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A Pickup and Delivery Problem for 

Ridesharing Considering Congestion 

 
Abstract 

 
Traffic congestion is a significant social concern that is credited with considerable 

economic costs, wasted time, and associated public health risks. Efficient ridesharing 

solutions could help mitigate congestion. Some of the actions government agencies have 

taken encourage ridesharing include the availability of High Occupancy Vehicle (HOV) 

lanes and existing policies of discounted toll rates on HOVs. These measures encourage 

ridesharing by reducing costs or travel times of such trips. To study how the optimal 

routes change as a function of incentives for ridesharing, we modified existing pickup 

and delivery problems with time windows to consider changes in passenger travel time 

and toll cost due to vehicle load. Our computational results explore how the total route 

cost and time are affected by the use of HOV lanes and toll savings. In addition, our 

results show that it can be beneficial from a time and cost perspective to take detours to 

pick up additional passengers and use HOV lanes when the time savings on HOV lanes is 

significant. 

 

Keywords: 
Ridesharing; Pickup and delivery; Time windows; Insertion; Tabu Search  
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1. Introduction 

Traffic congestion can be seen in some cases as evidence of social vitality. 

However, it is also a significant social concern that is credited with significant economic 

costs, wasted time and associated public health risks. The 2012 Urban Mobility Report 

(Schrank et al. 2012) states that, in 2011, the total cost of congestion is $121 billion in the 

U.S. and the total amount of delayed time is 5.5 billion hours with an extra usage of 2.9 

billion gallons of fuel. With the expected population growth figures, for 2020, it is 

expected that the cost of congestion will rise to $199 billion and the total delay is 

estimated to increase to 8.4 billion hours with an extra fuel consumption of 4.5 billion 

gallons. Moreover, the Harvard Center for Risk Analysis (HCRA) at the School of Public 

Health conducted a research study in 83 urban areas to evaluate the public health impacts 

of traffic congestion (Levy et al. 2010). These results indicate that traffic congestion led 

to 4000 premature deaths with a public health cost of around $31 billion in 2000.  

An increased use of ridesharing has the potential to help mitigate congestion, in 

particular because there is a significant amount of unused capacity in vehicles on the road 

today. Indeed, the average vehicle occupancy rate in the US in 2009 was 1.67, this 

number drops to 1.13 for work commute trips (Santos et al. 2011). “Ridesharing is a 

joint-trip of more than two participants that share a vehicle and requires coordination 

with respect to itineraries” (Furuhata et al. 2013). By taking advantage of the vacant seats 

in most passenger vehicles, ridesharing could increase the efficiency of the transportation 

system, reduce traffic congestion, decrease fuel usage and mitigate pollution (Agatz et al. 

2012). Historically, people have participated in ridesharing by posting their itinerary 

information on a bulletin board or a website like Craigslist so that others can find a match 

either manually or automatically. A good ridesharing system should provide automated 

matching which means that the system should actively help drivers and riders find 

suitable matches (Agatz et al., 2012). The matching between the drivers and riders in 
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ridesharing can be viewed as a pickup and delivery problem with time windows. Recently, 

there have been a plethora of companies such as Carma (formerly known as Avego) and 

Sidecar that have developed technologies to help match drivers with passengers 

(Furuhata et al. 2013). 

At the same time, government agencies have taken actions to encourage 

ridesharing. There is increasing use of High Occupancy Vehicle (HOV) lanes and 

reduced toll rates for high occupancy vehicles on many roads and bridges. For example, 

the New Jersey Turnpike charges a discounted toll rate to vehicles which have three or 

more people, the I-15 Express Lanes in San Diego, California is free for carpooling and 

vanpooling and the HOV lanes of I-110 Freeway in Los Angeles County were converted 

to High Occupancy Toll (HOT) lanes which are also free for HOVs. If a vehicle has the 

required number of people, then HOV lanes can be used to reduce travel time especially 

during peak hours. Therefore, ridesharing could provide a cost reduction and time savings 

under congestion.  

To study how the optimal routes change as a function of incentives for ridesharing, 

for example inclusion of HOV lanes, we modified existing pickup and delivery problems 

with time windows to consider changes in passenger travel time and toll cost due to 

vehicle load. We assume that requests not served by the given vehicles will be serviced 

by an outside provider such as a taxi service. Although there are a number of studies and 

published methods for the pickup and delivery problem with time windows, to the best of 

our knowledge there is no previous work that considers HOV lanes and the policy of 

reduced toll rates on high occupancy vehicles which will save both travel time and cost 

by having vehicles with more passengers. That is, there may be an incentive to take 

detours to pick up additional passengers to qualify for HOV lanes or discounted toll rates. 

Each driver participating in ridesharing provides his/her start location, end location, 

earliest departure time and latest arrival time. Each ride request provides their start 

location, end location, time windows for pickup and delivery and the number of people 



5 

 

 

that need to be served. We consider the static version of this problem in which all 

passenger requests are known in advance. 

In this work we used a heuristic algorithm to efficiently solve this specialized 

pickup and delivery problem. The heuristic uses a greedy insertion to obtain an initial 

solution. A Tabu procedure is applied to obtain improvements and an adjustment on the 

pickup time is made to reduce the ride time of each request. We also present a full integer 

programming formulation of the problem to benchmark the heuristics on small problem 

sizes. The rest of the paper is organized as follows. In Section 2, a literature review of the 

pickup and delivery problem is presented. Section 3 describes the problem formulation. 

The heuristic algorithm is proposed in Section 4. Section 5 reports the experimental 

results. Conclusions are presented in Section 6. 

2. Literature Review  

 The most closely related routing problem to ridesharing is the pickup and 

delivery problem (PDP) which is a generalization of vehicle routing problems (VRP) in 

which objects or people have to be transported between origins and destinations 

(Berbeglia et al., 2007). Since the VRPs are proved to be NP-hard (Lenstra et al., 1981), 

the PDPs are known to be NP-hard. The PDPs are classified into three groups: the 

many-to-many problem, the one-to-many-to-one problem and the one-to-one problem 

(Berbeglia et al., 2010). Ridesharing can be modeled as a one-to-one PDP. 

In the one-to-one PDP, each object has a pickup and a delivery location. For 

example, the dial-a-ride transportation service is of this type (Cordeau et al., 2007). The 

problems can be further categorized into two groups: single vehicle and multi-vehicle 

problems (Cordeau et al., 2008). For the single vehicle problem, dynamic programming 

has been used to optimally solve the problem. Psaraftis (1980) carried out one of the first 

studies which worked on the immediate-request case which was solved optimally by 

dynamic programming for small instances. Later, Psaraftis (1983) extended the algorithm 
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to solve the problem with hard time windows. Desrosiers et al. (1986) applied dynamic 

programming to solve the problem on larger instances. There are other studies on the 

problem which might not solve the problem optimally but efficiently. Hosny et al. (2010) 

presented a heuristic based on an intelligent neighborhood move guided by the time 

window to solve the problem. 

