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CONVEX BACKORDERS OF A RATIONING INVENTORY POLICY
WITH TWO DIFFERENT DEMAND CLASSES
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Abstract. We study the constant critical level policy for fast-moving items of an inventory system
facing random demands from two customer classes (high and low priority). We consider a continuous
review (Q, r, C) policy with continuously distributed demands. Using the properties of the nondecreas-
ing stationary stochastic demand and the threshold clearing mechanism we formulate a convex cost
minimization problem to determine the optimal parameters of the critical level policy, which can be
optimally solved through KKT conditions. For instances we tested, computational results show that
the critical level policy induce a benefit on average 5.9% and 33.5% against the round-up and separate
stock policies respectively.
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1. Introduction

Fast moving-items are products that have either a high demand volume, or items with high inventory turnover.
Examples include non-perishable food, toiletries, over-the-counter drugs, cleaning supplies, building supplies
and office supplies. The distribution channels of these products have been concentrated to large retails chains
that require a high level of service in terms of product availability at the supplier’s expense. Therefore, many
wholesalers segment their customers based on service levels, where the simplest segmentation is to classify
customers into two demand classes: (i) high-priority class that corresponds to large retail chains that require
high levels of service and; (ii) low-priority class that corresponds to smaller retailers that can be provided with
a lower level of service.

An efficient way of providing differentiated service levels is through a critical level policy. This policy is an
inventory control model for rationing inventory between different classes of customers, where its main application
is in inventory systems that must provide differentiated service levels to two or more classes of demand. This
policy can be implemented for several ordering and review policies. For example, a traditional (Q, r) model is
extended using a critical level policy to a (Q, r,C) inventory model, where Q is the fixed lot size, r is the reorder
point and C := {C1, . . . , Cn−1} denotes a set of critical levels for rationing n classes of demand, i.e., when the
on-hand inventory reaches the level Ci fails to satisfy the demand for class i with i = 1, . . . , n−1 [1,5,15,10,12,18].
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pablo.escalona@usm.cl
2 Department of Industrial Engineering, Universidad de Chile, República 701, Santiago, Chile.

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2016029
http://www.rairo-ro.org
http://www.edpsciences.org


360 P. ESCALONA ET AL.

Let us now consider the implementation of a critical level policy for fast moving items. For these items, it is
usually more convenient and efficient to model the demand over a time period with a continuous distribution,
e.g., normal or gamma distributions [2, 13, 14]. To the best of our knowledge, only Escalona and Ordóñez [7]
have analyzed the constant critical level policy when the demand volume is large, while previous works only
considered the case of discrete demand, in particular Poisson distributed demand, which is the appropriate form
in which to model the demand of slow-moving items. Our work is different to Escalona and Ordóñez [7] because
we consider a cost optimization problem with differentiated shortage costs.

The objective of this paper is determine the optimal parameters of a continuous review (Q, r, C) policy for
fast-moving items when an inventory system faces random demands of two customer classes (high and low
priority), and where backorders have different penalty costs for each demand class.

Assuming the critical level policy as the inventory control strategy, and using the properties of the non-
decreasing stationary stochastic demand and the threshold clearing mechanism to allocate backorders when
multiple outstanding orders exist, we obtain convex backorders for each class in steady state. This approach
allows us to formulate a convex cost minimization problem to determine the optimal parameters of the critical
level policy, which can be solved through a system of equations derived from Karush−Kuhn−Tucker (KKT)
conditions (see [3]).

The main contribution of this paper is that we model and solve a critical level model when demand is
modeled through continuous distributions and backorders are penalized with differentiated costs. Furthermore,
we develop expressions for backorders of each class and we demonstrate its convexity.

The remainder of this paper is structured as follows. A review of related work is discussed in the following
section. In Section 3 we describe the context in which the inventory system operates and present the cost
optimization problem analyzed in this work. In Section 4 we prove the convexity of the backorders of both class
demand. In Section 5 we propose a system of equations to determine the parameters of the critical level policy.
We present our numerical experiments to evaluate the performance of the critical level policy with respect to
the separate stock and round-up policies in Section 6. Section 7 presents our conclusions and future extensions
to this work.

2. Related work

A comprehensive review of inventory rationing can be found in Kleijn and Dekker [9]. These authors classified
inventory systems that were subjected to multiple classes of demand based on review policies (continuous and
periodic) and the number of classes (2 or n classes). The above classification was extended by Teunter and
Haneveld [17], who incorporated shortage treatment (backorder or lost sale), rationing policies (no-rationing,
static, dynamic), ordering policies and the way that time is modeled (discrete or continuous).

In this paper, we classify the inventory rationing problem with a continuous review policy based on the
problem type for determining the optimal parameters of the critical level policy, i.e., a cost optimization problem
or a service level problem. The first group minimizes the sum of the ordering cost, the holding cost, and
depending on the shortage treatment, the backorders cost and/or lost sales costs. The second group minimizes
the expected on-hand inventory subject to service level constraints. Depending on the operating conditions
defined for the inventory system, what varies is the formulation of the on-hand inventory value and the service
level provided to each class. Clearly, some papers may not be assigned to this classification because their aim was
not to determine the optimal parameters of the critical level policy, or because they had a hybrid formulation.
In this sense, Nahmias and Demmy [12], that were the first to study the continuous review policy with two
demand classes, did not determine the optimal parameters of the critical level policy, but instead developed
an approximate expression for the expected amount of backorders per cycle for both demand classes when
there was at most one outstanding order. They assumed a continuous review (Q, r, C) policy, Poisson demand,
full-backorders and a deterministic lead time.

