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Abstract

In this paper, we are interested in routing vehicles to service a large-scale bioter-
rorism emergency. We describe the specifics of routing vehicles in such a large-scale
emergency and decompose the problem into two stages: a planning stage and an
operational stage. In the planning stage we generate the routes well in advance of
any emergency. In the operational stage, we take into account the planned routes
and the information revealed at the time of the emergency, to decide the delivery
quantity and any adjustments to the routes. We propose mathematical formulations
and solution approaches for both stages. Lastly, we demonstrate the effectiveness
of our formulations and solution procedures in developing robust routes through
numerical experiments.

1 Introduction

According to the U.S. Centers for Disease Control and Prevention (CDC), “a bioterror-
ism attack is the deliberate release of viruses, bacteria, or other germs (agents) used to
cause illness or death in people, animals, or plants.” Such an attack creates a large-scale
emergency when the event overwhelms local emergency responders and has the potential
to cause substantial casualties and property damage. A key ingredient in an effective
response to a bioterrorism emergency is the prompt availability of necessary medical sup-
plies at emergency sites. Given the challenges of delivering massive supplies in a short
time period to dispersed demand areas, operations research models could play an impor-
tant role. Larson (2005) and Larson et al. (2006) conducted a detailed analysis based on
well-known and recent large-scale emergencies.



In a bioterrorism emergency, medication or antidotes must be applied within a specified
time limit from the occurrence of the event to maximize their effectiveness and, in some
situations, save lives. However, local caches of medicine are likely to be insufficient and
traditional pharmaceutical supply chains would not be prepared to push a huge volume
of medical supplies to the affected population in a short time. In a large-scale emergency,
the bulk of the medical supplies would have to come from national repositories, which in
the United States is the CDC maintained Strategic National Stockpile (SNS). It is each
state’s responsibility to have plans to receive and distribute SNS medicine and medical
supplies to local communities as quickly as possible. This work is concerned with the
distribution process after the SNS supplies have been received at the local level. For
this problem, a vehicle routing model provides a method to plan the disbursement of the
medical supplies ahead of an attack and, in the event an attack occurs, a methodology to
quickly adjust the routing solution to provide an efficient response.

The objective of this routing problem is to minimize the unmet demand. The reason for
this is because the unmet demand in an emergency situation can result in loss of life,
an impact that outweighs other commonly used VRP objectives such as travel time or
number of vehicles used. An additional important aspect in a large-scale bioterrorism
emergency is how long it takes to service a demand. We only consider a demand satisfied
if the vehicle arrives within a certain time window, since delivering medicine too late can
make an appreciable health difference and even lead to loss of life.

Because of the unpredictable nature of large-scale bioterrorism emergencies, we consider
uncertain demand and travel times. First, at a given demand point (e.g., a neighborhood
block), the quantity of required emergency supplies (antidotes, protective equipments,
medication, etc.) is often proportional to the unknown size of the population and/or
numbers of casualties. Second, the casualties exposures, or demands among “worried
well” are hard to accurately predict. In addition, in an emergency situation, the traffic
condition can become highly uncertain, due to unpredictability in people’s behavior.

When we consider the problem of routing inventory in response to large-scale bioterror-
ism emergencies, both routes and delivery quantities are important in creating an effective
dispatching plan. From a planning perspective effective routes can be used by agencies
in mock trial runs of an emergency event to pre-design the routing policies and pro-
vide training opportunities. From an operational perspective, the models can be used to
update the pre-designed routes and promptly determine exact delivery quantities to dis-
pensing or treatment sites to generate real-time near-optimal dispatching solutions after
an emergency situation has happened.

In this work, we propose a two-stage model for a specific bioterrorism emergency scenario,
e.g., an anthrax attack. We believe that this type of model can also be applied to other
emergency scenarios by further investigating and validating several key problem param-
eters (such as the service deadline, demand distribution etc.). The two-stage model has



a planning stage and an operational stage. The purpose of the first planning stage is to
generate pre-planned routes well in advance of any possible emergency for mock trial runs
and training. We formulate this problem as a mixed integer programming (MIP) model
to meet the special requirements for the distribution process of large-scale bioterrorism
emergencies. In the second operational stage, at the time of the attack when more in-
formation is revealed, we need to quickly respond to the event and generate the delivery
requirements with the planned routes as well as making adjustments on the routes if nec-
essary. We refer to the second stage model as the recourse strategy. In this paper, we
propose three different recourse strategies.

The main contributions of this article are: from the modeling perspective, we analyze
the problem of routing vehicles in response to a large-scale bioterrorism emergency and
decompose the problem into two stages (pre-planning and operational stages), then for-
mulate mathematical models for both stages; from the solution approach perspective, we
propose a tabu heuristic for the planning stage model and an approximation heuristic for
one of the proposed recourse strategies, then demonstrate the effectiveness of the model
and solution approach in developing robust routes on numerical experiments. This work
is an extension on our previous work (Shen et al., to appear). The previous work empha-
sized the first-stage planning model (a stochastic vehicle routing model) and compared the
chance-constraint programming technique with a deterministic model and a robust ap-
proach. In this work, we focus on the two-stage modeling framework and the second-stage
recourse strategies. We briefly present the first-stage model and highlight the addition of
allowing for split delivery to the formulation. For more details of the first-stage routing
model, please refer to our previous paper.

The rest of this paper is organized as follows. In Section 2, we review the relevant lit-
erature. Section 3 proposes the mathematical model for the planning stage and presents
three recourse strategies for the operational stage. Section 4 presents the solution ap-
proaches for both stages. We present some illustrative computational results in section 5,
and finally, conclude in Section 6.

2 Literature Review

The Vehicle Routing Problem is defined on a given topological graph. The classical
standard VRP generates a set of routes which visit each customer exactly once. It aims
to minimize the total travel time and/or the operational cost. When some uncertainty
in the parameters is introduced into the problem, it is called a Stochastic VRP (SVRP).
A comprehensive overview of the Vehicle Routing Problem and its stochastic variant can
be found in Toth and Vigo (2002) and Gendreau et al. (1996a). Routing problems with
profits are a generalization of the vehicle routing problems, where it is not necessary to
visit all customers. A profit is associated with each demand node and a uniform deadline



is applied to every node. The problem aims to maximize the total collected profits subject
to the time restriction (constrained by the travel cost). This is called the Orienteering
Problem (OP) when only a single vehicle is present and is motivated by an outdoor sport.
The multi-vehicle version of the OP is referred to as the Team Orienteering Problem
(TOP) in the literature. In comparison to the classical routing problems, the routing
problems with profits have an added element of complexity. They require selecting a
subset of nodes to visit while determining an order on the tour. If all the customers can
be visited within the time constraints, then it becomes the classical routing problem and
the extra complexity vanishes. We review these two well-known bodies of literature in the
following two subsections and follow with a review on the split delivery and tabu search
heuristics applied to VRPs.

