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Abstract

The Vehicle Routing Problem (VRP) is a central problem for many transportation

applications, and although it is well known that it is difficult to solve, how much of

this difficulty is due to the formulation of the problem is less understood. In this

paper we experimentally investigate how the solution times to solve a VRP with a

general IP solver are affected by the formulation of the VRP used. The different

formulations are evaluated by examining solution efficiency as a function of several a

priori performance measures based on the data parameters. Our experimental results

show how the solution run times are sensitive to problem parameters; in particular

the sensitivity of formulations to the coefficient of variation of the cost matrix of

travel times is explained by two interacting factors.
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1 Introduction

Many industrial applications deal with the problem of routing a fleet of vehicles from a depot

to service at minimum cost a set of customers that are geographically dispersed. This type

of problem can be formulated as The Vehicle Routing Problem (VRP) and it is faced daily

by courier services (e.g., Federal Express, United Parcel Service, and Overnight United

States Postal Service), local trucking companies, and demand responsive transportation

services, just to name a few. These types of services have experienced tremendous growth

in recent years. For example, both United Parcel Service and Federal Express have annual

revenue of well over $10 billion, and the dial-a-ride service for the disabled and handicapped

is today a $1.2 billion industry (Palmer, Dessouky, and Abdelmaguid 2004). Therefore,

there is an increasing need to develop efficient routing and scheduling tools for the VRP.

There exists a substantial amount of research on applications, formulations, and solution

approaches for this problem; see Laporte (1992), Toth and Vigo (2002a), and Toth and

Vigo (2002b) for an overview of the VRP.

When dealing with the complexity and practical difficulty of solving a problem, three

aspects of the problem become relevant: the problem size, how the problem is formulated,

and the algorithm used to solve the problem. In fact, classic complexity theory studies

the asymptotic behavior of algorithms as the problem size increases, and on the practical

side, a number of algorithms are developed to address specific formulations of the problem.

In particular, the VRP is known to be NP-hard (Lenstra and Rinnooy Kan 1981), and as

we discuss in more detail later, there are specialized algorithms for the VRP in its path
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variable formulation (column generation) or arc variable formulation (branch-and-bound).

It is well known that highly constrained VRPs, such as those with tight capacity or time

window constraints, are more amenable to a column generation solution approach since the

constraints leads to pruning up front a large number of infeasible paths (Lu and Dessouky

2004). Therefore, there is clearly a strong relationship between specific algorithms and

problem formulation. However, little is known about how the formulation of the problem

influences the intrinsic difficulty of the problem and hence the solution run time of any

algorithm for VRPs of a fixed size in practice.

In this paper we aim to study experimentally the effect of problem formulation on solu-

tion run times for the VRP when solved optimally by a commercial integer programming

(IP) solver. The goal of this work then is similar to Jones et al. (1993), which investigates

the effect of problem formulation of multicommodity flow problems on decomposition al-

gorithms. However, by considering a general purpose solver we aim to identify problem

features that can indicate whether a problem formulation is fundamentally easier to solve

or not. Therefore, special solution procedures favoring particular formulations are avoided

in this study. We note that there is a vast literature of experimental analysis on well-known

hard VRP instances combining formulation and solution procedure. Some recent examples

are Baldacci et al. (2004), Ralphs et al. (2003), Ralphs (2003). Since such studies develop

special solution procedures for a given formulation, they do not identify the sole effect of

the problem formulation independent from its special solution procedure.

When routing a fleet of vehicles, being able to identify a VRP formulation that is easier

to solve can provide better routing solutions through improved solution methods that use

the correct formulations. The appropriate VRP formulations can improve solution meth-

ods because of two different reasons. First, it can help steer algorithm research to focus on

“good” formulations that are amenable to fast solutions. The idea being that research on

these fundamentally simpler problem formulations can lead to improved algorithms. Sec-
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ond, general purpose solvers such as the one used in this study have improved considerably

over time. These solvers can now be used to obtain exact solutions to small problems and

approximate solutions for large sized problems by stopping the execution after a run time

limit. Therefore for problems of suitable size, “good” formulations can be identified based

on problem instances to obtain solutions in a reasonable time.