For the multi-vehicle problem, the branch-and-cut algorithm has successfully 

been used to optimally solve small problem instances. Lu and Dessouky (2004) 

developed an exact algorithm for the pickup and delivery problem. A branch-and-cut 

algorithm is developed to optimally solve the integer-programming formulation of the 

problem. Cordeau (2006) and Ropke et al. (2007) provided an alternative formulation and 

branch-and-cut algorithm to optimally solve the problem. Later, Ropke and Cordeau 

(2009) introduced a new branch-and-cut-and-price algorithm which, according to the 

computational experiments, outperformed the branch-and-cut algorithm of Ropke et al. 

(2007). 

Moreover, heuristics are developed to effectively solve large instances of the 

problem. Jaw et al. (1986) developed a heuristic procedure in which users can only 

specify either the pickup time or the delivery time. Potvin and Rousseau (1992) modified 

the insertion part of the heuristic proposed in Jaw et al. (1986) and added two new phases 

and obtained better results than that of Jaw et al. (1986). Diana and Dessouky (2004) 

presented a parallel regret insertion heuristic. Lu and Dessouky (2006) presented a new 

insertion-based construction heuristic which considers the cost of reducing the time 

window slack due to the insertion as well as the classical incremental distance measure. 

Xiang et al. (2006) proposed a fast heuristic for solving a large-scale static dial-a-ride 

problem under complex constraints by applying insertions, inter-route exchanges and 

secondary objective to provide diversification. Wong and Bell (2006) proposed a 

heuristic including parallel insertions, reinsertions and exchanges. Some heuristics solve 

the problem by clustering the users first according to a proximity relation. Roy et al. 
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(1983) applied the cluster-first-route-second methodology. As a modification of the 

methodology, Dumas et al. (1989) created mini-clusters, combining by using column 

generation and applying a scheduling phase. Desrosiers et al. (1991) used a parallel 

insertion method based on the heuristic of Dumas et al (1989). Later, Ioachim et al. (1995) 

applied an optimization technique in creating mini-clusters and produced better results 

than that of Desrosiers et al. (1991). Bard and Jarrah (2009) presented a three-phase 

procedure for clustering a large number of data points with configuration and resource 

constraints. 

There also has been work on metaheuristics to tackle PDPs. Tabu search has been 

one of the most commonly used metaheuristics for solving routing problems (Cordeau 

and Laporte, 2005). Nanry and Barnes (2000) presented a reactive Tabu search approach 

to solve the pickup and delivery problem with time windows. Li and Lim (2001) 

proposed a Tabu-embedded simulated annealing algorithm. Cordeau and Laporte (2003) 

described a Tabu search heuristic and proposed a procedure for neighborhood evaluation 

that adjusts the visit time of the vertices on the routes so as to minimize route duration 

and ride times. Moreover, there are many other metaheuristics applied to the PDP. 

Sombuntham and Kachitvichayanukul (2010) used particle swarm optimization for the 

multi-depot PDP. Parragh et al. (2010) proposed a competitive variable neighborhood 

search-based heuristic for the static multi-vehicle dial-a-ride problem which allows 

intermediate deteriorating moves. Catay (2009) and Carabetti et al. (2010) applied ant 

colony optimization to the PDP. 

In summary, the main distinction between this paper and the previous papers is 

that we consider load dependent travel time and toll cost and in the experimental section 

we explore the sensitivity of this dependency on the vehicle tours.  
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3. Model Formulation 

We formulate a 0-1 integer programming model for optimally solving a vehicle 

pickup and delivery problem with time windows considering time savings and discounted 

toll rates based on the number of people in the vehicle. Assume there is one ridesharing 

vehicle serving n requests, and each request has a pickup and delivery location. Both the 

pickup and delivery have time windows. The time window of a request is always feasible, 

which means a direct route can always be used to satisfy the request. The requests that 

are not served by the vehicle will be served by an outside provider which we refer to as 

taxi service. For simplicity in the description below, we assume a single vehicle. The 

formulation for multiple vehicles is the standard generalization of this model. 

We follow the formulation of Lu and Dessouky (2004) as the basis for our 

formulation. The problem can be defined on a directed graph 𝐺 = (𝑁, 𝐴). Let N be the 

node set, 𝑁 = {1, 2 … 2n + 2}, and we use index 𝑖 𝜖 𝑁 to denote node i. Let H be the 

request set, 𝐻 = {1, 2 … n}, where ℎ 𝜖 𝐻 corresponds to the ℎ-th request. 

         𝑖 = 1, … , 𝑛            request h’s pickup location when i=h 

𝑖 = 𝑛 + 1, 𝑛 + 2, … ,2𝑛    request h’s delivery location when i=h+n 

𝑖 = 2𝑛 + 1            driver’s start location 

𝑖 = 2𝑛 + 2            driver’s end location 

Let 𝑁𝑃 denote the set of pickup nodes. 𝑁𝑃 = {1, 2 … n}. 

Let 𝑁𝐷 denote the set of delivery nodes. 𝑁𝐷 = {n + 1, n + 2 … 2n}.    

Let 𝐴 be the arc set. The time and cost associated to each arc (𝑖, 𝑗) 𝜖 𝐴 depends on the 

number of people in the vehicle. 

 

Parameters: 

𝑅ℎ    pickup demand (number of passengers) of request ℎ, ℎ 𝜖 𝐻  
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𝐺𝑖 = {
𝑅ℎ           𝑖 𝜖 𝑁𝑃, ℎ = 𝑖                                             
−𝑅ℎ        𝑖 𝜖 𝑁𝐷 , ℎ = 𝑖 − 𝑛                                      
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

  

𝐶𝑎   vehicle capacity 

𝑆𝑖,𝑛+𝑖  travel time from node 𝑖 to 𝑛 + 𝑖 using a taxi 

𝐸𝑖   the earliest time passenger can be picked up or delivered at node 𝑖 

𝐿𝑖   the latest time passenger can be picked up or delivered at node 𝑖  

𝑂       the number of people in the vehicle at the driver’s start location 

𝑌𝑖𝑗   minimum travel time from node 𝑖 to 𝑗  

𝑇𝑖𝑗𝑘   travel time from node 𝑖 to 𝑗 if there are 𝑘 people in the vehicle 

𝐶𝑖𝑗𝑘   toll cost from node 𝑖 to 𝑗 if there are 𝑘 people in the vehicle 

𝐷𝑖𝑗𝑘   travel distance from node 𝑖 to 𝑗 if there are 𝑘 people in the vehicle 

 

Variables: 

𝑥𝑖𝑗 = {
1          if the vehicle travels from node 𝑖 to node 𝑗            
 0          otherwise                                                                          

 

 

𝑢𝑖  = {
 1          if node 𝑖 is visited by a taxi                                          
 0          otherwise                                                                          

 

 

𝑏𝑖𝑗 = {
 1          if node 𝑖 is before node 𝑗 in the tour of the vehicle              
 0          otherwise                                                                                          

 

𝑣𝑖    the time at which a passenger is picked up or delivered at node 𝑖  

𝑧𝑖    the number of people in the vehicle after serving node 𝑖  

𝑡𝑖𝑗    actual time from node 𝑖 to 𝑗 

𝑐𝑖𝑗    actual toll cost from node 𝑖 to 𝑗  

𝑑𝑖𝑗    actual distance from node 𝑖 to 𝑗       
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The parameters β, γ, μ, and λ represent the weights for the different objective 

components total travel time, distance, toll fee and whether the request was serviced by 

taxi, respectively. The values of the 𝑇𝑖𝑗𝑘, 𝐷𝑖𝑗𝑘 and 𝐶𝑖𝑗𝑘 parameters are data for the 

problem and can be determined by the travel time, cost and distance observed on the 

optimal route sending k passengers from i to j using parameters β, μ, and γ in the 

objective function.  Note that the weight λ could be indexed in the pickup node to 

represent the actual taxi cost for that trip. In this work however we consider a uniform, 

large, weight λ to prioritize servicing as many requests as possible by the ridesharing 

vehicles instead of the use of a taxi like service. 

