the robust equilibrium for � = 1 coincides with
the percentile equilibrium because the resulting �P is
that of the percentile equilibrium in all paths. Added-
variability equilibria progressively shift flow from the
local streets to the highway when 
 increases. Doing
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binary search, we find that the value of 
 that makes
an added-variability equilibrium most similar to the
90th-percentile equilibrium is 0.32. Even in that case,
both solutions do not coincide.
Admittedly this example was constructed to illus-

trate that in some cases a robust equilibrium can
achieve what a added-variability equilibrium cannot.
Had we modeled uncertainties by setting ua as spec-
ified only in arcs incident to s and to zero otherwise,
the added-variability equilibrium would have also
coincided with the percentile equilibrium. As with
many other modeling problems, there are decisions
to be made and the accuracy of the model crucially
depends on these decisions. The following subsection
further discusses estimation and modeling issues that
can arise with this framework in applications.

3.5. Remarks on Calibration of Parameters and
Network Representation

In this section, we discuss some of the modeling deci-
sions that have to be made to use the proposed frame-
work. Given a network representation, the travel
time function for each arc is estimated according to
the geometry of the road (Bureau of Public Roads
1964). Travel time deviations from the nominal values
are reasonably easy to estimate by traffic authorities
because data sets that contain this kind of informa-
tion are routinely collected. This data could allow a
modeler to calibrate random variables Za for each arc
in the network. Estimating the travel time deviations
over paths, a necessity for computing a percentile
equilibrium, is considerably more difficult. A modeler
would have to consider the convolutions of arc devi-
ations over paths, possibly adjusted with the correla-
tions between different arcs, or even distributions for
end-to-end delay. Obviously, the latter is much harder
to collect but many emerging technologies such as
global positioning systems and mobile phone data are
promising alternatives.
A standard network representation would use arcs

and nodes to encode paths that serve demands. How-
ever, the same network could be represented by alter-
native encodings by simply subdividing an arc into
multiple parts. Percentile and nominal equilibria are
not affected by such a subdivision because the statis-
tics of the complete arc are unaffected. For this rea-
son, a modeler may have no reason to include a node
with exactly two incident arcs. However, in some cases
added-variability and robust equilibria are influenced
by these artificial subdivisions of arcs and by how the
variability parameter ua is set in the different com-
ponents that form the original arc. Indeed, although
maximum deviations are additive so—in theory—
subdivisions do not affect added-variability equilib-
ria, a modeler would approximate the maximum devi-
ation by a well-chosen percentile of the distribu-

tion of travel times in that arc. Because an added-
variability equilibrium ignores the risk-diversification
effect along paths, having more arcs makes this prob-
lem more severe. For the case of robust equilibria, hav-
ing more arcs will make the uncertainty less extreme
because the worst-case deviations will be diluted
among the additional subdivisions. In summary, both
of these models can be adversely influenced by adding
artificial subdivisions. Our recommendation is to start
with a representation of the network that does not
include subdivisions. After evaluating the quality
of the equilibrium solution, a modeler could try to
improve it by using subdivisions in certain arcs. For
example, highways are typically represented by arcs
that are much longer than local roads. This unbalance
can lead to underestimating the load along highways
because under robust equilibria, risk-averse users are
not likely to take a highway with a large worst-case
deviation. Adding subdivisions provides a mechanism
to reverse that effect and improve the fit with the mea-
sured flows.
Estimating the parameter �k for the robust equi-

librium model presents its own challenges, which
require the modeler to strike a balance between risk
aversion, the average path length, and how arcs are
subdivided. This parameter is harder to estimate than
the values that depend only on the network topology
because it also includes behavioral aspects. For exam-
ple, �k could be defined as a fraction of the average
number of arcs in paths connecting OD pair k, where
the fraction would depend on the characteristics of
the uncertainty and risk attitudes. Such a definition
should be complemented with a calibration of how
users react to uncertainty (see, e.g., Noland et al. 1998;
de Palma and Picard 2005). Using simulation a mod-
eler can test if the selected �k gives deviation estimates
that match the risk attitudes of the agents.
Let us link this discussion back to the examples of

§3.4. In the example concerning traffic lights, travel
time variabilities represented times until a green light.
In that case, it makes sense to include a node where
traffic lights exist, and to map the corresponding dis-
tributions of waiting times to those nodes. Hence,
there is no reason to add artificial subdivisions. To
select values of �k, recall the observation that the
number of red lights encountered follows a binomial
distribution. In the second example, we saw that the
choice of ua in each arc had an impact of the accuracy
of the added-variability equilibrium.
To conclude, it is important to highlight that mod-

els usually require refinements to adjust and calibrate
their parameters, much as it is done when estimating
OD matrices (Sheffi 1985). Our framework makes it
relatively easy to compute solutions and their corre-
sponding measures that quantify their resemblance to
a percentile equilibrium (see §5). If the approximation
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is poor, the modeler can iterate and adjust the differ-
ent elements until outcomes are acceptable. Section 6
provides an illustration of choosing solutions where
most users have low regret, meaning that most of
them are satisfied with the route they have chosen.