In this study the effect of problem formulation is investigated based on a priori per-

formance measures. We are interested in identifying measures based on problem data to

describe the difficulty of the problem instance due to problem formulation, without solving

the problem. There are other performance measures proposed in the VRP literature to

investigate the effect of problem formulation. However, these measures are mainly pos-

terior and typically depend on the optimal solution. For example the average number of

customers per route and the number of arcs selected in all optimal solutions also inform

how difficult it is to solve problems. In this study, we experimentally investigate the rela-

tion between problem data and problem formulation on the difficulty faced by a general IP

solver in solving a VRP.

We consider the capacitated asymmetric vehicle routing problem with unit demand at

each demand location. Our study concentrates on three different arc-based formulations of

the VRP and uses CPLEX 8.1 as our state-of-the-art commercial IP solver to obtain exact

solutions. We limit our study to arc-based formulations because path-based formulations

of the VRP have an additional difficulty due to the variable explosion and thus require

specialized column generation algorithms. The experiments conducted explore whether

vehicle capacity, number of vehicles, and properties of the matrix of travel times, such

as mean travel time or number of triangular inequalities violated, influence solution run

times. We present plots comparing the effect on the run times of the different formulations

by modifying each of these problem parameters.

4



In the next section we review different methods to solve VRPs and research on perfor-

mance measures. Section 3 discusses different formulations of the VRP and introduces the

problems considered in this study. We present our experimental results in Section 4 and

finish the paper with conclusions and general remarks in Section 5.

2 Solving VRPs and Performance Measures

In this review section we discuss the different exact and approximate solution procedures

that exist for the VRP and cover different performance measures for solution algorithms

that have been considered in related contexts.

Our discussion of solution methods for the capacitated VRP follows the review presented

in Toth and Vigo (2002b), which includes both exact and heuristic solution methods. Ex-

act solution methods can be classified as branch-and-bound algorithms (Christofides et al.

1981; Laporte and Norbert 1987) and branch-and-cut algorithms (Ralphs et al. 2003)

that solve arc-based vehicle or commodity flow models of the VRP, and column genera-

tion methods that solve path-based (or set covering) formulations of the VRP (Agarwal

et al. 1989; Hadjiconstantinou et al. 1995). Research on these algorithms includes the

development of good methods to tighten the relaxations of the integer problem in order

to shrink the search tree. Some recent examples include Martinhon et al. (2004) which

use a k-degree center tree-based relaxations and Baldacci et al. (2004) which develop a

strengthened LP relaxation of a new problem formulation. In addition there is research

on specializing these methods for specific variants of the VRP, such as Desrochers et al.

(1992) which use a column generation method for the VRP with time windows or Lu and

Dessouky (2004) which use a branch-and-cut approach for the VRP with pickup and deliv-

ery. The efficient solution of VRPs is still a challenging problem, which requires the use of
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heuristics for solutions to large problems. Cordeau et al. (2002) provide a good contempo-

rary survey of heuristic methods. There are two well-known classic heuristics: the savings

heuristic (Clarke and Wright 1964) and the sweep algorithm (Gillett and Miller 1974).

Other popular approximate methods are meta-heuristics such as tabu search (Gendreau

et al. 1994), genetic algorithms (Potvin and Bengio 1996), simulated annealing (Osman

1993), and evolutionary algorithms (Homberger and Gehring 1999).

Algorithms, both exact and approximate, are evaluated by their performance on stan-

dard suites of test problems, available for example from the webpage by Dorronsoro Dı́az

(2005). The difficult nature of the VRP is evident in the performance achieved by the

algorithms. For example, the recent algorithm by Baldacci et al. (2004) solved problem

F-n135-k7 with 134 customers and 7 vehicles (Fisher 1994), reportedly the largest prob-

lem solved to optimality in the literature at the time. However, this algorithm was unable

to solve to optimality some smaller instances, such as E-n76-k7 (Christofides and Eilon

1969), with 75 customers and 7 vehicles. An observation from these test suites is that some

solution methods perform well on certain instances while not on others. Another compli-

cating factor is that some solution methods require additional assumptions, such as not

allowing triangular inequality violations. This further complicates comparisons of solution

methodologies. Therefore in this paper we focus on a general purpose commercial IP solver

to obtain exact solutions as they do not require additional assumptions.