From the literature review conducted by Melchiors et al. [10], Isotupa [15], Deshpande et al. [5] and Fadiloglu
and Bulut [8], these authors used a cost optimization approach to determine the optimal parameters of the
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critical level policy. Melchiors et al. [10] analyzed a (Q, r, C) inventory model that had a deterministic lead
time and two demands classes, but unlike Nahmias and Demmy [12], they considered a lost sales environment.
They assumed a Poisson demand and used the hitting time and renewal theory to operationally characterize
the inventory system. Isotupa [15] presented a model with the same assumptions as Melchiors et al. [10] but
with an exponentially distributed lead time. Deshpande et al. [5] analyzed the same rationing model as Nahmias
and Demmy [12], but without restricting the number of outstanding orders. They derived expressions for the
average backorders per cycle, and for the expected steady-state on-hand inventory and backorders. Based on
these expressions, Deshpande et al. [5] proposed a cost optimization model and developed algorithms to compute
the optimal parameters of the critical level policy. Fadiloglu and Bulut [8] examined a dynamic rationing policy
with a continuous review (Q, r) inventory model that had a Poisson demand and a deterministic lead time. The
authors used simulation-based approaches to find efficient solutions to cases with backordering and lost sales.

From the literature review conducted by Dekker et al. [4], Arslan et al. [1],Wang et al. [19], Möllering and
Thonemann [11] and Escalona and Ordóñez [7], these authors used a service level problem approach to determine
the optimal parameters of the critical level policy. Dekker et al. [4] analyzed the critical level policy when the
inventory system worked under a continuous review of lot-for-lot policy, lost sales and Poisson demand. These
authors derived expressions for the fill-rate, and presented an efficient method to obtain optimal solutions.
Möllering and Thonemann [11] analyzed a periodic review base-stock policy with two demand classes, a deter-
ministic lead time, discrete demand distribution and full backorders. Their work modeled the inventory system
as a multidimensional Markov chain and optimally solved a service level problem based on a service level of type
1, and another on the fill-rate. Wang et al. [19] analyzed the same model as Möllering and Thonemann [11],
but considered an anticipated rationing policy. This policy reserved inventory for the high-priority classes by
considering a constant critical level, and incoming replenishment for the next period. Arslan et al. [1] presented a
service level model to obtain the optimal parameters of a critical level policy with multiple demand classes under
the assumptions of Poisson demand, deterministic lead times, and a continuous-review (Q, r) policy. Escalona
and Ordóñez [7] analyzed the constant critical level policy for fast-moving items and two demand classes. The
inventory system operates under a continuous review (Q, r) policy with a type I service level, full-backordering,
deterministic lead times and a continuous demand distribution. They formulated the service-level problem as a
nonlinear problem with chance constraints for which they optimally solved a relaxation, and obtained a closed
form solution that can be easily computed.

A hybrid formulation is the work of Wang et al. [18], who analyzed the rationing policy under the same
operational conditions as Deshpande et al. [5], but they considered a mixed service criteria with penalty costs
and service level constraints (fill-rate).

When implementing a continuous review (Q, r, C) policy with full-backordering, it may happen that the
incoming replenishment batch is not large enough to cover the backorders. Therefore, it is important how the
backorders of the different classes are satisfied. This policy is difficult to analyze mathematically and given
its complexity the literature has focused on manageable, but sub-optimal, rules, e.g., the threshold clearing
mechanism from Deshpande et al. [5] and the FCFS type clearing scheme from Arslan et al. [1].

In summary, only Escalona and Ordóñez [7] analyzed the constant critical level policy for fast-moving demand,
but unlike them, we consider a cost optimization problem with differentiated shortage costs for each demand
class.

3. Model framework

Consider a facility that holds inventory of a single type of product to serve two demand classes i = 1, 2,
where class 1 is high priority and class 2 is low priority. Let Di(t, t + τ) be the total demand of class i in the
interval (t, t + τ ], and D(t, t + τ) = D1(t, t + τ) + D2(t, t + τ) the total demand of both classes in the interval
(t, t + τ ]. We denote by FDi(τ)(x) the cumulative distribution function of the total demand of class i in [0, τ ]
and FD(τ)(x) the cumulative distribution function of the total demand of both classes in [0, τ ].
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In this paper we consider fast-moving items for which is more representative and efficient to model the
demand over a time period by a continuous distribution. Following Zheng [20] we assume that the total demand
of each class are represented by a nondecreasing stochastic process with stationary increments and continuous
sample paths. For simplicity, we will refer to this as strictly increasing non-negative demand. Note that under
stationary increments, Di(τ) := Di(0, τ) = Di(t, t + τ) for any t ≥ 0, i = 1, 2.

Inventory is replenished according to a continuous review (Q, r, C) policy that operates as follows. When the
inventory position (=inventory on hand + outstanding orders – backorders, [2]) falls below a reorder level r, a
replenishment order for Q units is placed and arrives a fixed L > 0 time units later. Demand from both classes
are filled as long as the on-hand inventory level is greater than the critical level C, otherwise only high priority
demand is satisfied from inventory on-hand and low priority demand is backordered. If on-hand inventory level
reaches zero both demands are backordered. To clear backlogged orders, we consider the threshold clearing
mechanism of Deshpande et al. [5].