Problem formulation: 

Minimize 

∑ 𝛽 ∗ (𝑣𝑛+𝑖 − 𝑣𝑖)

𝑖𝜖𝑁𝑃

+ ∑ (𝛾 ∗ 𝑑𝑖,𝑗 

(𝑖,𝑗)𝜖𝐴

+ µ ∗ 𝑐𝑖𝑗) + ∑ 𝜆 ∗ 𝑢𝑖

(𝑖,𝑛+𝑖)𝜖𝐴

 

 

Subject to: 

∑ 𝑥𝑖𝑗𝑗𝜖𝑁
+ 𝑢𝑖 = 1                                                                                                  𝑖 𝜖 𝑁\{2n + 2}             (1)         

∑ 𝑥𝑖𝑗𝑖𝜖𝑁
+ 𝑢𝑗 = 1                                                                                                  𝑗 𝜖 𝑁 \{2n + 1}            (2)       

𝑢𝑖 = 𝑢𝑛+𝑖                                           𝑖 𝜖 𝑁𝑃   (3)    

𝑏𝑘𝑖 ≤ 𝑏𝑘𝑗 + (1 − 𝑥𝑖𝑗)                  (𝑖, 𝑗) 𝜖 𝐴\(2n+2,2n+1)     𝑘 𝜖 𝑁\{𝑖}   (4) 

𝑏𝑘𝑗 ≤ 𝑏𝑘𝑖 + (1 − 𝑥𝑖𝑗)                (𝑖, 𝑗) 𝜖 𝐴\(2n+2,2n+1)     𝑘 𝜖 𝑁\{𝑖}   (5) 

𝑏𝑘𝑖 + 𝑢𝑖 ≤ 1                           𝑖 𝜖 𝑁 \{2n+1,2n+2}     𝑘 𝜖 𝑁\{𝑖}   (6) 

𝑏𝑖𝑘 + 𝑢𝑖 ≤ 1                            𝑖 𝜖 𝑁 \{2n+1,2n+2}     𝑘 𝜖 𝑁\{𝑖}   (7) 

𝑏𝑖,𝑛+𝑖 + 𝑢𝑖 = 1                                          𝑖 𝜖 𝑁𝑃   (8) 

𝑥𝑖𝑗 ≤ 𝑏𝑖𝑗                                                    (𝑖, 𝑗) 𝜖 𝐴   (9) 
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𝑏𝑖𝑖 = 0                                               𝑖 𝜖 𝑁  (10) 

𝑏𝑛+𝑖,𝑖 = 0                                                     𝑖 𝜖 𝑁𝑃      (11) 

𝑏𝑖,2𝑛+1 = 0                                          𝑖 𝜖 𝑁  (12) 

𝑏2𝑛+2,𝑖 = 0                                              𝑖 𝜖 𝑁  (13) 

𝑧𝑖 = (𝐺𝑖 + 𝑂) ∗ (1 − 𝑢𝑖) + ∑ (𝑏𝑚𝑖 ∗ 𝐺𝑚𝑚𝜖𝑁
)                              𝑖 𝜖 𝑁  (14) 

𝑧𝑖 ≤ 𝐶𝑎                                             𝑖 𝜖 𝑁  (15) 

𝑣𝑖 + 𝑆𝑖,𝑛+𝑖 ≤ 𝑣𝑛+𝑖 + (1 − 𝑢𝑖) ∗ 𝑀                                     𝑖 𝜖𝑁𝑃  (16) 

𝑣𝑖 + 𝑡𝑖𝑗 ≤ 𝑣𝑗 + (1 − 𝑥𝑖𝑗) ∗ 𝑀                                 𝑖   𝜖 𝑁    𝑗 𝜖 𝑁  (17) 

𝐸𝑖 ≤ 𝑣𝑖 ≤ 𝐿𝑖                                            𝑖 𝜖 𝑁  (18) 

𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗𝑘 − |𝑧𝑖 − 𝑘| ∗ 𝑀 − (1 − 𝑥𝑖𝑗) ∗ 𝑀                            (𝑖, 𝑗) 𝜖 𝐴    𝑘 = 1,2 … 𝐶𝑎  (19) 

𝑐𝑖𝑗 ≥ 𝐶𝑖𝑗𝑘 − |𝑧𝑖 − 𝑘| ∗ 𝑀 − (1 − 𝑥𝑖𝑗) ∗ 𝑀         (𝑖, 𝑗) 𝜖 𝐴    𝑘 = 1,2 … 𝐶𝑎  (20) 

𝑑𝑖𝑗 ≥ 𝐷𝑖𝑗𝑘 − |𝑧𝑖 − 𝑘| ∗ 𝑀 − (1 − 𝑥𝑖𝑗) ∗ 𝑀         (𝑖, 𝑗) 𝜖 𝐴    𝑘 = 1,2 … 𝐶𝑎  (21) 

𝑥𝑖𝑗 = {0, 1}                                       (𝑖, 𝑗) 𝜖 𝐴     (22) 

𝑢𝑖 = {0, 1}                                            𝑖 𝜖𝑁𝑃         (23) 

𝑏𝑖𝑗 = {0, 1}                                       (𝑖, 𝑗) 𝜖 𝐴     (24) 

𝑧𝑖 𝜖 𝑍                                                𝑖 𝜖 𝑁      (25) 

𝑣𝑖 ≥ 0                                          𝑖 𝜖 𝑁         (26) 

𝑡𝑖𝑗 ≥ 0                                       (𝑖, 𝑗) 𝜖 𝐴     (27) 

𝑐𝑖𝑗 ≥ 0                                          (𝑖, 𝑗) 𝜖 𝐴      (28) 

𝑑𝑖𝑗 ≥ 0                                          (𝑖, 𝑗) 𝜖 𝐴      (29) 

The objective is to minimize the total passenger ride time, total travel distance of 

the vehicle, the total toll fee and the total taxi service cost if there are some requests that 
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cannot be fulfilled by the ridesharing vehicle then a taxi will be used to satisfy these 

requests. In the objective function, the first term is the total passenger ride time with a 

weight of 𝛽. The value (𝑣𝑛+𝑖 − 𝑣𝑖) is the ride time of passenger i. The second term is 

the total cost of travel distance and toll fee. The summation of 𝑑𝑖𝑗 on all edges is the 

total travel distance for the vehicle with a weight of γ. The summation of 𝑐𝑖𝑗 on all 

edges is the total toll fee with a weight of µ. The third term is the total taxi cost with a 

weight of 𝜆 since the passengers that cannot be served by the vehicles will be served by 

a taxi. 

