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Abstract 

 

Courier delivery services in many cases are faced with sporadic, tightly 

constrained, urgent requests in addition to regular demand.  An example of such an 

application is the transportation of medical specimens, where an efficient delivery is 

crucial in providing high quality and affordable service.  However, the presence of 

random urgent requests, due to medical emergencies, can create substantial additional 

costs if not taken into account.   

We model this problem as a multi-trip vehicle routing problem with time 

windows using stochastic programming with recourse to represent the random urgent 

requests.  We develop an insertion based heuristic with a tabu-search improvement phase 

to solve this problem.  Our computational results show that this approach obtains 

significant improvement in travel costs as well as in route similarity over alternative 

methods, both on randomly generated data as well as on a real data set provided by a 

leading healthcare provider in Southern California.  
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1. Introduction 

In this work, we consider a stochastic vehicle routing problem that is faced with 

urgent random demand.  By urgent demand we mean random requests that impose such 

tight service constraints to the vehicle routing system that they are either outsourced or 

lead to expensive routing solutions.  The courier delivery industry is regularly faced with 

the challenges posed by urgent demand.  Couriers, in addition to meeting an uncertain 

demand, sporadically receive tightly constrained requests (such as an overnight delivery 

to an overseas destination or a same day delivery in a large urban area) which challenge 

the transportation capabilities and could be provided at a premium.   

One example of a routing system with urgent demand is the transportation of 

clinical specimens, which is pervasive in the healthcare industry.  On a daily basis, 

millions of specimens are delivered in the United States from dispersed hospitals and 

clinics to centralized laboratories for testing. Timely and efficient transportation of 

specimens is crucial in providing high-quality and affordable patient service in the 

healthcare industry. The current situation, however, is far from ideal, where lost or 

delayed delivery of specimen is the most common problem jeopardizing patient safety 

(Astion et al., 2003).  In addition, the cost of transporting clinical specimens is a 

significant burden to healthcare systems, especially for urgent cases which require 

prompt courier services.  Furthermore, although there is significant research in routing 

systems with uncertain demand, the scheduling of urgent delivery of medical specimens 

is still a manual process in practice.  This process leads to solutions where the own fleet 

is used to service routine (possibly random) requests and most urgent requests are 

outsourced to a courier service, such as taxis.  This can be an inefficient solution since the 

outsourcing cost can be rather high. 

Motivated by this medical specimen courier delivery problem, we will consider a 

multi-trip routing problem where random demand is transported from many distributed 

locations (hospitals/clinics) to the depot (central laboratory) within given time windows.  

A random urgent request will be a trip request that has a substantially tighter time 

window.  The hypothesis to be validated with this work is that a routing solution with 

additional capacity that can accommodate the random urgent requests will be a more 
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efficient solution. The key question is how to integrate the uncertain urgent demands into 

the delivery schedule for the routine demands.   

There are a number of stochastic vehicle routing approaches in the literature that 

can be used to take into account the demand uncertainty in this problem.  However using 

approaches such as robust optimization or chance-constrained optimization directly to 

address the rare urgent requests, will either ignore the unlikely requests, lead to a high 

cost solution or to prohibitively large problems, such problems are the topic of ongoing 

research (Shortle et al., 2014; Barrera et al., 2014). Instead, in this work we model the 

problem as a two stage stochastic optimization problem with recourse.  This approach 

requires considering different scenarios, leading to a large scale routing problem.  The 

overall idea is to understand whether we can sacrifice some optimality with regards to 

regular demand to free some capacity that will give more flexible routes, which could 

accommodate the more urgent requests at a lower cost.  

Current industry practice runs fixed routes during a planning horizon outsourcing 

most random requests.  This solution, which tends to be expensive, exhibits however a 

nice feature for practical implementation: that it maintains similar routes for regular 

requests with customers visited by the same vehicle at roughly the same time every day. 

Such stability is desirable in repeating systems where the quality of service is important 

(Groër et al., 2009; Sungur et al., 2010).  In this work we take into account route 

similarity as a desirable measure of a routing solution.  The motivation is that a stochastic 

programming solution with recourse will construct a first stage solution that is adapted to 

accommodate each scenario.  But, to provide a high quality of service it is preferable to 

have a first stage solution that does not change much on each scenario.  

To summarize, we propose a model and solution algorithm for the vehicle routing 

problem with urgent requests, inspired by the healthcare delivery application.  We 

formulate this problem as a multi-trip vehicle routing problem over a given planning 

horizon, with uncertain demand that occurs continuously in the planning horizon, some of 

which is urgent and has tight time windows.  The stochastic programming problem 

considers objectives that aim to minimize the outsourcing cost, the route length and the 

dissimilarity between the first stage solution and the recourse actions taken in each 

scenario, which aims to improve the service quality.  We consider a weighted 



 
 

4 

 

combination of these objectives.  Our computational studies investigate the influence of 

these parameters on the different cost measures of the solution obtained and help provide 

solutions that provide an efficient tradeoff between them.  The proposed heuristic 

solution algorithm builds a first stage solution, or master route, that will require little 

modification when adapted for each uncertainty scenario by limiting the recourse actions 

considered.   

The rest of the paper is organized as follows. In section 2, a literature review of 

the relevant problems is presented. Section 3 introduces the problem formulation. In 

section 4, we present our heuristic solution technique for the problem.  Computational 

results are presented and discussed in section 5.  The computational results are separated 

in experiments of the proposed heuristic on randomly generated data sets and 

experiments on a real data set from a large healthcare provider in Southern California.  

We summarize the main conclusions of the paper in section 6.  

 

2. Literature Review 

The VRP variants related to this work include multi-trip VRP (MVRP) and 

stochastic VRP (SVRP).  Of the vast literature in SVRP our work is related to stochastic 

programming approaches for problems under uncertainty.  Another relevant notion is the 

idea that route similarity is related to customer service quality in the vehicle routing 

problem.    We next present a short summary of the prior work in these areas. 

Multi-trip VRP (MVRP), as a variant of the VRP, has gained little attention in the 

literature. In the MVRP, vehicles can be used more than once during the planning 

horizon.  Taillard et al. (1996) suggest in their study that assigning more routes to a 

vehicle is a more practical solution in real life. Brandao and Mercer (1997, 1998) 

extended the study on multi-trip VRP by also including the delivery time window and the 

capacity of the vehicles. Petch and Salhi (2003) integrate the approaches proposed by 

Taillard et al. (1996) and Brandao and Mercer (1997, 1998). Azi et al. (2006) first 

describe an exact algorithm for solving a multi-trip VRP problem of one vehicle with 

time windows. Salhi and Petch (2007) provide a comprehensive literature review on the 
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multi-trip VRP, and present a genetic algorithm based on a heuristic for the solution of 

MVRP.  In recent years, Zapfel and Bogla (2008) provide a study of a multi-trip vehicle 

routing and crew scheduling with overtime and outsourcing options. Ren et al. (2010) 

introduce the use of shifts into the VRP, and study a new variant of the VRP, which is 

with time windows, multi-shifts, and overtime.  Martinez and Amaya (2013) consider a 

multi-trip problem with time windows which integrates the packing of circular items in 

the vehicle.  Our work builds on this previous literature by using multi-trip routes as 

efficient recourse strategies in a stochastic VRP problem with customer uncertainty. 

Another variant of the multi-trip VRP is the periodic VRP (PVRP), which 

customers have to be visited once or several times in the planning horizon (Angelelli and 

Speranza, 2002). PVRP extends the planning horizon being considered to plan routes 

over several days. Angelelli and Speranza (2002) propose a Tabu search based heuristic 

for the solution of a PVRP with intermediate facilities. Francis and Smilowitz (2006) 

present a continuous approximation for service choice of a PVRP with capacity 

constraints. Hemmelmayr et al. (2009) propose a new heuristic for solving PVRP as well 

as a Periodic Travelling Salesman Problem, based on a neighborhood search. The paper 

of Alonso et al. (2008) extends the classical VRP to a periodic and multi-trip VRP with 

site-dependency and proposes a Tabu search based algorithm.  