Given the inventory control strategy, our objective is to find the parameters of the critical level policy that
minimize the sum of the ordering cost, the holding cost and shortage costs. Let AC(Q, r, C) be the average cost
per unit time:

AC(Q, r, C) = S
μ

Q
+ hE(OH∞(Q, r, C)) + b1E(B∞

1 (Q, r, C)) + b2E(B∞
2 (Q, r, C)), (3.1)

where μ is the average demand per unit of time; bi is the shortage cost per unit and per unit time of class i
with b1 > b2 > 0; h is the holding cost per unit and per unit time; S is the ordering cost; E(OH∞(Q, r, C)) is
the steady-state on-hand inventory; and E(B∞

i (Q, r, C)) is the class i steady-state backorder, i = 1, 2.
In a (Q, r, C) policy with full-backorders and deterministic lead time, the inventory level is the on-hand

inventory net of all backorders (Deshpande et al. [5]), i.e., IL(t + L) = OH(t + L) − B1(t + L) − B2(t + L),
where IL(t+L) denotes the inventory level, OH(t+L) denotes on-hand inventory and Bi(t+L) denotes class i
backorders, i = 1, 2, all at time t + L. Furthermore, for a (Q, r, C) policy with full-backorders and deterministic
lead time it is still valid that IL(t + L) = IP (t) − D(L), where IP (t) denotes the inventory position at time t
(Deshpande et al. [5]). Then, the on-hand inventory at time t + L is OH(t + L) = IP (t)− D(L) + B1(t + L) +
B2(t + L), and taking the expected value and considering the limit t → ∞, the expected on-hand steady-state
inventory is:

E(OH∞(Q, r, C)) =
Q

2
+ r − μL + E(B∞

1 (Q, r, C)) + E(B∞
2 (Q, r, C)). (3.2)

Equation (3.2) is valid as long as the inventory position in steady state is uniformly distributed on (r, r + Q]
and independent of the lead time demand D(L). These conditions are met for strictly increasing non-negative
demand [20,16].

3.1. Steady state backorders

In this section we develop expressions for backorders of the low and high priority classes in the steady state
by using properties of the strictly increasing non-negative demand, the inventory position and the threshold
clearing mechanism. We first describe how the inventory system behaves under rationing, and the threshold
clearing mechanism of Deshpande et al. [5].

Consider an arbitrary time t + L. By definition, there is rationing at time t + L when C > OH(t + L) ≥
IL(t + L) = IP (t) − D(t, t + L). Under rationing conditions at t + L, let tc be the first time after t when
IP (t) − C demand is observed. The threshold clearing mechanism of Deshpande et al. [5] only comes into play
when backorders exist on arrival of a replenishment order and uses tc to separate which backorders need to be
cleared once the replenishment order arrives. The general rules to clear the backorders when the replenishment
order arrives are:

1. If the entering replenishment batch is large enough to clear all the backorders and leave the on-hand inventory
level above C, then clear all backorders.
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2. Otherwise:
2.1. Clear all backlogged demand that arrived before tc in the order of arrival (FCFS);
2.2. Clear any remaining backlogged class 1 demands using FCFS until either all class 1 backorders are filled,

or no on-hand inventory remains;
2.3. Carry over (i.e. continue backlog) all class 2 demands that arrive after tc.

Note that rule 1 ensures that OH(t) = IL(t) when OH(t) ≥ C. Rules 2.2 and 2.3 mean that all remaining
backorders that cannot be fulfilled by the entering replenishment batch, are carried over to be satisfied in
the following replenishment arrivals. Then, using the threshold clearing mechanism, the backorders of the low
priority class at time t + L is the total demand of class 2 in the interval (tc, t + L] if the inventory level at t + L
is below the critical level C, i.e.,

B2(t + L) =

{
D2(tc, t + L) if IP (t) − D(t, t + L) < C

0 ∼ ,
(3.3)

where IL(t+L) = IP (t)−D(t, t+L); and the backorders of the high priority class at time t+L is the positive
part of the total demand of class 1 in the interval (tc, t + L] less C, i.e.,

B1(t + L) = [D1(tc, t + L) − C]+ . (3.4)

The inventory position IP (t) does not provide enough information to determine the backorders in the steady
state [5]. To address this lack of information, Escalona and Ordóñez [7] proposed to use the hitting time approach
to characterize the inventory system. They obtain exact expressions of backorders of both low- and high-priority
class at steady state under the threshold clearing mechanism and strictly increasing non negative demand. In
our paper, we propose to use an intuitive relationship to address the lack of information and leads to defining
convex expressions of the backorders at steady state. Our relationship is intuitive, based on the fact that demand
class i during [tc, t + L] is proportional to the total demand for both classes during this period, i.e.,

Di(tc, t + L) = ki(D(t, t + L) − IP (t) + C), ∀ i = 1, 2, (3.5)

where D(tc, t + L) = D(t, t + L) − IP (t) + C, and ki is the proportionality factor for class i. Note that ki is a
random variable and for any proportionality factor, it must be satisfied that k1 + k2 = 1. We assume that the
proportionality factor ki is constant for i = 1, 2.

Replacing equation (3.5) in equations (3.3)−(3.4) and taking expected value, the expected backorders of class
1 and 2 at time t + L are respectively:

E[B2(t + L)] = k2E [D(L) − IP (t) + C]+ , (3.6)

E[B1(t + L)] = k1E

[
D(L) − IP (t) − C

′]+
, (3.7)

where C
′

= C
(

1
k1

− 1
)
. Then, conditioning on the inventory position and changing the order of integration,

the expected backorders in the steady state of class 1 and 2 are respectively:

E[B∞
2 (Q, r, C)] =

k2

Q
[β(r − C) − β(r + Q − C)] , (3.8)

E[B∞
1 (Q, r, C)] =

k1

Q

[
β(r + C

′
) − β(r + Q + C

′
)
]
, (3.9)

where: β(v) =
∫∞

v (x − v)(1 − FD(L)(x))dx. Note that equations (3.8)−(3.9) are a standard form to express the
backorders used by Zipkin [21].
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Proposition 3.1. Under strictly increasing non-negative demand and the threshold clearing mechanism, equa-
tion (3.8) and (3.9) are exact expression for the expected backorders of class 2 and 1 at steady state when k2 = μ2

μ

and k1 = μ1
μ respectively, where μi is the average demand per unit time of class i, i = 1, 2 and μ = μ1 + μ2.