2.1 Stochastic Vehicle Routing Problems

The Stochastic Vehicle Routing Problem can be broadly classified based on the following
three criteria: (1) where the uncertainty lies in the problem, e.g., the presence of the cus-
tomers (Jézéquel 1985; Jaillet 1987; Bertsimas 1988; Bertsimas 1992) the demand level
(Bertsimas and Simchi-Levi 1996) or the travel time (Kao 1978; Laporte et al. 1992; Jula
et al. 2006) and the service time at customer sites (Hadjiconstantinou and Roberts 2002);
(2) how to model the problem, e.g., by stochastic programming technique (Stewart and
Golden 1983; Bertsimas 1992), by Markov decision process (Dror and Trudeau 1986;
Dror 1993; Dror et al. 1989; Secomandi 2001) or by robust optimization methodology
(Sungur et al. 2008); (3) how to solve the model, which heavily depends on the modeling
method and can be broadly classified into two categories: exact methods (branch and
cut, integer L-shape method (Gendreau et al. 1995) and generalized dynamic program-
ming (Carraway et al. 1989)) and heuristic methods such as saving algorithms (Clarke and
Wright 1964), sweep algorithms, Genetic Algorithms, tabu search (Gendreau et al. 1996b)
to name a few. For a more detailed discussion based on this classification, please refer to
Shen et al. (to appear).

Here we will further expand the discussion of the Stochastic VRPs modeled through the
stochastic programming framework: either as a chance constrained program (CCP) or as
a stochastic program with recourse (SPR). A CCP enforces the probability of satisfying
the constraints with stochastic parameters to be above a given threshold; however, it does
not consider the corrective actions and their cost into the formulation. On the contrary,
SPR aims to incorporate the expected cost of the proposed second-stage recourse actions
into the objective function in the first-stage model. This brings considerable difficulties
but is more meaningful. The research in modeling SVRP with SPR has flourished over
the last two decades.

In the early works (Stewart and Golden, 1983; Laporte et al. 1992), the expected penalty



incurred in the first-stage objective is derived from how the failure occurred. When the
demand exceeds the capacity, each extra unit of demand is penalized; or when the travel
time exceeds the deadline, each extra unit of time is penalized. These works do not
propose explicit recourse actions. Bertsimas (1993) applies two straightforward recourse
actions (which are called “traditional recourse strategies” in later literature) and penalizes
on a different dimension as where the failure occurred. When the demand exceeds the
capacity, the penalty is on the expected extra travel cost to cover the failed customers.
Later on, more sophisticated recourse strategies have been designed and studied (Yang
et al., 2000; Ak and Erera, 2006; Novoa et al., 2006), and they follow the “traditional”
strategies to penalize on a different dimension other than the failure occurring dimension.
They all share the assumption that there are no deadlines on the temporal perspective, no
total supply quantity constraints, and the stochastic elements only appear in the demand.
Therefore, they have the luxury to return a vehicle to the depot whenever a failure occurs
(or is expected to occur) and reload to continue serving customers following the designed
strategies without worrying about violating time constraints or the total supply level at the
depot constraint. Our work differs from these by considering a problem with uncertainty
both in demand and travel time, and constraints both on capacity and deadlines.

2.2 Routing Problem with Profits

Hayes and Norman (1984) first introduced the orienteering problem with real data for
the 1981 Karrimor Mountain Marathon and proposed a dynamic programming solution
approach. Tsiligirides (1984) deduced a common mathematical model, proposed heuris-
tics and ran the numerical tests on up to 33 locations. Later on, a number of heuristics
have been proposed by various groups of researchers, e.g., Golden et al. (1987, 1988),
Ramesh et al. (1991), and Chao et al. (1996a). All these heuristics were tested using the
small size benchmark problems provided in (Tsiligirides 1984) with improving solution
quality. More recently, many types of sophisticated meta-heuristic techniques have been
applied on the OP, for example: artificial neural networks (Wang et al. 1995), tabu search
(Gendreau et al. 1998b), genetic algorithms (Tasgetiren and Smith 2000), and ant colony
optimization (Liang and Smith 2001). These meta-heuristics can provide comparable re-
sults on much larger scale problems (up to 300 nodes); among them, the tabu search
has been shown to provide an optimality gap that is less than 1% in a number of experi-
ments. Another focus of the research on the OP are exact solution methods. Laporte and
Martello (1990) used a branch-and-bound approach with a knapsack bound; while Ramesh
et al. (1992) applied a shortest spanning tree relaxation style bounding within the same
framework. Leifer and Rosenwein (1994) discussed an LP-based bounding procedure.
Later on, Fischetti et al. (1997, 1998) and Gendreau et al. (1998a) proposed a branch-
and-cut method to solve instances with up to 500 nodes. Feillet et al. (2005) provided a
more detailed review on this topic. Different variations of the standard OP have attracted
many groups of researchers in recent years. For example, Geem et al. (2005) applied a



harmony search mimicking the improvisation process of music players to study a gener-
alized OP with multiple objectives; Mak and Thomadsen (2006) investigated a quadratic
OP with edge-reward and cardinality constraint through its polyhedral properties; and
Jozefowiez et al. (2008) introduced a hybrid meta-heuristic for OP which combines an
ejection chain local search and a multi-objective evolutionary algorithm.

Two works have considered stochastic elements in the OP. Tang and Miller-Hooks (2005a)
addressed an orienteering problem with stochastic service time. The problem was formu-
lated as a chance-constrained stochastic programming problem. An exact branch-and-
cut algorithm and a “construct-and-adjust” heuristic were proposed to solve it. Ilhan
et al. (2008) focused on the uncertainty in profits in the OP and maximized the probabil-
ity of collecting more than a pre-defined target level of the total return. They proposed
an exact solution method based on a parametric formulation and developed a bi-objective
GA heuristic.