The stochastic vehicle routing problem (SVRP) introduces uncertainty in the 

parameters. Ichoua et al. (2006) reviews the literature in SVRP and classifies the SVRP 

into two subgroups of problems: static stochastic vehicle routing problems (SSVRP) and 

dynamic stochastic vehicle routing problem (DSVRP). In the SSVRP, the customers 

and/or demands are random variables. The vehicle routing problem with stochastic 

demands (VRPSD) (Yang et al., 2000), the vehicle routing with stochastic customers 

(VRPSC) (Waters, 1989), the vehicle routing problem with stochastic customers and 

demands (VRPSCD) (Gendreau et al., 1995), and the probabilistic travelling salesman 

problem (PTSP) (Laporte et al., 1994) belong to SSVRP. One typical solution technique 

for the SSVRP is the two-stage method (Gendreau et al., 1996; Bertsimas and Simchi-

Levi, 1996), where in the first stage, an “a-priori sequence” solution (Bertsimas et al., 

1990) is proposed, and in the second stage, recourse actions (e.g., skipping non-occurring 

customers, returning to the depot when capacity is exceeded, or complete rescheduling 
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for occurring customers) is allowed to adjust an “a-priori solution” after the uncertainty is 

revealed. Another solution technique for the SSVRP is the “re-optimization” approach 

(Secomandi, 2001; Novoa and Storer, 2009), where dynamic programming solutions are 

developed.  

DSVRP studies the problems where new events occur over time and no “a-priori” 

solution is utilized. There are two different ways to exploit the probability information in 

the literature: analytical studies and stochastic algorithms. The analytical studies provide 

new insights to the solution structure, thus helping to design more efficient deterministic 

algorithms (Bertsimas and Simchi-Levi, 1996).  For problems with uncertainty (e.g., 

Spivey and Powell, 2004), researchers have been studying stochastic and dynamic 

algorithmic approaches that include current information and future probabilistic events to 

produce more efficient solutions. A recent comprehensive review of DSVRP appears in 

Pillac et al. (2013).  To the best of our knowledge there is no work on DSVRP which 

makes use of the flexibility of multi-trip routes. 

The healthcare courier delivery problem has a high requirement on the quality of 

customer service. Some recent work has included customer service in the models for 

fixed route delivery systems under stochastic demand (Haughton and Stenger, 1998). 

Haughton (2000) develops a framework for quantifying the benefits of route re-

optimization, also under stochastic customer demands. Zhong et al. (2007) propose an 

efficient way of designing driver service territories, considering uncertainty in customer 

locations and demand. Groër et al. (2009) introduce the Consistent VRP (ConVRP) 

model, with an objective of obtaining consistent routes such that the customers are visited 

by the same driver at roughly the same time on each day.  Tarantilis et al. (2012) propose 

a solution approach for the ConVRP that is based on a template solution and implements 

a tabu search.  Sungur et al. (2010) introduce the concept of “route similarity” as the 

number of customers of the daily routes that are within a given distance of any customer 

on the master route, and use it as a key measure for developing optimal routing strategies. 

Our proposed model is most similar to the models proposed by Groër et al. (2009) 

and Sungur et al. (2010) in that route similarity is a key aspect of the routing problem.  It 

differs from this prior work however because the nature of the urgent requests may 

require a sudden reroute to the depot.  This forces a novel multi-trip VRP formulation 
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with variable number of trips per vehicle and allows considering more general recourse 

actions than what is considered in these two prior references.  

3. Vehicle Routing with Urgent Requests 

We formulate a multi-trip vehicle routing model for the healthcare industry 

courier delivery problem.  In this multi-trip model we allow vehicles to optimize the 

length and the number of multiple trips to adjust to the demand scenario.  For example, a 

MVRP may require the customers to be visited twice in two trips in a workday, with a 

fixed trip length. A PVRP may have all the customers be visited in one trip each workday 

during the planning horizon, where the length of a trip of a vehicle is 8 hours each day. In 

our problem, the vehicles operate in multiple trips during the planning horizon where the 

number of trips and the lengths of each trip are not defined a-priori, but adjust to the 

demand scenario being serviced.  In this section, we provide a mixed integer linear 

programming formulation of this multi-trip VRPTW with stochastic clients.  

Assume we are making a routing schedule for a healthcare courier delivery 

service provider. There are 𝑛 potential customers (hospitals, clinics) in the region that 

must be visited during a planning horizon by a fleet of identical vehicles.  Without loss of 

generality in what follows we will assume that the planning horizon will be a day.  Each 

request for service has a location, pick up time window and a latest drop-off time (or 

drop-off deadline).  The locations and time windows of all the potential customers are 

known ahead of time, however, which customers have requests on a specific instance is 

only revealed at the start of the planning horizon (day).  This uncertainty is represented 

by a set of scenarios {1, … , 𝛿}, with scenario d occurring with a given probability pd.  We 

seek to obtain a master route, using a subset of the total customers that will be referred to 

as scenario d=0.  This master route is used to measure the consistency of the routes that 

satisfy the demand realized in each scenario.  The question of which locations to consider 

for the master schedule will be explored in the computational results.  There is one depot 

(node 0) located at the central lab. Each vehicle should leave the depot/lab at the 

beginning of the planning horizon (day), and return to the depot/lab at the end of the day. 

It can also return to the depot/lab anytime during the day when required (i.e., when there 
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are urgent requests that need samples delivered by a certain time at the lab). As each 

vehicle has multiple trips, we assume a dummy depot (represented by node 𝑛 + 1) 

located also at the central depot/lab to keep track of which trip the request is on.  We 

keep track of any unmet request, which we assume is outsourced.  For brevity, we will 

use the term “taxi” to refer to an outsourced vehicle for the remainder of the paper. The 

notation of the model is as follows.  

 

The routing parameters: 

𝐷:  set of scenarios 𝐷 = {0,1, … , 𝛿}. 

𝐶: set of customers, 𝐶 = {1, … , 𝑛}. 

𝐾: set of vehicles.  

𝑊:  set of daily trips of a vehicle, 𝑊 = {1, … , 𝑛}. 

 

The cost parameters: 

𝑡𝑖𝑗:  travel time between node 𝑖 and j. 

𝛼𝑡:  unit travel cost, dollars per unit time.  

𝛼𝑜𝑖:  unit outsource cost, dollars per taxi trip to service node i. 

𝛼𝑠:  unit dissimilarity cost, dollars for each count of dissimilarity. 

 

The stochastic parameters:  

pd: probability of occurrence of scenario d. 

𝐶𝑑: set of occurring customer requests on scenario d. 

𝑠𝑖
𝑑: service time of customer request i on scenario d. 

𝑎𝑖
𝑑:  earliest time that customer request i can be visited on scenario d. 

𝑏𝑖
𝑑: latest time that customer request i can be visited on scenario d. 

𝑙𝑖
𝑑: latest time that customer request i can be delivered to the lab on scenario d. 

 

Other parameters: 

𝑀: a sufficiently large number.  

 

The routing variables: 
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𝑥𝑖𝑗𝑘
𝑑 = {

1,     if vehicle 𝑘 travels from node 𝑖 to 𝑗 on scenario 𝑑
0,     otherwise                                                                          

 

𝑥0𝑖𝑘
𝑤𝑑 = {

1,     if vehicle 𝑘 travels from the depot to customer 𝑖 on trip 𝑤 on scenario 𝑑
0,     otherwise                                                                                                                      

 

𝑥𝑖(𝑛+1)𝑘
𝑤𝑑 = {

1,    if vehicle 𝑘 travels from customer 𝑖 to the lab on trip 𝑤 on scenario 𝑑
0,    otherwise                                                                                                                 

 

𝑦𝑖𝑘
𝑑 :  the time vehicle k arrives at customer 𝑖 on scenario d.  

𝑦0𝑘
𝑤𝑑:  the time vehicle k leaves the depot for its trip w on scenario d. 

𝑦(𝑛+1)𝑘
𝑤𝑑 : the time vehicle k returns to depot from its trip w on scenario d.  