Proof. Under strictly increasing non-negative demand and the threshold clearing mechanism, Escalona and
Ordóñez [7] developed the following exact expressions for backorders.

B2(t + L) = D2

(
(L − τ

IP (t)−C
H,D )+

)
, (3.10)

B1(t + L) = D1

(
(L − τ

IP (t)−C
H,D − τC

H,D1
)+
)

, (3.11)

where τ
IP (t)−C
H,D = inf{τ > 0|D(τ) > IP (t)−C} is the time (hitting time) required for IP (t)−C demands, and

τC
H,D1

= inf{τ > 0 | D1(τ) > C} corresponds to the time required for C demands of class 1.

The equivalence between equations (3.10)−(3.11) and (3.3)−(3.4) are given by the fact that tc = t+τ
IP (t)−C
H,D ;

and IP (t) − D(L) < C is equivalent to τ
IP (t)−C
H,D < L.

Taking expectation of equation (3.10) we have that:

E(B2(t + L)) = μ2E

(
max{L − τ

IP (t)−C
H,D , 0}

)

=
μ2

Q

∫ r+Q

r

E

(
max{L − τy−C

H,D , 0}
)

dy

=
1
Q

μ2

μ

∫ r+Q

r

E

(
D(max{L − τy−C

H,D , 0})
)

dy

=
1
Q

μ2

μ

∫ r+Q

r

E

(
D(L − τy−C

H,D )|τy−C
H,D < L

)
P

(
τy−C
H,D < L

)
dy

=
1
Q

μ2

μ

∫ r+Q

r

E (D(L) − y + C|D(L) > y − C) P(D(L) > y − C)dy

=
μ2

μ
E (D(L) − IP (t) + C|D(L) > IP (t) − C) P(D(L) > IP (t) − C)

=
μ2

μ
E (max{D(L) − IP (t) + C, 0})

=
μ2

μ
E (D(L) − IP (t) + C)+ .

In the same way, it is easy to show that equation (3.7) is equivalent to (3.11) when k1 = μ1
μ . �

Therefore, in what follows, we consider that the proportion between the demand of class i during the interval
[tc, t + L] and total demand in the same interval is constant and equal to: ki = μi

μ , i = 1, 2.

3.2. Cost optimization problem: strictly increasing non-negative demand

Replacing equation (3.2), (3.8) and (3.9) in equation (3.1) we can express the average cost per unit time as:

AC(Q, r, C) =S
μ

Q
+ h

(
Q

2
+ r − μL

)
+ (b1 + h)

k1

Q

(
β(r + C

′
) − β(r + Q + C

′
)
)

+ (b2 + h)
k2

Q

(
β(r + C

′
) − β(r + Q + C

′
)
)

. (3.12)

Our objective is to determine the optimal parameters of the (Q, r, C) policy that minimizes the total cost.
Then, our problem for a strictly increasing non-negative demand can be written as a nonlinear optimization
problem, denoted (P0), as follows.
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Problem (P0):

Min
Q,r,C

AC(Q, r, C) (3.13)

s.t r ≥ C ≥ 0 (3.14)
Q ≥ 0 , (3.15)

where AC(Q, r, C) is given by equation (3.12). Constraint (3.14) ensures that the replenishment order is placed
before the lower priority class is no longer served.

3.3. P0 using normal distribution as approximation of non-negative demand

A common practice in stochastic inventory models is to use the normal distribution as an approximation
of non-negative demand, i.e., stochastic inventory models are formulated based on the characteristics of non-
negative demand and are then implemented using a normal distribution. The problem with the normal dis-
tribution is that there is always a small probability for negative demand. The normal distribution is a good
approximation of non negative demand when the coefficient of variation is less than or equal to 0.5, i.e.,
CV ≤ 0.5 [13].

To solve (P0) using normal distribution as approximation of the non-negative demand, the expressions of
backorders are required. For this, consider that each class i has identical and independent normally distributed
demand per unit time, with mean μi > 0 and variance σ2

i > 0, Di(τ) ∼ N(μiτ, σ
2
i τ), and D(τ) ∼ N(μτ, σ2τ),

where μ = μ1 + μ2 and σ2 = σ2
1 + σ2

2 . The expected backorders in the steady state of class 1 and 2 using a
normally distributed demand are, respectively:

E(B∞
2 (Q, r, C)) =

σ
′2

Q
k2

[
H

(
r − C − μ

′

σ′

)
− H

(
r + Q − C − μ

′

σ′

)]
, (3.16)

E(B∞
1 (Q, r, C)) =

σ
′2

Q
k1

[
H

(
r + C

′ − μ
′

σ′

)
− H

(
r + Q + C

′ − μ
′

σ′

)]
, (3.17)

where: μ
′
= μL, σ

′
= σ

√
L,

H(x) =
∫ ∞

x

G(v)dv =
1
2
[
(x2 + 1)(1 − Φ(x)) − xϕ(x)

]
,

and

G(x) =
∫ ∞

x

(v − x)ϕ(v)dv = ϕ(x) − x(1 − Φ(x)),

is the so-called loss function, Φ(x) is the distribution function of the standard normal distribution and ϕ(x) is
the density function. It is easy to show that equations (3.16)−(3.17) are equivalent to (3.8)−(3.9) because, for

normally distributed demand: β(v) = σ
′2H

(
v−μ

′

σ′

)
[2].

