
A Branch and Price Algorithm for a Stackelberg Security Game

Felipe Lagosa, Fernando Ordóñezb, Martine Labbéc
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Abstract

Mixed integer optimization formulations are an attractive alternative to solve Stackelberg Game problems

thanks to the efficiency of state of the art mixed integer algorithms. In particular, decomposition algorithms,

such as branch and price methods, make it possible to tackle instances large enough to represent games

inspired in real world domians.

In this work we focus on Stackelberg Games that arise from a security application and investigate the use

of a new branch and price method to solve its mixed integer optimization formulation. We prove that the

algorithm provides upper and lower bounds on the optimal solution at every iteration and investigate the

use of stabilization heuristics. Our preliminary computational results compare this solution approach with

previous decomposition methods obtained from alternative integer programming formulations of Stackelberg

games.

1. Introduction

Stackelberg games model the strategic interaction between players, where one participant – the leader – is

able to commit to a strategy first, knowing that the remaining players – the followers – will take this strategy

into account and respond in an optimal manner. These games have been used to represent markets in which

a participant has significant market share and can commit to a strategy [19], where government decides tolls

or capacities in a transportation network [11], and of late have been used to represent the attacker-defender

interaction in security domains [9]. These games are examples of bilevel optimization problems, which are

in general non convex optimization problems that are difficult to solve.

In this work we focus on a specific class of Stackelberg games which we refer to as Stackelberg Security

Games (SSG) that arise in security domains and have a particular payoff structure [21]. In a SSG, the

security (or defender) behaves as the leader selecting a patrolling strategy first and then, possibly many

attackers act as the follower, observing the defender’s patrolling strategy and deciding where to attack.

Such Stackelberg Security Game models have been used in the deployment of decision support systems with

specialized algorithms in real security domain applications [9, 16, 17].
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Recent work has developed efficient integer optimization solution algorithms for different variants of

the SSGs [10, 6, 7, 8, 5]. In general terms these optimization problems are formulated with the defender

committing to a mixed (randomized) strategy and the attacker(s) responding with a pure strategy after

conducting surveillance of the defender’s mixed strategy. A mixed strategy refers to a probability distribution

over the possible actions while a pure strategy corresponds to selecting one of the possible actions. In this

SSG, the defender mixed strategies are probability distributions over possible patrolling strategies, while

the attacker’s pure strategy corresponds to selecting a specific target to attack. In addition, the number of

actions of the defender can be exponential in size, with respect to the targets and defense resources, due to the

combinatorics of using N resources to patrol m targets. This illustrates that to solve SSGs we have to address

mixed integer optimization problems with exponential number of variables. Addressing the combinatorial

size of defender strategies has led to both development of branch and price methods [10] and constraint

generation methods [20]. There are, however, problem instances that arise from real security applications

that still challenge existing solution methods. Here we investigate a new branch and price method developed

for a novel formulation of Stackelberg games (MIPSG), introduced in [3]. This new formulation has been

shown to provide tighter linear relaxations than other existing mixed integer formulations and to give the

convex hull of the feasible integer solutions when there is only one follower.

We begin by introducing notation and describing the integer optimization formulations that have been

considered previously in the next section. We also introduce the equivalent MIPSG formulation. In section

3 we present the column generation algorithm for the solution of the linear relaxation of MIPSG, along with

a speed up that can be obtained by aggregating subproblems, and the existence of upper and lower bounds

at every iteration. We also describe the branching strategies used in adapting this column generation to

a Branch and Price method and how to apply dual stabilization techniques. We present our preliminary

computational results in section 4 and provide concluding remarks in section 5.

2. Integer Optimization Formulations of SSG

In a Stackelberg security game we consider that the leader is the defender and the attacker (of possibly

many types) is the follower. We let Θ be the set of possible attacker types and assume that pθ corresponds to

a known a-priori probability distribution that the defender is facing an attacker of type θ ∈ Θ. The attacker

may decide to attack any one of a set of targets Q. The mixed strategy for the θ-th attacker is the vector

of probabilities over this set of targets, which we denote as qθ = (qθj )j∈Q. The defender allocates up to N

resources to protect targets, with N < |Q|. Each resource can be assigned to a patrol that protects multiple

targets, s ⊆ Q, so the set of feasible patrols for one resource is a set S ⊆ P (Q), where P (Q) represents the

power set of Q. The defender’s pure strategies, or joint patrols, are combinations of up to N such patrols,

one for each available resource. In addition we assume that in a joint patrol a target is covered by at most

one resource. Let X denote the set of joint patrols, or defender strategies. A joint patrol i ∈ X, can be
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represented by the vector ai = [ai1, ai2, ..., ai|Q|] ∈ {0, 1}|Q| where aij represents whether or not target j is

covered in strategy i. The defender’s mixed strategy x = (xi)i∈X specifies the probabilities of selecting each

joint patrol i ∈ X.

Both the leader and followers aim to maximize a linear utility function that averages the rewards of every

combination of pure strategies weighted by the mixed strategies. If we let Rθij and Cθij denote the utility

received by the defender (and the θ-th attacker) for having the defender conduct patrol i while the θ-th

attacker strikes target j, then the defender and θ-th attacker utilities are given by

uD(x, (qθ)θ∈Θ) =
∑
θ∈Θ

∑
i∈X

∑
j∈Q

pθxiq
θ
jR

θ
ij

uθA(x,qθ) =
∑
i∈X

∑
j∈Q

xiq
θ
jC

θ
ij .

The goal is to find the optimal mixed strategy for the leader, given the follower may know this mixed strategy

when choosing its strategy. Stackelberg equilibria can be of two types: strong and weak, as described by [2].