Constraints (1) and (2) ensure that each location is visited only once either by the 

vehicle or the taxi. Constraint (3) ensures that if the pickup location of the request is 

visited by a taxi, the delivery location of the request would also be visited by a taxi. 

Constraints (4)-(13) and (24) characterize variable 𝑏𝑖𝑘 which equals 1 if node i is before 

node k in the tour and 0 otherwise.  In particular constraints (4) and (5) ensure that all 

nodes k that are before node i are also before node j, and vice versa if a vehicle travels 

from i to j (𝑥𝑖𝑗 = 1).  Constraints (6) and (7) remove node i from routes if it is visited by 

a taxi.  That is, node i is not before or after any other node k in this case.  Constraint (8) 

ensures that every pickup node i is either visited by a taxi or before its delivery node n+i 

on a tour.  Constraint (9) forces i to be before j on a tour if a vehicle travels from i to j.  

Constraints (10)-(13) define some basic relations: no node is before itself on a tour, no 

drop off node is before its pick up node, there is no node before the starting node, and 

finally the ending node is not before any node.  The parameter 𝑏𝑖𝑘 is also used in the 

same way in the paper of Lu and Dessouky (2004).  

Constraint (14) sets 𝑧𝑖 to the number of people in the vehicle after serving node i. 

∑ (𝑏𝑚𝑖 ∗ 𝐺𝑚𝑚𝜖𝑁
) is the number of people picked up and have not been dropped off 

before node 𝑖. 𝐺𝑖 is the number of people that need to be either picked up or dropped 

off at node 𝑖. The drop-offs have a negative value while the pickups have a positive 
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value. 𝑂 is the number of people in the vehicle at the driver’s start location. Constraint 

(15) is to ensure that the capacity constraint of the vehicle is not violated. 

Constraint (16) ensures the consistency of the time variables if the node is visited 

by a taxi. 𝑀 is a big number to ensure that the inequality will always hold when 𝑢𝑖 = 0. 

Actually, we could get rid of this constraint by performing a post-processing phase. 

Because of the minimization of the total passenger ride time term in the objective 

function, without constraint (16), for the taxi-served passenger (𝑢𝑖 = 1, 𝑢𝑛+𝑖 = 1), the 

value of 𝑣𝑖 and 𝑣𝑛+𝑖 will be 𝐿𝑖 and 𝐸𝑛+𝑖, respectively. Constraint (17) ensures the 

consistency of the time variables if the node is visited by the vehicle. M is a big number 

to make sure that the inequality will always hold when 𝑥𝑖𝑗 = 0. Constraint (18) is the 

time window constraint for each node. 

When 𝑥𝑖𝑗 = 0, constraints (19), (20) and (21) will always hold. When 𝑥𝑖𝑗 = 1, 

constraint (19) corresponds to the following set of constraints: 

𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗1 − |𝑧𝑖 − 1| ∗ 𝑀 

𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗2 − |𝑧𝑖 − 2| ∗ 𝑀 

𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗3 − |𝑧𝑖 − 3| ∗ 𝑀 

       …… 

If 𝑧𝑖 is not equal to 𝑘, then 𝑡𝑖𝑗 will be larger than a very small number. If 𝑧𝑖 

equals to 𝑘, 𝑡𝑖𝑗 will have a tighter constraint which is 𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗𝑘. Since we want to 

minimize 𝑣𝑛+𝑖 − 𝑣𝑖 , then it would make 𝑡𝑖𝑗 = 𝑇𝑖𝑗𝑘. Constraints (20) and (21) are similar 

to constraint (19) and give the relations 𝑐𝑖𝑗 ≥ 𝐶𝑖𝑗𝑘 and 𝑑𝑖𝑗 ≥ 𝐷𝑖𝑗𝑘 if 𝑧𝑖 is equal to 𝑘 

and 𝑥𝑖𝑗 is equal to 1. The minimization will make 𝑐𝑖𝑗 = 𝐶𝑖𝑗𝑘 and 𝑑𝑖𝑗 = 𝐷𝑖𝑗𝑘. However, 

constraints (19), (20) and (21) are non-linear. We use a standard method to linearize it. 

For example, constraint (19) is transformed to the following two inequalities where 𝑃 is 

a big number and ℎ𝑖𝑘 is binary:  

𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗𝑘 − (𝑧𝑖 − 𝑘) ∗ 𝑀 − (1 − 𝑥𝑖𝑗) ∗ 𝑀 − 𝑃 ∗ ℎ𝑖𝑘       (𝑖, 𝑗) 𝜖 𝐴  𝑘 = 1,2 … 𝐶𝑎 
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𝑡𝑖𝑗 ≥ 𝑇𝑖𝑗𝑘 + (𝑧𝑖 − 𝑘) ∗ 𝑀 − (1 − 𝑥𝑖𝑗) ∗ 𝑀 − 𝑃 ∗ (1 − ℎ𝑖𝑘)  (𝑖, 𝑗) 𝜖 𝐴  𝑘 = 1,2 … 𝐶𝑎 

Constraints (22), (23) and (24) are the binary constraints for the variables 𝑥𝑖𝑗, 𝑢𝑖 

and 𝑏𝑖𝑗, respectively. Constraints (25) set 𝑧𝑖 to an integer value. Constraints (26), (27), 

(28) and (29) are the non-negativity constraints for the variables 𝑣𝑖, 𝑡𝑖𝑗, 𝑐𝑖𝑗 and 𝑑𝑖𝑗, 

respectively.  

To help strengthen the computational capability of the model, we now describe 

some valid equality and inequalities as follows. These constraints are certainly redundant 

to the model. However, their effectiveness will be shown in the experimental results 

section. 

𝑣𝑛+𝑖 − 𝑣𝑖 ≥ 𝑌𝑖𝑗                                      𝑖 𝜖 𝑁𝑃         (30) 

𝑏𝑘,𝑖 + 𝑏𝑘,𝑖+𝑛 ≥ 𝑥𝑖,𝑘 + 𝑥𝑘,𝑖                  𝑘 𝜖 𝑁\{𝑖, 𝑖 + 𝑛}   𝑖 𝜖 𝑁𝑃  (31) 

𝑏𝑖,𝑘 + 𝑏𝑖+𝑛,𝑘 ≥ 𝑥𝑖+𝑛,𝑘 + 𝑥𝑘,𝑖+𝑛              𝑘 𝜖 𝑁\{𝑖, 𝑖 + 𝑛}   𝑖 𝜖 𝑁𝑃  (32) 

∑ (𝑏𝑘,𝑖 ∗ 𝐺𝑘)𝑘 𝜖 𝑁 = 0                 𝑖 𝜖 {2n + 1, 2n + 2}  (33) 

Constraint (30) is the minimum travel time constraint since the actual travel time 

from node 𝑖 to 𝑗 will always be larger than the minimum travel time from node 𝑖 to 𝑗. 

Since the computing time is limited, this constraint could help provide a better lower 

bound. Constraints (31) and (32) are the adjacent prior constraints. Constraint (33) is the 

vehicle return constraint that no passenger will be in the vehicle when the vehicle returns 

to the depot. Constraints (31), (32) and (33) are described and shown to be valid in Lu 

and Dessouky (2004).  

4. Heuristic 

As previously discussed, the pickup and delivery problem with time windows is a 

NP-hard problem and optimization algorithms are only able to solve small size problems. 