We denote by performance measures the measures of a problem that provide insight into

the difficulty of solving a problem. Therefore, problem size is by definition the essential

performance measure for the worst case analysis of algorithms for combinatorial problems.

However, we are interested in understanding how the problem formulation impacts solution

times. Hence, we are interested in data based performance measures not related to problem

size. We also focus on the observed solution run times and not on the worst case complexity

of the algorithm. There exist research on performance measures for NP-hard optimization
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problems that aim to explain the observed variation in solution times. It is shown that these

problems tend to exhibit sharp changes in computational complexity, with instances going

from being easy to being hard to solve (or vice-versa) as a certain performance measure

changes. These sharp frontiers are referred to as phase transitions. In particular the work

on the traveling salesman problem (TSP) (Gent and Walsh 1996; Cheeseman et al. 1991;

Zhang 2004) is related to performance measures for the VRP due to the similarities between

the problems. Phase transitions for the TSP have been identified based on asymptotic

properties of the optimal tour length as the problem size increases and the existence of

solution backbones, i.e. variables that are present in all optimal solutions (Gent and Walsh

1996; Zhang 2004). Our approach is closer to Cheeseman et al. (1991) and Zhang and Korf

(1996), which identify phase transitions that depend on properties of the distance matrix

of the TSP, such as the range and standard deviation and not on asymptotic properties of

the problem.

3 VRP Formulations

Due to the wide range of applications that the VRP has addressed, there are a number

of different variants of the VRP, obtained by adding specific features or constraints to the

basic capacitated vehicle routing problem (CVRP). Some of the most important variants

are: VRP with multiple depots (MDVRP), VRP with time windows (VRPTW), VRP with

back-hauls (VRPB), and VRP with pick-up and deliveries (VRPPD). To get a handle on

the possible number of explanatory factors for the observed solution performance we limit

our study to the simplest CVRP problem.

The CVRP problem considers the problem of routing at minimum cost a uniform fleet

of K vehicles, each with capacity C, to service geographically dispersed customers, each
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with a deterministic unit demand that must be serviced by a single vehicle. Let V be the

set of n demand nodes and a single depot, denoted as node 0. Let di be the demand at

each node i. Since we assume unit demand di = 1 for all i ∈ V \ {0}. We consider the fully

connected network, and denote the deterministic travel time between node i and node j

by cij . We assume asymmetric deterministic travel times (i.e. cij �= cji in general) which

might in addition violate the triangular inequality.

We now describe different formulations for the CVRP. Our presentation here also follows

the review in the book Toth and Vigo (2002b). In broad terms, formulations for the CVRP

can be separated into two main categories: path-based formulations and arc-based formu-

lations. Path-based formulations, also referred to as set-partitioning formulations, consider

a binary variable for each path (or vehicle route) which indicates whether that route is part

of the routing solution or not. These formulations therefore consider a number of integer

variables that grow exponentially with n and are typically tackled via column generation

schemes. Our work does not consider path-based formulations because of its dependence on

specialized algorithms. We present now different arc-based formulations, which we group

into polynomial vehicle flow models, commodity flow models, and exponential vehicle flow

models.

3.1 Polynomial vehicle flow models

Arc-based models consider integer variables xij which indicate whether a vehicle goes from

node i to node j or not. Problem (1) below includes additional continuous variables ui for

every i ∈ V \ {0} that represent the flow in the vehicle after it visits customer i.
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(VRP1) min
∑
i∈V

∑
j∈V

cijxij (1.1)

s.t.
∑
i∈V

xij = 1 j ∈ V \ {0} (1.2)

∑
j∈V

xij = 1 i ∈ V \ {0} (1.3)

∑
i∈V

xi0 = K (1.4)

∑
j∈V

x0j = K (1.5)

ui − uj + Cxij ≤ C − dj i, j ∈ V \ {0}, i �= j, di + dj ≤ C (1.6)

di ≤ ui ≤ C i ∈ V \ {0} (1.7)

xij ∈ {0, 1} i, j ∈ V (1.8) .