The routing problem with profits was extended to a multi-vehicle context by Butt and
Cavalier (1994). They were concerned with the athletes recruitment problem and pro-
posed a greedy algorithm for solving it. Wu (1992) and Dunn (1992) faced an underway
replenishment of a dispersed carrier battlegroup. Dunn (1992) applied dynamic pro-
gramming to obtain a quick and useful schedule for this military operational situation.
Chao et al. (1996b) used a straightforward extension of their heuristic for the OP (Chao
et al. 1996a) to the TOP context and solved instances with up to 102 nodes. Later on,
Butt and Ryan (1999) proposed a branch-and-price exact solution procedure based on a
set-partitioning formulation, and made efficient use of constraint branching and column
generation. In recent years, Tang and Miller-Hooks (2005b) introduced tabu heuristics
for the TOP; Archetti et al. (2007) proposed two variants of a generalized tabu search
algorithm and a variable neighborhood search algorithm and their computational experi-
ments on benchmark problems (Chao et al. 1996b) generated best solutions by that time.
Ke et al. (2008) introduced Ant Colony Optimization (ACO) and Vansteenwegen et al.
(to appear) used a guided local search (GLS) meta-heuristic for the TOP. ACO outper-
forms Archetti et al. (2007)’s result in terms of the solution quality for some benchmark
problems and the GLS produces an equivalent quality solution with better efficiency (less
running time). Boussier et al. (2007) first proposed an exact solution approach, branch
and price algorithm, to the TOP and solves instances with up to 100 customers. All the
works mentioned above for the TOP consider the constraint on the temporal dimension
only and assume an uncapacitated fleet. Goel and Gruhn (2005) studied a more com-
plicated problem arising in air-cargo transport. They were concerned with a multiple
pickup and delivery problem with a heterogeneous fleet. Load acceptance, compatibility
constraints, time windows constraints, capacity constraints, as well as a timely manner
of handling dynamic requests were under consideration at the same time. A variable
neighborhood search method (Mladenovic and Hansen 1997) was developed to solve the
problem on real-life scale test cases.



2.3 Split Delivery and Tabu Search Heuristics for VRPs

Split delivery allows multiple visits to a demand node. This is an extension of the classical
VRPs and has also been investigated by a number of researchers (Dror and Trudeau 1989;
Dror and Trudeau 1990; Dror et al. 1994; Archetti et al. 2006). Dror and Trudeau (1989,
1990) have analyzed the saving generated by allowing split deliveries in a VRP. Archetti
et al. (2006) demonstrated a tabu search heuristic to solve problems with up to 199 nodes;
most instances were solved in less than 10 minutes and a few cases used around 3 hours.

Tabu search is a local search procedure which iteratively moves from a solution to its
best neighbor until some stopping criteria are satisfied. A comprehensive review on this
technique and its applications can be found in Glover and Laguna (1997). Tabu search
was first introduced for solving the VRP by Willard (1989). Later on, different groups
of researchers designed a variety of neighborhood/moves and adopted some problem-
specific mechanism to significantly improve the performance (Osman 1993; Gendreau
et al. 1994; Xu and Kelly 1996; Toth and Vigo 2003). Tabu search has also been applied
to major variants of VRP, e.g., VRP with time windows (Taillard et al. 1997), VRP with
split delivery (Archetti et al. 2006), the pick up and delivery problem (Bianchessi and
Righini 2006), as well as the stochastic VRP (Gendreau et al. 1996b). It has been shown
that tabu search generally yields very good results on a set of benchmark problems and
some larger instances (Gendreau et al. 2002).

3 Mathematical Models

In this section, we propose a model for the problem of routing for large-scale bioterrorism
emergencies. The primary objective is to minimize the unmet demand (to maximize the
life-saving). This can be seen as a case of routing with profits, since minimizing the unmet
demand corresponds to maximizing the collected profits when we set the profit of each
node to its demand level. However, compared with the traditional routing problem with
profits, whose uncollected demand nodes are only due to the deadline constraint, our
problem is further complicated by potentially insufficient supply at the depot or limited
vehicle capacity.

In our problem setting, the large-scale bioterrorism emergency makes both the demand
level and the traffic condition highly unpredictable; hence uncertainty exists both in
demand and in travel time. The overwhelming demand with limited resources and the
urgency of the timely delivery make the problem constrained by both the vehicle capacity
(in demand dimension) and the service deadline (in temporal dimension). Since our model
can be applied to a single specific type of emergency scenario (e.g., anthrax attack), the
service deadline can be obtained from CDC regulations well before the attack happens at



the planning stage. We formulate the route planning stage as a stochastic programming
problem where we quantify all the unmet demand, due to either insufficient capacity,
supply, or late delivery. We model this problem with a single depot by considering the
fact that, in most emergency scenarios, the SNS supplies are usually shipped to one
regional central warehouse (e.g., LAX airport in the Los Angeles Metro Area) for further
distribution at the local level. We use chance constraints to represent the uncertainty in
demand and travel times.

In addition to minimizing the unmet demand, the planning problem also considers a
secondary objective to guide the construction of a complete route. Instead of ignoring the
nodes not selected by the team orienteering problem due to tight deadline, insufficient
supply, or limited vehicle capacity, we include them at the end of each route according
to this secondary objective. These complete routes that visit all demand nodes even
after the deadline or with an empty truck, provide a blueprint for recourse actions in the
operational stage. The secondary objective is the arrival time at each node. We use a
significantly small coefficient x to weigh this secondary objective so it will not interfere
with the route generation for nodes that can be satisfied within constraints, which is
guided by the minimum unmet demand primary objective.

We illustrate this model for the planning stage with the following figures. Figure 1-(a)
shows the routes generated by a classical VRP, which visit all the demand nodes and aim
to minimize the total travel time. Figure 1-(b) demonstrates the routes obtained from
a routing problem with profits on the same topological graph, which visit the nearby
high-profit nodes within the given deadline while ignoring those far-away low-profit ones.
Figure 1-(c) illustrates the result by the routing problem to minimize the unmet demand
and then complete the route as we just proposed. It generates exactly the same result
as the routing problem with profits before the deadline. After the deadline, it visits the
remaining far-away nodes guided by the secondary objective.

For the operational stage we consider models that will adapt the preplanned complete
routes to satisfy the realized demand in the large scale emergency. In this paper we
present three recourse operational models that differ in how much re-optimization we can
do in the operational stage. We consider an LP recourse strategy in which we can only
adjust the quantity sent on each vehicle, a knapsack recourse strategy which, in addition
to setting the quantity, allows to modify the routes by skipping customers in each route,
and for comparison purposes we also consider a re-planning strategy in which we look
for the optimal routing solution for the realized demand. The operational stage problem
should balance the need for familiarity with a planned strategy, which can be used by
responders for training purposes, with efficiency in the solution and a quick solution time
for a rapid response.
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Figure 1: A priori route model at the planning stage.