4. Column Generation Algorithm for
Computing RWE

This section focuses in the computation of robust
Wardrop equilibria (RWE). A central difficulty is that
the users’ objective function is not separable. Hence,
arc formulations are unsuitable and we have to resort
to path variables to solve the NCP shown in (1). This
section outlines an algorithm that finds a RWE with a
column generation scheme. To generate new columns
(variables), the algorithm solves a robust shortest path
problem at each iteration.
We follow the approach of Gabriel and Bernstein

(1997), who studied a column generation algorithm for
solving NCPs arising from network equilibrium prob-
lems with nonadditive costs. In each iteration, the col-
umn generation algorithm considers only a subset of
the possible paths and solves a restricted version of
the equilibrium problem. New paths are incorporated
as needed. For background and references on column
generation and simplicial decomposition algorithms
with a focus on network equilibria, we refer the reader
to Patriksson (1994) and the references therein.
The algorithm maintains an active set of paths � ′ =⋃
k∈K �

′
k that it works with, where � ′

k ⊆ �k. At each
step the algorithm solves the following NCP, also
referred to as the restricted master problem, to get an
equilibrium solution that only takes into account the
paths in � ′. In other words, we find a flow h and
minimum travel time vector w that solve

0≤hP ⊥ lP �h�+�P −wk ≥0 for all P ∈� ′
k� k∈K� (5)

Methods for solving this NCP are readily available in
the literature; see, e.g., Patriksson (1994), Nagurney
(1999), and Ferris, Mangasarian, and Pang (2001).
The termination condition for the column genera-

tion algorithm is to check that the equilibrium solu-
tion over the set � ′ given by the flow h is indeed at
equilibrium over the complete set of paths �. This is
verified when there is no path in �\� ′ that is shorter
than the corresponding generalized travel time wk for
the objective induced by h. In other words, given a
flow h, we solve the following shortest path problem
with nonadditive costs (but linear when formulated
in terms of paths):

v�h� �=min
{∑

P∈�
�lP �h� + �P �xP �

∑
P∈�k

xP = dk for k ∈ K�x ≥ 0
}

� (6)

Proposition 4.1. A flow h∗ is a RWE if and only if
v�h∗� =∑

P∈��lP �h∗� + �P �h∗
P �

Proof. The flow h∗ solves (6) for h = h∗ if and only
h∗ is the solution to the VI in (2). �

Algorithm 1 outlines the major steps of the col-
umn generation procedure. This algorithm finishes in
a finite number of iterations because in the process
of checking whether the candidate flow h∗ is a global
solution, we identify at least one new path to add to
the active set � ′ or we finish. Hence, in the worst case
we iterate until � ′ =�, which makes the problems in
Equations (1) and (5) identical. Note that in practice
the column generation algorithm converges in a small
number of iterations, and it need not enumerate all
paths, as it succeeds in quickly identifying the typi-
cally small number of paths used in the equilibrium
solution.

Algorithm 1 (Column generation)

1: Initialize: Add arbitrary paths to � ′
1� � � � �� ′

K .
2: Set h∗ = 0 and v�h∗� = −�.
3: while v�h∗� <

∑
P∈� ′�lP �h∗� + �P �h∗

P do
4: Solve the restricted master NCP in (5).

Let h∗ be the optimal solution.
5: Solve Problem (6). Let x∗ be the optimal

solution and v�h∗� be its value.
6: Add paths used in x∗ to � ′.
7: stop. The flow h∗ is a RWE.

4.1. Robust Shortest Path Problem
Gabriel and Bernstein (1997) point out that solving a
shortest path problem with nonadditive costs is a cen-
tral step in the column generation algorithm for net-
work equilibria. However, they simply mention that
the shortest path problem can be solved efficiently
because of the structure of the travel time function
without describing the procedure in detail. In this sec-
tion, we outline a procedure to solve the shortest path
problem for computing a RWE.
For a fixed flow h, (6) has a linear objective func-

tion. As there are no capacity constraints, we can solve
this problem by separating it by commodity. There-
fore, we can assume that there is an optimal solution
that sets xP = dk for exactly one path P ∈ �k for each
k ∈ K. What is left is to find the path P ∈ �k with
smallest lP �h� + �P for each k ∈ K. The major difficulty
of this problem is the exponential number of paths.
We avoid this complication by going back to arc vari-
ables and explicitly representing �P by a maximiza-
tion of additional auxiliary variables per arc. For each
k ∈ K, let us consider the feasible region Xk = �x ∈
�0�1�A�

∑
a∈N +�i� xa − ∑

a∈N −�i� xa = ri for i ∈ N�, where
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rsk = 1, rtk = −1, and ri = 0 otherwise. The problem in
question is

vk�h� �=min
x∈Xk

{
max

z

{∑
a∈A

�la�h� + zaua�xa�
∑
a∈A

za ≤ �k�

0≤ za ≤ 1 for all a ∈ A

}}
� (7)

As the maximum computes lP �h� + �P for the path
identified by x, we have that v�h� = ∑

k∈K dkvk�h�.
Note that the budget of uncertainty �k in this prob-
lem could be distributed across all arcs, whereas in
the robust network equilibrium model and in (6), only
deviations in the selected path are considered. Nev-
ertheless, (6) and (7) are equivalent because of the
integrality of x.
The problem represented in (7) is called the

robust shortest path problem, which was introduced by
Bertsimas and Sim (2003). As they suggested, by tak-
ing the linear programming dual, one can formulate
it as the following mixed integer program:

vk�h� = min
x∈Xk�y≥0� �≥0

{∑
a∈A

la�h�xa + ya + ��k�

� + ya ≥ uaxa for a ∈ A

}
� (8)

In addition, Bertsimas and Sim provide an algorithm
that solves the problem with �A� calls to a regular
shortest path routine with modified linear cost func-
tions. Indeed, the optimal solution for (8) satisfies ya =
max�uaxa −��0� =max�ua −��0�xa because xa ∈ �0�1�.
Substituting this in (8), it can be shown that the opti-
mal � will equal ua for some a ∈ A. With that, an opti-
mal shortest path is simply the minimum among all
shortest paths after solving for all � = ua with a ∈ A.