(1)

Problem VRP1 minimizes the total travel time while ensuring a feasible route. The first

two constraints, (1.2) and (1.3), force that a single vehicle goes into and out of every node;

constraints (1.4) and (1.5) ensure that a total of K vehicles leave the depot and then

return to it; constraints (1.6) and (1.7) are subtour elimination constraints imposing both

the capacity and connectivity of the feasible routes. Note that isolated subtours violate

the subtour elimination constraints and that in our case these constraints simplify slightly

since the demand at each node is di = 1. Although this formulation is polynomial in size,

it is well known that it can lead to weak LP relaxations. In fact, Desrochers and Laporte

(1991) propose tightening constraints for VRP1.

Our second vehicle flow model considered is known as the three-index formulation.

This formulation is derived from VRP1 by adding an index k to the integer variables xijk

to identify which vehicle k traverses arc (i, j). In addition this formulation considers an

integer variable yik which indicates if vehicle k services customer i or not. Hence the
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three-index formulation we consider is

(VRP2) min
∑
i∈V

∑
j∈V

cij

K∑
k=1

xijk (2.1)

s.t.
K∑

k=1

yik = 1 i ∈ V \ {0} (2.2)

K∑
k=1

y0k = K (2.3)

∑
j∈V

xijk =
∑
j∈V

xjik = yik i ∈ V, k ∈ 1 . . .K (2.4)

∑
i∈V

diyik ≤ C k ∈ 1 . . .K (2.5)

uik − ujk + Cxijk ≤ C − dj

i, j ∈ V \ {0}, i �= j,

s.t. di + dj ≤ C

k ∈ 1 . . .K

(2.6)

di ≤ uik ≤ C i ∈ V \ {0}, k ∈ 1 . . .K (2.7)

xijk ∈ {0, 1} i, j ∈ V, k ∈ 1 . . .K (2.8)

yik ∈ {0, 1} i,∈ V, k ∈ 1 . . .K (2.9) .

(2)

Constraints (2.2) and (2.3) ensure that exactly one vehicle services every customer

i ∈ V \ {0} and that K vehicles leave the depot. Constraints (2.4) force vehicle k to arrive

and leave from node i only if it services that node. Constraints (2.5) enforce the capacity

constraint for every vehicle k, while constraints (2.6) and (2.7) are the subtour elimination

constraints.

3.2 Commodity flow models

Commodity flow models were recently introduced for the symmetric CVRP in the paper by

Baldacci et al. (2004). Below we describe an asymmetric version of this model. Commodity

flow models consider, in addition to the routing variables xij , two sets of continuous non-

negative flow variables yij and zij for each arc (i, j). If a vehicle travels from i to j in the
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network, it carries a load yij and a residual capacity zji so that yij + zji = C. The model

also requires a dummy depot node n + 1 to the network. Let V ′ = V ∪ {n + 1} and also

let D be the set of demand nodes, so D ∪ {0, n + 1} = V ′. The vehicles in the model now

depart node 0 and finish at n + 1.

(VRP3) min
∑
i∈V ′

∑
j∈V ′

cijxij (3.1)

s.t.
∑
j∈V ′

(yji − yij) = di i ∈ D (3.2)

∑
j∈V ′

(zji − zij) = di i ∈ D (3.3)

∑
j∈D

y0j = d(D) (3.4)

∑
j∈D

zj0 = KC − d(D) (3.5)

∑
j∈D

zn+1j = KC (3.6)

yij + zji = Cxij i, j ∈ V ′ (3.7)
∑
j∈V ′

(xij + xji) = 2 i ∈ D (3.8)

yij ≥ 0 i, j ∈ V ′ (3.9)

zij ≥ 0 i, j ∈ V ′ (3.10)

xij ∈ {0, 1} i, j ∈ V ′ (3.11) .