3.1 Notation

We first introduce the notation used in both the planning and operational stages.

We consider a set K of vehicles and a set D of demand nodes. We identify an additional
node, node 0, as the supply node (depot) and let C' = D U {node 0} represent the set of
all nodes. Indexed on sets K and C, we define the following deterministic parameters for
the planning model:

Cl-:

dlZ

initial number of vehicles at the supply node (depot)
amount of supply at the supply node (depot)

load capacity of vehicle k&

service deadline at demand node 3.



We use a large constant M to express nonlinear relationships through linear constraints
and a small weight x to balance the primary and secondary objectives. We also con-
sider the following two parameters to represent the uncertain travel time and demand,
respectively, in the planning stage

T,k time required to traverse arc (i, ) for vehicle &
Gi: amount of demand needed at node 1.

Finally, we define the binary and non-negative decision variables as follows for the planning
model, indexed on sets K, C":
Binary:

Xk  flow variables, equal to 1 if (¢, j) is traversed by vehicle £ and 0 otherwise
Sik: service variables, equal to 1 if node 7 can be serviced by vehicle k

Non-negative:

Yk amount of commodity traversing arc (i, j) using vehicle &k
U;: amount of unsatisfied demand of commodity at node ¢

T i visit time at node 7 of vehicle k

ikt delay incurred by vehicle £ in arriving at i.

The variable J; ;, represents the delay of the visit time if a vehicle reaches the node after
the deadline. It is set to zero if it arrives before the deadline.

In the second operational stage, the uncertain parameters have been revealed and become
deterministic as defined below:

tijk: actual time required to traverse arc (i, j) for vehicle &
d; : actual amount of demand needed at node 7.

Since the planned route is assumed as given at the operational stage, the vehicle flows X ;
become parameters. In our first recourse strategy, the value of S; ; is uniquely determined
once X, ; are given. Hence, they also are no longer decision variables. However, in our
second recourse strategy, we introduce a new binary variable

Zijxk:  flow variables, equal to 1 if (4, j) is traversed by vehicle £ and 0 otherwise

and establish its relationship with S; ;. Hence, S; remain as variables.
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3.2 The Planning Stage — A Chance-constrained Programming
Model

We follow the same modeling framework as we proposed in our previous work (Shen
et al. to appear) and relax the model to allow split delivery. The chance-constrained
programming technique is used to model the constraints with uncertain travel time and
demand. We assume the distribution of these stochastic elements is known at the planning
stage. The CCP model then can be readily transformed to a deterministic counterpart.
We present the complete model here and refer the reader to the previous paper for a
detailed explanation of the model and its derivation.

minimize Z Ui+ k Z Tik
CCP: i€D Z i€DkeK Z
subject to constraints (1) — (17) ,

Route Feasibility:

Z Z Xoix < n (1)
i€eD ke K
2.2 Xiox < (2)
ieD keK
Z XO,j,k = Z X',(),k = 1 (Vk - K) (3)
JjeED jE€ED
> Xigr =1 (VieD) (4)
jEC kEK
DY Xk > 1 (Vi € D) (5)
jEC kEK
Z Xz',ch = Z X',i,k (VZ eD ke K) (6)
jec jec
Time feasibility:
Top =0 (Vk € K) (7)
P {T‘(ﬂ,k + Ti,j,k — ij,k) S (1 — Xz',j,k)M} 2 1-— aT (VZ,] € C k € K) (8)
Z XijoM >Ti, > 0 (Vie D keK) 9)
jec
dl; Z Xi,j,k > ,Ti,k — 5i,k > 0 (V’L eD ke K) (10)
jec
Node service constraints

11



Z Xi,j,k > Si,k (V’L €D, ke K) (12)

jec
Z Y',i,k — Z Y;,j,k < Si’kM (\V/Z € D, ke K) (13)
jec jec

Demand flows:

s= 2 |2 Yok — 2 Yior| = 0 (14)
keK |jeC jec
P{C|Z > Yiik— D Yiju +Ui_€i20} > l—ap (Vi e D) (15)
keEK |jeC jec

Xigeew = Yige  (Vi,j € C, k€ K)(16)
Binary and non-negativity properties:

XijksSij binary; Yy >0, U >20; T >20; 6 > 0. (17)
We only highlight the two constraints (4) and (5) which we relax for split delivery. These
two constraints state that each demand node must be visited at least once, which allows
split delivery, e.g., multiple visits to a demand node. In a large-scale emergency it is likely
that the demand at points which are seriously affected will not be able to be satisfied by
a single truckload. Hence we consider split delivery, which also provides greater solution
flexibility to potentially service more demand nodes before the deadline.

3.3 The Operational Stage

After an emergency occurs we can use the observed outcome of the uncertain parameters
to make a quick adjustment to the preplanned routing solution to respond to the event.
This response needs to provide the delivery requirements (how much to load on each
vehicle) based on the planning result as well as adjustments to the routes to make the
delivery more effective. This second stage model must be able to be solved quickly so that
the adjustments do not delay the emergency response. We present three different recourse
strategies and their corresponding mathematical models in the following subsections.

3.3.1 The LP Recourse Strategy

In the first recourse strategy, we strictly follow the pre-planned route obtained in the first-
stage but we can adjust the supply carried by each vehicle and the amount to be dropped
at different demand nodes according to the revealed demand level and travel time. In

12



this approach, the commodity flow variables become the only amount to be determined.
This is the easiest strategy with least flexibility among the three we propose in this paper.
Since it is a linear programming problem, it can be solved very efficiently by a CPLEX
solver.

Model DLP:
minimize Z Ui+ & Z T x
i€D i€DkEK
subject to: constraints (13)-(14), (16), (18)-(19).
DAY Vi =D Yijk| +Ui—di > 0 (Vi € D) (18)
keK |jeC jec
Yijr 2> 0; U; > 0. (19)

3.3.2 The Knapsack Recourse Strategy

The alternative recourse strategy is inspired by the classical recourse strategy B in Bert-
simas (1992), which assumes the demand level will be revealed before the fleet departs
from the depot. Hence, the zero demand customers will be skipped. In our strategy, we
share the same assumption that the actual demand and travel time needed will become
known before the vehicles leave the depot. Besides deciding the amount carried by each
vehicle, the recourse allows for skipping low demand nodes when a direct visit to the next
high demand node could result in a less total unmet demand level. This recourse strategy
can be modeled into an MIP as below.