As H(x) is decreasing and convex [2], it is easy to note that E(B∞
1 (Q, r, C)) is decreasing in r and C, while

E(B∞
2 (Q, r, C)) is increasing in C and decreasing in r. The same behavior is described by Deshpande et al. [5]

for Poisson demand.
Then, the problem (P0) using normal distribution as approximation of non-negative demand can be written

as follows.
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Problem (P0 +N):

Min
Q,r,C

S
μ

Q
+ h

(
Q

2
+ r − μL

)

+ (b1 + h)
σ

′2

Q
k1

[
H

(
r + C

′ − μ
′

σ′

)
− H

(
r + Q + C

′ − μ
′

σ′

)]

+ (b2 + h)
σ

′2

Q
k2

[
H

(
r − C − μ

′

σ′

)
− H

(
r + Q − C − μ

′

σ′

)]
(3.18)

s.t (3.14), (3.15).

4. Convexity of the average cost per unit time

Consider the objective function of (P0). Since it is a nonlinear function, finding the optimal parameters of
the (Q, r, C) policy is difficult, unless the objective function is convex. Clearly the first and second term of (3.12)
are convex, hence the convexity of AC(Q, r, C) will depend on whether the backorders are convex or not.

Proposition 4.1. Backorders of class 1 and class 2 defined by equations (3.8) and (3.9) are strictly convex in
Q, r and C.

Proof. Consider the backorder in the steady-state for the continuous review (Q, r) policy:

E(B∞(Q, r)) =
1
Q

(β(r) − β(r + Q)) . (4.1)

Zipkin [21] has already proved that (4.1) is jointly convex in Q and r when fD(L) > 0 for any t > 0, where
fD(L) is the density function of the lead time demand.

Equations (3.8)−(3.9) describe the steady-state backorders in terms of Q and a linear combination of r and C.
Note that class 1 backorders depend on r + C′, and class 2 backorders depend on r − C. It is a fact that the
composition of a convex function with an affine mapping preserves convexity (see [3]). Thus, AC(Q, r, C) given
by (3.12) is jointly convex in Q, r and C and (P0) is a nonlinear convex problem. �

The proposition 4.1 applies also to the case where FD(L)(x) is normal. Therefore, AC(Q, r, C) given by (3.18)
is jointly convex in Q, r and C and (P0 + N) is a nonlinear convex problem.

5. Solution approach

For any convex optimization problem with differentiable objective and constraint functions, any points that
satisfy KKT conditions are primal and dually optimal, and have zero duality gap [3]. Since (P0) and (P0 + N)
are strictly convex optimization problems, our approach to finding a solution will be based on solving the KKT
conditions.

Let us consider the optimization problem (P0). A simple analysis of the objective function allows us to
relax Q, C ≥ 0 from (P0) because (i) when Q → 0+, then AC(Q, r, C) → ∞, so it is not possible that Q ≥ 0 is
active in the optimum; and (ii) E(B∞

1 (Q, r, C)) decreases in C whereas E(B∞
2 (Q, r, C)) increases in C, therefore

non-positive values of C would be obtained only if b2 ≥ b1 which is a contradiction according to the model
framework. The above relaxation applies also to (P0 + N).

Regarding the reorder point, although a negative value of r does not have any practical sense, we cannot
disregard the non-negativity constraint of this variable, mostly because there are some situations when this
constraint is active, e.g., if the ordering cost S is too high, the optimal lot size will be so large that the optimal
reorder point will have to be zero. Thus, we will solve (P0) and (P0 + N) by only considering the r ≥ C and
r ≥ 0 constraints, denoted as (P1) and (P1 + N), respectively.
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The Lagrangian function of (P1) is L(Q, r, C, λ) = AC(Q, r, C) + λ1(C − r) − λ2r, where λi is a Lagrangian
multiplier. Then, the KKT conditions are defined as follows:

∂

∂r
L(Q, r, C, λi) =

∂

∂r
AC(Q, r, C) − λ1 + λ2 = 0

∂

∂C
L(Q, r, C, λi) =

∂

∂C
AC(Q, r, C) + λ1 = 0

∂

∂Q
L(Q, r, C, λi) =

∂

∂Q
AC(Q, r, C) = 0

λ1(C − r) = 0

λ2(−r) = 0

λi ≥ 0.

Note that the domain of (P1) is defined by linear constraints which make the KKT conditions easier to solve
compared to a problem that is subjected to nonlinear constraints (e.g., service level type 1, or the fill-rate).
Since these constraints are few and easy to deal with, it is straightforward to define an algorithm in terms of
the activation/deactivation of them.

Let (Q∗, r∗, C∗) be the optimal solution of (P1) and let (Qu, ru, Cu) be the solution of (P1), which is
unrestricted, i.e., when λ1 = λ2 = 0. The solution set is obtained from the following algorithm:

Algorithm 1. Active-constraints algorithm.
Solve the KKT conditions of (P1) (unrestricted)
if ru > Cu then

The optimal solution is (Qu, ru, Cu)
else if ru > 0 then

(Q∗, r∗, C∗) is obtained from the KKT conditions by considering r∗ = C∗ (λ1 > 0 and λ2 = 0)
else

(Q∗, r∗, C∗) is obtained from the KKT conditions by considering r∗ = C∗ = 0 (λi > 0)
end if

Algorithm 1 ensures that the optimal solution will be found, however, the complexity of the equation systems
derived from the KKT conditions will depend on how the demand process is modeled.

