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Abstract

This paper studies the effect of several inventory policies on the design of a distribution network for fast-

moving items able to provide differentiated service levels in terms of product availability for several demand

classes. We consider the distribution network design problem when the local separate stock, single class

allocation, global round-up, local round-up, and critical level inventory policies are used. We show how to

formulate these problems as conic quadratic mixed-integer problems and prove that the critical level policy

provides the lowest cost distribution network design. Further results and a computational study show how

these different models compare in practice.

Keywords: Location-inventory model; several demand classes; conic quadratic mixed-integer problem;

inventory policy comparison

1. Introduction

Several types of inventory policies can be implemented in a distribution network of fast-moving consumer

goods (FMCG) to deal with different service requirements in terms of product availability. Escalona et al.

(2015) classified these policies into two types when a distribution network observes demand from several

classes of customers, where each class demand is a group of customers with the same preset service level.

The first group imposes general service conditions over the entire network and the second group imposes

conditions on the operation of the inventory system at each distribution center (DC). The first policy group

includes the single class allocation (SCA), where each DC serves a single demand class, and the global round-

up policy (GRU policy), which sets the service level of the entire distribution network based on the highest

priority class. The second policy group includes: the local separate stock policy (LSS policy), according to

which each DC serves the demand assigned to it from a common stockpile and uses separate safety stocks for

each demand class; the local round-up policy (LRU policy), in which each DC serves all demand assigned to
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it from a common stockpile and sets the safety stock as the maximum among the sets of classes assigned to

it; and the local critical level policy (LCL policy), in which each DC serves the demand assigned to it from

a common stockpile and uses rationing to provide differentiated service levels.

To the best of our knowledge, only the critical level policy has been used to design a distribution network

able to provide differentiated service levels to different demand classes. This policy is an efficient way of

providing differentiated service levels that outperforms the round-up and separate stock policies in a FMCG

single-echelon system Escalona et al. (2017b,a). However, we have no evidence that the critical level policy

has the best performance when designing a distribution network that observes demand from several classes of

customers with different service level requirements. In addition, it seems surprising that only the inventory

policy that minimizes total cost in a single-echelon is used in designing a distribution network that can deal

with different service level requirements. Therefore, the SCA, LSS, or LRU policies should also be considered

owing to customer configurations, security, the existence of contracts, image, or simplicity.

The objective of this paper is to expand the design alternatives of distribution networks that provide

differentiated service levels to different demand classes. We do so by modeling and solving the SCA, LSS,

and LRU policies. Furthermore, we compare these models, including GRU and LCL policy, to establish

the demand configuration and spatial distribution of customer classes that make each design alternative

attractive. For each policy, we formulate an integer non-linear problem (INLP) proving various relations

between them, e.g. the location-inventory problem using LSS, LRU, or GRU policies are lower bounds of

the SCA policy. We show how to formulate SCA, LSS, and LRU problems as conic quadratic mixed-

integer problems (CQMIPs) that can be solved using standard optimization solvers. Finally, using different

configurations of demand and spatial distribution of customer classes, we establish the most likely order

relationship of these policies in terms of total cost.

The research questions we answer in this paper are: i) Are there alternative ways to design a supply

chain that provides different service levels in terms of product availability, which have not been previously

analyzed? ii) If so, is it possible to prove total cost order relations between them?; and iii) what are these

order relations, or the most likely ones, under different configurations of demand and spatial distribution of

customer classes?

The rest of this paper is structured as follows. In section 2, we discuss relevant results in the literature.

In section 3, we present the mathematical programming models for each policy. In section 4, we show how

to formulate the models as CQMIPs. In section 5, we explore total cost order relations among the policies.

In section 6, we report computational results. Finally, in section 7, we conclude with managerial insights

and future extensions to this work.
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2. Literature review

In the last decade, there has been a trend towards integration of inventory and location decisions, because

when these decisions are addressed separately it often results in sub-optimal solutions (see Farahani et al.

(2015)). These integrated models determine at the same time which DCs will be opened, their location, and

customer allocations to them, how much inventory to keep and the optimal parameters of the inventory policy

in each DC, while minimizing the total cost of the system. A comprehensive review in location-inventory

models can be found in Farahani et al. (2015) and a characterization can be found in Sadjadi et al. (2015).