Heuristics are necessary to solve larger size problems. In this section, we present 
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heuristics for our pickup and delivery problem with time windows considering 

congestion. The first is an insertion heuristic, which will be used in the construction of 

the initial routes. The second part is the Adjust Pickup Time Algorithm which is used to 

reduce the passenger ride time by adjusting the pickup time of the passengers. That is, 

because of the time windows, the vehicle might have to wait at some passenger’s pickup 

location while having other passengers waiting in the vehicle. Since the passengers were 

picked up as soon as possible, the Adjust Pickup Time Algorithm will postpone these 

passengers’ pickup time so that their ride time will be reduced. Third, Tabu search is 

applied to improve the routing results where we will repetitively attempt to insert the 

rejected requests to the routes again and make any adjustments within and between 

vehicles. Since there is a randomization in the search, Tabu search is run five times to 

obtain the best solution.  

4.1 Insertion Heuristic 

Insertion techniques are widely used for vehicle routing problems in obtaining 

initial solutions since they are efficient, easy to implement and produce good results. 

Campbell and Savelsbergh (2004) provided a comprehensive review on insertion 

heuristics for VRP with complicating constraints. Our heuristic uses insertion as a basic 

technique to solve the pickup and delivery problem with time windows considering 

congestion.  

Given a set of vehicles and a set of requests, the requests are inserted into the 

existing vehicle routes one at a time. Each request is inserted into an existing route of the 

vehicle which has the lowest objective cost to serve the request among all the vehicles 

while the time window constraint and the capacity constraint are not violated. The 

objective cost is obtained after the Adjust Pickup Time Algorithm is used to improve the 

routing service quality by reducing the passenger ride time which is described in Section 

4.2. Our objective cost here to insert one request includes the increased distance, the 
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increased passenger ride time and the increased toll cost of the route caused by the 

insertion of the request. A request that cannot be served by any vehicle will be rejected 

and will be assumed to be served by a separate taxi service.  The requests are inserted 

based on the width of their time windows in an ascending order since we try to serve all 

the requests by the vehicles. Inserting the requests with the least amount slack in their 

time windows first leaves the requests with the most flexibility at the end of the insertion 

process. 

4.2 Adjust Pickup Time Algorithm 

We adjust the pickup time to improve the service quality which refers to 

passenger ride time here. Normally, the passengers are picked up at their earliest 

available time whenever the vehicle has arrived. Because of the time windows, a vehicle 

might have to wait at some passenger’s pickup location while having other passengers 

waiting in the vehicle so that the ride time of these passengers is increased. However, 

these passengers do not necessarily have to wait. That is, they can be picked up later 

instead of as soon as possible. Cordeau and Laporte (2003) proposed a procedure which 

postpones the passenger’s pickup time with the objective to minimize the violation of the 

ride time constraints in which the ride time of the passengers might be increased though 

the violation is minimized. Berbeglia et al. (2012) presented an algorithm called lazy 

scheduling algorithm which is the dynamic version of the algorithm proposed in Cordeau 

and Laporte (2003) for the static dial-a-ride problem with the same goal to minimize the 

ride time violation without increasing the time window violation of any node in the route. 

In both algorithms, while minimizing the ride time violation, the passenger ride time 

could be increased. Here, we show a mechanism that adjusts the pickup time with the 

objective to minimize the ride time of the passengers in which the ride time of the 

passengers will not be increased by the adjustments.  

After the insertion heuristic, we obtain a scheduled route with each passenger 
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being picked up as soon as possible. The Adjust Pickup Time Algorithm is applied with 

the objective of reducing the passenger ride time by delaying the passenger pickup time 

without changing the routing sequence. For each node 𝑖, if there are no passengers in the 

vehicle, we set the delay time equal to 𝐹𝑖 which is the maximum amount of time we can 

increase without violating the time window constraints of all the nodes in the route as 

defined by Savelsbergh (1992). And since there are no passengers on the ride, no 

passenger ride time will be affected because of this delay. If there are passengers in the 

vehicle after serving node 𝑖, we set the delay time to be the minimum of 𝐹𝑖 and 𝑊𝑇𝑖𝑗 

for all 𝑗 since the ride time of the passengers picked up before node 𝑖 and delivered 

after node 𝑖 might be increased if the vehicle delayed its departure time at node 𝑖 for 

the amount of 𝐹𝑖.  𝑊𝑇𝑖𝑗 is the least amount of time passenger 𝑗 needs to wait given the 

scheduled route and the time windows of the nodes from the node right after node 𝑖 to 

the delivery node of 𝑗, no matter how this amount of time is distributed. Then we update 

the departure time of node 𝑖 by including the delay time. If node 𝑖 is a pickup node, we 

set the pickup time to the newly updated departure time to decrease the passenger’s ride 

time. The pickup/delivery time of node 𝑖 will not be changed if it is a delivery node. 

Since the departure time of node 𝑖 is changed, the pickup/delivery time and departure 

time of all the nodes succeeding it need to be updated.  

4.3  Tabu Search 

An insertion heuristic is used to construct the initial routes. A Tabu search 

algorithm is developed to improve the solution. The Tabu search algorithm applied in this 

work considers both between routes exchanges and within route exchanges. The 

neighborhoods of the between routes Tabu search are obtained from both the PD-Shift 

operator and PD-Exchange operator (Li and Lim 2001). The PD-Shift operator moves a 

pickup and delivery pair (PD-pair) from one randomly chosen route to another randomly 

chosen route. The PD-Exchange operator randomly picks two routes and randomly picks 
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one PD-pair from each route and then swaps the two pairs. The neighborhoods of the 

within route Tabu search are obtained from the PD-Rearrange operator (Li and Lim 2001) 

which rearranges PD-pairs to the best position in the same route and the 2-opt operator 

which randomly swaps two nodes and nodes in between (pickup or delivery) within the 

same route. Infeasible neighbors are forbidden with regard to the pairing (pickup before 

delivery), time window and capacity constraints. 

We first do the between routes Tabu search. At each iteration, 𝛼𝑚𝑎𝑥 PD-Shift 

neighbors and 𝛽𝑚𝑎𝑥  PD-Exchange neighbors are generated. The Tabu search then 

moves to the best neighbor not in the Tabu list. A temporary worse move is allowed to 

escape from the local optimal. This part of the heuristic also attempts to insert into the 

routes the requests that had been previously rejected. After B_NoImp iterations without 

improvements, random sequences of the routes chosen are generated with the intention of 

escaping from a local minimum. Feasibility of the routes is required. The between routes 

Tabu search is repeated until there is no improvement in 𝐼𝐵−𝑚𝑎𝑥 iterations. 

After between routes Tabu search, we do within route Tabu search for each route. 

At each iteration, there are 𝛾𝑚𝑎𝑥 neighbors generated from the PD-Rearrange operator 

and 𝛿𝑚𝑎𝑥 neighbors generated from the 2-opt operator. Same as between routes Tabu 

search, in each iteration we move to the best neighbor that is not in the Tabu list allowing 

temporary worse move as acceptable. Different from between routes Tabu search, we use 

a reactive Tabu tenure size (Brandao, 2004) to relate the tenure size with the route size. 