(3)

Constraints (3.2) and (3.3) enforce that the flow and residual capacity variables are

adjusted according to the demand at every node i ∈ D; constraints (3.4) send the total

demand out of the depot; constraints (3.5) and (3.6) respectively enforce total amounts of

residual capacity into the depot and out of the dummy node; constraints (3.7) ensure the

flow and residual capacity add up to C for every arc that is selected, and set these variables

to zero on arcs that are not used; finally constraints (3.8) are the routing constraints

enforcing that exactly a vehicle exactly arrives and departs from every node i.
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3.3 Exponential vehicle flow models

Different formulations of the VRP are obtained by replacing the subtour elimination con-

straints (1.6) and (1.7) in problem (1) with either the capacity-cut constraints (1.9) or the

generalized subtour elimination constraints (1.10) below:

∑
i�∈S

∑
j∈S

xij ≥ γ(S) S ⊆ V \ {0}, S �= ∅ (1.9) ,

∑
i∈S

∑
j∈S

xij ≤ |S| − γ(S) S ⊆ V \ {0}, S �= ∅ (1.10) .

Constraint (1.9) enforces that the number of vehicles entering any subset S must be enough

to satisfy the demand at S. Constraint (1.10) implies that the number of vehicles that

leave S is enough to satisfy the demand at S. Here the function γ(·) is defined for every

S ⊆ V , such that γ(S) equals the optimal value for the bin packing problem of demand

d(S) =
∑

i∈S di (= |S|) with bins of size C. The function γ(S) can be equivalently replaced

by the bin packing problem lower bound given by 	d(S)/C
. In fact, in the case of unit

demand this lower bound is tight.

Due to the exponential explosion in the number of constraints, the above models become

significantly large as the problem size increases. Therefore in practice, they are not solved

completely, but they are used in a constraint generation procedure. Since we are interested

in this study on the performance of formulations on a general IP solver, we do not present

the results for these exponential models. However, it is known that these models are mostly

insensitive to problem parameters since they result in tight LP relaxations.
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4 Experimental Results

In this experimental section we first identify, for each formulation, the problem size for

which an exact solution can be obtained in a reasonable amount of time to conduct a

parameter sensitivity analysis. We then explore the effect of vehicle capacity C and num-

ber of vehicles K on problem solution time. We investigate how different aspects of the

travel time matrix cij affect the problem solution time. Our last computational experiment

explores the effect of geographical distribution of customers on the solution time.

For each problem formulation, and each setting of problem parameters (demand nodes

n, vehicle capacity C, number of vehicles K, and mean µc and standard deviation σc of the

travel time matrix cij) we create random instances by randomly generating the n(n + 1)

off-diagonal values of the travel time matrix following a lognormal distribution with mean

µc and standard deviation σc. The lognormal distribution assumption for actual travel

time distances is standard in the transportation literature, see Dessouky et al. (1999). Our

computational results considers a base case scenario with the parameter values C = 6,

K = 5, µc = 4.5, and σc = 3.375. For each scenario, 50 instances are randomly generated

and here we define the problem solution time as the average solution time of these instances.

All experiments were carried out on a Dell Dimension 8200 computer with 2.4 GHz

Pentium 4 Processor and 1GB RDRAM running Red Hat Linux 7.3. Exact solutions for

the five VRP formulations considered were obtained using the mixed integer programming

solver from CPLEX 8.1 with default settings.
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4.1 Problem Size

Our goal in selecting a problem size is to obtain runtimes that allow a study of the sensitivity

of the solution time with respect to changes in problem parameters, therefore we select

different problem sizes for each formulation. After some preliminary computations we

observed that VRP2, the three-index formulation, is more difficult to solve than the other

polynomial formulations since VRP2 has more than K times the number of integer variables

than either VRP1 or VRP2. In the remainder of the paper we use n = 26 for VRP1 and

VRP3, and n = 20 for VRP2. With these sizes, the mean solution time with base case

parameters are between 1 to 2 minutes for all formulations. These solution times are small

enough so that the experiments can be executed in a reasonable time and also significant

enough so that changes to solution time can be noticed.