 

The auxiliary demand variables: 

𝑧𝑖𝑘
𝑤𝑑 = {

1,     if vehicle 𝑘 visits customer 𝑖 on trip 𝑤 on scenario 𝑑
0,     otherwise                                                                                

 

𝑢𝑖
𝑑 = {

1,     if customer 𝑖 is visited by a taxi on scenario 𝑑
0,     otherwise                                                                   

 

𝑟𝑖𝑘
𝑑 = {

1,     if vehicle 𝑘 visits customer 𝑖 either on scenario 𝑑 or 0, but not both
0,     otherwise                                                                                                             

 

  

 Before the mathematical formulation of the model is presented, some clarification 

on the parameters and decision variables need to be made.  

1) The model considers a planning horizon of one day with δ=|D|-1 demand 

scenarios to represent the uncertainty.  Scenario 𝑑 = 0 is formed with the data 

that defines the base case that is used to build the master route.  We refer to the 

solution in 𝑑 = 0 as the master route and it is the route with respect to which the 

similarity of each scenario d routes are measured. 

2) The maximum number of trips each vehicle can make in a day is 𝑛. We allow 

artificial trips that do not deal with any customers, but just “move” from the 

depot/lab to the depot/lab without spending any actual time.  

3) The travel time between node 𝑖 and j is 𝑡𝑖𝑗. In particular, 𝑡0𝑖 is travel time between 

the depot/lab and node i ; 𝑡𝑖(𝑛+1) the travel time between node 𝑖 and depot/lab. 

4) 𝑟𝑖𝑘
𝑑  is defined as the measure of dissimilarity, with mathematical expression 

𝑟𝑖𝑘
𝑑 = | ∑ 𝑧𝑖𝑘

𝑤𝑑
𝑤∈𝑊 − ∑ 𝑧𝑖𝑘

𝑤0
𝑤∈𝑊 |.  Variable 𝑟𝑖𝑘

𝑑  equals 1 only if customer i is 

visited by vehicle k either on scenario d or the master route, but not both.  In other 
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words the dissimilarity counts if a customer is visited by a different vehicle than 

in the master route.  

 

Problem formulation: 

Minimize 

𝛼𝑡 ∙ ∑ 𝑝𝑑 ∑ ( ∑ ∑ 𝑡𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘
𝑑

𝑗∈𝐶𝑑,𝑖≠𝑗𝑖∈𝐶𝑑

+ ∑ ∑ 𝑡0𝑖 ∙ 𝑥0𝑖𝑘
𝑤𝑑

𝑖∈𝐶𝑑𝑤∈𝑊

+ ∑ ∑ 𝑡𝑖(𝑛+1) ∙ 𝑥𝑖(𝑛+1)𝑘
𝑤𝑑

𝑖∈𝐶𝑑𝑤∈𝑊

)

𝑘𝜖𝐾𝑑𝜖𝐷

 

+ ∑ 𝑝𝑑 ∑ 𝛼𝑜𝑖 ∙ 𝑢𝑖
𝑑

𝑖𝜖𝐶𝑑𝑑𝜖𝐷

+ 𝛼𝑠 ∙ ∑ 𝑝𝑑 ∑ ∑ 𝑟𝑖𝑘
𝑑

𝑖𝜖𝐶𝑑𝑘𝜖𝐾𝑑𝜖𝐷\{0}

 

 (3.1) 

 

Subject to: 

Routing constraints: 

 

∑ ∑ 𝑥𝑗𝑖𝑘
𝑑

𝑗𝜖𝐶𝑑,𝑗≠𝑖𝑘𝜖𝐾

+ ∑ ∑ 𝑥0𝑖𝑘
𝑤𝑑

𝑤∈𝑊𝑘𝜖𝐾

+ 𝑢𝑖
𝑑 = 1 𝑖 ∈ 𝐶𝑑, 𝑑 ∈ 𝐷 (3.2) 

 

 

∑ 𝑥𝑖(𝑛+1)𝑘
𝑤𝑑

𝑤∈𝑊

+ ∑ 𝑥𝑖𝑗𝑘
𝑑

𝑗𝜖𝐶𝑑,𝑗≠𝑖

= ∑ 𝑥0𝑖𝑘
𝑤𝑑

𝑤∈𝑊

+ ∑ 𝑥𝑗𝑖𝑘
𝑑

𝑗𝜖𝐶𝑑,𝑗≠𝑖

=  ∑ 𝑧𝑖𝑘
𝑤𝑑

𝑤∈𝑊

    𝑘 ∈ 𝐾, 𝑖 ∈ 𝐶𝑑, 𝑑 ∈ 𝐷 (3.3) 

 

 

∑ 𝑥0𝑖𝑘
𝑤𝑑

𝑖∈𝐶𝑑

= ∑ 𝑥𝑖(𝑛+1)𝑘
𝑤𝑑

𝑖∈𝐶𝑑

≤ 1   𝑘 ∈ 𝐾, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷 (3.4) 
 

 

∑ 𝑥0𝑖𝑘
𝑤𝑑

𝑖∈𝐶𝑑

≥ ∑ 𝑥𝑖(𝑛+1)𝑘
(𝑤+1)𝑑

𝑖∈𝐶𝑑

      𝑘 ∈ 𝐾, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷 (3.5) 

 
𝑦𝑖𝑘

𝑑 + 𝑡𝑖𝑗 + 𝑠𝑖
𝑑 ≤ 𝑦𝑗𝑘

𝑑 + 𝑀 ∙ (1 − 𝑥𝑖𝑗𝑘
𝑑 )    𝑖 ∈ 𝐶𝑑, 𝑗 ∈ 𝐶𝑑, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.6) 

 
𝑦0𝑘

𝑤𝑑 + 𝑡0𝑗 ≤ 𝑦𝑗𝑘
𝑑 + 𝑀 ∙ (1 − 𝑥0𝑗𝑘

𝑤𝑑 ) 𝑗 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.7) 

 
𝑦𝑖𝑘

𝑑 + 𝑡𝑖(𝑛+1) + 𝑠𝑖
𝑑 ≤ 𝑦(𝑛+1)𝑘

𝑤𝑑 + 𝑀 ∙ (1 − 𝑥𝑖(𝑛+1)𝑘
𝑤𝑑 )  𝑖 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.8) 

 

𝑦(𝑛+1)𝑘
𝑤𝑑 ≤ 𝑦0𝑘

(𝑤+1)𝑑 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.9) 

 
𝑎𝑖

𝑑 ≤ 𝑦𝑖𝑘
𝑑 ≤ 𝑏𝑖

𝑑 𝑖 ∈ 𝐶𝑑, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.10) 

 
−𝑀 ∙ (1 − 𝑧𝑖𝑘

𝑤𝑑) + 𝑦0𝑘
𝑤𝑑 ≤ 𝑦𝑖𝑘

𝑑 ≤ 𝑦(𝑛+1)𝑘
𝑤𝑑 + 𝑀 ∙ (1 − 𝑧𝑖𝑘

𝑤𝑑) 𝑖 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾  (3.11) 

 
𝑦(𝑛+1)𝑘

𝑤𝑑 ≤ 𝑙𝑖
𝑑 + 𝑀 ∙ (1 − 𝑧𝑖𝑘

𝑤𝑑) 𝑖 ∈ 𝐶𝑑 , 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.12) 
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−𝑟𝑖𝑘
𝑑 ≤ ∑ 𝑧𝑖𝑘

𝑤𝑑

𝑤∈𝑊

− ∑ 𝑧𝑖𝑘
𝑤0

𝑤∈𝑊

  ≤ 𝑟𝑖𝑘
𝑑  𝑖 ∈ 𝐶𝑑  , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷\{0} (3.13) 

 
 

Domain constraints: 

 
𝑥𝑖𝑗𝑘

𝑑 ∈ {0,1}, 𝑖, 𝑗 ∈ 𝐶𝑑 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷   (3.14) 

 
𝑥0𝑖𝑘

𝑤𝑑 ∈ {0,1}, 𝑖 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.15) 

 
𝑥𝑖(𝑛+1)𝑘

𝑤𝑑 ∈ {0,1}, 𝑖 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.16) 