We use the notion of Strong Stackelberg Equilibrium (SSE), in which the leader selects an optimal mixed

strategy based on the assumption that the follower will choose an optimal response and will break ties in

favor of the leader. In other words, following the formal definition of a SSE in [10], a pair of strategies x

and (qθ(x))θ∈Θ form a SSE if they satisfy:

1. The leader (defender) maximizes utility: uD(x, (qθ(x))θ∈Θ) ≥ uD(x′, (qθ(x′))θ∈Θ) for any feasible x′

2. The followers (attackers) play a best response: uθA(x,qθ(x)) ≥ uθA(x,g) for any feasible g.

3. The follower breaks ties in favor of the leader: uD(x, (qθ(x))θ∈Θ) ≥ uD(x, (q̄θ)θ∈Θ) for any (q̄θ)θ∈Θ

that is optimal for the followers, that is for any θ, q̄θ ∈ argmaxgu
θ
A(x,g).

This can be formulated as the following bilevel optimization problem, where e is the vector of all ones of

appropriate dimension:

max uD(x, (qθ)θ∈Θ)

s.t. eTx = 1, x ≥ 0

qθ = argmaxg{uθA(x,g) | eTg = 1, g ≥ 0} θ ∈ Θ .

Given that the inner optimization problem is a linear optimization problem over the |Q| dimensional sim-

plex, there always exists an optimal pure-strategy response for the attacker, so in the integer optimization

formulations we present now we restrict our attention to the set of pure strategies for the attacker. As we see

below, the optimality condition of the inner optimization problem can be expressed with linear constraints

and integer variables when we make use of the fact that the followers respond with an optimal pure strategy.

Although this leads to being able to use efficient mixed integer optimization solution procedures, the problem
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remains theoretically difficult as the problem of choosing the optimal strategy for the leader to commit to

in a Bayesian Stackelberg game is NP-hard [4].

The payoffs for agents depend only on the target attacked, the adversary type and whether or not a

defender resource is covering the target. Let the parameter Rdθj denote the defender’s utility, or reward, if

j ∈ Q is attacked by adversary θ ∈ Θ when it is covered by a defender resource. If j ∈ Q is not covered, the

defender receives a penalty Pdθj . Likewise, the attacker’s utilities are denoted by a reward Raθj when target

j is attacked and not covered and penalty Paθj , when j is attacked while protected. Therefore if we let j ∈ i

denote when target j ∈ Q is protected by patrol i ∈ X, then we consider the following reward structure

Rθij =

 Rdθj j ∈ i

Pdθj j 6∈ i
Cθij =

 Paθj j ∈ i

Raθj j 6∈ i
.

Alternatively the strategy i can be represented by a vector ai ∈ {0, 1}|Q| such that aij = 1 when j ∈ i or

when j ∈ ai. Using this vector ai we have

R(aij)
θ := Rθij = Pdθj + aij

(
Rdθj − Pdθj

)
C(aij)

θ := Cθij = Raθj − aij
(
Raθj − Paθj

)
.

We assume adding coverage to target j ∈ Q is strictly better for the defender and worse for the attacker.

That is Rdθj > Pdθj and Raθj > Paθj . Note that this does not necessarily mean zero-sum.

2.1. DOBBS and ERASER

Efficient and compact techniques for choosing the optimal strategies for Bayesian Stackelberg games have

been a topic of active research from the work of [14, 13]. In particular, the DOBBS problem formulation

below, introduced in [13], allows for a Bayesian Stackelberg game to be expressed compactly as a single

mixed integer optimization problem.

max
∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθzθijR
θ
ij

(DOBBS)
∑
i∈X

∑
j∈Q

zθij = 1 ∀θ

∑
i∈X

zθij = qθj ∀j, θ

0 ≤ vθ −
∑
i∈X

Cθij
∑
k∈Q

zθik ≤ (1− qθj )M ∀j, θ

∑
j∈Q

zθij = xi ∀i, θ

zθij ∈ [0, 1] ∀i, j, θ

qθj ∈ {0, 1} ∀j, θ

xi ∈ [0, 1] ∀i
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Algorithms for large-scale SSG, using branch and price and fast upper bound generation framework are

introduced in Jain et al. [6]. That work builds these algorithms from a more compact representation of

DOBBS, which has been named as ERASER (Efficient Randomized Allocation of Security Resources). This

formulation does not use variable zθij obtaining a formulation that uses less variables overall but uses two

sets of big M constraints. In the ERASER formulation below we present the notation for the dual variables

of constraints (2)-(6) in parenthesis.

max
∑
θ∈Θ

pθdθ (1)

(ERASER) dθ −
∑
i∈X

xiR
θ
ij ≤ (1− qθj )M1 ∀j, θ (2)

aθ −
∑
i∈X

xiC
θ
ij ≤ (1− qθj )M2 ∀j, θ (3)

∑
i∈X

xiC
θ
ij ≤ aθ ∀j, θ (4)

∑
i∈X

xi = 1 (5)

∑
j∈Q

qθj = 1 ∀θ (6)

qθj ∈ {0, 1} ∀j, θ (7)

xi ≥ 0 ∀i (8)

The M1 and M2 values are important for the ERASER performance, since their value helps determine

how tight the linear relaxation is. Thus they must be chosen large enough so that the constraint does not

eliminate a feasible solution but as small as possible to give the tightest linear relaxation. The values for M1

and M2 are as follows,

M1 = max
j,θ

Rdθj −min
j,θ

Pdθj (9)

M2 = max
j,θ

Raθj −min
j,θ

Paθj (10)

These values of M guarantee the problem keeps its feasible region unchanged. We will show this in the next

section for similar constants in problem MIPSG.