5. Evaluation of Wardrop Equilibria
with Uncertain Travel Times

Because travel times are uncertain and unknown to
users at the time when they make their routing deci-
sions, none of the equilibrium concepts that we con-
sider in this paper are necessarily at equilibrium with
respect to the realized travel times. Indeed, realized
travel times for different users corresponding to an
OD pair are typically not constant, as would be the
case in an actual equilibrium. We will, thus, consider
that an outcome is better when more users take paths
that they do not regret having taken. In addition, we
will also look at the variability of realized travel times,
which we will refer to as the unfairness. We shall
evaluate the solutions provided by the different equi-
librium concepts, and compare the summary statistics
of regret, unfairness, and travel times.

Inspired by the work of Roughgarden (2002) and
Jahn et al. (2005), we define the �-percentile regret, or
simply regret, of a user traveling along path P ∈ �k

to be the ratio of her �-percentile of travel time along
P to the minimum �-percentile over all Q ∈�k.6 This
definition allows us to consider the system as a whole
because different OD pairs become comparable. At
the system level, we get a distribution of regret com-
ing from the values experienced by different users.
Under an exact �-percentile equilibrium, the distribu-
tion of �-percentile regret collapses to the value one
with probability one because all users travel along
paths with minimal �-percentile of travel time. For
example, assuming that errors Za have symmetric dis-
tributions, the 50th-percentile regret equals one for all
users under a nominal equilibrium. When compar-
ing two solutions, we say that one is better if more
users experience less regret than in the other. Later
on, in our computational study, we will evaluate these
distributions for the different proposed solutions and
different values of �.
Besides looking at regret, we also aggregate the dis-

tribution of travel times along a path to all the users of
one OD pair. In this way, we can complement the pre-
vious measure with the study of the intrinsic variabil-
ity of a solution. Under an equilibrium with respect
to experienced travel times, all users would experi-
ence equal travel times. In practice, this equilibrium
is not implementable because users do not have the
ability to forecast travel times precisely. Following the
postulates for user behavior, a solution with smaller
variability will be considered closer to being at equi-
librium and provides another desirable objective for
a solution. This variability can be quantified using
the standard deviation, the interquartile range, or can
be estimated directly from the distributions of travel
time. Becasue this type of analysis is done for each
OD pair, we will only do it for instances with a small
number of OD pairs.
It is important to highlight that comparing magni-

tudes of travel times or their expected values across
different equilibria cannot be used to provide sup-
port for one equilibrium or another because users are
competing against each other and they are not cen-
trally controlled.7 We believe that users will gravi-
tate toward the more stable solution, which is the

6 Another possibility for the denominator is to use the minimum
�-percentile of travel time among used paths of OD pair k, instead
of among all paths. In this case, the ratio measures unfairness
among different users. Our choice is based on the available options
to a user but, in any case, outcomes are not significantly affected
because all of these values are highly correlated.
7 For example, consider the classic Braess’ paradox network (Braess
2005). At equilibrium, users take long paths although the system
(and the users) would be better off if all users took alternative
paths. The problem is that the alternative is not stable because users
would regret having taken the “good” path and would gravitate
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solution with less variability in travel times. In any
case, we also provide travel times statistics for each
solution that quantify their efficiency. The more inef-
ficient solutions are, the more incentive there is for
the system manager to try to encourage coopera-
tive behavior (e.g., by using some form of congestion
pricing).

6. Computational Results
The main goal of this section is to show how the
three models described in §3 relate to each other.
To that extent, we present computational experiments
that evaluate nominal, added-variability, and robust
equilibria and compare how close they are to being
percentile equilibria. We do not compute percentile
equilibria explicitly because that would require evalu-
ating all routes in the network and that is prohibitive
for networks with more than a few nodes. Although
not a requirement of the algorithm that computes
robust equilibria, we use a single uncertainty bud-
get � for all OD pairs to simplify the presentation
and to make it easier to provide insights from the
computational results.
Table 1 describes the instances solved by this com-

putational study. We note that we can solve these
instances, which range from small to moderately
sized, without difficulties. We first conduct experi-
ments on small artificial instances to generate intu-
ition. Next, we verify these findings on the Sioux
Fall and Friedrichshain instances, which are larger
instances inspired from real-world networks (Bar-
Gera 2002, Jahn et al. 2005).8 Note that all these
instances make use of separable travel time functions,
which allows us to compute equilibrium flows relying
on the convex optimization formulation of (3), instead
of having to solve NCPs. The travel time functions
in all these instances are defined by the widely-used
Bureau of Public Roads (BPR) functions (Bureau of
Public Roads 1964) which equal

la�fa� �= ta

(
1+ �a

(
fa

ca

)4)
� (9)

Here, ta is the free-flow travel time, ca is the capacity
and �a is the congestion factor corresponding to arc a.
We perform the computational study using the

algorithms described in §4 (the nominal and added-
variability equilibria are special cases). We use AMPL

back to the inefficient solution. In other words, the only solution in
which the regret for all users equals one is the stable but inefficient
equilibrium.
8 The instances used are available in the authors’ Web pages
(http://www.columbia.edu/�ns2224). In the interest of space we
present here a subset of the computational results obtained. We
created an online supplement to this article, also located in the
authors’ webpages, that contains additional solutions and figures.

Table 1 Problem Instances Used in the Computational Study

Instance Short
name name Source �V � �A� �K � �A� · �K � Trials

Grid network A, B, and C Grid· Ours 24 38 1 38 2,000
Sioux falls (simplified) SfS Ours 24 76 5 380 2,000
Sioux falls (complete) SfC TNTP 24 76 528 40 K 100
Friedrichshain Fri JMSS 224 523 506 265 K 300

Note. TNTP refers to an instance repository maintained by Bar-Gera (2002);
JMSS refers to a paper by Jahn et al. (2005).