 
𝑦𝑖𝑘

𝑑 ≥ 0, 𝑖 ∈ 𝑉𝑑, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.17) 

 
𝑦0𝑘

𝑤𝑑 ≥ 0,   𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.18) 

 
𝑦(𝑛+1)𝑘

𝑤𝑑 ≥ 0, 𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.19) 

 
𝑧𝑖𝑘

𝑤𝑑 ∈ {0,1}, 𝑖 ∈ 𝐶𝑑, 𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.20) 

 
𝑟𝑖𝑘

𝑑 ≥ 0, 𝑖 ∈ 𝐶𝑑, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (3.21) 

 
𝑢𝑖

𝑑 ∈ {0,1}, 𝑖 ∈ 𝐶𝑑, 𝑑 ∈ 𝐷 (3.22) 

 

As previously described, the healthcare courier delivery problem should focus not 

only on plans with minimum travelling cost, but also those with high level of customer 

service. Therefore, the objective function of our model, as shown in Equation (3.1), is to 

minimize the expected total cost, that is composed of traveling cost, outsourcing cost, and 

route dissimilarity cost.  The travel cost is represented by 

 𝛼𝑡 ∙ ∑ 𝑝𝑑 ∑ ( ∑ ∑ 𝑡𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘
𝑑

𝑗∈𝐶𝑑,𝑖≠𝑗𝑖∈𝐶𝑑

+ ∑ ∑ 𝑡0𝑖 ∙ 𝑥0𝑖𝑘
𝑤𝑑

𝑖∈𝐶𝑑𝑤∈𝑊

+ ∑ ∑ 𝑡𝑖(𝑛+1) ∙ 𝑥𝑖(𝑛+1)𝑘
𝑤𝑑

𝑖∈𝐶𝑑𝑤∈𝑊

)

𝑘𝜖𝐾𝑑𝜖𝐷

 , 

which is proportional to the expected total time traveled by all the vehicles in the 

planning horizon. Here we take p0=1 so the objective is actually the cost of the master 

route and the expected travel, taxi and dissimilarity cost over the scenarios.  The 

outsourcing cost is represented by ∑ 𝑝𝑑 ∑ 𝛼𝑜𝑖 ∙ 𝑢𝑖
𝑑

𝑖𝜖𝐶𝑑𝑑𝜖𝐷 , which corresponds to a cost of 

𝛼𝑜𝑖 if node i has to be serviced by a taxi.  This cost can represent a fixed cost per taxi trip 

and also account for the cost per distance ti0 of servicing node i by setting 𝛼𝑜𝑖 = 𝛼𝑜f +

𝛼𝑜v𝑡𝑖0, where 𝛼𝑜f corresponds to the fixed cost and 𝛼𝑜v the per unit distance variable 

cost.  The expected route dissimilarity cost is measured by 𝛼s ∙
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∑ 𝑝𝑑 ∑ ∑ 𝑟𝑖𝑘
𝑑

𝑖𝜖𝐶𝑑𝑘𝜖𝐾𝑑𝜖𝐷\{0} , which is proportional to the total number of customers that are 

serviced by a vehicle different from the one servicing it in the master route.   

There are two groups of constraints in our model, namely routing constraints and 

domain constraints. Constraints (3.2) ensure that on each planning horizon (day) every 

customer is either visited directly from the depot/lab, or right after a vehicle services 

customer 𝑗, or by a taxi when the regular fleet is unavailable. Constraints (3.3) enforce 

the vehicle flow constraints and help define variable 𝑧𝑖𝑘
𝑤𝑑 which characterizes whether 

vehicle k visits location i in trip w of scenario d.  This variable is key in enforcing time 

windows to depot/lab and dissimilarity. Constraints (3.4) ensure that each individual trip 

should start with leaving the depot/lab and end by returning to the depot/lab. Constraints 

(3.5) enforce the usage of early trips as much as possible, which force the empty trips 

close to the end of the day instead of at the beginning of the day. Constraints (3.6) assure 

the relationship of arrival times at customers 𝑖 and 𝑗, when customer 𝑗 is visited right 

after 𝑖 is visited. Constraints (3.7) express the relationship of arrival time to customer 𝑗, 

when 𝑗 is the first customer request a vehicle handles in a trip.  Constraints (3.8) express 

the relationship of arrival time to customer 𝑗, when 𝑗 is the last customer request a vehicle 

handles in a trip. Constraints (3.9) enforce that the finish time of a trip of a vehicle should 

be no later than the start time of the next trip of the vehicle.  Together constraints (3.6)-

(3.9) define arrival times of vehicles at the different customers and the multiple visits to 

the depot/lab.  These constraints, which correspond to an adaptation of MTZ constraints 

to a multi-trip model, eliminate infeasible subtours.  In fact MTZ constraints are exactly 

constraint (3.6), but given the special conditions of depot/lab and multiple trips these 

constraints for these additional conditions are translated into (3.7)-(3.9).  Constraints 

(3.10) enforce the arrival time of a vehicle at a customer to be in the required time 

window for handling the customer request. Constraints (3.11) require that the arrival time 

at a customer on a trip should be between the start time and the end time of the trip. 

Constraints (3.12) require that each vehicle should visit the lab before the drop-off 

deadline of each specimen collected by a vehicle on a trip. Constraints (3.13) are another 

representation of our expression for dissimilarity 𝑟𝑖𝑘
𝑑 = | ∑ 𝑧𝑖𝑘

𝑤𝑑
𝑤∈𝑊 − ∑ 𝑧𝑖𝑘

𝑤0
𝑤∈𝑊 |. They 

remove the usage of the absolute value in the expression, so that the system is linearized. 

Constraints (3.14) –(3.22) are the variable domain constraints.  
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The objective function of this model aims to obtain a master route which has a 

small transportation cost and that it leads to scenarios which balance the transportation 

cost with the dissimilarity cost.  The solution heuristic described in the next section will 

be built minimizing both the cost of the master route and the expected costs of the 

scenarios.   

One question that remains from the model introduced above is how to construct 

the master route, in other words, which customers should be considered in scenario d=0.  

The objective is to balance route similarity (tied to higher customer service) and travel 

time efficiency.  This is not straight forward since including very few nodes in the master 

routes will lead to routes that have little similarity but are efficient, while considering too 

many nodes in the master will create routes that may be very similar but which will have 

long travel cost since many locations will not be visited in each scenario.  In the 

computational section we explore computationally how to build master routes to tradeoff 

travel time cost and route similarity.      

4. Heuristic 

The problem formulated in the previous section results in a large routing problem 

that is difficult to solve exactly.  Indeed, since there are |𝐷| scenarios that have to be 

taken into account in the routing, and each vehicle makes 𝑛 trips during the planning 

horizon (a day - including real and artificial trips), then solving a problem with n 

customers and k vehicles is equivalent to solving a routing problem with 𝑛|𝐷| customers 

with 𝑘|𝐷| vehicles that can do up to 𝑛 trips each.  Specifically, the real world instance 

from the healthcare industry that we consider in this paper has |D| = 30, n = 105 and k = 

14, which is equivalent to a routing problem with at least k|D| = 420 vehicles on n|D| = 

3150 nodes.  Such a problem size is likely to be solved in hours, if at all, rather than 

minutes with existing exact solution methods.  Therefore, we develop heuristic 

algorithms that will be able to provide solutions in minutes to the route planner.  We 

present the heuristic in four parts: insertion, tabu search, constructing master routes, and 

constructing operational (or daily) plans. The central idea of the heuristic is to separate 

the problem for each scenario 𝑑 ∈ 𝐷 and solve various smaller routing problems with 
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appropriate cost functions.  The heuristic begins by constructing a master route, for d=0, 

taking into account only regular vehicle travel cost.  Routes for every other scenario 

𝑑 ∈ 𝐷, 𝑑 ≠ 0 are then constructed starting from the master routes and considering the 

part of the objective function that is relevant to scenario d.  The insertion and tabu search 

procedures are used to construct efficient routes in both parts of the heuristic (master and 

daily routes).  