When solving these equivalent formulations, one observes that the ERASER linear optimization relax-

ation is easier to solve than DOBBS, as it has less variables, however it gives a larger integrality gap. A

branch and price method for ERASER is introduced in [6] and is shown to be efficient in practice and able

to solve large SSG problems. This algorithm will be used as a comparison for the decomposition algorithm

presented in this work.
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A Branch and Price method is based on using a column generation method to solve the LP relaxation.

In this column generation for ERASER, the master would solve the problem considering only a few of the

defender strategies X̄ ⊂ X, obtaining an optimal master primal and dual solutions. Then, the method tests

whether a defender strategy variable xi would enter the master problem by checking if its reduced cost is

positive. Given the reduced master optimal dual variables indicated in (2) - (6), the reduced cost for strategy

i ∈ X, also represented by the vector v ∈ {0, 1}|Q|, is as follows,

c̄i = c̄v =
∑
j∈Q

∑
θ∈Θ

Rθijβ
θ
j + Cθij(α

θ
j − σθj )− δ (11)

=
∑
j∈Q

∑
θ∈Θ

Rθj (vj)β
θ
j + Cθj (vj)(α

θ
j − σθj )− δ (12)

Using this reduced cost expression we can define the subproblem for the ERASER’s column generation.

In this case, the subproblem also includes resources and patrol constraints. The branch and price framework

is used for ERASER is the same that is used for the MIPSG model that will be presented in the next section.

Thus, the only difference between the two models implementation are the branch and price tree nodes.

2.2. Strong Integer Optimization Formulation

A novel equivalent formulation of this problem, a variation on the DOBBS formulation, was introduced in

[3]. In contrast to ERASER, this model has tighter linear representation but requires more variables. Below

we present this optimization problem, referred to as Model Integer Problem for Security Games (MIPSG).

max
∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθzθijR
θ
ij (13)

∑
i∈X

∑
j∈Q

zθij = 1 ∀θ (πθ) (14)

∑
i∈X

zθij = qθj ∀j, θ (σθj ) (15)

∑
i∈X

(Cθij − Cθik)zθij ≥ 0 ∀j, k, θ (αθjk) (16)

∑
j∈Q

zθij = xi ∀i, θ (βθi ) (17)

zθij ∈ [0, 1] ∀i, j, θ (18)

qθj ∈ {0, 1} ∀j, θ (19)

xi ∈ [0, 1] ∀i (20)

In the above description we also give the notation for the dual variables of the linear relaxation of MIPSG

for each of the four sets of constraints. This is indicated by the variable in parenthesis on each constraint.
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The MIPSG formulation is similar to the DOBSS formulation of Stackelberg games. The only difference

between these formulations is in how they represent the optimal response of the followers. In DOBBS this

is done by two sets of |Q||Θ| constraints, with a big M constant, that define the value vθ as the optimal

reward value for follower θ. In MIPSG the characterization of the optimal follower response is done with the

|Q|2|Θ| constraints in (16). This means that MIPSG is a formulation with more constraints than DOBBS,

but that does not need a big M constant.

Proposition 2.1. Problem MIPSG is equivalent to DOBBS

Proof Problem MIPSG and DOBBS are the same except for one constraint. While in MIPSG the solution

(z,x,q) satisfies
∑
i∈X(Cθij − Cθik)zθij ≥ 0 ∀j, k, θ in DOBBS the solution (z,x,q,v) satisfies 0 ≤ vθ −∑

i∈X C
θ
ij

∑
k∈Q z

θ
ik ≤ (1 − qθj )M ∀j, θ. If qθh = 1 then the DOBBS solution satisfies

∑
k∈Q z

θ
ik = zθih and

therefore ∑
i∈X

Cθijz
θ
ih =

∑
i∈X

Cθij
∑
k∈Q

zθik ≤ vθ ≤
∑
i∈X

Cθih
∑
k∈Q

zθik =
∑
i∈X

Cθihz
θ
ih ,

which is equivalent to the MIPSG constraint.

Let us now consider a solution for MIPSG. If qθh = 1 then let vθ :=
∑
i∈X C

θ
ihz

θ
ih. Since now we also have∑

k∈Q z
θ
ik = zθih we have from the MIPSG constraint that

vθ =
∑
i∈X

Cθihz
θ
ih ≥

∑
i∈X

Cθij
∑
k∈Q

zθik .

This satisfies the DOBBS constraints as the only tight right hand inequality is the one that defines vθ. �

The results in [3] show that a solution that is feasible for the linear relaxation of the MIPSG formulation is

a feasible solution for the linear relaxation of the DOBBS formulation. Furthermore, the linear relaxation of

the MIPSG problem equals the convex hull of the feasible integer solutions when there is only one adversary.

The total amount of defender’ strategies increase exponentially with the number of targets and resources.

Without additional feasibility constraints, the size of the set of possible defender strategies equals
(
Q
N

)
. This

leads to problems that are too big to solve in a standard computer. It is therefore necessary to find a way

to generate only the strategies that are used by the model.