(Fourer, Gay, and Kernighan 2002) to implement
the column generation procedure described by Algo-
rithm 1 and LOQO (Vanderbei 1999) to solve the
restricted version of (3). For the robust shortest path
problem, we solve the mixed integer program (8)
with CPLEX (ILOG 2005). The bottleneck of the
computation is performing the following simulation
procedure and to a lesser extent solving the restricted
master problem so we do not expect significant
changes in the running times had we implemented a
more efficient algorithm to solve the robust shortest
path problem.
To evaluate the descriptive statistics of regret,

unfairness, and travel times, we perform a Monte
Carlo simulation of the network. To get the real-
izations of deviations, we assume that the random
variables Za are uniformly distributed on its support
�−1�1
, independent of the uncertainty on other arcs.
The assumption of a uniform distribution is made for
simplicity; we have adopted some other distributions
for some limited tests without a qualitative change in
the results.
For a given solution h, we obtain empirical

distributions of travel times experienced by users by
repeatedly drawing random numbers za from Za that
represent the actual travel time deviations in that
trial. A user that selected a path P ∈ �k experiences
a travel time of

∑
a∈P �la�h� + zaua�. These realizations

of travel times allow us to compute good estimates
of percentiles of travel times for each path. Comput-
ing the ratio between percentiles and the smallest
among them, we get the the distributions of percentile
regret.9 In addition, we also get the distribution of
travel times for each OD pair by considering also
that a user selects a given path P ∈�k with prob-
ability hP /dk. The column “trials” in Table 1 shows
the number of repetitions done for each instance.
We performed a sensitivity analysis to determine the
number of trials that delivered accurate estimates
without making the simulations overly slow. For the

9 In practice, we can only estimate regrets approximately because
estimating them exactly requires enumerating all paths, which is
not tractable. We develop a heuristic that enumerates the paths that
are likely to minimize the �-percentile of travel time.
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Figure 2 Normal and Robust Equilibria of Instance Grid A
Notes. Left: Worst-case deviations ua. Center: Nominal equilibrium. Right: Robust equilibria for � = 1�3�5.

small instances we can quickly do 2,000 repetitions.
For instances SfC and Fri, we obtained an almost con-
stant 50th-percentile regret under a nominal equilib-
rium after the number of repetitions mentioned in
the table.

6.1. Grid Instances
Our first set of experiments studies six by four
grid networks with randomly generated uncertainty
parameters. We use small instances to describe the
methodology in more detail and to derive some
insights for the different equilibria that will carry over
to the more realistic instances presented later.
To study the effect of travel time variabilities, we set

all arcs equal in expectation but with random uncer-
tainty parameters ua. We use random values to ensure
that the results obtained are not because of a specific
input structure. Travel time functions are given by (9)
with ta = 19, ca = 100, and � = 1. We created three
instances, called GridA, GridB, and GridC, by choos-
ing the ua’s from independent, identical, and uniform
distributions for every arc a ∈ A (0 to 11, 3 to 14,
and 0 to 7, respectively). All these instances consider
a demand of 100 users from the lower-left node to
the upper-right node that form a single OD pair. For
example, the picture on the left of Figure 2 depicts the
topology and the variabilities of instance GridA. We
computed the robust and added-variability equilibria
corresponding to the three instances and the various
values of � and 
. For the most part, we present the
results for GridA, as results for the other two were
similar. The complete set of inputs and outputs for all
instances, including GridB and GridC, can be found
in the online supplement to the paper (see footnote 8).

Table 2 Summary Statistics of the Travel Time Distribution for Robust Equilibria

GridA GridB GridC

� 0 1 3 5 0 1 3 5 0 1 3 5

Mean 156�0 158�8 165�5 167�0 157�5 158�0 163�1 165�2 157�0 158�2 161�2 161�3
Stdev 11�5 11�3 10�3 10�0 10�6 10�0 9�8 11�4 4�85 4�35 4�43 4�42
Unfairness 1�276 1�259 1�226 1�223 1�247 1�223 1�214 1�251 1�108 1�096 1�098 1�098

Note. The column “unfairness” represents the variability of the middle 90% of observations, computed as 95th percentile / 5th percentile.

Figure 2 also presents the solutions corresponding
to nominal and robust equilibria for some values of � .
Under a nominal equilibrium, the flow is uniformly
distributed across the grid because all arcs have the
same expectation and this solution disregards travel-
time uncertainty. The three solutions on the right cor-
respond to robust equilibria for increasing values of � .
The more attention users pay to uncertainty, the less
they tend to use arcs with highly uncertain travel
times. Table 2 complements these outputs by present-
ing summary statistics of travel times, which were
computed using the simulation procedure previously
described. It can be seen from the table that users
tend to take longer paths instead of uncertain ones.
This results in a higher mean but smaller variability.
Indeed, we can see that for values of � around three,
the variance tend to be smallest. The column “unfair-
ness” represents the gap between the 95th and the
5th percentile of the travel times. The value for GridA
when � = 3 is 1.226, down from 1.276 obtained for
the nominal equilibrium. This represents a reduction
of 1− �1�226− 1�/�1�276− 1� ≈ 18%. (The reduction is
with respect to the lower bound, which equals one.)
In addition, the standard deviation is reduced approx-
imately 10.5%. The effect in GridC is less significant
than in the others because there is much less variabil-
ity in that instance.
Because all users have the same risk preference

and all paths are eight arcs long, one can expect that
added-variability equilibria approximate percentile
equilibria. Figure 3 depict these equilibria, which
resemble those in Figure 2 on the aggregate level. We
will next further analyze both classes of equilibria.
Figure 4 shows the travel time distributions for the