This heuristic procedure is inspired by the one developed for a courier delivery 

problem under uncertainty in Sungur et al. (2010) but has the following important 

differences with this prior work.  The heuristic implements the more versatile recourse 

actions considered in this problem which allow creating different multi trips on different 

scenarios.  The heuristic proposed here does not consider a phase 2 where information 

about unmet demand in second stage scenarios is given to re-optimize the master problem 

as in Sungur et al. (2010).  The reasons for not including feedback to the master problem 

are due to the nature of the urgent VRP problem.  In this problem an unmet demand is 

more often due to the occurrence of urgent requests in a given scenario than this demand 

being difficult to satisfy.  Therefore, including the demand that was unmet in a scenario 

in the master might not be always beneficial.  A possible recourse is to include all urgent 

requests on the master route to satisfy the unmet demand in the scenario in question.  

This, however, would generate overly conservative master routes that seek to satisfy even 

the rare urgent requests.  Since this seems to provide too much information to the solution 

procedure we opted to develop a one shot heuristic without feedback from the scenarios 

to the master problem.    

4.1 Insertion 

Insertion heuristics are popular for solving vehicle routing and scheduling 

problems because they are fast, easy to implement, produce good solutions, and are easily 

extendable to handle complicating constraints. A comprehensive review of insertion 

heuristics can be found in Campbell et al. (2004).  Our heuristic uses an insertion 

technique as the building block for constructing routes. The insertion heuristic used for 

constructing master routes only considers travel time, while insertion for daily routes 
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considers the complete objective function relevant to each scenario and starts from the 

master routes.  

Algorithm 1 below describes the insertion heuristic for building master routes, 

while the insertion algorithm for constructing daily routes is presented in Algorithm1.1. 

 

 

Algorithm 1: Insertion of request to form master routes  

Input: the scheduled routes; a request to insert. 

Output: the updated routes and taxi cost. 

for all the positions in all the active routes 

Find the feasible insertion positions with minimum insertion cost;  

end for 

if the insertion is feasible then 

Update the routes adding the insertion of minimum insertion cost;  

else if there is an idle vehicle then  

Put the request on the new vehicle;  

else request is serviced by taxi, increment taxi cost; 

end if 

 

 

Algorithm 1.1: Insertion of a daily request not in the master routes  

Input: the scheduled routes; the master routes; a request to insert. 

Output: the updated routes. 

calculate taxi cost of request;  

Set minimum insertion cost 2* taxi cost of request; 

for all the positions in all routes 

find the feasible insertion position with minimum insertion cost;  

update minimum insertion cost; 

end for 

if  minimum insertion cost is smaller than taxi cost then  

use fleet; 
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update routes;  

else  use taxi and update taxi cost;  

end if 

 

In these insertion algorithms we have to keep track of the arrival to customers and 

the lab to check if an insertion is feasible.   Omitting the indices of scenario, vehicles and 

trip for simplicity, we can express the start time of visit to node i as follows: 𝑦𝑖 =

max(𝑦𝑖−1 + 𝑠𝑖 + 𝑡𝑖−1,𝑖 , 𝑎𝑖), where node 𝑖 − 1 and node 𝑖 are the two nodes 

consecutively visited by a vehicle. The earliest time a vehicle can visit node 𝑖 is 𝑎𝑖 and 

𝑡𝑖−1,𝑖 is the travel time between node 𝑖 − 1 and node 𝑖.  

To check the feasibility of an insertion we verify that both the pickup and drop off 

at the lab are within bounds.  This means that 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖 and that the next time (after 

picking up item i) that the vehicle visits the depot/lab satisfies 𝑦𝑛+1 ≤ 𝑙𝑖 for all items i 

picked up in that trip.   

The cost on the time traveled if the pickup is inserted as node 𝑖 − 1 and the 

delivery is inserted as node 𝑖 in a route (see Figure 4.1), can be calculated as 𝑡𝑖−2,𝑖−1 +

𝑡𝑖−1,𝑖 + 𝑡𝑖,𝑖+1 − 𝑡𝑖−2,𝑖+1. If the pickup is inserted as node 𝑖 − 1 and the delivery is 

inserted as node 𝑖 + 𝑎 (𝑎 ≥ 1) (see Figure 4.2), then the insertion cost can be calculated 

as 𝑡𝑖−2,𝑖−1 + 𝑡𝑖−1,𝑖 + 𝑡𝑖+𝑎−1,𝑖+𝑎 + 𝑡𝑖+𝑎,𝑖+𝑎+1 − 𝑡𝑖−2,𝑖 − 𝑡𝑖+𝑎−1,𝑖+𝑎+1. The taxi cost is made 

up of two parts in the algorithms. One is a fixed pickup cost, which is proportional to the 

number of trips. The other is the variable cost, which is proportional to the travel time 

from the pickup location to the delivery location.  The cost for dissimilarity is calculated 

by comparing the scheduled routes to the master routes. If a request is serviced by the 

same vehicle, then the dissimilarity is 0; otherwise, it is 1. It should be noted that we 

assume the dissimilarity cost is always 1, when a customer is visited by a taxi. 

 

Figure 4.1: Pickup is followed directly by delivery 
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Figure 4.2: Delivery occurs a+1 stops after pickup. 
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The insertion heuristic for master routes is sequential and activates a new vehicle 

when it is not feasible to handle the request with a currently active vehicle. This approach 

is favored for its lower usage of vehicles in the master routes, which is another factor of 

cost reduction for the healthcare provider.  

4.2 Tabu Search 

 Insertion heuristic algorithms are used to build initial solutions for the master and 

the daily routes, and a Tabu search algorithm (Algorithm 2) is developed as the post 

phase improvement for efficient master and daily routes.  The implementation of the 

Tabu search considers the neighborhoods obtained from a 2-opt exchange move (Lin, 

1965) and a 𝜆-interchange move (Osman, 1993). The 𝜆-interchange operators are 

generated by randomly selecting two requests from two different routes, and exchanging 

the requests by interchanging the pickup and the delivery of each request.  As the 

problem requires that the pickup and delivery of a request be handled by the same 

vehicle, it must be assured that the pickup and the delivery of a request stay on the same 

vehicle. The 2-opt exchange operator is generated by randomly selecting two nodes 

(pickup or delivery) from the same randomly selected vehicle. As a specimen can only be 

delivered after it is picked up, it must be assured that the delivery of any request is 

located after the pickup of the request.      

 

Algorithm 2: Tabu Search Algorithm  

Input: a master route or a daily plan to improve  

Output: improved master route or daily plan  

repeat  

 randomly chose two routes from the solution  

 generate 𝜂𝑚𝑎𝑥 neighbors from 𝜆-interchange operator 

 generate 𝛾𝑚𝑎𝑥 neighbors from 2-opt operator 
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 choose the best solution and make the move;   

 randomly generate a tabu tenure 𝜃 from a uniform distribution U (𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥 );  

 if the move is 𝜆-interchange then  

  set the tabu for moving the exchanged requests for 𝜃 iterations;  

 else  

  set the tabu for moving the exchanged nodes for 𝜃 iterations;  

 end if 

until no improvement in 𝐼𝑚𝑎𝑥 iterations;   

calculate the objective and save the current solution;  

 

In each iteration, the Tabu search generates 𝜂𝑚𝑎𝑥  𝜆-interchange neighbors and 

𝛾𝑚𝑎𝑥 2-opt neighbors of the current solution. The number of Tabu iterations 𝜃 is a 

random number uniformly distributed in (𝜃𝑚𝑖𝑛,  𝜃𝑚𝑎𝑥). The Tabu search at each iteration 

moves to the best neighbor. A temporary move to a worse solution is allowed to escape 

from a local minimum. The Tabu status is overridden if the new solution improves from 

the best solution. The algorithm terminates if there is no improvement in  𝐼𝑚𝑎𝑥 iterations. 

The Tabu search algorithm is applied to both the master routes and the daily 

routes. When it is applied to master routes, the objective is to minimize the total time 

traveled, as to have more slack time to accommodate the random requests. When it is 

applied on daily routes, the objective is to minimize the cost including total time traveled, 

taxi cost, and route dissimilarity. 