3. Column Generation for MIPSG

A column generation method on MIPSG aims at solving the linear relaxation of the problem by gradually

considering more variables associated to the large set of defender strategies. The linear relaxation of MIPSG

relaxes the integrality constraints and considers variables that satisfy 0 ≤ zθij , q
θ
j ∈ R and xi ∈ R. Note

that since
∑
i∈X

∑
j∈Q z

θ
ij = 1 we still have that zθij , q

θ
j , xi ∈ [0, 1]. Below we give the dual problem of the

linear relaxation of the MIPSG problem, using the dual variables identified in the statement of the MIPSG

problem:
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min
∑
i∈Θ

πθ (21)

pθRθij ≤ πθ + σθj + βθi +
∑
k∈Q

(Cθij − Cθik)αθjk ∀i, j, θ (22)

σθj = 0 ∀j, θ (23)∑
θ∈Θ

βθi = 0 ∀i (24)

αθjk ≤ 0 ∀j, k, θ (25)

In the LP relaxation of MIPSG the constraint
∑
i∈X z

θ
ij = qθj becomes redundant as it defines the value of

qθj , but this variable no longer has to be an integer variable. This fact is reflected in that the corresponding

dual variable σθj has a value of zero.

We now outline the column generation procedure that we propose for MIPSG. We begin by solving a

version of the MIPSG problem in which only a set X̄ ⊂ X of defender strategies are considered. This means

that variables zθij and xi with i 6∈ X̄ are not considered in the master problem and assumed fixed at 0.

After solving the reduced master problem, the method looks for profitable strategies in X \ X̄. To identify

a profitable strategy i ∈ X we should look for a variable zθij or xi with positive reduced cost. From linear

programming duality we have that a positive reduced cost corresponds to a violated dual constraint. Indeed,

the process of column generation in a problem is equivalent to generating the corresponding dual constraints

in the dual problem [1]. Therefore to identify which variables (and corresponding strategies i ∈ X) to add

to the master, our method requires we identify constraints, either (22) or (24), in this dual problem that are

not being satisfied at the current dual optimal solution. Once the new variables are added to the master,

we re-optimize the master problem until there are no violated dual constraints.

However, the generic column generation method described above cannot be implemented as written since

computing the reduced cost of variables zθij or xi that have not been considered in the master (that is with

i 6∈ X̄), we need the dual variable βθi . This is the dual variable corresponding to constraint (17) that is not

present in the master problem if strategy i 6∈ X̄ and therefore βθi is not defined.

We address this difficulty by introducing a related optimization problem, which is based on the dual

problem of MIPSG. Recall that given a vector v ∈ {0, 1}|Q| that represents a joint patrolling strategy, we

denote R(vj)
θ = Pdθj + vj(Rd

θ
j − Pdθj ) and C(vj)

θ = Raθj − vj(Raθj − Paθj ) the utility of the defender and

the θ-th attacker if target j is attacked. Assume a set S of individual patrols is given and for r ∈ S let

tjr ∈ {0, 1} indicate whether patrol r covers target j or not. Consider the following optimization problem

8



(SUBP):

max
f,v,e,u

∑
θ∈Θ

fθ (26)

fθ ≤ pθR(vj)
θ − πθ +Mθ(1− eθj )−

∑
k∈Q

(C(vj)
θ − C(vk)θ)αθjk ∀j, θ (27)

∑
r∈S

ur ≤ N (28)

∑
j∈Q

eθj = 1 ∀θ (29)

∑
r∈S

tjrur = vj ∀j (30)

vj ∈ {0, 1}, eθj ∈ {0, 1}, ur ∈ {0, 1} ∀j, θ, r (31)

The solution vector of this problem v corresponds to a joint patrol formed by selecting individual patrols

from the set S. Let ur be a binary variable that is 1 if the schedule r ∈ S is used in the strategy v and 0

otherwise. These ur must sum up to N , which is the number of available resources. Finally, the variable eθj is

a binary variable that enables fθ = maxj∈Q

{
pθR(vj)

θ − πθ −
∑
k∈Q(C(vj)

θ − C(vk)θ)αθjk

}
. This requires

the use of a large constant Mθ. The constant Mθ should be large enough so that when eθj = 0 the constraint

becomes redundant, at the same time it is desirable that it be the smallest constant that achieves this. The

following result gives the best value for Mθ.

Proposition 3.1. For all θ ∈ Θ, the smallest value of Mθ that guarantees constraints (27) are redundant

with eθj = 0 is

Mθ = pθ(max
j
Rdθj −min

j
Pdθj )− 2|Q| min

jk
αθjk (max

j
Raθj −min

j
Paθj ) (32)

Proof Recall that fθ will equal minj∈Q

{
pθR(vj)

θ − πθ −
∑
k∈Q(C(vj)

θ − C(vk)θ)αθjk

}
. Then considering

eθj = 0 in constraint (27), we have that an Mθ that makes the constraint redundant has to satisfy

Mθ + pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk ≥ max
j∈Q

pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk

 ∀j ∈ Q, θ ∈ Θ .

The Mθ that satisfies this for all j ∈ Q satisfies

Mθ + min
j∈Q

pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk

 ≥ max
j∈Q

pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk

 .
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To ensure we satisfy the above inequality, let us rearrange and bound:

max
j

pθR(vj)
θ −

∑
k∈Q

(Cθij − Cθik)αθjk

−min
j

pθR(vj)
θ −

∑
k∈Q

(Cθij − Cθik)αθjk


≤pθ(max

j
Rdθj −min

j
Pdθj )− 2 max

j

∑
k∈Q

(Cθij − Cθik)αθjk

≤pθ(max
j
Rdθj −min

j
Pdθj )− 2|Q|max

j
Raθj min

jk
αθjk + 2|Q|max

j
max
k

{
Cθikα

θ
jk

}
≤pθ(max

j
Rdθj −min

j
Pdθj )− 2|Q| min

jk
αθjk (max

j
Raθj −min

j
Paθj )

=Mθ

�

We now show that the optimal solution to SUBP either becomes the joint patrol that should be added

to the master problem or it proves that the column generation found the optimal solution. The optimal

solution to SUBP identifies a joint patrolling strategy v. If the objective function f̄ =
∑
θ∈Θ f

θ of this

solution is positive then that strategy violates a constraint in the dual and must be incorporated into the

master problem. To prove this define F θij = pθRθij − πθ −
∑
k∈Q(Cθij − Cθik)αθjk.