various equilibria. These distributions complement
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Figure 3 Added-Variability Equilibria of Instance GridA for � = 0�25�0�5�0�75�1
Note. The case of the nominal equilibrium coincides with � = 0 in Figure 2.
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Figure 4 Cumulative Distribution Functions of Travel Time for the Robust (Left) and Added-Variability (Right) Equilibria of Instance GridA

the conclusion drawn from Table 2: when users are
risk averse, the average travel time increases (curves
are shifted to the right) but variability decreases
(curves are steeper). For example, Figure 4 says that
for the nominal equilibrium, around 50% of the time,
a user will experience a travel time of 155 or less. For
the robust equilibrium with � = 3, the corresponding
probability is approximately 20%.
Because all these outputs are quite similar, which

makes them hard to compare at the aggregate level,
Figure 5 displays the distributions of regret for the
solutions we computed. Each graph compares various
solutions for a fixed percentile level. Notice that these
graphs are piecewise constant because all flow taking
the same path is indistinguishable and will experience
the same regret. As expected, under a nominal equi-
librium users have an almost constant 50th-percentile
regret equal to 1.10 A priori there is no reason to
expect that any of the other distributions shown in
these graphs is vertical because robust and added-
variability equilibria do not explicitly compute any
percentiles. However, many of them show a low value

10 The distribution is not exactly vertical because the empirical 50th-
percentile travel time of some users is slightly higher than the
minimum possible. This deviation is attributable to sampling error
arising from the Monte Carlo simulation.

of regret for most users. The graphs provide evi-
dence that more risk aversion calls for larger values of
� or 
. Indeed, there is a strong correlation between
the steepest distribution in a graph and the percentile
level used to generate the graph. The conclusion is
that appropriate parameters lead to a solution close to
a percentile equilibrium. The proposed models handle
uncertainty in a way that prevents risk-averse users
from taking routes that can prove too long with high
probability.
To capture the insights provided by Figure 5, Fig-

ure 6 presents the mean and the standard deviation
of regrets for different percentile levels. The figure
shows which robust model should be used for a cer-
tain risk profile. The percentile levels that correspond
to the minima in these curves are increasing with � .
For instance, one should use � = 0 for percentile levels
less than 70th, � = 1 for levels between 70th and 95th,
and � = 3 for levels higher than 95th. A similar obser-
vation can be made for added-variability equilibria.

6.2. Sioux Falls Instance
The instance Sioux Falls is a well-studied network
in the transportation literature that is available at a
repository managed by Bar-Gera (2002). The graph on
the left of Figure 7 shows a representation of the Sioux
Falls network. Because links are bidirectional, we rep-
resent each one with a pair of opposing arcs. Sioux
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Figure 5 Distribution of Regret for Instance GridA
Note. Top: Robust equilibria. Each graph contains the curves for various values of � and a fixed percentile level. Bottom: Added-variability equilibria. Each
graph contains the curves for various values of � and a fixed percentile level.

Falls also uses BPR travel time functions. The original
instance uses the standard � = 0�15; for the modified
instance that we describe in the next section, we set
� = 1 so the flow levels have a larger impact on travel
times.
Because the original Sioux Falls instance does not

contain any uncertainty parameters, we created artifi-
cial travel time uncertainty parameters ua. The graph
on the right of Figure 7 shows these parameters.
Because longer arcs tend to have more uncertainty,
we set ua proportional to the free-flow travel time for
most arcs. Typically the downtown area of a city is
more congested as more cars use metered parking,
enter and exit parking lots, look for parking places,
there are more cabs that stop or circulate slowly, etc.
We can thus argue that because of the larger num-
ber of random events that can affect traffic, travel
times in downtown tend to be more uncertain than in
the periphery. We arbitrarily labeled the Sioux Falls’
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Figure 6 Mean and Standard Deviation of Percentile Regret for Robust Equilibria of Instance GridA
Note. Each curve represents a different value of � .

downtown as the vicinity of nodes 10, 16, and 17 and
correspondingly assigned higher uncertainty values
to arcs between those nodes. Similarly, we assigned
medium uncertainty values to arcs in the proximity
of that first group with the intention of modeling a
transition area. The second group is composed of arcs
between nodes 6, 5, 4, 11, 14, 15, and 19.

6.2.1. Sioux Falls with Simplified Demands. In
this section we use a simplified version of Sioux Falls,
referred to by SfS, that we generated by considering
five artificial OD pairs. The purpose of this simplifica-
tion is to analyze the OD pairs one by one to develop
insights for the trade-offs and benefits of robust equi-
libria. In §6.2.2, we present the results for the original
Sioux Falls instance with all 528 OD pairs, referred to
by SfC.
The five OD pairs we created are ��1�19��

�13�8�� �6�21�� �12�18�� �4�17��. We selected these five
OD pairs so destinations are sufficiently far from
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Figure 7 Sioux Falls Instance
Notes. Left: Network description. Labels represent node and link numbers. Right: Worst-case deviations ua.

sources to ensure that, for large values of � , the robust
equilibrium is not obtained by simply adding ua to
all arcs. Figure 8 shows the nominal and some of
the robust equilibria; at the aggregate level, solutions
for other values of � are similar so we omit them.
Robust solutions tend to make more use of arcs in the
periphery as they have low uncertainty whereas less
flow is routed along arcs close to the downtown area.
As an example take arc �10�17� whose travel time is
very uncertain. In the nominal solution, much of the
flow with final destination 17 gets routed through it.
Instead, the robust solution with � = 1 prefers routes
along arc �16�17�, whereas those with larger � rather
use the detour �19�17� because �16�17� also has a
large uncertainty.