4.3 Master Routes 

Master routes must consider the following conflicting objectives: an efficient 

template for regular demands and flexibility to adapt to the random urgent requests that 

arise during operations.  A customer that requests service regularly usually has wide time 

windows and should be considered a regular request in the master route. A random urgent 

request with tight time windows that occurs rarely should not be included in the master 

route.  
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 Algorithm 3 below describes the method of constructing master routes.  The idea 

is to include the customers that have a high probability of occurrence. The objective is to 

obtain a solution that is likely to visit many of the customers that appear frequently, thus 

incurring a small additional cost to adapt to the actual customers that appear on scenario 

d.  This is the way the proposed heuristic brings to the first phase problem information 

from the uncertain future scenarios of the stochastic programming problem.  An insertion 

algorithm is used to construct an initial solution for the master routes.  Tabu search is 

used to improve the efficiency in travel time so that more slack is obtained for more 

random urgent requests.  

 

Algorithm 3: Formation of a Master Route  

Input: All the customers to insert; the probability of a customer to request service; a 

threshold for probability of customer occurring  

Output: Master routes 

for all the customers do 

if the occurring probability of a customer is larger than the threshold then   

    include the customer into the master route by calling Algorithm 1; 

end if 

end for 

improve the master routes with Tabu search by calling Algorithm 2;  

 

4.4 Daily Plans with Urgent Requests 

 As described earlier, in the first stage, we obtain the solution of an effective 

master route, and in the second stage, we adjust the planned routes to handle the urgent 

requests. The objective of the second stage is to accommodate as many of the urgent 

requests as possible with the existing fleet, including the slack time of the vehicles for the 

master routes. In this second stage, we need to quickly modify the master route to service 

the updated requests.  

If the recourse action allows skipping customers then the problem can be 

approximated by a knapsack problem (Kellerer et al., 2004). The recourse strategy is 
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inspired by the classic recourse strategy (strategy b) in Bertsimas (1992), which assumes 

the demand will be revealed before the vehicle leaves the depot to service the customer. 

Therefore, a customer will be skipped if it does not request service on a particular 

scenario.  

In our strategy, we also make the same assumption that the travel time and the 

actual demand on each scenario are known before the vehicle departs from the depot/lab. 

The recourse action on each day includes skipping the customers in the master routes that 

do not request service from the master route and inserting the customers who request 

service into the existing routes if possible. The heuristic algorithm for building an 

operational plan (or daily plan) for specific requests during the planning horizon by 

adapting the master route using recourse action can be found in Algorithm 4.  

Algorithm 4: Formation of Daily Plans 

Input: the master route; daily requests 

Output: the daily plans 

for each day (scenario) do 

 take the master route (generated by Algorithm 3) as the initial daily plan; 

for all the requests in the master route  

 if the request does not occur on the day then  

             drop the request from the daily plan; 

 end if 

end for  

for all the requests on the day do  

            if a request is NOT included in the master route then 

                        insert the request into the daily plan by calling Algorithm 1.1; 

 end if  

end for 

improve the daily plan with Tabu search by calling Algorithm 2;   

for all the requests serviced by taxi do 

            try inserting the request into the daily plan again by calling Algorithm 1.1;  

end for 
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5. Experimental Results 

We conduct computational results to evaluate the heuristic solutions on randomly 

generated data and for a problem constructed from a real instance in the health-care 

industry.   The computational results on randomly generated data study the effect of 

different criteria to build the master route and compare these heuristic solutions with 

what can be obtained by current industry practice (use taxi for any random request) and 

with routing each day independently (no route similarity).   The results on the real 

instance test the efficiency of the heuristic against the industry solution for a real 

instance.  The heuristic was programmed in C++ and experiments run on a Dell 

Workstation with dual Intel Xeon 3.20 GHz processors, a 2 GB RAM, on an Red Hat 

Enterprise Linux operating system.   

Given the size of this multi-trip vehicle routing problem under uncertainty which 

includes urgent requests, our computational experiments only evaluate the quality of the 

solutions obtained by the heuristic constructed.  The development of exact algorithms or 

lower-bounds is difficult for such large structured problems, and is the topic of active 

research in the vehicle routing literature.  In particular, since the problem should consider 

rare urgent requests, it is not possible to do so without considering many uncertainty 

scenarios, otherwise the uncertain requests will be likely and should be considered in the 

expected case.  Therefore, in this paper we focus only on comparing our proposed 

heuristic algorithm against alternative heuristics for solving the problem.  

   

 

5.1 Results on Randomly Generated Data Sets 

We first use the heuristic developed on randomly generated data sets to evaluate 

the impact of constructing master routes. The objective is to compare four possible 

solution strategies to solve the routing problem when there are a set of regular fixed 

requests that occur every day and a set of random requests that occur in certain scenarios.   

In particular we consider the following four strategies: 
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A. TAXI: schedule all the deterministic requests as master routes using the 

insertion/tabu heuristic algorithms; use a third party courier, i.e., taxi, for all the 

random requests. (Apply Algorithm 3 with a customer occurrence probability 

threshold of 1 to build the master routes; handle all the random requests by taxi.) 

B. IND: form a schedule independently for each day, using the insertion/tabu 

heuristic algorithms. (Use Algorithms 1 and 2 to build daily routes 

independently.) 

C. MFIX: schedule the deterministic requests as master routes, and insert the random 

requests into the scheduled routes on each day. Use taxi if it is infeasible or more 

expensive to insert the random request into the scheduled routes. (Use Algorithm 

3 to build the master routes with a customer occurrence probability threshold of 

1.) 

D. MHALF: schedule the deterministic requests and high occurring probability 

requests (those who have an occurrence probability of 0.5 or higher) as master 

routes. In the daily schedules, skip the non-occurring customers and insert the 

unscheduled random requests into the scheduled routes. Use a taxi if it is 

infeasible or more expensive to insert the random request into the scheduled 

routes. (Use Algorithm 3 to build the master routes with a customer occurrence 

probability threshold of 0.5.)  

Strategies MFIX and MHALF correspond to solutions proposed by the model introduced 

in this paper, with a different number of requests in the master route.  TAXI corresponds 

to the current industry practice strategy, where every random request is sent in a third 

party courier.  Finally IND corresponds to the extreme solution that only minimizes travel 

cost in each scenario, ignoring route similarity.  This solution can serve as an optimal 

travel cost benchmark.  Our results will compare these four strategies according to their 

average travel time per vehicle, average taxi cost, average route dissimilarity, average 

number of taxi trips, average travel time per request served, and average total cost.  We 

note that as there are no master routes generated in strategy IND, the dissimilarity is 

calculated by comparing the daily routes to the master routes generated in strategy MFIX. 

To build the random instances, we consider a square city that is from -10 to 10 

miles in both the x-axis and the y-axis. The depot and the only lab where all the vehicles 
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start and end their services every day are located at the center of the city, that is (0, 0) on 

the two-dimensional plane.  The location of all potential customers are generated 

uniformly in the city. Some customers request service at a fixed time every scenario 

(regular deterministic requests), while others only request service at a fixed time on some 

of the scenarios (urgent random requests). Each random request has a probability 𝑝 of 

occurring on each day where 𝑝 is sampled from a uniform [0, 1] distribution. The earliest 

pickup time (the earliest time a customer can be visited) of a request is uniformly 

distributed from 9 am to 5 pm on each day.  We consider a latest pickup time of 30 

minutes after the earliest pick up time.  Each request has a latest drop-off time by when 

the sample has to be delivered to the lab due to medical restrictions; the latest drop-off 

time for regular requests is 2 hours after its earliest pickup time, and the latest drop-off 

time for urgent requests is 1 hour after its earliest pickup time (see Table 5.1).  We 

assume all the random requests are urgent requests.  We consider that each problem 

instance has 10 scenarios that are generated by sampling the random requests according 

to their probability p.  We also assume a given number of vehicles to service the requests. 

The vehicles travel at an average speed of 30 miles per hour to service the requests.  