Let us now consider the (P1 + N) problem. Before applying Algorithm 1 to find the optimal solution, it is
convenient to define:

fi(Q, r, C) = 1 − σ′

Q

[
G

(
ai − μ′

σ′

)
− G

(
ai + Q − μ′

σ′

)]
, (5.1)

where ai is a linear combination of r and C, and r + C′ and r−C for class 1 and class 2 demands, respectively.
We can express the partial derivatives of AC(Q, r, C) with respect to r and C in terms of fi:

∂

∂r
AC(Q, r, C) = h + k1(b1 + h)(f1 − 1) + k2(b2 + h)(f2 − 1), (5.2)

∂

∂C
AC(Q, r, C) = k2(b1 + h)(f1 − 1) + k2(b2 + h)(1 − f2), (5.3)
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and the partial derivative of AC(Q, r, C) with respect to Q is given by the following equation:

∂

∂Q
AC(Q, r, C) =

h

2
− S

μ

Q2
− (b1 + h)

σ′2

Q2
k1

[
H

(
r + C′ − μ′

σ′

)

−H

(
r + C′ + Q − μ′

σ′

)
− Q

σ′G
(

r + C′ + Q − μ′

σ′

)]

− (b2 + h)
σ′2

Q2
k2

[
H

(
r − C − μ′

σ′

)
− H

(
r − C + Q − μ′

σ′

)
− Q

σ′G
(

r − C + Q − μ′

σ′

)]
.

(5.4)

Let (Qu, ru, Cu) be the optimal solution of (P1 + N), which is unrestricted. This solution set can be obtained
from the following system of equations:

f1(Q, r, C) =
b1

b1 + h
, (5.5)

f2(Q, r, C) =
b2

b2 + h
, (5.6)

∂

∂Q
AC(Q, r, C) = 0. (5.7)

Then (Qu, ru, Cu) is the optimal solution of (P1 + N) only if it belongs to the domain of the problem,
otherwise AC(Qu, ru, Cu) is a lower bound and it is necessary to solve another system of equations to determine
the optimal solution. Then, if ru is non-negative but smaller than C, the optimal solution of (P1 + N) is:
r∗ = C∗, and C∗, Q∗ are obtained from equations (5.5) and (5.7), respectively. Otherwise, the optimal solution
of (P1 + N) is r∗ = C∗ = 0, and Q∗ is obtained from equation (5.7). The above procedure can be carried out
via the following algorithm.

Algorithm 2. Iterative technique to solve (P1 + N).

1: Q(0) =

√
2μS

h
2: Obtain(r + C′)(k) from (5.5)
3: Obtain (r − C)(k) from (5.6)
4: Obtain r(k) and C(k)

5: if r(k) > C(k) > 0 then
6: Given (r(k), C(k)) obtain Q(k+1) from (5.7)
7: else if 0 < r(k) � C(k) then
8: Recalculate (r(k), C(k)) from r(k) = C(k) and (5.5)
9: Given (r(k), C(k)) obtain Q(k+1) from (5.7)

10: else
11: Redefine r(k) = C(k) = 0
12: Given (r(k), C(k)) obtain Q(k+1) from (5.7)
13: end if
14: if AC(Q(k), r(k−1), C(k−1)) − AC(Q(k+1), r(k), C(k)) ≤ ε then
15: Stop
16: else
17: go to 2
18: end if

We initialize the Algorithm 2 with the EOQ solution because it is a lower bound of the problem (P0). Note
that, (P0) and (P0 + N) can also be solved using a nonlinear convex solver.
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6. Computational study

In this section, we present our numerical study and its results. The main objective of the computational
study is to compare the critical level policy with the separate stock and round-up policies.

For simplicity, we use normally distributed demand as an approximation to the non-negative demand, solving
(P0) by using Algorithm 2. Let (Q∗, r∗, C∗) be the optimal critical level policy controls of (P0), and let
AC(Q∗, r∗, C∗) be the average cost per unit time of evaluating the optimal critical controls of (P0).

In order to cover a wide range of data, we design a set of 10 experiments to measure how the opti-
mal parameters (Q∗, r∗, C∗) change when the parameters of the inventory system are modified; and com-
pare the critical level policy with the separate stock and round-up policies. In each experiment we fix the
shortage costs per unit and unit time b1 and b2, and consider a base case with the following parame-
ters: normal demand distributions with mean μ1 = μ2 = 25 and coefficient of variation CV1 = CV2 =
0.2 (σ2

1 = σ2
2 = 25), lead time L = 5, ordering cost S = 300 and holding cost per unit and unit

time h = 0.75. We conduct experiments studying the sensitivity of the solutions to changing parameters
CVi = {0.2, 0.4, 0.6}, μi = {25, 100}, S = {100, 300, 500}, and h = {0.25, 0.75, 1.25}. This gives a to-
tal of 135 experiments for each setting of the shortage costs. The fixed setting for the shortage costs are:
(b1, b2) = {(30, 5), (30, 10), (30, 15), (30, 20), (30, 25), (10, 5), (15, 5), (20, 5), (25, 5), (35, 5)}. This give a total of
135 × 10 = 1350 experiments. We denote these instances as test sets.

To illustrate the industrial applicability of the critical level policy we also consider a illustrative example of
a company that manufactures products derived from fruits and vegetables presented by Escalona et al. [6].

The equation systems of Algorithm 2 was programmed by a C code using Brent−Dekker method. All test were
carried on a PC with Intel Core i7 2.3 GHz processor and 16 GB RAM. The time to compute the parameters
of the critical level policy are on average 8.8E-05 s and in the worst case 8.8E-4 s.