Γ = 0 Γ = 1 Γ = 5

Figure 8 Nominal and Robust Equilibria of Instance SfS for � ∈ �1�5�

The graphs on the left of Figure 9 summarize these
solutions by showing the cumulative probability dis-
tributions of total travel time for each OD pair. In
those graphs, it can be seen how the risk aversion
influences the equilibrium outcomes for the different
OD pairs. Depending on the OD pair, robust solutions
can have cumulative distributions that are similar to
(second and third graphs in Figure 9 and the one not
displayed by Figure 9), that dominate (fourth graph),
or that are dominated by (first graph) those of the
nominal equilibrium. As an example, let us explain
the effect in the fourth graph. The corresponding
OD pair goes to node 17, in downtown. Because arcs
close to downtown have large ua, the travel time of
this OD pair has a large variance. For larger values of
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Figure 9 Travel Time Under Robust Equilibria of Instance SfS for Different Values of � .
Notes. Left: Cumulative distribution functions. Each graph depicts a different OD pair. One OD pair is not displayed because the curves corresponding to
different values of � are indistinguishable and very similar to the second picture. Right: Change in expected travel times of robust equilibria with respect to
those under a nominal equilibrium.

� the rerouting to arcs that are less variable achieves
a smaller variability overall as evidenced in the dis-
tribution. Notice that one curve is to the right of the
other does not say that the solution is or is not closer
to an equilibrium; it just says that if travelers were
controlled by a centralized coordinating agency, they
would prefer that curve. Because users in a trans-
portation network are not coordinated, we compare
the realized travel time of a user to either the per-
ceived utility she may have experienced had she acted
differently (regret) or to the realized travel time of
another user in the same situation (unfairness).
The graph on the right of Figure 9 presents the

change between expected travel times in a robust
solution and those in the nominal equilibrium. The
graph is also piecewise constant because all users
of the same OD pair are indistinguishable, making
them experience the same distribution of travel times.
Note that each curve is sorted independently to make
them nondecreasing, and this means that users along
each curve are not in one-to-one correspondence. For
example, looking at the curve corresponding to � = 5,
for some users there is a 14% reduction in the aver-
age travel time compared to the nominal equilibrium,
for some there is small reduction of around 1%, and
for the rest there is an increase of between 4% and
13%. For � = 1, the changes are milder, between −6%
and 3%.
The top row of Figure 10 plots the distributions

of regret for robust equilibria of instance SfS. As
expected, we see that the steepest curve in the graph
corresponding to the 50th percentile is that of the

nominal equilibrium. The robust equilibrium with
� = 1 dominates the graph corresponding to the
90th percentile, and almost dominates for the other
percentile levels (competing with � = 0 and 3 respec-
tively). The conclusion, which agrees with the find-
ings for the Grid instances, is that more risk aversion
calls for using higher values of � .
The bottom row of Figure 10 shows similar graphs

for added-variability equilibria. Looking again at the
steepest curves in each graph, some of these solutions
seem to be good approximations of percentile equi-
libria. As it happened for robust equilibria, more risk
aversion calls for using higher values of 
. A differ-
ence between the solution concepts is that although
for robust equilibria the solution with � = 1 seemed
to be quite good for the different levels of risk aver-
sion (80th, 90th, and 98th), the best solution among
added-variability equilibria is more sensitive to the
risk aversion of the users (but that of 
 = 0�5 is quite
good).

6.2.2. Sioux Falls Complete. Now we turn to the
original Sioux Fall instance with the original demands
consisting of 528 OD pairs. The picture on the left of
Figure 11 shows the robust equilibrium correspond-
ing to � = 1. Robust equilibria for other values of �
and added-variability equilibria are omitted because
the aggregated flows look alike, despite differences in
their path compositions. These differences are easier
to visualize through other pictures. The uncertainty
of travel times produces a similar effect on the flows
as those noted for the simplified instance, although
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Figure 10 Distribution of Regret for Instance SfS
Note. Top: Robust equilibria. Each graph contains the curves for various values of � and a fixed percentile level. Bottom: Added-variability equilibria. Each
graph contains the curves for various values of � and a fixed percentile level.

these effects are more difficult to appreciate in the fig-
ure because of the interactions between all different
OD pairs. We will not provide a user-by-user analysis
of the empirical distribution as we did before because
the quantity of OD pairs makes it prohibitive. Instead,
we focus on aggregate measures and compare them
across solutions.
The picture on the right of Figure 11 presents the

change in expected travel time between a robust solu-
tion and the nominal one. (This graph is equivalent to
that on the right of Figure 9.) This graph shows that
slightly less than half of the users are better off and
slightly more than half of the users incur in a longer
expected travel time. These graphs suggest that robust
solutions are somewhat similar with each other. The
likely explanation is that nodes of many OD pairs are
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Figure 11 Solution to Instance SfC
Note. Left: Robust equilibrium for � = 1. Right: Change in expected travel times of robust equilibria with respect to those under a nominal equilibrium

close to each other, hence there are not many alterna-
tive paths that users can realistically consider. Hence,
most of the effect of robust solutions is observed when
increasing � from zero to one. This is confirmed by
the distributions of percentile regret shown in the first
row of Figure 12. Notice that the axis of the cumula-
tive probabilities starts at 0.7 to facilitate the visual-
ization of the curves. Indeed, more than 70% of the
users are taking shortest paths with respect to any
percentile of travel times and for any of the solutions
we computed. For the rest of the users, robust equi-
libria balance the percentile regret corresponding to
the risk tolerance of the users.
The bottom row of Figure 12 presents the regret

distributions for added-variability equilibria. As for
the simplified version, this method also approxi-
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Figure 12 Distribution of Regret for Instance SfC
Notes. Top: Robust equilibria. Each graph contains the curves for various values of � and a fixed percentile level. Bottom: Added-variability equilibria. Each
graph contains the curves for various values of � and a fixed percentile level.

mates quite well a percentile equilibrium. Compar-
ing both rows in the figure, we see again that
although the robust equilibrium with � = 1 is the
best approximation to percentile equilibrium for all
percentile levels, the best added-variability equilib-
rium solution is somewhat sensitive to the percentile
level.