 

Table 5.1: Time Windows of Regular and Urgent Requests 

 Earliest Pickup Time (hrs) Latest Pickup Time (hrs) Latest Dropoff Time (hrs)   
Regular Request [9, 17] Uniformly  0.5+Earliest Pickup Time  2 + Earliest Pickup Time 

Urgent Request [9, 17] Uniformly 0.5+Earliest Pickup Time 1 + Earliest Pickup Time 

 

Since the set of regular requests are critical in building the master routes in 

strategies TAXI and MFIX, in the set of experiments below we consider different 

proportions of regular to urgent requests.  The objective is to identify whether the 

instance distribution of regular to urgent requests has any bearing on which of the four 

strategies is more beneficial.   

The Tabu search algorithm parameters used in the experiments were selected after 

a preliminary computational study.  This study compared the objective function obtained 

by using different parameter settings and selected the ones that obtained the best expected 

objective value.  The Tabu search parameters selected for the computational experiments 
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are 𝜂𝑚𝑎𝑥 = 50, 𝛾𝑚𝑎𝑥 = 50,  𝐼𝑚𝑎𝑥 = 100, 𝜃𝑚𝑖𝑛 = 10, and 𝜃𝑚𝑎𝑥 = 20.  We note that the 

results were not significantly sensitive to changes in these parameters and slight 

variations lead to similar results.   

Table 5.2, Table 5.3 and Table 5.4 summarize the computational results with 500 

customers, 10 vehicles and different combinations of the cost parameters. The results in 

these tables correspond to the expected scenario costs, averaged over 10 random instance 

replications.  In these tables, αt is the unit cost per hour traveled. αof is the fixed cost per 

trip of taxi usage. αov is the variable cost per distance the taxi traveled. αs is the unit cost 

per count of dissimilarity. Column “Proportion Fix” shows the proportion of 

deterministic customers among all the potential customers.  Column “Strategy” lists the 

four compared strategies. Column “Travel” shows the total time that a vehicle travels per 

day on average. Column “Taxi Cost” shows the average daily taxi cost. Column 

“Dissimilarity” shows the average dissimilarity, which is the total number of vehicles 

used in the daily routes that is different than the one in the master routes. If a taxi is used, 

then the dissimilarity is increased by one, as we assume that a different taxi is used each 

time one is needed. Column “#Taxi Trips” shows the total number of daily taxi trips 

introduced on average. Column “Travel/Request” shows the average time that a vehicle 

travels to service a request on a daily basis. Column “Total Cost” shows the average daily 

total cost including travel cost, taxi cost, and cost on dissimilarity. It is the summation of 

each type of costs weighted by the unit cost of that type.  It does not correspond to the 

objective function of the model presented in section 3 as it does not include the travel 

cost of the master route. 
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Table 5.2: Results with High Taxi & Low Dissimilarity Weights 

#Customers: 500;   #Vehicles: 10; α_t=1, α_of=100,  α_ov=0.5,  α_s=0.01;  

Proportion 

Fixed 
Strategy Travel 

Taxi 

Cost 
Dissimilarity 

# Taxi 

Trips 
Travel/Request 

Total 

Cost 

0.8 TAXI 6.35 5724.57 57.17 57.17 0.16 5788.62 

  IND 7.11 968.58 347.14 9.67 0.16 1043.20 

  MFIX 7.00 1210.95 72.18 12.09 0.16 1281.69 

  MHALF 7.14 1047.74 52.76 10.46 0.16 1119.64 

0.6 TAXI 5.13 10132.15 101.19 101.19 0.17 10184.44 

  IND 7.03 775.28 327.38 7.74 0.18 848.89 

  MFIX 6.86 713.18 112.56 7.12 0.17 782.92 

  MHALF 7.05 870.47 59.88 8.69 0.18 941.55 

0.4 TAXI 3.70 14873.09 148.54 148.54 0.18 14911.57 

  IND 6.81 499.83 300.63 4.99 0.19 570.91 

  MFIX 6.53 327.55 162.14 3.27 0.19 394.43 

  MHALF 6.72 456.81 68.69 4.56 0.19 524.69 

0.2 TAXI 2.22 19846.46 198.21 198.21 0.22 19870.60 

  IND 6.40 182.31 271.85 1.82 0.22 248.99 

  MFIX 6.32 218.37 208.59 2.18 0.21 283.67 

  MHALF 6.22 219.40 78.57 2.19 0.21 282.40 
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Table 5.3: Results with High Taxi & High Dissimilarity Weights 

#Customers: 500;   #Vehicles: 10; α_t=1, α_of=100,  α_ov=0.5,  α_s=100;  

Proportion 

Fixed 
Strategy Travel 

Taxi 

Cost 
Dissimilarity 

# Taxi 

Trips 
Travel/Request 

Total 

Cost 

0.8 TAXI 6.41 5724.57 57.17 57.17 0.16 11505.69 

  IND 7.14 1138.83 354.36 11.37 0.16 36646.26 

  MFIX 7.03 1384.21 57.17 13.82 0.16 7171.46 

  MHALF 7.24 1371.22 35.98 13.69 0.17 5041.67 

0.6 TAXI 5.25 10132.15 101.19 101.19 0.17 20303.69 

  IND 6.98 701.17 328.71 7.00 0.18 33641.96 

  MFIX 6.90 828.33 101.19 8.27 0.18 11016.37 

  MHALF 7.19 1099.84 41.48 10.98 0.18 5319.76 

0.4 TAXI 3.79 14873.09 148.54 148.54 0.18 29765.04 

  IND 6.72 454.77 302.92 4.54 0.19 30814.00 

  MFIX 6.69 437.73 148.54 4.37 0.19 15358.64 

  MHALF 6.99 796.36 47.27 7.95 0.20 5593.22 

0.2 TAXI 2.25 19846.46 198.21 198.21 0.23 39689.96 

  IND 6.38 224.38 272.34 2.24 0.22 27522.17 

  MFIX 6.46 239.41 198.21 2.39 0.22 20125.01 

  MHALF 6.52 359.63 53.54 3.59 0.22 5778.80 

 

Table 5.4: Results with Low Taxi  & High Dissimilarity Weights 

#Customers: 500;   #Vehicles: 10; α_t=1, α_of=0.5,  α_ov=0.5,  α_s=100;  

Proportion 

Fixed 
Strategy Travel 

Taxi 

Cost 
Dissimilarity 

# Taxi 

Trips 
Travel/Request 

Total 

Cost 

0.8 TAXI 6.26 36.16 57.17 57.17 0.16 5815.79 

  IND 6.73 12.99 353.80 19.03 0.16 35460.30 

  MFIX 6.87 9.45 57.17 14.19 0.16 5795.20 

  MHALF 7.28 9.17 35.98 13.88 0.17 3679.95 

0.6 TAXI 5.14 63.74 101.19 101.19 0.17 10234.18 

  IND 6.46 12.53 328.73 18.27 0.17 32950.16 

  MFIX 6.76 8.77 101.19 13.03 0.17 10195.34 

  MHALF 7.16 7.91 41.48 11.88 0.18 4227.55 

0.4 TAXI 3.73 93.37 148.54 148.54 0.18 14984.68 

  IND 6.15 11.64 301.84 16.97 0.18 30257.15 

  MFIX 6.33 8.88 148.54 13.03 0.19 14926.16 

  MHALF 6.92 5.71 47.27 8.50 0.20 4801.94 

0.2 TAXI 2.21 124.57 198.21 198.21 0.22 19967.66 

  IND 5.65 11.87 271.81 17.30 0.20 27249.35 

  MFIX 5.82 10.35 198.21 15.09 0.21 19889.57 

  MHALF 6.39 3.19 53.54 4.67 0.22 5421.10 
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From the computational results, we make the following observations:  

I. Strategy TAXI has the smallest travel time and largest taxi cost, because of its 

inability to use the slack times to accommodate the random requests with the regular 

fleet. Strategies MFIX and MHALF have similar “travel time per request” as strategy 

IND, which does not aim to coordinate solutions across scenarios.   