We use the same set of parameters and decision variables as in the first-stage planning
model except that X ; , becomes a parameter (its value will be given from the pre-planning
solution) and we add a new set of vehicle flow variables Z; ; ;. We keep the same objective
function and replace X;;; with Z; ;, in the time constraints, node service constraints
and demand flow constraints (constraint (8) - (17)). In the route feasibility constraints
group, we will establish the relationship between the new vehicle flow variable Z; ;, and
the pre-planned routes X ; .

minimize Z Ui+ k Z Tk
DP: i€D i€D,kEK
subject to constraints (20) — (35) ,

The following constraints (20)-(24) enforce the route feasibility.

YD Zoik = D> Kok (20)

t€ED keK 1€ED kEK

13



DD Ziog = D> Xiok (21)

i€eD keK i€eD keK
Y Zojk=_ Zjor = 1 (Vk€EK) (22)
jeD jeD
Y. Zigk < Y Xigr  (Vk€EK) (23)
1,j € Ry, ,ibeforej 1,J € Ry, ,ibeforej
Z Zi,j,k = Z Z',i,k (Vl eD ke K) (24)
jec jec

Constraints (20)-(22) require the number of vehicles dispatched in the second-stage to
be the same as the solution obtained from the first-stage pre-planned solution. Ry in
constraint (23) represents the subset of nodes visited by the pre-planned route k. It is
defined as Ry = {i¢ : i € D|X,,;x = 1}. The expression ¢ before j states the sequence of
visiting. The right hand side of constraint (23) represents the number of edges (except
for the edge from the last visited demand node back to the depot) in the pre-planned
route for vehicle k; the left hand side represents the same meaning in the to-be-decided
operational stage route for vehicle k, which is bounded by the given pre-planned route.
Hence it allows skipping of some nodes in a given route. Constraint (24) guarantees the
connectivity of the vehicle flow.

Constraints (25)-(28) enforce schedule feasibility with respect to time considerations.

Top = 0 (VkeK) (25)
(7—;',]9 + ti,j,lc — T}',k) < (1 — Zi,j,k)M (VZ,_] eC ke K) (26)
S ZuM>Ty >0 (YieD keK) (27)
jec
dl; Z Zz',j,k > ,Ti,k - 51"]9 > 0 (Vl eD ke K) (28)
jec

Constraints (29)-(31) address node service constraints.

Z Zi,j,k > Si,k (Vl €D, ke K) (30)
jec
S Viik— D Yijk < SigM (Vie D, k€ K) (31)
jec jec

Constraints (32)-(34) state the construction on the demand flows.

s= 2

kEK

> Yok — D Yok

jec jec

> 0 (32)

14



S| Yiiw— ) Yie| +Ui=di =2 0 (Vi€ D) (33)
keK |jeC jec

ZijkCk = Yijk (Vi,j € C, ke K) (34)

Zijk, Sij binary; Yijk 2 0; U; > 0; Tix > 0; ik > 0. (35)

Constraint (35) states the binary and non-negativity properties of the decision variables.

The second recourse strategy will lead to a result at least as good as the first one by
providing extra freedom on executing the route which allows some skipping on the low
demand level nodes while still preserving the advantages of customer-vehicle familiarity
and the readiness for training purposes as well. The trade-off is that it requires additional
computational effort since the vehicle flow variables are introduced into the model again.
However, the flexibility on the vehicle flow is restricted within the fixed route, which
dramatically decreases the admissible search space compared with the first-stage model.
Hence, it can be solved efficiently. We call it the knapsack recourse strategy because we
propose an approximation solution approach by solving a knapsack problem. The problem
can be solved efficiently by this approximation algorithm and the details of the approach
will be discussed in the next section.

3.3.3 The Re-planning Strategy

The last proposed recourse strategy is to solve a deterministic routing problem to minimize
the unmet demand used for the first planning stage by plugging in the actual travel time
and demand value. The advantage of this strategy lies in that it provides the largest
search space and most flexibility regarding the current emergency scenario. But it loses
the pre-knowledge of the planned routes which makes it difficult for training and driver
learning on the routes. Since familiarity of the routes and training are important aspects
of reliable solutions, it is impractical to apply this re-plan strategy in real life. However,
this strategy can provide us with a bound to compare and evaluate the previous two
strategies in the experimental section below.

4 Solution Approaches

4.1 The Planning Stage — Tabu Search Heuristics

Tabu search is a widely used metaheuristic algorithm. The search keeps a tabu list
which prohibits revisiting a recently explored solution unless some aspiration criteria are
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met to avoid cyclic movement. It allows a solution to temporarily move to a worse
position to escape a local optimum. Tabu search has been successfully used in solving
hard optimization problems in many fields. Applying tabu search to a particular problem
requires a fair amount of problem-specific knowledge. Given the success of tabu heuristic
in the classical VRP and its variants, and the similar structure of our model, we believe
this approach holds much promise in solving our problem. The algorithm we propose
here uses some ideas from the standard VRP, and incorporates new features taking into
account the unmet demand objective of our problem.

® ®
O—O—-0-0 O—-O—-0O-0

Insertion Exchange

OO0 OO0

‘ Insertion DEM Move ‘ ‘ Exchange DEM Move ‘

Figure 2: Illustration of the DEM Moves.

A key element in designing a tabu heuristic is the definition of the neighborhood of
a solution or equivalently the possible moves from a given solution. Beside adopting
the standard 2-opt exchange move and the A-interchange move, we implement a new
DEM-move to try to reduce the unmet demand. The DEM-move inserts an unassigned
demand node into a current route or exchanges an unassigned node with some (one to
three) consecutive node(s) in a route by abiding both deadline and capacity constraints.
Figure 2 illustrates some examples of the DEM move. The upper left graph represents an
unassigned node and an existing route before the DEM move. The lower left graph gives
the result after an insertion DEM move. The unassigned node has been inserted between
the first and second nodes of the existing route. The lower left graph is one of the upper
left graph’s neighbors. This unassigned node could also be inserted between the second
and third nodes or between the third and fourth nodes as long as the deadline and capacity
constraints can be met after the insertion. The two graphs at the right hand side show an
example of the exchange DEM move. The A-interchange move exchanges a subsequence
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of at most A\ consecutive customers on a route with a different sequence also of up to A
customers. This move includes a combination of vertex reassignments to a different route
and vertex interchanges between two routes. With A = 3, the reassigning/interchanging
segment is up to three consecutive vertices in a route. (See figure 3 for the illustration
with A = 1 insertion at the left and A = 2 exchange at the right.)

o000 - OO0
o000 OO

Insertion Exchange

Oo—-0O-0O Oo—-0—@—0O—0O
Oo—-—0O0-O-0O  O-e—O

‘ Insertion A-Interchange Move ‘ ‘ Exchange A-Interchange Move

Figure 3: ITllustration of the A-interchange Moves.