It is easy to check that if f̄ = max
∑
θ f

θ = max
∑
θ F

θ
j is greater than zero, then we can not satisfy the

dual. In fact,

pθRθij ≤ πθ + σθj + βθi +
∑
k∈Q

(Cθij − Cθik)αθjk

pθRθij − πθ − σθj −
∑
k∈Q

(Cθij − Cθik)αθjk ≤ βθi

∑
θ

pθRθij − πθ − σθj −∑
k∈Q

(Cθij − Cθik)αθjk

 ≤∑
θ

βθi

f̄ =
∑
θ

F θj ≤
∑
θ

βθi = 0

f̄ ≤ 0

In this set of equations we are using that σθj = 0, from the dual equation (23), when qθj ∈ R, i.e., when

there are no integer conditions.

We show the condition we need in order to determinate whether we can terminate the column generation

or not. This condition is sufficient to guarantee optimality.

Proposition 3.2. If f̄ = max
∑
θ∈Θ f

θ =
∑
θ∈Θ maxF θij ≤ 0 for a new strategy i in the subproblem, then

there is no new column that must be included to the master problem. This problem does not need more

columns to be solved optimally.

10



Proof The first thing we should notice is the βθi values can take arbitrary values because their primal

constraint is always feasible. Indeed,
∑
j z

θ
ij = xi is true for all strategy in or out of the master problem at

any iteration. Hence, if we find some arbitrary βθi that satisfies the dual problem for a non positive reduced

cost strategy i, then it is not necessary to include that strategy.

In fact, we know that in the dual problem we have to satisfy:

F θij ≤ βθi ∀j, θ (33)∑
θ∈Θ

βθi = 0 (34)

We can take an arbitrary θ̄ ∈ Θ and set βθ̄i such that βθ̄i = −
∑
θ∈Θ\{θ̄} maxF θij , and for all remaining

θ ∈ Θ\{θ̄} set βθi = maxF θij .

These βθ̄i for strategy i satisfies:

f̄ =
∑
θ∈Θ

maxF θij ≤ 0

maxF θ̄ij +
∑

θ∈Θ\{θ̄}

maxF θij ≤ 0

maxF θ̄ij ≤ βθ̄i

Using this last inequality it is easy to verify that for all j, θ, the values we have set for βθi meets the first

set of constraints in (33) and also
∑
θ∈Θ β

θ
i = 0. Therefore, when f̄ ≤ 0 we have the conditions necessary to

finish the column generation. �

3.1. Upper and Lower Bounds

Good upper and lower bounds can help speed up the column generation and branching process. Moreover,

if we set optimality tolerances, then having tight gaps lead to faster running times. We therefore are interested

in being able to bound well the distance between the optimal and the current solution.

Let L be the Lagrangian relaxation of MIPSG obtained by relaxing the adversaries best response con-

straint with a Lagrangian multiplier of αθjk. This relaxation is therefore a function of α and will be updated

every step, providing an upper bound for our problem. Next, we could write this function as follows,
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L(α) = max
z,x

∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθRθij −∑
k∈Q

(Cθij − Cθik)αθjk

 zθij

∑
i∈X

∑
j∈Q

zθij = 1 ∀θ

∑
j∈Q

zθij = xi ∀i, θ

zθij ∈ [0, 1] ∀i, j, θ

≤
∑
θ∈Θ

max
i∈X,j∈Q

pθRθij −∑
k∈Q

(Cθij − Cθik)αθjk


=
∑
θ∈Θ

πθ +
∑
θ∈Θ

max
j∈Q,i∈X

F θij

The inequality in the second line is because we removed the constraints that involved the xi variables.

This further relaxed problem gives a value greater than the L(α). In this way, we know in every iteration

the optimal value is greater than
∑
θ∈Θ π

θ and less than
∑
θ∈Θ π

θ +
∑
θ∈Θ maxj∈Q,i∈X F

θ
ij , therefore, the

gap is f̄ =
∑
θ∈Θ maxj∈Q,i∈X F

θ
ij , the objective function of the subproblem. This is further proof that when

f̄ ≤ 0 we have found the optimal solution using column generation.

So far, we have described how to identify new columns in our problem when the integrality constraints of

the primal are relaxed, i.e., when qθj ∈ R. In the next subsection we discuss how to generate columns (how

to conduct pricing) when branching starts.

3.2. Branching scheme

When the variable q is relaxed, we solve the master problem and the subproblem until the optimal solution

is reached. However, the q variable must be integer for the general case, so we implement a standard branch

and price scheme. At every node we solve the relaxed problem using column generation and then, if any of

the integer variables is fractional, we branch on it.

In the dual MIPSG model presented in (21) - (25), there is a dual variable σθj related to the constraint

that defines the qθj primal variable. If this primal variable is relaxed, the dual variable is equal to zero.

However, when we branch on qθj , then the dual variable is no longer zero and it should be included in the

subproblem. Hence, as we branch in the branch and price tree, some of these σθj become active, changing the

subproblem. The termination condition for the column generation is f̄ ≤ 0. This condition remains a valid

termination condition for the column generation in branched nodes, but the non-zero σθj variables modify

the value of f̄ .

The strategy we follow to implement the branch and price is going through the tree following a depth-

first search procedure, instead of a breadth-first search along nodes. In other words, we quickly find integer
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solutions, lower bounds of the problem and then check other branches. We also identify the variables those

values are close to 0.5 in the first place, because they might be more decisive in the objective function.