II. Strategy IND, which does not use a master route, has the largest dissimilarity; 

strategy MHALF has the lowest dissimilarity.  The process of forming master routes 

with the deterministic requests and a number of random requests of high probability 

of occurrence creates daily routes that are similar from day to day, without scarifying 

much in routing efficiency.   

III. When the unit cost for route dissimilarity increases (from 0.01 to 100), the 

dissimilarity for strategies with master routes decreases and the routing costs (travel 

time and taxi cost) increases. This is because when we give a higher weight on 

dissimilarity, the routing solution favors reducing dissimilarity at the expense of 

increasing travel time and taxi cost.  The change in the unit cost for route dissimilarity 

does not significantly impact the solutions of strategies TAXI and IND. This because 

in strategy TAXI, the dissimilarity is due to the random requests handled by taxi, 

which remain the same for any set of parameters; for strategy IND, as there is no 

master route the dissimilarity is measured against the master route from strategy 

MFIX, which also is not sensitive to changes in the unit cost for dissimilarity.  

IV. When the fixed unit taxi cost decreases (from 100 to 0.5), while all the other 

parameters remain the same, there is more taxi use represented by the number of taxi 

trips. This implies that as taxi usage become inexpensive, it becomes a more 

economical solution to use taxi rather than rerouting to pick up packages by the 

regular fleet of vehicles.  

5.2 Results with Actual Data 

We tested our routing approach also using real-life data collected from a leading 

healthcare provider in Southern California. There are two types of requests in the data set. 

One is regular daily requests, which needs to be visited every day at a specific time. The 
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other is random requests that are currently being outsourced to a taxi service. We 

compared three strategies with this set of data.  

1) MD Routes: Include a customer into the master route if the pickup and 

delivery location of a request has a probability of occurring higher than a 

threshold.  In this case, we use a threshold of 10% in order to have enough 

clients to build a master route since in the actual data set few clients appear 

frequently.  Recourse is used on a daily plans.   

2) Industry Reroute: Take the existing master route from the healthcare provider 

as the simulated master routes. Recourse for daily plans.    

3) Industry Taxi: Take the existing master route from the healthcare provider as 

the daily routes. Use Taxi for all the random requests.  

In the above strategies, the recourse action means dropping the non-occurring 

requests and inserting the occurring requests on a daily basis. It should be noted that 

Industry Taxi is the current practice of this healthcare provider. In the following 

experiments with 30 scenarios, there are 85 deterministic requests and 100 potential 

random requests on each day and the occurrence probability on each day for these 

random requests vary from 0 to 0.20. These requests are scattered across 16 medical 

centers and the pickup of the requests can be at any of these centers with the deliveries 

being at the central lab (depot).  The time windows are 4 hours for regular requests and 2 

hours for urgent requests. On a daily basis, 14 regular fleet vehicles are available to 

service the requests.  

The computational results are shown in 

Table 5.5, and we see that strategy “Industry Taxi” has the shortest average travel 

time. The table also shows that the taxi cost and the number of taxi trips of strategy 

“Industry Taxi” are significantly higher than those of the strategies with recourse actions 

(MD Routes and Industry Reroute). This implies that, with the recourse technique, we are 

able to better utilize the slack time on the vehicles to reduce the taxi cost. Meanwhile, 

even though the average total travel time of a vehicle is higher with the strategies with 

recourse actions, the average travel time spent for each customer request is lower with 

these strategies. From the table, we also see that the proposed strategy – MD Routes has 

the smallest taxi cost and average travel time per request. This shows that the proposed 
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strategy not only better utilizes the slack time to reduce the taxi cost, but is also an 

efficient routing solution with the least travel time spent on each request.  

Besides the reduction in taxi cost, MD Routes significantly reduced the route 

dissimilarity. In general, any strategy with a rerouting technique has smaller dissimilarity 

as the location visited in the master route is going to be more frequently repeated in the 

daily plans. And the strategy we propose is the best in generating similar routes. This is 

achieved by having the proposed strategy “MD Routes” including the high probabilistic 

customers into the master routes; whereas the strategy “Industry Reroute” has only the 

deterministic customers in the master route.   

The results of the analysis with real-life data shows that our heuristic can improve 

the routing solution by decreasing the taxi and dissimilarity costs. With the current 

available vehicles and deterministic requests, and sampling on current data set, our 

heuristic beats the current industry solution by reducing the taxi cost by 45%-48% and 

reducing dissimilarity by 26%-33%. If we compare with the daily routes obtained by 

applying the recourse actions on a master route taken from the current industry practice, 

our heuristic reduces the taxi cost by 16%-17% and it reduces dissimilarity by 9%-12%.  

 

Table 5.5: Results with Actual Data 

α_t=1, α_of=100,  α_ov=0.5,  α_s=0.01;          

Strategy 
Travel 

(hours/day) 

Taxi Cost 

($/day) 

Dissimilarity 

(counts/day) 

# Taxi Trips 

(trips/day) 

Travel/Request 

(hours/day) 

Total Cost 

($/day) 

MD Routes 8.78 5221.10 148.00 52.10 0.03 5345.50 

Industry Reroute 8.36 6223.40 164.00 62.10 0.03 6342.10 

Industry Taxi 7.24 10023.80 200.00 100.00 0.04 10127.20 

α_t=1, α_of=100,  α_ov=0.5,  α_s=100;          

Strategy 
Travel 

(hours/day) 

Taxi Cost 

($/day) 

Dissimilarity 

(counts/day) 

# Taxi Trips 

(trips/day) 

Travel/Request 

(hours/day) 

Total Cost 

($/day) 

MD Routes 8.82 5291.13 143.40 52.77 0.03 19754.60 

Industry Reroute 8.47 6333.60 157.23 63.17 0.03 22175.51 

Industry Taxi 7.24 10023.77 200.00 100.00 0.04 30125.17 

α_t=1, α_of=0.5,  α_ov=0.5,  α_s=100;          

Strategy 
Travel 

(hours/day) 

Taxi Cost 

($/day) 

Dissimilarity 

(counts/day) 

# Taxi Trips 

(trips/day) 

Travel/Request 

(hours/day) 

Total Cost 

($/day) 

MD Routes 8.13 43.60 134.23 54.57 0.03 13580.76 

Industry Reroute 8.08 49.79 152.93 64.20 0.03 15456.24 

Industry Taxi 7.24 73.77 200.00 100.00 0.04 20175.17 
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6. Conclusions 

In this study, we consider a Courier Delivery Problem (CDP), a variant of the 

Multi-trip Vehicle Routing Problem (MVRP) with uncertainty in customer occurrence 

and urgency in customer demands. We present a mixed integer programming problem 

formulation for an example application of the transportation of medical specimens. We 

develop a heuristic to solve this problem based on insertion and tabu search. Our model 

represents the probabilistic nature of customer occurrence using scenario-based stochastic 

programming with recourse. We benefit from the simplicity and flexibility of a master 

route with daily recourse actions.  

Our model first includes a master route problem which represents the uncertainty 

in the customer occurrence by the probabilities customers are likely to appear and 

addresses the urgency in delivery time windows by use of the fleet of vehicles in multiple 

trips. We then define a recourse action of partial rescheduling of routes by omitting non-

occurring customers and rescheduling new customers. The master routes created consider 

efficiency in routing, to represent slack time for accommodating random requests. The 

daily plans created take into account the efficiency in routing, efficiency in alternative 

third party courier, as well as route similarities to boost the quality of service. To solve 

large size problems of the model, we develop a heuristic based on insertion and tabu 

search.  

We explore experimentally the sensitivity of our heuristic on randomly generated 

problems and a real problem from industry. Experiments on randomly generated 

problems include sensitivity analysis in varying problem size, customer uncertainty 

scenarios, resource availability and cost parameters. We compare the quality of the 

solution with independent daily scheduling, and the industry standard solution. In the 

experiments on the real problem, we compare the quality of the heuristic solution with 

the current industry practice. Sensitivity analysis on varying cost parameters shows that 

our heuristic produces a better solution than the current industry practice by significantly 

reducing the cost of taxi use and improving route similarity.  
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