There is a rich body of literature on location-inventory problems that consider the ability of the dis-

tribution network to guarantee a desired service level in terms of product availability. Daskin et al. (2002)

incorporated safety stocks into their location-inventory model such that the probability of a stockout at each

DC is equal to some preset service level. They considered the same preset service level for all the DCs. The

model is formulated as a INLP and solved by Lagrangian relaxation. The model of Daskin et al. (2002) has

been reformulated and extended in a number of ways by relaxing one or more of their underlying assump-

tions. The immediate generalizations are the capacitated versions studied by Miranda and Garrido (2004)

and later by Ozsen et al. (2008), the multi-commodity version studied by Shen (2005), and the stochastic

version studied by Snyder et al. (2007). Other extensions were given by Sourirajan et al. (2007) in which

the assumption of identical replenishment lead time was relaxed, Shen and Qi (2007) who considered the

shipment from a DC to its customers using a vehicle routing model instead the linear direct shipping of

Daskin et al. (2002), and Shahabi et al. (2014) who relaxed the assumption of customer demand indepen-

dence. Some reformulations of the Daskin et al. (2002) model include the set-covering integer programming

model of Shen et al. (2003) solved using column generation, the mixed integer non-linear problem (MINLP)

of You and Grossmann (2008) solved using heuristic method and a Lagrangian relaxation algorithm, and

the CQMIP of Atamtürk et al. (2012). Using a different approach, Miranda and Garrido (2009) proposed

a two-stage heuristic approach to determine the distribution network optimal preset service level using a

known unit penalty cost for unfulfilled demand. The first step optimizes the preset service level and the

second step optimizes the location and inventory decisions. All the above authors considered the same preset

service level for the distribution network, i.e., they considered only one demand class because all customers

require the same service level.

Our work focuses on a location-inventory model able to provide differentiated service levels in terms of

product availability for several demand classes. In this context, Escalona et al. (2015) analyzed a location-

inventory model with differentiated service levels, in which the DCs observe demand from two classes of

customers, high and low priority. To provide differentiated service levels, they assumed, at each DC, a

continuous review (Q, r, C) inventory policy and that the service level provided by a DC is measured by the

probability of satisfying the entire demand of each class assigned to the DC during a replenishment cycle
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from on-hand inventory. The location-inventory model with differentiated service levels is formulated as

a MINLP with chance constraints and the authors propose a decomposition heuristic to solve it. Using a

different approach, Berman et al. (2012) considered a location-inventory model where the DCs operate under

a periodic review (R,S) policy, i.e., where a replenishment order is placed everyR periods (review range) such

that the inventory position reaches S. Berman et al. (2012) included differentiated shortage costs for each DC

in their model. This allows the service level provided by different DCs to be different. The model is formulated

as an INLP and solved with Lagrangian relaxation using the procedure proposed by Daskin et al. (2002).

Liu et al. (2010) studied a capacitated location-inventory model that assigns online demands to regional

warehouses currently serving in-store demands in a multi-channel supply chain. Each regional warehouse

provided differentiated service levels using an order-up-to inventory policy with differentiated shortage costs.

The model is formulated as an INLP and a Lagrangian relaxation-based procedure is proposed to solve it.

Tsao et al. (2012) studied a location-inventory problem for designing a distribution network with several

local DCs and retailers. Each local DC operate under a continuous review (Q, r) policy with type I service

level where the preset service level is different for each local DC. They develop a continuous approximation

approach, with the motivation of solving larger-scale problems.

In summary, only Escalona et al. (2015) considered a location-inventory model when a distribution net-

work observes demand from different classes of customers with differentiated service level requirements in

terms of product availability. This paper builds on this previous work by considering other inventory control

in the design of distribution networks capable of providing differentiated service levels when facing demand

from several classes of customers with different service level requirements.

3. Model formulation

We consider the distribution network design for a three-stage single-product supply chain in which a

single supplier ships product of high demand volume (FMCG) to a set of retailers (customers) via a set

of DCs to locate. We assume that demands per time unit at each retailer are independent and normally

distributed as an approximation of the non-negative demand; that the supplier and DCs have unlimited

capacity; and that the location of the supplier, site candidates, and retailers are known.