After W_NoImp iterations without improvements, the route is re-routed to escape from a 

local minimum. The within route Tabu search terminates after 𝐼𝑊−𝑚𝑎𝑥 iterations with no 

improvement. 

5. Experimental Results  

In this section, we run simulations by applying the schemes proposed in the above 

heuristics. We run several computational experiments with the objective to: 1) compare 
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the solutions from the heuristics with the optimal solutions obtained from CPLEX using 

our proposed IP model; 2) compare the cost per request for the various heuristics (our 

proposed congestion based heuristic versus heuristics that only use distance as a criteria 

in the objective) for different values on the number of vehicles and time window sizes; 

and 3) perform sensitivity analysis on time savings on HOV lanes to understand under 

what conditions it is best to take detours to make use of these incentives for ridesharing. 

Unless otherwise noted, all the simulations are run on the same map constructed as 

follows. 

The experiments are run on a map constructed that considers the existence of 

HOV lanes and toll roads. The map is a 16*10 grid with 160 nodes which are used as the 

start and end locations of the drivers and the pickup and delivery locations of the requests 

and 294 edges which connect the 160 nodes as a grid. All the edges are undirected. We 

set the length of each edge to be 10 kilometers. 50 out of the 294 edges are randomly 

chosen to be toll roads that charge 9 dollars with no time savings to travel on. The toll 

rate information was derived from the Highway Performance Monitoring System of the 

Federal Highway Administration (Office of Highway Policy Information, 2011). We used 

fees which represented the average of the toll rate data for California. The other 244 

edges are freeways which do not charge toll fees. We randomly set 147 out of the 

remaining 244 edges to contain HOV lanes. 117 out of the 147 are HOV lanes for 2 or 

more. The other 30 out of the 147 edges contain HOV lanes for 3 or more people. We set 

the time on each edge to be 10 minutes for the general purpose lanes, 7 minutes for HOV 

lanes for 2 or more people and 6 minutes for HOV lanes for 3 or more people. The 

time-saving information is gained from the HOV Performance Program Evaluation 

Report by Los Angeles County Metropolitan Transportation Authority (2002). By 

comparing the travel speed in peak hour for HOV lanes and general purpose lanes, HOV 

lanes are on average 36.5% faster than the general purpose lanes for the routes studied. 

We also assume that vehicles that qualify for the HOV lanes do not pay fees on the toll 
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roads. 

There are two types of inputs which are vehicles and requests. Unless otherwise 

noted, we assume that all vehicles start at time 1 second, end at the end of the day, and 

the initial number of people in the vehicle (driver) is 1. The origin and the destination are 

randomly selected from the above grid for both the vehicles and requests. The request 

time for each request is assumed to be time 0 which is right before the start time of the 

vehicle. That is, all the requests are known before the vehicle starts. We set the parameter 

TW, the acceptable time period that the request can be served, to be a multiple of the time 

needed if the passenger travels alone and directly from the origin to the destination, i.e. 

TW=α*direct ride time. The earliest pickup time is set in a way so that the earliest pickup 

time plus the time window fits within a day. If it is not specifically mentioned, the 

number of people to pick up for a particular request is set to 1. See Tables 5.1 and 5.2 for 

the detailed information. 

Table 5.1 Vehicle Data Generation 

Origin Uniformly random in 16*10 grid  

Destination Uniformly random in 16*10 grid 

Start time 00:01 

End time 23:59 

Initial number of people in the vehicle 1 

 

Table 5.2 Request Data Generation 

Origin Uniformly random in 16*10 grid 

Destination Uniformly random in 16*10 grid 

Request time 00:00 

Earliest pickup time Uniformly random [00:01, 23:59-TW] 

Latest pickup time Earliest pickup time + TW 

Earliest delivery time Earliest pickup time 

Latest delivery time Latest pickup time 

Number of people to pick up for each 1 
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request 

 

First, we run simulations to test the effectiveness of the valid equality and 

inequalities in our IP model. Since it is computationally difficult to find optimal solutions 

for large problem instances, we run simulations on problems with one vehicle and 5, 6, 7, 

8 and 9 requests with different α values of 1.5, 2, 2.5 and 3 to find the optimal solution in 

a reasonable amount of computation time. Here, we set the capacity of the vehicle to be 

four. For this set of experiments, our objective is to serve as many requests as possible by 

the vehicle and to minimize the travel distance, passenger ride time and toll fee with their 

coefficients 𝛽 = 𝛾 = µ = 1. Thus, we set the weight λ to a very large number. We 

generate 5 random test instances for each scenario. Table 5.3 shows the average running 

time results. The experiments are implemented on a 2-Processor-Quad-Core Xeon 

Workstation (2.66 GHz, 16 GB RAM, 1.5 TB hard drive) using CPLEX 9.0. 

Table 5.3 Performance of Valid Equality and Inequalities 

α = number of requests made no cuts (sec) with cuts (sec) improvement (%) 

1.5 5 2.71 0.49 50.49 

1.5 6 1.87 0.80 48.42 

1.5 7 5.78 1.30 62.84 

1.5 8 85.38 7.12 81.36 

1.5 9 74.15 7.87 79.88 

2 5 1.00 0.53 38.63 

2 6 1.39 0.77 43.71 

2 7 131.13 11.60 53.21 

2 8 1234.09 47.93 57.91 

2 9 1577.76 175.22 64.84 

2.5 5 1.43 0.90 40.63 

2.5 6 21.49 3.78 55.81 

2.5 7 53.62 63.69 33.64 

2.5 8 7333.21 709.17 82.48 

2.5 9 12340.98 286.44 93.71 

3 5 2.69 2.75 18.47 

3 6 7.66 5.52 42.24 

3 7 10368.11 2219.90 68.94 
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3 8 820.64 104.41 66.50 

3 9 342.05 74.08 73.50 

 

In Table 5.3, the results under the column of no cuts show the average running 

time needed to solve the 5 instances for each case without the valid equality and 

inequalities which are constraints (30), (31), (32) and (33) in the model formulation. The 

results under the column of with cuts show the average running time needed to solve the 

5 instances for each case with the valid equality and inequalities. The results under the 

column of improvement are the average improvement of the 5 instances for each case. In 

general, as shown in Table 5.3, those valid Equality and Inequalities are effective and the 

improvement is enhanced for larger size instances. Note that as the time window size 

increases, it takes more computational time to find the optimal solution since the feasible 

region is larger. 

Next, we compare the performance of our heuristics by comparing the routing 

results of the heuristics with that of the IP model. For the parameters in Tabu search, 

since our route size is not large, we set 𝛼𝑚𝑎𝑥, 𝛽𝑚𝑎𝑥, 𝛾𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 to be the number 

of all possible neighbors. B_NoImp and W_NoImp are set to equal to 5. 𝐼𝑊−𝑚𝑎𝑥 is set 

to equal to 150. 𝐼𝐵−𝑚𝑎𝑥 is set to be the number of possible combinations of 2 routes out 

of the total number of routes. Table 5.4 shows the results. The average ratio shown in the 

table is the objective value of the optimal solution divided by the output objective value 

of the heuristic. Number of optimal found indicates among how many out of the 5 tests 

we ran for each scenario the heuristic found the optimal solution.  Some results in the 

table show that the average ratio equals to 1 while the number of optimal found does not 

equal to 5. The reason is that the optimal value and the output of the heuristic has a very 

small difference in these cases. Since the results round to two decimals, the ratio equals 

to one. From Table 5.4, we can see that the heuristic works well for smaller size problems. 