6.1. Test sets

To evaluate the performance of the critical level police respect the round-up and separate stock policies,
we computed the benefit of the critical level policy obtained with the proposed approach against the round-
up and separate stock policies at each of the 1350 experiments. Let ACu and ACs be the average cost per
unit time induced by the round-up and separate stock policies respectively and 100 × (ACu − AC)/AC and
100 × (ACs − AC)/AC the benefit of the critical level policy against the separate stock and round-up policies
respectively

Our numerical results show that the benefit of the critical level policy obtained with the proposed approach
against the round-up and separate stock policies is on average 5.9% and 33.5% respectively. Table 1 shows the
average and maximum relative benefit of the critical level policy with respect to the round-up and separate
stock for the 10 settings of shortage costs and different values of S.

Table 1 shows that in all experiments, the average and maximum relative benefit is greater with respect to the
separate stock policy. We also note that the relative benefit to the round-up is more sensitive and, by contrast,
using two separate lot sizes and two separate reorder points causes a more homogeneous benefit. The maximum
relative benefit, with respect to round-up and separate stock, occurs when there is maximum difference between
the shortage costs and the ordering cost is minimal (S = 100). As an example, Table 2 shows the relative benefit
regarding round-up and separate stock for the 135 problems of the experiment: b1 = 30 and b2 = 5.

The pattern of the maximum relative benefit regarding round-up policy, observed in Table 2, is repeated
for all ten experiments, i.e., the maximum benefit occurs when the class 2 dominates on mean and variance
(μ2 = 100, CV2 = 0.6), the ordering cost is minimal (S = 100) and the holding cost per unit and unit time is
maximum (h = 1.25). Clearly, the round-up policy is highly inefficient when the class 2 dominates mean and
variance, because under this situation, this policy provides too much inventory to the low priority class causing
a high reorder point and therefore a high cost. On the other hand, when ordering cost is low and holding cost
per unit and unit time is high, batch sizes are small and the expected backorder increases. We observe that
the expected backorders induced by the critical level are greater than those induced by the round-up policy,
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Table 1. Benefit of the critical level vs. Round-up and Separate stock policies.

Benefit (%) vs. round-up

S = 100 S = 300 S = 500

b1 b2 Average Max Average Max Average Max

30 5 11.73 38.18 9.26 27.82 8.17 25.33

30 10 6.41 21.89 5.05 14.71 4.44 13.44

30 15 3.80 15.01 2.99 8.57 2.63 7.84

30 20 2.13 10.77 1.68 4.75 1.47 4.35

30 25 0.93 7.80 0.73 2.05 0.64 1.88

10 5 5.16 20.74 4.10 11.95 3.64 10.92

15 5 7.79 27.01 6.17 18.22 5.46 16.62

20 5 9.50 31.70 7.52 22.37 6.64 20.39

25 5 10.75 35.34 8.50 25.42 7.50 23.16

35 5 12.53 40.51 9.89 29.77 8.71 27.10

Benefit vs. separate stock (%)

S = 100 S = 300 S = 500

b1 b2 Average Max Average Max Average Max

30 5 32.79 45.43 33.87 44.26 34.47 44.04

30 10 31.79 41.57 33.67 41.90 34.29 42.16

30 15 31.30 41.42 33.56 41.42 34.18 41.42

30 20 30.99 41.42 33.48 41.42 34.10 41.42

30 25 30.77 41.42 33.42 41.42 34.05 41.42

10 5 32.04 41.42 34.23 42.07 34.81 42.23

15 5 32.33 42.33 34.09 42.93 34.68 42.93

20 5 32.53 43.66 33.99 43.50 34.59 43.41

25 5 32.68 44.65 33.93 43.92 34.53 43.76

35 5 32.89 46.07 33.83 44.53 34.43 44.27

but its effect on cost is relatively low compared with the effect of the reorder point. Note that, as Deshpande
et al. [5] observed, the relative benefit regarding Round-up is decreasing in S. We did not find a pattern for the
maximum relative benefit regarding separate stock policy.

6.2. Ilustrative example for industrial application

Consider the case of a company that manufactures products derived from fruits and vegetables. The supply
chain consisting of one plant, one distribution center, and 38 customers. The company segments its customers
by volume of annual demand. Thus, customers who demand more than the average annual demand are classified
as high priority, with b1 = 0.5(US$/kg − day), and customers who require less than the average annual demand
are classified as low priority with b2 = 0.025(US$/kg − day).

The products manufactured by the company are derivative of fruits and vegetables, with holding cost per
unit and unit time h = 0.005(US$/kg − day); ordering cost S = 250(US$/order); lead time L = 4 (day); normal
demand distributions with mean μ1 = 17680(kg/day) and coefficient of variation CV1 = 0.28; μ2 = 6534 and
coefficient of variation CV2 = 0.12.

We analyze the inventory problem with two demand classes using critical level, round-up and separate stock
policies. Table 3 shows the objective function and the cost components (OC: ordering cost; HC: holding cost;
SC: shortage cost).
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Table 2. Benefit(%) vs. Round-up and Separate stock when b1 = 30 and b2 = 5.