3.3. Column Generation Stabilization by Dual Price Smoothing

Column generation are iterative methods that can run into convergence problems when used to solve

linear optimization problem. Vanderbeck [18] listed some of the typical issues that arise when implementing

column generation methods due to the dual variables. Among the problems they have detected are: (i) slow

convergence, a phenomenon called the tailing-off effect; (ii) irrelevant columns generated in first iterations;

(iii) restricted master solution value keeps constant for several iterations; (iv) dual values that change

considerably from one iteration to another; (v) Langrangian dual bounds do not convergence monotonically.

Some techniques have been developed in order to deal with these undesirable converging behavior.

Lubbbecke and Desrosiers [12] described the three important methods: Weighted Danzing-Wolfe decom-

position, Trust region method and Stabilization approach using primal and dual strategies. We will use the

third method because it has shown a good performance solving classical problems and it is easy to implement

[15].

A detailed description and analysis of a Stabilization approach using a smoothing strategy is given in

[15]. That work also shows this algorithm improves the runtime for solving classic large problems, such

as Machine Scheduling, Bin Packing and Capacitated Vehicle Routing, reducing solution time by a factor

of up to 5. They also develop a smoothing technique used for a hybridization of column generation with

sub-gradient method. The smoothing technique in its simplest version is as follows. Let yt be the dual

solution at iteration t ≥ 2 and 0 ≤ α ≤ 1 be a weighting parameter, then the dual ỹt for the pricing problem

for the next iteration is

ỹt = αŷt + (1− α)yt . (35)

Here ŷ is the dual associated to the best (min/max) Lagrangian dual solution so far. At each iteration the

dual values are adjusted using as reference the best dual solution values. This gives some stability to the

dual variables considered, preventing these dual variables from changing radically from one iteration to the

next.

In this simple smoothing scheme we can face three situations: (i) updated duals give us a positive

reduced cost column; (ii) we get a new dual bound and improve the optimality gap; or (iii) a mis-pricing

occurs and the next iteration smoothed prices get closer to yt. A mis-pricing is when the subproblem finds

a solution with non-positive reduced cost with ŷt, but that has positive reduced costs if we use yt. Under

these conditions, the column generation method with smoothing pricing approach converges to an optimal

solution in a finite number of iterations [15].

A fixed α gives a smoothing scheme that convergences after some iterations. A better approach considers

an auto-adaptive α, which increases and decreases as upper-lower bound gap changes. In [15] they propose
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an algorithm for this adaptive method, which is based on a sub-gradient information and a mis-pricing

sequence for a given initial α.

Algorithm 1: Sub-gradient routine

1 α0 = α; t = 0;

2 while reduced cost > 0 do

3 Solve the master problem;

4 Call subproblem with

ŷt = ᾱŷt + (1− ᾱ)yt;

5 if mis-pricing occurs then

6 Start the mis-pricing schedule

(Algorithm 2);

7 else

8 Let gt be the sub-gradient;

9 if gt(ŷt − yt) > 0 then

10 αt = finc(α);

11 else

12 αt = fdec(α);

13 t = t+ 1;

Algorithm 2: Mis-pricing sequence

1 k = 1; y0 = ŷt;

2 ᾱ = α;

3 while ᾱ 6= 0 do

4 ᾱ = [1− k · (1− α)]+;

5 ŷt = ᾱŷt + (1− ᾱ)yt;

6 k = k + 1;

7 Solve subproblem using ŷt;

8 if mis-pricing doesn’t occurs then

9 Let t = t+ 1, solve the master and

continue sub-gradient algorithm;

In Algorithm 1, we use functions for increasing and decreasing α. These functions are as follows,

finc(αt) = αt + (1− αt) · 0.1 (36)

fdec(αt) =

 αt

1.1 if αt ∈ [0.5, 1)

max{0, αt − (1− αt) · 0.1} otherwise
(37)

The vector gt is the sub-gradient for a given dual yt = [π, α] solution. This vector is computed as follows,

gtyt =
∑
θ∈Θ

Mθ(1− eθj )− πθ −
∑
k∈Q

C(vj))
θ − C(vk)θ)αθjk (38)

where the values of eθj and vj for gt are those we find through the subproblem at iteration t.

3.4. Greedy Algorithm for Subproblem

On one hand, the master problem solution for the leader corresponds to the best mixed strategy using

available schedules. On the other hand, the subproblem finds the best schedule to include for a new column

using the dual values from master problem. Since the number of resources is limited, it seems natural to

solve this subproblem with a greedy heuristic. Those targets with the highest value (from duals) for the
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objective function should probably be picked for the new column. Algorithm 4 describes this greedy heuristic

in detail.

We use this algorithm as an additional speed up subroutine for the column generation. First, we solve

the Greedy Algorithm, if the column we find has a positive reduced cost, then we add it to Master problem.

If not, then we try with SUBP described in Section 3, this optimization problem must be used for checking

optimality at the last step.

In the Greedy algorithm, we try all the schedules over set of feasible schedules S and we keep in the

new strategy only those with the highest reduced cost. We repeat this process until no more resources can

be assigned. Finally, we return the best strategy and its reduced cost. The algorithm we implement is

Algorithm 3.