6.3. Friedrichshain Instance
The most realistic instance we have considered,
referred to as Fri, represents an area of Berlin called
Friedrichshain. This network, shown on the left of
Figure 13, was first presented in Jahn et al. (2005).
Even though it is an order of magnitude larger than
the previous ones, we can still solve the robust equi-
librium problems without any difficulties albeit the
exponential number of paths in the network. The net-
work consists of 224 vertices, 523 arcs, and 506 dif-
ferent OD pairs. Free-flow travel times and capacities

Figure 13 Solution for Instance Fri
Note. Left: Worst-case deviations ua. Right: Robust equilibrium for � = 1.

were provided by Daimler Chrysler, and � in the BPR
travel time functions was set to the standard value of
0�15. As the original data did not include uncertainty,
we set ua equal to 50% of the free-flow travel time
for each arc a ∈ A because longer arcs tend to have
more variability. On the right of Figure 13, we show
the robust equilibrium corresponding to � = 1, which
is the one closer to being a percentile equilibrium, as
shown below. We omit the other solutions because
they are almost indistinguishable from this one at the
aggregate level.
The top row of Figure 14 shows the distributions

of regret for robust equilibria, whereas the one in the
bottom shows those of added-variability equilibria.
Notice that, as before, the vertical axes of these graphs
start at 0.6 because approximately 70% of the users
travel along shortest paths with respect to the cor-
responding percentile of travel times. As the figure
shows, added-variability equilibria for this instance
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Figure 14 Distribution of Regret for Instance Fri
Note. Top: Robust equilibria. Each graph contains the curves for various values of � and a fixed percentile level. Bottom: Added-variability equilibria. Each
graph contains the curves for various values of � and a fixed percentile level.

are all dominated by the nominal equilibrium. Instead,
the robust equilibrium corresponding to � = 1 dom-
inates all the other curves for percentiles larger than
50. Hence, that solution is the best approximation to a
percentile equilibrium for the case of risk-averse users.
Figure 15 shows that the robust equilibrium for

� = 1 supports shorter travel times for approximately
a third of the users and longer ones for approxi-
mately 20% of them. The magnitude of the changes is
around 5% in different directions for both groups. Val-
ues of � equal to three or five provide solutions that
are more at disequilibrium for all percentiles and that
are more inefficient because half of the users travel
significantly longer. The regret under those solutions,
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Figure 15 Change in Expected Travel Times of Robust Equilibria
of Instance Fri with Respect to Those Under a Nominal
Equilibrium

albeit better than that of a nominal equilibrium, is
worse than in the case of � = 1.

7. Conclusions
Because the actual conditions of a networked sys-
tem are subject to unforeseen events or influences,
planners that want to predict user behavior should
consider the existence of some degree of travel time
uncertainty. The models of equilibrium under uncer-
tainty that we have introduced allow the planner
to incorporate some of the effects that this uncer-
tainty may have on the route choices. We have shown
through an extensive set of simulations that well-
chosen robust and added-variability equilibria can
approximately balance the duration of the trips with
their variability, thereby diminishing the regret suf-
fered by travelers. In all the instances considered in
the computational study of §6, an optimal choice (or
at least one of the best) when users are risk averse
was to consider a robust equilibrium for � = 1. Larger
values of � were not useful in improving the per-
centile regret for our set of instances because users
become too pessimistic for the sizes of those net-
works and the distributions of travel times. It is
likely that one needs to consider larger values of �
for larger instances than those we have studied. We
have provided some evidence that more risk aver-
sion necessitates higher values of � when consider-
ing robust equilibria and higher values of 
 when
considering added-variability equilibria. Robust equi-
libria with � = 1 tend to provide solutions with low
regret for multiple percentile levels whereas the solu-
tion with lowest regret among added-variability equi-
libria seems to be more sensitive to the percentile level
chosen.
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The computation of added-variability equilibria has
the same complexity as computing an equilibrium that
ignores uncertainty because it is a standard (deter-
ministic) Wardrop equilibriumwith respect to nominal
travel times plus a constant fraction of ua. Although
computing robust equilibria is more difficult than that,
we have provided evidence that they can be com-
puted in practice for instances of moderate size using
a column-generation algorithm. In fact, in our experi-
ence the bottleneck of our computations was generat-
ing the samples used in determining the regret and not
computing the flows at equilibrium. We leave the effi-
cient computation of percentile equilibria as an open
problem.
Although in some cases travel times in an equilib-