Because the problem has insufficient supplies at the depot in most scenarios, we use an
UnassignNodeManager list of nodes to keep track of all the nodes with unmet demand.
We also use a RouteManager list of solutions to keep track of all the incomplete (may not
include all the nodes) but feasible (meet both capacity and time constraints) routes. We
initiate a solution by using a visit-nearest-node heuristic and put all the unvisited nodes
into the UnassignNodeManager list. We also maintain a MoveManager list to record all
possible moves from the current solution. After a solution moves to its neighbor, instead
of reconstructing the whole neighborhood of the new solution, we only update the non-
overlapping neighbors. That is, we eliminate those moves that are relevant (sharing the
same route or sharing the same unassigned node, etc.) to the move that just has been
executed, and generate new feasible moves that are relevant to the updated route(s) only.
This significantly reduces the computational effort of exploring the neighborhood.

After we obtain the tabu search solution, we complete the route by adopting a variation of
a “next-earliest-node” heuristic to insert all unassigned nodes after the deadline of each
route (keeping the before-deadline part intact). In this post-processing heuristic, each
unassigned node picks a route to locate itself after the deadline, where the summation
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of its arrival time and the arrival time to the next node is minimized at the time of
assignment.

The quality of this tabu heuristic is evaluated in the next section.

4.2 The Operational Stage

The first LP recourse strategy can be solved by CPLEX, while the third re-plan strategy
shares the same model as the planning stage, hence can be solved by the tabu heuristic we
presented in the previous subsection. Therefore, in this subsection, we focus on presenting
an approximation algorithm for the second knapsack recourse strategy.

After the actual demand and travel time have been revealed at the beginning of the second
stage, the knapsack recourse strategy follows the first-stage pre-planned routes and allows
skipping low demand level nodes. Hence, there are two decisions to make: (1) which nodes
to be skipped, and (2) how much supply to load on each vehicle under the given total
supply and deadline, to minimize the total unmet demand. We propose the following
solution procedure:

For each pre-planned route, we enumerate all the feasible routes by skipping some nodes
and visiting the rest in the original sequence. A feasible route must be finished within the
pre-specified deadline. This is equivalent to assigning a binary digit to each node in the
pre-planned route, 1 if selected, 0 otherwise. Therefore, a vehicle that visits ¢ demand
nodes could have up to 29 feasible routes, which means there are at most 2" feasible set
of routes for the entire fleet. We use L; to denote the set of feasible routes for vehicle
k. For every feasible route [ for vehicle k in Lj, an associated demand level ay; is the
summation of the demand of the nodes in the route. With a known total supply quantity
at the depot, we can solve an integer programming problem to decide the route to be used
for each vehicle.

Parameters:

s amount of supplies at the supply node (depot)
ag;:  the total demand on route [ of vehicle k.

Binary Decision variables:

Wi equals to 1 if route [ is used by vehicle &, 0 otherwise.
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maximize Z ak,ka,l
IP : k€K, €Ly
subject to constraints (36) — (37)

S Wiy=1 (VI € K) (36)
leLy
> ap Wiy <s (37)
kel leLy

The IP aims to maximize the demand that can be serviced, which is the same as minimiz-
ing the total unmet demand. Constraint (36) states that only one route can be selected for
each vehicle. Constraint (37) enforces the total demand to be serviced will not exceed the
supply available at the depot. This problem is called a multiple-choice knapsack problem,
which is a 0-1 knapsack problem with the addition of the disjoint multiple-choice con-
straints. Pisinger (1995) presented a simple partitioning algorithm and incorporated it
into a dynamic programming framework to solve the problem efficiently. Problems with
1000 different classes of items and each class with 100 items can be solved within 200
seconds.

The solution of this IP will specify which route calculated in the first enumeration process
should be used (hence we know which node(s) would be skipped); and the associated
parameter ay,; states the quantity of supply loaded on vehicle k. The constraints from
the temporal perspective are considered in the first enumeration procedure (the definition
of a feasible route); and the ones from the demand/supply perspective are stated in the
second IP model.

5 Computational Experiments

In this section, we demonstrate how the proposed models and two-stage solution approach
presented in this paper are used.

We define a problem setting as a randomly generated network with a single depot and a
set of dispersed demand nodes whose mean demand quantity is also randomly generated.
The size of a problem setting is defined as the number of the demand nodes. We conduct
two sets of experiments. The first is to evaluate the performance of the tabu heuristic for
the first-stage model on different size problems by comparing the heuristic results with
CPLEX bounds. The second is to perform simulations on 10 different settings with size
50 and average the results. The purpose of the second experiment is to compare the effect
of different recourse strategies through simulations.
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We first describe how to generate the input parameters, then demonstrate and discuss
the experimental results.

5.1 Data Generation of Input Parameters

We test our tabu heuristic on 3 different problem sizes: with 10, 20 and 50 demand nodes.
We generate 5 different problem settings for each size. For each setting we uniformly
generate the coordinates of demand nodes and 1 depot node in a 200 by 200 square
domain; and a mean demand quantity for each demand node ranging from 5 to 15. We
set the uncapacitated fleet size as 3, 4 and 10 for problem size 10, 20 and 50 respectively.
We use the Euclidean distances between any two nodes and assume a symmetric complete
graph topology. The mean travel time between any two nodes is proportional to the
distance.