In cases where the heuristic did not find the optimal result the heuristic failed to find a 

solution that served as many requests as the optimal result. The running times of the IP 
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model are shown in Table 5.3 while the running time of the heuristic, for example, with α 

= 3 and number of requests larger then 6, is 5 seconds on average.    

Table 5.4 Performance of the Proposed Heuristic 

α = number of requests made average ratio number of optimal found 

1.5 5 1.00 5 

1.5 6 1.00 5 

1.5 7 0.91 3 

1.5 8 1.00 3 

1.5 9 0.95 3 

2 5 1.00 4 

2 6 1.00 5 

2 7 1.00 4 

2 8 1.00 2 

2 9 0.92 0 

2.5 5 1.00 5 

2.5 6 1.00 2 

2.5 7 1.00 3 

2.5 8 1.00 2 

2.5 9 0.90 1 

3 5 1.00 5 

3 6 1.00 4 

3 7 1.00 3 

3 8 1.00 3 

3 9 1.00 2 

 

We next compare the performances of the heuristics with the objective of 

minimizing distance only and the objective considering congestion which is minimizing 

the travel distance, passenger ride time and toll fee with their coefficients equal to 1. The 

parameters used in the Tabu search are the same as the previous simulation. We do 

simulations on 100 requests, different number of vehicles: 10, 15 and 20 and different α 

values of 1.5, 2, 2.5 and 3. Here, the number of people to pick up per request is a 

uniformly discrete random variable between 1 and 3 to test the impact of the generated 

routes when there are more people in the vehicle. Since the time windows of the requests 
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we used in our simulation imposes a relatively stricter constraint than the capacity of the 

vehicle, we now assume that all vehicles have no capacity constraint unless otherwise 

noted. 

In the following figures, we show the cost per request from the simulation results 

with the above assumptions and data inputs. All 100 requests are served by the provided 

vehicles without using any taxi for each instance. The results shown in the figures are 

averages of ten instances. We simulate each instance with different heuristics: insertion 

heuristic with objective of minimizing distance and with Tabu Search (Distance-Tabu) 

and insertion heuristic with objective of minimizing congestion function (see objective 

function in Section 3) and with Tabu Search (Congestion-Tabu). The Adjust Pickup Time 

Algorithm is applied in each scenario. We compare the results based on the cost per 

request served. Note the cost per request is the sum of the total distance, passenger ride 

time and toll fee divided by the total number of requests. The total distance refers to the 

total vehicle travel distance minus the distance from the origin to destination of the 

vehicle itself. This comparison allows us to show the benefit of explicitly accounting for 

the congestion in the heuristics. 

Figure 5.1 summarizes the cost per request with different time windows and the 

number of vehicles using the Congestion-Tabu heuristic. Figure 5.2 shows the differences 

in cost per request which is the cost per request under Distance-Tabu scenario minus that 

under Congestion-Tabu scenario. 
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Figure 5.1 Cost/request for Different α’s Using Congestion-Tabu 

 

 

Figure 5.2 Difference in cost/request between Distance-Tabu and Congestion-Tabu 

 

 

From Figure 5.1, we compare the results of different number of vehicles and time 

windows with the scenario of Congestion-Tabu. We can see that the cost per request is 

decreasing with a larger time window and more vehicles. That is, since all 100 requests 

are served, with a larger time window, there are more possible feasible routes to choose 
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from which reduces the cost per request. Likewise, when there are more vehicles, there 

are more alternatives for ridesharing options, reducing the cost.  

 From Figure 5.2, it shows that the difference in cost per request between the two 

heuristics, Distance-Tabu and Congestion-Tabu, is increasing with larger time windows. 

That is, the benefit of the congestion based heuristics (Congestion-Tabu) increases with 

larger time windows. This benefit explicitly accounts for the fact that the travel time and 

toll fee can decrease with additional pickups.  

Our next set of results consists of a sensitivity analysis for the time savings on 

HOV lanes. We applied Congestion-Tabu heuristic and used the distance ratio and the 

ride time ratio to indicate how the ridesharing participants react to different amounts of 

time savings on HOV lanes: simulations at intervals of 10 percent reduction in travel time, 

starting with a 10 percent reduction. Here, though it is also a component of our objective 

function, we did not consider the toll cost since the toll cost is dominated by the ride time 

and the distance. The calculations of the distance ratio and the ride time ratio are shown 

below. 𝑅𝐷𝑖,𝑛+𝑖 is the actual distance travelled from node 𝑖 to node 𝑛 + 𝑖 (the actual 

distance request 𝑖 traveled from its pickup location to its drop off location in the vehicle). 

𝐷𝑖,𝑛+𝑖,1 is the direct distance if request 𝑖 traveled alone. 𝑛 is the total number of 

requests. The distance ratio is the average actual distance divided by the drive-alone 

distance for each request. The higher the distance ratio, the more detours the request takes. 

The quantity 𝑣𝑛+𝑖 − 𝑣𝑖  indicates the actual ride time that request 𝑖  spends in the 

vehicle from its pickup location to its drop off location. 𝑇𝑖,𝑛+𝑖,1 is the travel time if 

request 𝑖 traveled alone. The ride time ratio is the average actual ride time divided by 

the drive-alone ride time for each request. The lower the ride time ratio, the more ride 

time is saved by participating in ridesharing.   

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =
1

𝑛
∑

𝑅𝐷𝑖,𝑛+𝑖

𝐷𝑖,𝑛+𝑖,1
𝑖 𝜖 𝑁𝑃
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𝑟𝑖𝑑𝑒 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
1

𝑛
∑

𝑣𝑛+𝑖 − 𝑣𝑖

𝑇𝑖,𝑛+𝑖,1
𝑖 𝜖 𝑁𝑃

 

The heuristic settings here are the same as the previous simulation settings. 

However, we change the map by setting the 147 HOV lanes to be all HOV2 lanes, all 

HOV3 lanes, all HOV4 lanes or NO HOV lanes according to the different tests. NO HOV 

lanes means there is no time savings for more people in the vehicle. Recall, there is a 

total of 294 edges so the other 147 edges do not contain any HOV lanes in all test 

instances. Therefore, the result of NO HOV lanes is indifferent with the different timing 

savings on HOV lanes. We do simulations on 100 requests, 15 vehicles and an α value of 

2. The results shown in the figures are averages of ten instances. Figures 5.3 and 5.4 

below demonstrate the sensitivity of the distance ratio and ride time ratio to the time 

savings on HOV lanes for the time savings, respectively. 

 

Figure 5.3 Distance Ratio Sensitivity to Time Savings on HOV Lanes 
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Figure 5.4 Ride Time Ratio Sensitivity to Time Savings on HOV Lanes 
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HOV scenarios is not intuitive, as it is not monotonic and the distance ratio for HOV2 

jumps suddenly. To clarify this issue, we plot the total cost per request and the total 

distance the vehicles travelled in Figures 5.5 and 5.6 below.  