4.2 Effect of C and K on Solution Time

We plot in the left side of Figure 1 the mean solution time for each of the 3 formulations

as we vary the vehicle capacity C. Note that in these experiments, µc and σc are kept

at their base case values of 4.5 and 3.375, respectively and we fix the number of vehicles

K = 5. We note that as the vehicle capacity increases all three formulations become easier

to solve essentially because the problem is becoming less constrained and optimal solutions

are simpler. In particular, if the vehicle capacity increases, then it is more likely that

efficient routing solutions will have enough capacity to satisfy the demand. We obtained

very similar results when we fix the vehicle capacity C and vary the number of vehicles K

because as the number of vehicles K increases, each vehicle can perform shorter routes in

the optimal solution. We omit these results here for space considerations.

In the right side of Figure 1, we also plot information about the distribution of the 50
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Figure 1: LEFT: Average CPU time as a function of the vehicle capacity. RIGHT: Median,

1st and 3rd quartiles. With µc = 4.5, σc = 3.375, K = 5, 50 random instances

instances for each data point. For all three formulations, around each median value, we

plot vertical lines between the first and the third quartiles of 50 instances. Despite some

fluctuations, we believe the averages are good enough representations of the underlying

distribution of the 50 instances. We observed similar trends in all of the experimental

results and therefore we only present the averages in the reminder of this paper to make

the figures clearer.

4.3 Effect of the Travel Time Matrix on Solution Time

To investigate the effect of the travel time matrix on solution time we present in Figures

2, 3, and 4 the mean solution times as we respectively vary only the mean µc, standard

deviation σc, and coefficient of variation CVc = σc/µc, maintaining C = 6 and K = 5.

Since the coefficient of variation is defined in terms of both µc and σc, there are many
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combinations that yield the range explored in the experiment. In our settings we consider:

µc 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

σc 0.625 1.75 3.375 5.5 9.75 15 25.5 38 52.5 69

CVc 0.25 0.5 0.75 1 1.5 2 3 4 5 6
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Figure 2: Average CPU time as a function of mean travel time µc. With C = 6, K = 5,

σc = 3.375, 50 random instances

For VRP1 and VRP3 the mean does not seem to impact solution times. However, there

is a large dependency on σc, which shows an increase of more than 25 seconds and then

a decrease. The results with respect to CVc are less clear, as it seems to show a strong

increase for small coefficients and to be almost indifferent to larger coefficients. Formulation

VRP2 exhibits a different behavior. It decreases significantly with an increase in µc and it

increases significantly with an increase in σc. However for CVc, the effect is mixed.
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Figure 3: Average CPU time as a function of standard deviation of travel time σc. With

C = 6, K = 5, µc = 4.5, 50 random instances
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Figure 4: Average CPU time as a function of the coefficient of variation of travel time

σc/µc. With C = 6, K = 5, 50 random instances
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4.4 Understanding the Effect of CVc on Solution Time

Taking a closer look at the results with respect to varying CVc in Figure 4, we can explain

the split behavior in VRP1, VRP2, and VRP3 (first increase followed by relative indepen-

dence from CVc) by the interplay of two competing forces: an increase in the number of

triangular inequalities violated and an increase in the asymmetry of the travel time matrix.

Before discussing these two competing forces in detail, we comment on how the random

problems are generated for the experiments.

For each random instance we generate n(n + 1) random lognormal numbers with mean

µc and standard deviation σc. This instance is used for all three formulations. However

since each formulation considers a different number of nodes, each formulation uses as many

of the generated random numbers as appropriate. We generate 26 ∗ 27 random lognormal

numbers, all of which are used for VRP1 and VRP3, while VRP2 uses the first 20 ∗ 21

numbers.