In this distribution network, there are several categories of retailers or demand classes, where each

demand class is a group of retailers with the same preset service level in terms of product availability. We

order demand classes according to their preset service level, where the high-priority retailers (class 1) require

the high service level and the low-priority retailers require the lower service level. A retailer can only be

assigned to a single demand class, exactly to one DC, and we assume that the class of each retailer is known.

Each DC follows a continuous review (Q, r) policy with full-backorder and deterministic lead time, i.e.,

when the inventory position falls below a reorder level r a replenishment order for Q units is placed and
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arrives L time units later. The service level is measured by service level type I and to provide differentiated

service levels, we consider the SCA, LSS, and LRU policies. The problem is to determine how many DCs

should be opened, where to locate them, which DC should serve which retailer, how much inventory to keep

at each DC to minimize total location, shipment, and inventory costs, while meeting the preset service level

for each demand class. We use the notation described in Table 1 throughout the paper.

Index sets

I Set of retailers, indexed by i

J Set of possible DC locations, indexed by j

K Set of customer classes, indexed by k

Nk = {i ∈ I | i is class k} Set of retailers of class k, with k ∈ K

Parameters and notation

µi Mean demand per unit time of retailer i

σ2
i Variance of demand per unit time of retailer i

fj Fixed cost per unit time of locating a DC j

dij Cost per unit to ship between retailer i and DC j

cij Transport rate between retailer i and DC j

aj Fixed shipment cost from external supplier to DC j.

Sj Ordering cost at DC site j

hj Inventory holding cost per unit and unit time at DC j

Lj Fixed lead time in unit time from the supplier to DC j

αk Preset service level for class demand k, where α1 > α2 > ... > α|K|

zαk
Standard normal deviate such that P(z ≤ zαk

) = αk

Decision Variables

Xj 1 if site j is selected as a DC and 0 otherwise

Yij 1 if retailer i is served by a DC located at j and 0 otherwise

Table 1: Sets, parameters and variables

Using the allocation variable Yij , we characterize the demand at candidate DC j. Let Dj(Lj) =
∑

k∈K Dkj(Lj) be the total demand of all classes during the lead time Lj at DC j, where Dkj(Lj) be

the total demand of class k at DC j during the lead time Lj . In this paper, we assume that each re-

tailer is assigned exactly to one DC and its demand is independent and normally distributed, therefore

Dkj(Lj) is also normally distributed with mean Ljµkj and variance Ljσ
2
kj , where µkj =

∑
i∈Nk

µiYij ≥ 0

and σ2
kj =

∑
i∈Nk

σ2
i Yij ≥ 0; and Dj(Lj) is normally distributed with mean Ljµj and variance Ljσ

2
j , where

µj =
∑

k∈K µkj =
∑

i∈I µiYij and σ2
j =

∑
k∈K σ2

kj =
∑

i∈I σ
2
i Yij .
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3.1. Cost function

Under a continuous review (Q, r) inventory policy at each DC and linear transportation costs, the average

cost per unit time at DC j is

ACj(Qj , rj , Xj , Yij) = fjXj+Sj

∑
i∈I µiYij

Qj

+aj
∑

i∈I

µiYij+
∑

i∈I

dijµiYij+hj

(
Qj

2
+ rj − Lj

∑

i∈I

µiYij

)
, (1)

where Qj and rj are the replenishment order and the reorder point at candidate DC j, respectively. The

first term of Eq. (1) is the fixed cost per unit time, the second term is the ordering cost per unit time,

the third and fourth term are the supply and distribution costs per unit time, respectively, and the fifth

term is approximately the holding cost per unit time, because we assume negligible backorders. Similar to

Daskin et al. (2002) and Shen et al. (2003), we assume the replenishment order Qj is determined using an

economic order quantity model (EOQ), i.e.,

Qj =

√
2Sj

hj

∑

i∈I

µiYij . (2)

Then, replacing Eq. (2) into Eq. (1), the average cost per unit time at DC j is

ACj(rj , Xj , Yij) = fjXj +
∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + hj

(
rj − Lj

∑

i∈I

µiYij

)
, (3)

where ψj =
√
2hjSj and d̂ij = (aj + dij)µi.