Figure 5.5 Cost/request Sensitivity to Time Savings on HOV Lanes 

 

 

 

Figure 5.6 Total Distance Sensitivity to Time Savings on HOV Lanes 
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Figure 5.5 shows that, with larger time savings on HOV lanes, the total cost per 

request is consistently decreasing since the total passenger ride time is decreasing 

consistently as evidenced by the ride time ratio in Figure 5.4. HOV2 has the lowest total 

cost per request as it is the easiest to be qualified to use the HOV lanes to save ride time. 

However, the total distance shown in Figure 5.6 initially decreases but increases roughly 

at the same time savings point when the distance ratios for the HOV2 scenario jumps to 

the HOV3 scenario, which is when the time savings on HOV lanes is 60 percent. We first 

comment that Figure 5.6 shows the total distance travelled by the vehicles and the 

behavior among the various HOV scenarios is, in general, in the reverse order for that of 

the distance ratio (from Figure 5.3) since this is from the perspective of the vehicle 

instead of the passenger. Thus, the NO HOV scenario has roughly the highest total distance 

travelled by the vehicles but the lowest distance ratio.  

To further analyze the behavior among the various HOV scenarios in total 

distance, we observe that there are two incentives for ridesharing: (1) to reduce total route 

distance, and (2) to save ride time. The former corresponds to the reason there is 

ridesharing in NO HOV, to create ridesharing so that the vehicle can choose a more direct 

route to reduce the total route distance. The latter incentive is that the ridesharing vehicle 

can use HOV lanes to reduce the passenger ride time. When there is no time savings on 

HOV lanes, the incentive for ridesharing is simply to reduce the total vehicle distance. 

Both incentives play a role as the time savings in HOV lanes increases, but the first type 

of incentive tends to dominate when the time savings are less than 60 percent. As the 

time savings on HOV lanes increases, there are more feasible routes to choose and the 

vehicles can afford to deviate less than in the NO HOV situation. This is the reason the 

total distance traveled by the vehicle decreases while the distance ratio increases within 

this interval. When the time savings on HOV lanes is larger than 60 percent, both the 

total distance and the distance ratio go up while the ride time ratio and total cost per 

request go down.  When the reduction in travel time is more attractive, vehicles begin to 



31 

 

 

deviate more to make use of ridesharing for the second reason (to reduce travel time). 

That is, the decrease in ride time is more significant than the increase in total distance 

which means that the passengers take detours to save ride time. 

We can now further analyze the distance ratio shown in Figure 5.3. We want to 

first comment that the result of the HOV4 scenario is always the one that is the closest to 

the NO HOV scenario since it is the most difficult scenario to be qualified to use HOV 

lanes, so it does the least amount of ridesharing. Following this argument the 

counterintuitive behavior in Figure 5.3 is due to the low distance ratio of HOV2. For 

small time savings in HOV lanes, when the first type of incentive dominates, both HOV2 

and HOV3 do about the same amount of detours as evidenced by the similar curves in the 

total distance plot. But while vehicles in both HOV2 and HOV3 deviate a similar amount 

from direct routes, the HOV2 scenario does this without increasing the distance traveled 

to each passenger as much, leading to a lower distance ratio. In HOV3 the passengers in 

the vehicle while detouring to pick up the last passenger to qualify for use of the HOV3 

lane have a large distance ratio. When the second type of incentive dominates (time 

savings greater than 60%), the distance ratios for the HOV2 and the HOV3 scenarios are 

about the same. However, the HOV2 scenario has a more significant increase in total 

distance than the HOV3 scenario which indicates that the passengers in the HOV2 

scenario are more involved in ridesharing to save ride time, suggesting that more 

ridesharing is occurring in the HOV2 scenario. The ridesharing in the HOV3 scenario 

requires a significant increase in distance of the vehicles. Thus, HOV2 and HOV3 have 

the same average distance ratio when the time savings are greater than 60% but we would 

expect the variance of the distance ratio would be much higher for the HOV3 scenario 

when the time savings are great. To verify this issue, we computed the variance of the 

distance ratio. Initially, both scenarios have the same variance (0.02). The difference goes 

up with the increasing time savings on HOV lanes. When the time savings on HOV lanes 

is 90 percent, the HOV3 scenario has a higher variance (0.50) than the HOV2 scenario 
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(0.40) which indicates that the HOV3 scenario has fewer passengers who participate in 

ridesharing to capture the HOV lanes while the passengers who participate in ridesharing 

to capture the HOV lanes to save ride time have much more detours since the distance 

ratios of both scenarios are the same. This is consistent with the observation in Figure 5.6 

that the passengers are more involved in ridesharing in the HOV2 scenario when the 

second type of incentive dominates. 

6. Conclusions 

In the this paper, we modified existing pickup and delivery problems with time 

windows to consider the passenger travel time under congestion and load dependent toll 

cost to study how the optimal routes change if a cost reduction and time savings are 

available for ridesharing. A 0-1 integer programming model is formulated to solve the 

problem optimally. Heuristics are developed to efficiently solve the problem. The Adjust 

Pickup Time Algorithm is proposed to reduce the total cost and the customer ride time.  

We first tested how the heuristics work by comparing the routing results of the 

heuristics with that of the IP model. The results indicate that our heuristic performs 

comparably to the optimal solution for small size problems. Then, we run simulations to 

test different inputs and different heuristics with different objective. The results show that, 

as a participant in ridesharing becomes more flexible in time, the less one should pay for 

his/her trip. For more vehicles, there are more options in identifying of ridesharing 

options. Also, our results show that there is significant benefit to considering the toll cost 

savings and time savings with additional pickups. After that, we performed a set of 

computational experiments to explore how ridesharing is affected by the different time 

savings on HOV lanes. We evaluated the sensitivity to HOVs using two different 

measures: a distance ratio and a ride time ratio. From the results, we see that, when time 

savings on HOV lanes get more significant, the distance ratio will increase while the ride 

time ratio will decrease. This indicates that, under the policies promoting ridesharing, 
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passengers may need to take a detour to share a ride with others to save the total route 

distance or to capture faster paths to save their ride time. The amount of detour of the 

passengers can be controlled by adjusting the time windows of the passengers or a strict 

time constraint can be imposed. Moreover, if it is too difficult to be qualified to use HOV 

lanes (e.g. HOV4 lanes), there are less intentions to take detours to share a ride. 

Therefore, policymakers should be aware of and further explore the ridesharing 

participants’ reactions to those policies when designing the policies to promote 

ridesharing.  

In this paper, we consider the load dependent travel time and toll cost which is more 

complicated than the standard pickup and delivery problem. It requires substantial 

amount of computational effort to find optimal solutions for large problem instances and 

hence heuristics were developed to solve the large problem instances.  Thus, future 

work can investigate the development of tighter lower bounds in order to be able to 

benchmark the developed heuristics against the optimal solution for the large problem 

instances. Another model assumption is that the change in travel time, toll and distance 

for different vehicle loads remains constant regardless of the number of vehicles, the 

effect of supply-demand dynamics on this pickup and delivery problem is also a topic for 

future research.  Furthermore, we consider a static model in this paper.  Future research 

could consider dynamic customer requests and include uncertainty in travel times and 

demand to the problem.   
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