The fact that the number of triangular inequalities violated and the asymmetry of the

travel time matrix increase as CVc increases is not surprising. For instance, for a fixed

mean, CVc increases by increasing the standard deviation. If the travel time matrix is

generated with a larger variability then it is reasonable to have more triangular inequality

violations and a larger distance from symmetric instances. We also show this relationship

experimentally in Figure 5. The number of triangular inequalities violated is obtained

by checking all inequalities for every subset of three arcs in the matrix. We define the

asymmetry of a square matrix A by 1√
2
‖A − AT‖F =

√∑
i>j(Aij − Aji)2.

We note that the number of triangular inequalities violated increases sharply for small

values of CVc and slower for large CVc, while the rate of increase of the asymmetry is

very linear. Hence for small CVc the number of triangular inequalities violations will be

18



0.25       0.75      1.5   2    3    4    5    6    7  
0

2000

4000

6000

T
ria

ng
ul

ar
 In

eq
ua

lit
ie

s 
V

io
la

te
d

VRP1 n26
VRP2 n20
VRP3 n26

0.25       0.75      1.5   2    3    4    5    6    7  
0

500

1000

1500

Coefficient of Variation

A
sy

m
m

et
ry

VRP1 n26
VRP2 n20
VRP3 n26

Figure 5: Number of triangular inequalities violated and Asymmetry as a function of the

coefficient of variation CVc. With C = 6, K = 5, 50 random instances

the dominating factor due to its sharp increase, whereas for greater values of CVc the

asymmetry of the matrix becomes more important. Note also that since VRP1 and VRP3

use the same data, both the number of triangular inequalities violated and the asymmetry

are the same for those formulations.

The fact that the number of violated triangular inequalities is positively correlated with

solution times is suggested from the existence of better worst case complexity results for

the TSP when the distances satisfy triangular inequalities (Christofides 1976; Orponen and

Mannila 1987). In particular, we observe experimentally that the number of triangular

inequality violations is positively correlated with the initial LP gap, which is of course

related to the solution time. Both these trends appear in Figure 6 for VRP1 and VRP3,

and also hold for the other formulation VRP2. Note that these plots consider ranges for

the values on the x-axis, as it is extremely difficult to construct at random examples with a

specific number of violated triangular inequalities or with a given initial LP gap. Therefore,
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in these plots, the y values are the mean of a certain number of problems that fall within

each range, or bucket. The actual number of problems used varies for each formulation

since it is determined by the bucket with fewest problems. For each problem formulation

we indicate the number of problems used to compute the mean in the graph legend, next

to the formulation name and number of demand points.
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Figure 6: Initial LP gap as a function of triangular inequalities violated and solution time

as a function of initial LP gap for VRP1 and VRP3. With C = 6, K = 5

In conclusion, for small CVc, the main effect of increasing CVc is an increase in the

number of violated triangular inequalities, which implies an increase in solution time. A

phenomenon that is observed in Figure 4 for small CVc.

For large CVc we expect the dominating factor to be the asymmetry of the travel time

matrix. We observe the effect of this factor on solution time in Figure 7, and note that

for VRP1 it becomes easier to solve as asymmetry increases and for VRP2 and VRP3 the

effect is mixed showing an increase and then a decrease.

Finally, to validate the fact that there are two competing factors influencing solution
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Figure 7: Average CPU time as a function of the asymmetry in the matrix of travel times.

With C = 6, K = 5
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Figure 8: Average CPU time as a function of the coefficient of variation CVc for symmetric

instances. With C = 6, K = 5, 50 random instances
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time as we increase CVc, we plot in Figure 8 how the solution times are affected by an

increase in CVc for symmetric data instances. We note that for formulations VRP1, and

to some extent VRP2, the solution times increase as the coefficient of variation increases.

Therefore the fact that the increase stops for large CVc in Figure 4 is most likely due to

the asymmetry. A second observation from Figure 8 is that instances with symmetric data

are harder to solve, forcing a reduction in the size of problems considered for formulations

VRP2 (from 20 to 13), and VRP1 and VRP3 (from 26 to 18). We note that these symmet-

ric instances were solved using the asymmetric formulations presented earlier, hence the

difficulty stems from having many routes with similar total costs, since now traversing a

route clockwise or counterclockwise are equivalent.