The reorder point rj depends on the policy used to provide differentiated service levels. In what fol-

low, we formulate the inventory-location problems assuming SCA, LSS, LRU, and GRU policies to provide

differentiated service levels. These four policies differ from each other in the reorder point formulation.

3.2. Inventory-location problem under a LSS policy

The LSS policy considers that each DC serves the demand assigned to it from a common stockpile and

uses separate safety stocks for each class. The reorder point of the LSS policy is obtained from rj =
∑

k∈K rkj

with rkj obtained as the solution of FDkj(Lj)(rkj) = αk, where FDkj(Lj)(x) is the distribution function of

Dkj(Lj). Under normally distributed demand:

rj = µjLj +
∑

k∈K

zαk
σkj
√
Lj

= Lj

∑

i∈I

µiYij +
∑

k∈K

zαk

√
Lj

∑

i∈Nk

σ2
i Yij . (4)

Replacing Eq. (4) in (3) and rearranging terms, we formulate an integrated location-inventory model

under LSS policy as an INLP, denoted (LSS), as follows.
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Problem (LSS):

min
X,Y

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂j
∑

k∈K

zαk

√∑

i∈Nk

σ2
i Yij



 (5)

s.t:
∑

j∈J

Yij = 1 ∀i ∈ I (6)

Yij ≤ Xj ∀i ∈ I, j ∈ J (7)

Xj , Yij ∈ {0, 1} ∀i ∈ I, j ∈ J, (8)

where θ̂j = hj
√
Lj. Constraint (6) establishes that each customer is assigned exactly to one DC, constraint

(7) ensures that one customer can be assigned to location j only if a DC is installed there, and constraint

(8) is an integrality constraint.

3.3. Inventory-location problem under SCA policy

The SCA policy considers that each DC serves a single demand class. To formulate this policy, we define

a new variable:

Vkj =




1 if a DC installed at j serves class k,

0 otherwise.

(9)

Then, the integrated location-inventory model under the SCA policy is formulated as an INLP, denoted

(SCA), as follows.

Problem (SCA):

min
X,Y,V

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂j
∑

k∈K

zαk

√∑

i∈Nk

σ2
i Yij



 (5)

s.t: (6), (7), (8),

Yij ≤ Vkj ∀i ∈ Nk, j ∈ J, k ∈ K (10)
∑

k∈K

Vkj ≤ Xj ∀ j ∈ J (11)

Vkj ∈ {0, 1} ∀ j ∈ J, k ∈ K. (12)

Constraint (10) ensures the allocation of each customer to a DC that serves its class, constraint (11)

imposes that each installed DC serves only one class, and constraint (12) is the integrality constraint for the

new variable Vkj .
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3.4. Inventory-location problem under the LRU policy

The LRU policy considers that each DC serves all demand assigned to it from a common stockpile and

sets the safety stock as the maximum among the sets of classes assigned to it. The reorder point of the LRU

policy at DC j is obtained from FDj(Lj)(rj) = max
k∈K

{αkVkj}. Under normally distributed demand

rj = µjLj +max
k∈K

{zαk
Vkj}σj

√
Lj

= Lj

∑

i∈I

µiYij +max
k∈K

{zαk
Vkj}

√
Lj

∑

i∈I

σ2
i Yij . (13)

Let Zj be the maximum of the inverse normal distribution for the service levels of the demand that DC

j serves, i.e, Zj = max
k∈K

{zαk
Vkj}. Then, rearranging terms in Eq. (13), the reorder point of the LRU policy

at DC j is

rj = Lj

∑

i∈I

µiYij +

√
Lj

∑

i∈I

σ2
iW

2
ij , (14)

where Wij = ZjYij . Note that Yij is binary and Yij = Y 2
ij . Replacing Eq. (14) in (3), and rearranging terms,

we formulate a location-inventory model under the LRU policy as an MINLP, denoted (LRU), as follows.