In the CCP model, we use a lognormal distribution with a randomly generated mean
value; the standard deviation is set to be proportional to the mean value of demand (20%
of the mean value) and given by the following relationship for travel time uncertainty
o= Uﬁg" 1, where UB is an upper bound on the mean travel time. This relationship
creates arcs with small uncertainty and large mean travel times. We set the confidence
level as 85% for the chance constrained model, which sets the values kp and s to 1.04.
Since the routes generated from the model are sensitive to both the deadline and the total
supply at the depot, we vary these two parameters and observe the results. We use 70%,
80%, 90%, 100% and 120% of the base quantity as the available supply quantity. The
base quantity of the total supply at the depot is defined to be the summation of the mean
demand quantity at all the demand nodes, which is 100, 200, and 500 on average for the
three different size problem settings respectively. The deadline is set to 40%, 50%, 60%,
80%, 100% and 120% of the base route length. The base route length is defined as the
average length of all the edges in the graph times the average number of served nodes per
vehicle. For example, for the size 50 problem, 50 demand nodes are served by 10 vehicles;
so on average, each vehicle serves 5 demand nodes; hence the average number of served
nodes per vehicle is 5. We call one combination of the deadline and the total supply
parameters a test case. In the experiment to evaluate the quality of the tabu heuristic, we
run each problem setting on 9 test cases, which are identified by the different combinations
of the deadline on the demand nodes (3 types: 40%, 80%, 120%) and the total supply at
the depot (3 types: 70%, 90%, 120%). In the simulation to compare different recourse
strategies, we have 30 test cases for each problem setting, which are the combinations of
6 types of deadline (40%, 50%, 60%, 80%, 100%, 120%) and 5 types of total supply (70%,
80%, 90%, 100%, 120%).
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5.2 Quality of Tabu Heuristic

To evaluate the quality of our tabu heuristic, we run this search process over 5 random
problem settings over each problem size (10, 20 and 50) as described above. We also run
these problems using CPLEX 9.0 for one hour and record the lower bound and upper
bound obtained from the CPLEX solver to compare with the tabu result. The results for
size 10, 20 and 50 are presented in Tables 1, 2 and 3 respectively.

From these tables, we can see that for smaller size problems (size 10), the CPLEX solver
can obtain a feasible solution within 1 hour for most of the instances (40 out of the 45 in-
stances). The Tabu heuristic results obtained within 200 seconds generate better solutions
than the CPLEX results for about half of the instances (17 out of the 40 instances). The
CPLEX solver cannot obtain a feasible solution within 1 hour for all larger size problems
(size 20, 50). However, Tabu search can generate a solution within 200 seconds close to
the lower bound obtained from the CPLEX. The lower bound provided by the CPLEX
solver primarily reflects the shortage of the supply at the depot compared with the total
demand. These tables also show that there are bigger gaps between the CPLEX lower
bound and the tabu result for the tight deadline and low total supply level combination.
We suspect this is due to the tight deadline which might prevent the timely delivery even
with enough supplies. A tighter lower bound with respect to a short deadline is a sub-
ject for future research. However, in general, we conclude that the proposed tabu search
method is very effective in minimizing the unmet demand, which is our primary concern
in this model.
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Deadline

Supply
70 - (70%)

90 - (90%)

120 - (120%)

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case 5

10 Nodes

3 Vehs

150

- (40%)

CPLEX LBCPLEX UB Tabu

14633
30523
40162
22043
34762

411
10522
20162
2044
14763

31
2.30
170
3.29
247

N/A
30537
40176
22059
41121

N/A
18801
22984
29233
30712

34074
10536
8980
N/A
37776

14792
33002
41774
24996
37764

14792
18789
23133
17952
21961

14792
18789
16539
17952
21961

CPLEX = 3600 sec

250

- (80%)

CPLEXLBCPLEXUB Tabu

14633
30522
40162
22044
34762

3.08
10522
20162
2043
14763

3.30
2.14
1.85
3.15
2.57

N/A
30538
40176
22059
34784

N/A
10538
20179
2060
14782

5964
31.45
21.94
21.35
27.70

14792
30913
41774
22275
37764

11.86
11008
21912
6582
16301

11.86
8.16
8.24
11.37
10.70

400

- (120%)

CPLEX LBCPLEXUB Tabu

14633
30522
40162
22043
34763

3.39
10523
20162
2044
14763

3.25
2.67
2.10
3.65
3.02

14664
30537
40180
22059
34781

32.01
10539
20181
2063
14781

27.60
16.20
20.24
20.67
26.46

Table 1. Tabu heuristic result with CPLEX bounding for 10 customers and 3 vehicles
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14792
30913
41774
22275
35964

11.86
11008
21912
6582
15811

11.86
8.16
8.24
11.37
10.70



Deadline

Supply
140 - (70%)

180 - (90%)

240 - (120%)

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case b

Table 2: Tabu heuristic result with CPLEX bounding for 20 customers and 4 vehicles

20 Nodes

4 Vehs

200

- (40%)

CPLEX LBCPLEX UB Tabu

36461
70551
75171
56362
57491

115
30558
35171
16362
17492

115
177
0.98
253
1.58

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

36499
70851
75400
60026
58152

14822
30978
36337
53166
28996

14822
7800
15332
53166
28996

CPLEX =

3600 sec

400

- (80%)

CPLEX LBCPLEX UB Tabu

36461
70552
75171
56362
57492

1.08
30552
35171
16362
17491

115
1.83
0.96
2.53
142

23

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

36498
70753
75344
58375
59671

20.78
30846
35360
20168
19945

20.78
20.39
21.89
22.97
23.19

600

- (120%)

CPLEX LBCPLEX UB Tabu

36461
70552
75171
56363
57492

121
30552
35171
16362
17491

121
1.69
0.99
251
1.59

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

36498
70753
75344
58375
59671

20.78
30846
35360
20168
19945

20.78
20.39
21.89
22.97
23.19



Deadline

Supply
350 - (70%)

450 - (90%)

600 - (120%)

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case 5

case 1
case 2
case 3
case 4
case b

50 Nodes 10 Vehs

200

- (40%)

CPLEXLBCPLEXUB  Tabu

139752
154132
137861
147863
150453

39751
54132
37861
47863
50453

1.49
1.63
122
3.36
2.70

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

140100
154190
137960
147930
150710

40569
59333
38950
48825
50766

40569
40470
38950
30781
29562

CPLEX = 3600 sec

400

- (80%)

CPLEX LBCPLEX UB  Tabu

139752
154132
137861
147863
150453

39751
54132
37861
47863
50453

1.49
1.63
1.22
3.36
2.70

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

139810
154190
137960
147940
150550

40125
54195
37949
47924
50536

47.23
4777
47.55
48.34
58.99

600

- (120%)

CPLEXLBCPLEXUB Tabu

139752
154132
137861
147863
150453

39751
54132
37861
47863
50453

1.49
1.63
122
3.36
2.70

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

Table 3: Tabu heuristic result with CPLEX bounding for 50 customers and 10 vehicles