4.5 Effect of Geographical Distribution of Customers

Lastly, we investigate the effect of geographical distribution of customers on the solution

time. For this, we randomly generate customers lying on a 2-dimensional Euclidean plane

and then construct the cost matrix. Problems generated with this procedure will have

symmetric cost matrix which also obeys the triangular inequalities. We randomly generate

customers on the plane with different degrees of clustering. For that, we consider a depot

at location (0, 0) and randomly generate customer locations in 5 different clusters (one for

each vehicle) with identical radius of r = 20. We center each cluster at a random location

a distance R from the depot. By increasing the value of R, we change the geographical

distribution of customers from uniformly distributed to clustered. We measure how much

the customers are clustered with the following clustering ratio: rc = R
r
. Figure 9 shows

averages of 50 random instances for each clustering ratio. Clearly, VRP3 benefits the most

from the effect of clustering while VRP1 benefits less. For those two formulations clustering

helps decomposing the problem naturally and makes it easier to solve since each vehicle is
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assigned to a single cluster. On the other hand, this has a negative effect on VRP2. Since

VRP2 distinguishes between the vehicles, there are several different assignments of vehicles

to the clusters resulting in the same total cost and not being able to prune those solutions

increases the solution time of VRP2.
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Figure 9: Average CPU time as a function of the clustering ratio rc for symmetric instances.

With C = 6, K = 5, 50 random instances

5 Conclusions

In this work we investigate the effect of problem formulation and data parameters on the

solution run time that a state-of-the-art general purpose IP solver takes to solve the capac-

itated VRP. The VRP is a key part of operations for an important number of industries,

such as courier services, trucking companies, and demand responsive transportation ser-

vices. As such, it has received substantial attention from the research community, which

has generated a number of equivalent formulations of the problem and solution methods.
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How to formulate the routing problem at hand then becomes the first question to answer

for a practitioner. Being able to identify the formulation that is easier to solve can help

develop an overall better solution method because we can focus on algorithms to address

the most promising formulations. By concentrating on the performance of a general IP

solver we aim to represent an intrinsic difficulty of the problem and in the process identify

the best problems for a solution method that has become more relevant both for exact and

heuristic solutions.

We find that due to the initial integrality gap of polynomial arc-based formulations make

the performance sensitive to the problem parameters. We now summarize our findings of

the experiments presented.

• All models show a significant decrease in solution time if we increase the capacity or

the number of vehicles.

• The effect of the travel time matrix on solution time is more obscure. VRP2 shows a

strong dependency on the standard deviation, while VRP1 and VRP3 show first an

increase in solution time, then oscillatory behavior as CVc increases.

• This mixed dependency on CVc is explained by two factors. As CVc increases we

have that the number of violated triangular inequalities increases and the asymmetry

of the matrix increases. The increase in triangular inequalities violations is most

significant for smaller values of CVc and leads to an increase in solution time, while

the asymmetry increase becomes the dominating factor for large CVc.

• Problem VRP1 becomes easier to solve as the asymmetry increases, while problems

VRP2 and VRP3, first show an increase then a decrease in solutions times with

asymmetry.
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• For symmetric problems, an increase in coefficient of variation leads to an increase in

solution times.

• For symmetric problems, when the degree of clustering of the geographical distribu-

tion of customers increases, VRP1 and VRP3 become easier to solve whereas VRP2

shows an increase in solution times.

We observed similar performance trends when considering symmetric problems, and

have no reason to suspect a deviation from this behavior for the symmetric versions of the

formulations considered. However, specialized algorithms that favor a specific formulation,

can lead to different results. The question of which formulation has a specialized algorithm

that performs best is at the heart of a number of VRP challenges and competitions, focuses

on specific problem instances and is not investigated here. For instance, using a path-based

formulation is a competitive solution approach for problems with hard time windows, which

help reduce the number of feasible solutions. How the problem parameters influence such

a path-based formulation still has not been fully addressed.
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