Benefit(%) vs. Round-up

μ1 = 100, μ2 = 25 μ1 = μ2 = 25 μ1 = 25, μ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 2.13 1.52 1.29 3.73 2.60 2.21 9.12 6.37 5.36

0.75 3.72 2.82 2.46 7.13 5.25 4.61 16.83 12.38 10.67

1.25 4.74 3.72 3.29 9.58 7.29 6.50 22.31 16.90 14.74

0.4 0.4 0.25 3.06 2.32 1.99 5.78 4.10 3.46 13.50 9.97 8.50

0.75 4.86 3.97 3.53 10.26 7.72 6.69 22.88 18.10 15.86

1.25 5.94 5.01 4.53 13.26 10.30 9.06 29.12 23.80 21.16

0.6 0.6 0.25 3.58 2.86 2.51 7.25 5.30 4.51 16.10 12.55 10.90

0.75 5.39 4.64 4.22 12.21 9.57 8.38 25.88 21.68 19.44

1.25 6.46 5.71 5.28 15.38 12.47 11.09 32.29 27.82 25.33

0.6 0.2 0.25 3.55 2.83 2.48 6.17 4.40 3.73 10.27 7.24 6.11

0.75 5.36 4.60 4.18 10.81 8.20 7.13 18.54 13.84 11.94

1.25 6.43 5.67 5.23 13.86 10.88 9.58 24.30 18.71 16.34

0.2 0.6 0.25 2.38 1.72 1.46 6.17 4.40 3.73 15.94 12.37 10.73

0.75 4.05 3.12 2.73 10.81 8.20 7.13 25.70 21.45 19.20

1.25 5.10 4.07 3.61 13.86 10.88 9.58 32.10 27.56 25.06

Benefit(%) vs. separate stock

μ1 = 100, μ2 = 25 μ1 = μ2 = 25 μ1 = 25, μ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 31.19 32.40 32.80 41.41 41.42 41.42 32.41 33.42 33.72

0.75 29.76 31.37 31.91 41.38 41.39 41.39 32.02 33.50 33.95

1.25 28.89 30.67 31.26 41.33 41.33 41.33 31.88 33.67 34.23

0.4 0.4 0.25 28.89 30.78 31.48 41.41 41.41 41.42 30.28 32.05 32.66

0.75 27.04 29.24 30.14 41.37 41.38 41.38 29.16 31.51 32.38

1.25 26.10 28.34 29.30 41.31 41.33 41.33 28.59 31.27 32.31

0.6 0.6 0.25 27.30 29.43 30.31 41.41 41.41 41.41 28.65 30.80 31.63

0.75 25.43 27.63 28.66 41.35 41.37 41.38 27.23 29.83 30.93

1.25 24.60 26.68 27.73 41.29 41.31 41.32 26.55 29.33 30.59

0.6 0.2 0.25 23.95 27.58 29.00 41.91 42.20 42.23 39.44 37.61 36.96

0.75 21.80 25.68 27.35 43.25 43.42 43.31 43.03 40.26 39.20

1.25 20.93 24.76 26.49 44.20 44.26 44.04 45.43 42.12 40.79

0.2 0.6 0.25 32.37 32.70 32.86 35.33 37.74 38.56 15.94 26.10 27.92

0.75 30.64 31.20 31.48 32.07 35.57 36.85 25.70 23.10 25.54

1.25 29.44 30.13 30.49 30.00 34.18 35.74 32.10 21.39 24.19

Table 3. Ilustrative example: results.

Cost component (US$/day)
Policy AC (US$/day) OC HC SC
Critical level 307.6 110.6 171.3 24.6
Round-up 329.4 112.9 195.6 20.9
Separate stock 413.4 153.1 229.2 31.1
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Table 3 indicates that the lower cost is achieved with the critical level policy with a benefit of 7.1% and
34.4% per day against the round-up and separate stock policies respectively. Note that this benefit is produced
by lower ordering and holding costs induced by the critical level policy.

7. Conclusions

In this paper we analyzed the constant critical level policy for fast-moving items when the inventory system
faced random demands from two customer classes (high and low priority). The inventory system operated under
a continuous review (Q, r) policy, with a critical threshold value C, full-backorders and a deterministic lead time.
Penalty cost of backorders of the high-priority class were greater than the low-priority class, and the demand of
each class was characterized by a nondecreasing stochastic process with stationary increments and continuous
sample paths. We also characterized the demand of each class with a normal distribution, which acted as an
approximation of non-negative demand.

Using the properties of the nondecreasing stationary stochastic demand and the threshold clearing mechanism,
we obtained convex backorders for each class demand in steady state. We then proposed a nonlinear cost
optimization problem with convex objective function to determine the optimal parameters of the critical level
policy. Given the convexity of the cost optimization problem and based on Karush−Kuhn−Tucker (KKT)
conditions, we proposed a system of equations to solve it.

Our numerical results show that our approach is able to provide good-quality solutions because the benefit of
the critical level policy obtained with the proposed approach against the separate stock and round-up policies
is on average 5.9% and 33.5% respectively. In addition, we observe the following managerial insights:

• The average and maximum relative benefit induced by the critical level policy are greater with respect to the
separate stock policy.

• The benefits induced by the critical level policy are higher for large difference between the shortage costs and
small for low difference between the shortage costs.

There are a number of questions and issues left for future research. The first one is to expand our results
to more than two classes and second one is to investigate the equivalence between shortage costs and fill-rate
service levels. Another possible extensions are: (i) investigate the effect of correlated demand and (ii) extend
this paper to the design of distribution networks.
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[7] P. Escalona and F. Ordóñez, Critical level rationing in inventory systems with continuously distributed demand. Working
paper (2015).

[8] M. Fadiloglu and O. Bulut, A dynamic rationing for continuous-review inventory systems. Eur. J. Oper. Res. 202 (2010)
675–685.

[9] M. Kleijn and R. Dekker, An overview of inventory systems with several demand classes. In New Trends in Distribution
Logistics, edited by M.G. Speranza and P. Stähly. Vol. 480 of Lect. Notes Econ. Math. Syst. Springer Berlin Heidelberg (1999)
253–265.

[10] P. Melchiors, R. Dekker and M. Kleijn, Inventory rationing in an (s,q) inventory model with lost sales and two demand classes.
J. Oper. Res. Soc. 51 (2000) 111–122.
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