24

139810
154190
137960
147940
150550

40125
54195
37949
47924
50536

47.23
4177
47.55
48.34
58.99



5.3 Simulation and Analysis

In this simulation experiment, we evaluate and compare the effectiveness of different re-
course strategies we discussed in section 4. We present the process of the simulation as
a flowchart in figure 4. First, with different given deadline and total supply combination
and other input parameters (include the stochastic travel time and demand parameters),
we use the tabu search heuristic to solve the first-stage chance-constrained model to ob-
tain the set of routes and commodity flow values. However, at the pre-emergency stage,
only the preplanned routes are of interest since they provide the guide for training and
preparation purposes; the commodity flow solution which determines how much to load
on each vehicle is not very meaningful at the planning stage since the actual demand may
vary significantly. Hence we discard the commodity flow solution and only keep the pre-
planned routes. Then we randomly generate the realization of those stochastic parameters
(travel time and demand) following the distribution we used to model the first-stage CCP
formulation, which is a lognormal distribution. The lognormal distribution is widely used
to simulate travel time uncertainties in the transportation literature and we also use it to
eliminate the negative sample value. For simplicity, we apply the same distribution for
the demand uncertainty as well. The literature which addresses the distribution process
of large-scale emergencies is very limited and it is hard to collect and analyze real-life
data. A more precise probability distribution for the demand and travel times may be
the subject of further studies. For each test case, 100 parameter realizations have been
generated to simulate different settings. The simulated data and the preplanned routes
are sent to the three different recourse strategy models to obtain the new commodity flow
solution as well as the actual total unmet demand. In summary, we average each test case
(a supply and deadline combination) over 10 different problem settings with each setting
over 100 replications. Hence the final result is the average value of 1000 raw data points.

The final result is presented in table 4. The routes obtained in the planning stage are from
the chance-constrained model. The number in each grid is the percentage of the unmet
demand quantity over the total demand level. For every test case, the re-plan column gives
the best result (lowest total unmet demand), since it regenerates both the routes and the
commodity flows at the same time, which provides the largest search space. We note that
the solution for the re-planned routes may not necessarily be optimal since we used the
Tabu heuristic to identify them. Nevertheless, the re-planned routes outperforms the other
two strategies. However, with different realization parameters, this approach may generate
significantly different routes. It loses the advantage of the familiarity of preplanned routes.
On the other hand, both the LP and knapsack recourse strategies serve for training and
preparation purposes. Since the knapsack recourse strategy provides extra flexibility by
allowing to skip low-demand and/or far-away nodes in a route, it has a larger search space
than the LP strategy. The LP can be solved to optimality using CPLEX and the knapsack
strategy can be solved to a near optimal solution by the approach we presented in section
5. In our numerical simulation, the knapsack recourse strategy always outperforms the
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Preplan Routes Realization

CCP [ || MIP solver X*eep, Discald v+ Para realization, ’
* —»

Para (Tabu Search) Y*een P X* o P

(DL & Sup) (Repeat 10) |

LP Recourse

*
{Y* p Total Unmet |<— (CPLEX)

Average & '_| Y. Total Unmet F Knapsack

Compare Recourse
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eplan
Y* eplan, TOtal Unmet |<— (Te?bu) DZA—

Response (Repeat 100)

Figure 4: Flowchart of Simulation Process.

LP recourse.
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DL 200 DL 250 DL 300
LP  Knapsack Replan LP  Knapsack Replan LP  Knapsack Replan
SUP350 30.7% 303% 30.3% 305% 303% 30.3% 303% 303% 30.3%
SUP400 221% 204%  20.4% 21.2%  204%  20.4% 208% 204%  20.4%
SUP450 16.7% 11.3%  10.5% 137% 10.8%  10.5% 125%  10.6%  10.5%
SUP500 152% 81%  19% 105%  57%  1.9% 80% 42%  19%
SUP600 152%  68%  0.0% 103%  56%  0.0% 5%  32%  0.0%
DL 400 DL 500 DL 600
LP Knapsack Replan LP Knapsack Replan LP Knapsack Replan
SUP350 303% 303%  30.3% 303% 303% 30.3% 303% 30.3%  30.3%
SUP400 204% 204%  20.4% 204% 204%  204% 204%  204%  20.4%
SUP450 112% 105%  10.5% 10.9%  10.5%  10.5% 10.7%  10.5%  10.5%
SUP500 54% 32%  19% 41%  271%  1.9% 35%  25%  1.9%
SUPG00 45%  15%  0.0% 29%  10%  0.0% 21%  08%  0.0%

Table 4: Unmet demand percentage comparison between 3 different recourse strategies for
50 customers and 10 vehicles (average over 10 networks)

When the problem has a tight total supply level these 3 strategies perform similarly,
regardless of the deadline. All are very close to the trivial lower bound — the shortage
of the supply compared with the total demand. This shows that these models did their
best to send out all the available supply within the given deadline in such conditions.
On the other hand, when there are tight deadlines, as the total supply level goes up, the
gaps between the re-plan strategy and the knapsack strategy increase. This increase, but
more pronounced, is also observed when comparing the re-plan and the LP strategy. This
extra solution search space gives the re-plan and knapsack model more chances to reach
a better result. In summary, the knapsack recourse strategy provides a nice trade-off
between maintaining the familiarity of the preplanned routes and an efficient solution
and quick solution times. Indeed, it is the most efficient recourse strategy that uses the
preplanned routes and the proposed knapsack approximation algorithm is able to obtain
solutions quickly.

Finally we note that the tabu heuristic presented in this paper performs better in practice
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than the tabu heuristic in our previous work (Shen et al. to appear). This means that
the heuristic of this paper obtains solutions that improve the average unmet demand in
the simulation analysis. The solutions obtained with the new tabu heuristic (Table 4, LP
column) obtain more than an 8% drop in unmet demand from the old heuristic (Shen et
al. to appear, Table 3, CCP model) for instances with tight deadlines and ample supply
of medicine.

6 Conclusions

In this paper, we studied routing problems in response to large-scale bioterrorism emer-
gencies. We analyzed the characteristics of routing problems for large-scale bioterrorism
attacks and decomposed the problem into two stages: planning and operational stages.
We proposed a chance constrained model for the planning stage and three different re-
course strategies for the operational stage. Solution approaches for both stages were pre-
sented. Finally, we illustrated the effectiveness of the models and solution approaches by
computational experiments and concluded that the first-stage chance-constrained model
combined with the second-stage knapsack recourse strategy were most effective in solving
our problem at hand.

We note that in classical stochastic programming models with recourse the first-stage
solution is informed by the outcome of the recourse stage. We did not pursue this approach
for two reasons: in a large scale emergency situation the uncertainty is so significant that
it is difficult to represent it with scenarios accurately. The second reason is because such a
stochastic model with recourse would be considerably more difficult to solve. Nevertheless,
a comparison of our preplanned solution against the solution from a stochastic model with
recourse is an interesting problem and the topic of future research.
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