Algorithm 3: Column Generation Greedy

1 Include the initial set of basic strategies;

2 while reduced cost > 0 do

3 Solve the Master problem and get the

new dual variables;

4 Get reduced cost from Greedy

subroutine;

5 if reduced cost > 0 then

6 Include the new column;

7 else

8 Get reduced cost from subproblem;

9 if reduced cost > 0 then

10 Include the new column

Algorithm 4: Greedy subroutine

1 Let v be a new strategy vector;

2 reduced cost = value(v);

3 for i = 1; i ≤ N ; i = i+ 1 do

4 index = 0; best = −∞;

5 for r = 1; r ≤ |S|; r = r + 1 do

6 Set schedule sr temporally to

vector v;

7 if best < value(v) then

8 best = value(v);

9 index = r;

10 Include schedule index into v;

11 reduced cost = value(v);

12 return reduced cost and vector v;

4. Computational Results

We randomly generate a set of instances to be solved for each solution method. The base algorithms

considered are the branch and price methods for the MIPSG and the ERASER formulations of the problem,

we refer to these solution algorithms as MIPSG-C and ERASER-C, respectively. The ERASER-C algorithm

is the state of the art benchmark from prior work [6]. In addition we solve each instance using the greedy

subroutine and the stabilization approach presented above to attempt to speed up the column generation step

when solving the MIPSG formulation. We refer to these as GREEDY and STAB, respectively. In summary

we present computational results to compare four solution methods: ERASER-C, MIPSG-C, GREEDY and

STAB over randomly generated instances.
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We generate random instances by sampling rewards and penalties for the leader and the attacker and

also by generating a random set of initial patrols or schedules for each instance. We generate reward values

using a log-normal distribution because this guarantees that the reward is positive. Furthermore the log-

normal distribution depends on two parameters µ and σ that can be used to adjust the distribution. If

X ∼ Log-normal(µ, σ) then X = eµ+σZ with Z a standard normal distribution. We set µ = 3.107304 and

σ = 1.268636 so that the coefficent of variation CVX =
√
eσ2 − 1 = 2 and the mean is E(X) = eµ+σ2/2 = 50.

Penalties are generated in a similar way but with a negative log-normal. This guarantees that the penalty is

always less than the reward for every attacker and defender. The set of available schedules is sampled from

a discrete random variable in a way we do not have repeated schedules. We have seen that a coefficient of

variation of 2 corresponds to a large input variability.

Our instances consider 1 adversary, and as a base case 70 different zones or targets, 5 police resources to

be allocated, 600 individual schedules that each police resource can choose from with each of these schedules

covering 5 targets. We conduct sensitivity analysis on these problem parameters by varying them as indicated

in Table 1, base case is indicated by bold:

Number of targets 50, 60, 70, 80, 90, 100

Defender resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Number of schedules 200, 400, 600, 800, 1000

Targets covered per schedule 2, 3, 4, 5

Table 1: Problem parameters considered in computational results. Base case is in bold.

For each combination of the first three problem parameters we generate 25 random problem instances

also selecting randomly the value of targets per schedule. We vary one of the first three parameters at a

time and remove repeated instances. This gives a total of 500 problem instances that are solved by the four

solution algorithms. To solve each instance we use CPLEX 12.4 with a runtime limit set to 2 hours.

4.1. Algorithm Comparison

The first thing to note is that no algorithm is able to solve all of the 500 random problem instances in the

2 hour time limit. In Table 2 we present the total percentage of problems solved and the number of nodes in

the branch and price tree used for each of the four solution algorithms considered MIPSG-C , ERASER-C,

GREEDY and STAB. Methods that use MIPSG as base model only need one node in B&P tree because the

linear relaxation of this problem with one adversary gives the integer solution. ERASER needs to branch

more because the big M formulation gives a larger integrality gap. Overall the ERASER-C algorithm is

able to solve the most instances, which suggest that it is more efficient. In what follows we present detailed

results to understand for which problem parameters one algorithm is preferable over the other.
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Algorithm Problems Solved (%) Nodes
MIPS G-C 87.6 1
ERASER-C 94.2 138
GREEDY 85.4 1

STAB 86.4 1

Table 2: Computational results summary.

The number of columns generated in the B&P method indicates the amount of work that is needed to

solve a problem. In Table 3 we show the average number of columns generated by each algorithm for different

number of resources. The remaining problem parameters are fixed at the base case: 70 targets, 600 feasible

schedules and 5 targets covered by schedule. We present results for 2, 4, 6, 8 and 10 resources.

Resources MIPSG-C ERASER-C GREEDY STAB
2 484 115 578 487
4 482 401 367 406
6 734 886 639 680
8 158 388 209 120
10 115 140 118 54

Table 3: Average number of generated columns. Targets 70, schedules 600, targets/schedule 5.

The average number of columns that are generated are comparable for all algorithms and varies with

the number of resources. The results suggest that instances with a large number of resources require less

columns and are thus easier to solve. ERASER-C does very well with few resources as well. Finally, STAB

reduces the number of columns generated by MIPSG-C for all cases with resources greater than 4. GREEDY

does not seem to reduce the number of columns generated.

In Figure 1, 2 and 3 we have plotted the average solution time for each algorithm. When a method is

not able to solve an instance within the given time limit, we consider the maximum time of 2 hrs. In each

plot we present sensibility with respect to one parameter, keeping the rest in the base case. In Figure 1 we

see the solution times as a function of the number of resources; in Figure 2 as a function of the number of

schedules; finally in Figure 3 as a function of the number of targets. The running time increases more for

ERASER-C than for the algorithms that tackle the MIPSG formulation. For large number of resources (8

and 10) the runtime for MIPSG-C and GREEDY is smaller than when there is less resources. The increase

in number of resources does create a significant difference between MIPSG-C and the speed-up methods,

showing comparable runtimes regardless of the number of resources. The runtimes of MIPSG-C is close to

5 times smaller than the runtimes for ERASER-C when there are many resources. Figure 2 shows that the

algorithms that tackle the MIPSG formulation increase a ittle as the number of schedules that form the

possible joint patrols increases. ERASER-C is more sensitive showing a significant increase as the number

of schedules goes from 600 to 1000. For the instances with schedules from 600 to 1000 ERASER-C has

more than 50% runtime than MIPSG-C. The speedup alternatives (GREEDY and STAB) give comparable
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Figure 1: Running time versus number of resources.
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Figure 2: Running time versus number of schedules.

runtimes to MIPSG-C. Finally, in Figure 3 we see that all four solution algorithms increase their runtime as

the number of targets increase. In particular the runtimes increase significantly when the targets go from

70 to 80. Again MIPS-G shows a slightly better runtime than ERASER-C and a comparable performance

when compared to GREEDY and STAB.