rium under uncertainty are smaller than in a nominal
equilibrium, we have seen that this is not true in gen-
eral. When users are risk averse, they may feel com-
pelled to select detours that are longer in expectation
but that have smaller variability. The fact that travel
times increase does not validate or invalidate the
equilibrium assumptions. If anything, this may indi-
cate that risk averseness may drive equilibria even
further away from a system-optimal operating point
than it was believed. Actually, recent research focuses
in finding the extent of the inefficiency of equilib-
ria in the deterministic Wardrop model (Roughgar-
den and Tardos 2002). Related to this, Bertsimas and
Sim (2003) studied the tradeoff between the degree of
robustness and efficiency. A topic of future research
that relates to the model we have proposed is to study
the relation between the degree of risk aversion and
the quality of the resulting equilibrium. Finally, the
network equilibrium model considered in this work
assumes that there is an infinite number of users (i.e.,
the game is nonatomic) and that the demand is deter-
ministic. Relaxing these assumptions is also left for
future research.
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Appendix A. Pricing Mechanism for
Equilibria with Uncertain Travel Times
In 1952, William Vickrey, winner of the Nobel Prize for Eco-
nomics, recommended that users of a transportation sys-
tem pay tolls to achieve a more desired overall usage of
the network. Indeed, a system planner can use tolls to
make users internalize the congestion externalities they pro-
duce (Bergendorff, Hearn, and Ramana 1997). In this way,
the resulting equilibrium will match the socially desirable
solution because users will take the toll into account when

making their route decisions. It is well known that a fully
efficient outcome can be achieved for Wardrop’s user choice
model by charging tolls equal to the marginal cost under a
socially optimal solution. Independently, Yang and Huang
(2004) and Fleischer, Jain, and Mahdian (2004) extended
these ideas to the case of users with heterogeneous values of
time. They characterize the aggregate flows that are enforce-
able using tolls, and offer a method to compute those tolls
through linear programming duality (see Marcotte and Zhu
(2009) for a recent treatment on this research).

We now discuss how the approach of Fleischer, Jain, and
Mahdian (2004) can be used to show that tolls that induce
optimal flows exist for the case of the solution concept
introduced in §2. This approach also provides a method to
compute these tolls. A given aggregate flow g is said to
be minimal if the constraints (10b) are tight for every a ∈ A
under an optimal solution to the following linear program:

min
h

∑
P∈�

lP �g�hP (10a)

s.t.
∑

a∈P∈�
hP ≤ ga a ∈ A (10b)

∑
P∈�k

hP = dk k ∈ K (10c)

hP ≥ 0 P ∈�� (10d)

Fleischer, Jain, and Mahdian (2004) extend the previous
formulation for the case of heterogeneous values of time
and show that g is enforceable if and only if it is minimal
(Theorem 3.1). The tolls necessary to obtain g turn out to
be the optimal dual variables corresponding to (10b). This
implies that tolls that lead to a socially optimal solution can
be easily computed, extending what was already known for
settings with a single value of time (Corollary 3.3).

The idea of using the dual variables corresponding to
(10b) as tolls also works in the framework of uncertain
travel times of the form lP �·� + �P . The target flow depends
on the model of uncertainty used by the system planner,
which may be different from the users’ because of differ-
ent information availability. We consider two cases: (a) the
planner has perfect information and thus aims to enforce
the socially optimal flow, and (b) the planner has its own
model of uncertainty for the whole network and aims for
a robust social optimum flow. Regarding (a), a social opti-
mum is defined as a solution to the following nonlinear
program:

min
∑
P∈�

lP �h�hP

s.t.
∑

P∈�k

hP = dk k ∈ K

hP ≥ 0 P ∈��

The case (b) generalizes (a) by allowing the system planner
to consider uncertain travel times, although not necessar-
ily the same uncertainty as the users. Indeed, the system
planner represents the travel time uncertainty vector � as
nonnegative deviations from a nominal travel time that sat-
isfy aggregate correlation conditions �⊆�m

≥0. For example,
� can be defined as the set such that the total deviation
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is bounded by � , in a similar fashion as we did for the
robust equilibrium model (although we highlight that the
total deviation considers all arcs in the network whereas in
the robust equilibrium model it considered � arcs in each
path). The robust social optimum is a solution that has min-
imal worst-case cost:

min
h

max
�

{∑
P∈�

(
lP �h� +∑

a∈P

�a

)
hP � � ∈�

}

s.t.
∑

P∈�k

hP = dk k ∈ K

hP ≥ 0 P ∈��

Modifying Problem (10) by making the objective function
use travel time functions lP �·� + �P , it is possible to show
that both the social optimum and the robust social optimum
defined above are enforceable with tolls. One must show
first that that if these solutions do not turn out to be min-
imal, they could be reduced to make them minimal. Then,
one can show that the optimal dual variables corresponding
to (10b) provide the tolls that are needed to enforce these
two solutions. We summarize the statements of these results
in the propositions below.

Proposition A.1. The social optimum is enforceable with
tolls when users follow the equilibrium model with uncertain
travel times.

Proposition A.2. The robust social optimum for an arbi-
trary uncertainty set � is enforceable with tolls when users follow
the equilibrium model with uncertain travel times.

The tolls necessary to enforce a minimal flow h∗ are given
by the optimal dual variables to (10b) for the modified ver-
sion of (10). The dual problem is as follows:

max
t��

∑
k∈K

�kdk − ∑
a∈A

f ∗
a ta (11a)

s.t. �k ≤ lP �h∗� + �P +∑
a∈P

ta P ∈�k� k ∈ K (11b)

ta ≥ 0 a ∈ A� (11c)

where the dual variables are ta for a ∈ A and �k for k ∈ K.
This is a linear program with a large number of constraints,
one for each possible path in �. This problem can be solved
with a constraint generation algorithm that considers a sub-
set of paths at each iteration. Letting �t��� be the optimal
dual variables, one can solve a shortest path problem SP�h�

with travel time functions given by lP �h� + �P + ∑
a∈P ta to

find if there is a path that violates any constraint (11b). If
such a path exists it is added to the restricted master prob-
lem and the next iteration starts. Otherwise, when no violat-
ing path can be found, the current dual solution is optimal.
We implemented this algorithm with AMPL and CPLEX
and it obtained optimal taxes for all the instances that were
described in §6.
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