4.2. MIPSG Column Generation Results

Figure 4 shows how the number of targets affects the runtime for MIPSG-C. We have made this analysis

showing separately the result for each number of targets per schedule (T/S). The other parameters, schedules

and resources, are the same as base case. From this plot, first we see that as we increase the number of

targets, the running time increases for all target to schedule values. Note that this relation is not linear,

which is consistent with the combinatorial nature of the problem. An instance with too many targets is hard

to solve even when we have a limited number of schedules and resources, in the base case set to 600 and

5, respectively. We can also see that the T/S impacts the solution time, a 2 T/S instance is easier to solve

than a 5 T/S instance. We can see a direct relation between T/S and runtime. An explanation for this is
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Figure 3: Running time versus number of targets.
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Figure 4: Running time versus number of targets and T/S for MIPSG-C.

that the number of T/S of an instance is related to how flexible it is to cover targets. The case with 2 T/S

assigns patrols to resources that more easily can be combined to protect targets of interest.

In Figure 5 we show the average runtime for each resource number and T/S value. The number of

resources represents how many schedules can be in the same strategy. It is not clear how the number of

resources impacts on time, but the extreme values, 1 and 10, seem to be faster to solve than the values in

the middle, for example 5 or 6. Finally, in Figure 6 we have runtime versus number of available schedules

and T/S, there is no clear dependency of the runtime on the number of schedules, as in all the plots that

separate results for each T/S value se see that there is a tendency to increase solution time as the number

of T/S increases.

4.3. MIPSG Stabilization

For MIPSG model it is critical to find useful speedup strategies for the column generation to be able

to reduce the overall runtime. When dual values vary substantially from one iteration to the next, we

probably generate irrelevant columns as Vanderbeck has established [18]. The dual stabilization method we
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implemented addresses this issue directly. Figure 7 shows the upper and lower bounds for an instance, where

we observe that STAB, the stabilization procedure that smoothes the dual variables, has a more monotonic

behavior. In this case, we not only have a smoother curve but also the method finishes in fewer iterations,

about 45 versus 50. In addition, note that the lower bound is affected, the STAB bound reaches a higher

value faster than MIPSG-C bound. The graph however shows that there still is some variability and the rate

of convergence, although smaller is comparable to the un-stabilized case. This improved performance has

not translated to a significant runtime reduction as can be seen from the agregate results presented earlier.

Further work is needed to check whether other stabilization methods could lead to better performance.

5. Conclusions

In this paper we have introduced a column generation method to solve a novel mixed integer formulation

of Stackelberg Security Games. Decomposition methods are key to be able to solve ever larger problem

instances and strong formulations, such as MIPSG, provide good opportunities to develop efficient algorithms.

That said, even if the linear relaxation problems of MIPSG yield better integrality gaps than other existing
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formulations, the relaxations of MIPSG turn out to be challenging to solve due to the large number of

variables in the formulation.

A standard column generation model would not work for this MIPSG problem, as the reduced cost of

candidate variables depend on undefined dual variables. We circumvent this challenge by formulating a

related problem to replace the standard column generation subproblem, and use this to generate candidate

joint strategies and to detect optimality. We are able to obtain upper and lower bounds at every iteration.

Furthermore we explore methods to speed up the column generation approach, including greedy heuristics

to solve the subproblem SUBP, or dual smoothing techniques.

Problem structure in SSG can be exploited to create a polynomial mixed integer formulation for SSG

when defender strategies consist of all patrols that deploy N resources on |Q| targets. The approach is

based on a formulation of the frequency with which each target is protected and the fact that there are no

patrol feasibility constraints allows to obtain an implementable solution strategy from this optimal frequency,

[10]. In the game considered in this work however, joint strategies are constructed from a given set of fixed

patrolling alternatives. This makes it impossible to use the polynomial reformulation forcing the use of exact

decomposition algorithms.

Our preliminary computational results evaluate the efficiency of the column generation method presented,

as well as the greedy heuristic and the stabilization by dual price smoothing. Furthermore we contrast these

results with ERASER, a state of the art column generation method, built on a different mixed integer

formulation. We note that ERASER branches more than the branch and price method proposed for MIPSG,

ERASER also generates more columns as the number of resources increases. However since each linear
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relaxation for ERASER is easier to solve, it remains a competitive solution alternative. Our computational

results show that MIPSG-C exhibits a significantly smaller runtime when either the number of resources or

the number of schedules increases.

We note that there remains a challenge on how to solve the linear relaxations for the MIPSG problem

faster. Our computational results show slight improvements from using both the Greedy heuristic and the

stabilization procedure, but further work is necessary to make these speedup methods beneficial overall.

Being able to more efficiently solve the linear relaxations of MIPSG can help construct an efficient large

scale algorithm for Stackelberg games as a column generation on MIPSG solves far fewer linear relaxation

problem.
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[11] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application to optimal

highway pricing. Management Science, 44(12-part 1):1608–1622, 1998.
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