Problem (LRU):

min
X,Y,V,W,Z

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂j

√∑

i∈I

σ2
iW

2
ij



 (15)

s.t: (6), (7), (8), (10), (12)

Zj ≥ zαk
Vkj ∀j ∈ J, k ∈ K (16)

Wij ≥ Zj + ẑ(Yij − 1) ∀j ∈ J (17)

Wij ≥ 0 ∀i ∈ I, j ∈ J (18)

Zj ≥ 0 ∀j ∈ J. (19)

Constraint (16) stipulates that Zj is equal to the maximum of the inverse normal distribution of the

service levels of the demand served by the DC j. Constraints (17) and (18) are a valid linearization of

Wij = ZjYij because (LRU) is a minimization problem, where ẑ is an upper bound for Zj . We observe that

the best value for ẑ is zα1
. Constraint (19) is the non-negativity constraint for Zj . This variable is greater

than or equal to zero, because we assume α2 ≥ 0.5.

3.5. Inventory-location problem under the GRU policy

The GRU policy considers that each DC serves all demand assigned to it from a common stockpile and

sets the service level of the entire distribution network based on the highest priority class. The reorder point

of the GRU policy at DC j is obtained from FDj(Lj)(rj) = α1. Under normally distributed demand
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rj = Lj

∑

i∈I

µiYij + zα1

√
Lj

∑

i∈I

σ2
i Yij .

The location-inventory model under the GRU policy is formulated as an INLP, denoted (GRU), as

follows.

Problem (GRU):

min
X,Y

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂jzα1

√∑

i∈I

σ2
i Yij



 (20)

s.t: (6), (7), (8).

Note that problems (LSS), (SCA), and (GRU) are INLP, and problem (LRU) is a MINLP, where the

non-linearity is in the objective function. In what follow, we show how to reformulate these problems to

eliminate the non-linear terms from the objective.

4. A CQMIP formulation

In this section, we show how to reformulate problems (LSS), (SCA), (LRU), and (GRU) as CQMIPs

using the procedure presented in Atamtürk et al. (2012), Zhang et al. (2014), and Escalona et al. (2015).

The advantage of the CQMIP formulation is that it can be solved directly using standard optimization

software packages such as CPLEX or Mosek.

The square root term in the objective function of problems (LSS), (SCA), (LRU), and (GRU) can

give rise to difficulties in the optimization procedure. When the DC j is not selected, the square root terms

would take a value of 0, which leads to unbounded gradients in the INLP optimization and, hence, numerical

difficulties. Thus, we reformulate the problems (LSS), (SCA), (LRU), and (GRU) to eliminate the square

root terms. We first note that Y 2
ij = Yij . Then, we introduce four sets of non-negative continuous variables,

H1j, H2j, H3kj , and H42j , to represent the square root terms in (5), (15), and (20):

H12j =
∑

i∈I

µiY
2
ij , ∀j ∈ J (21)

H22j =
∑

i∈I

(σiWij)
2, ∀j ∈ J (22)

H32kj =
∑

i∈Nk

(σiYij)
2, ∀j ∈ J, k ∈ K (23)

H42j =
∑

i∈I

(σiYij)
2 ∀j ∈ J (24)
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H1j ≥ 0, ∀j ∈ J (25)

H2j ≥ 0, ∀j ∈ J (26)

H3kj ≥ 0, ∀j ∈ J, k ∈ K (27)

H4j ≥ 0 ∀j ∈ J. (28)

Because the non-negative variables H1j, H2j , H3kj, and H4j are introduced in the objective function

of (LSS), (SCA), (LRU), and (GRU) with positive coefficients, and these are minimization problems,

Eqs (21), (22), (23), and (24) can be further relaxed as the following inequalities:

H12j ≥
∑

i∈I

µiY
2
ij , ∀j ∈ J (29)

H22j ≥
∑

i∈I

(σiWij)
2, ∀j ∈ J (30)

H32kj ≥
∑

i∈Nk

(σiYij)
2, ∀j ∈ J, k ∈ K (31)

H42j ≥
∑

i∈I

(σiYij)
2, ∀j ∈ J. (32)

Note that constraints (29), (30), (31), and (32), together with constraints (25), (26), (27), and (28) define

second-order cone constraints. Thus, we can reformulate problems (LSS), (SCA), (LRU), and (GRU) as

the following MINLP with second-order cone constraints denoted as (CQLSS), (CQSCA), (CQLRU), and

(CQGRU), respectively.

Problem (CQLSS):

min
X,Y,H1,H3

∑

j∈J

{
fjXj +

∑

i∈I

d̂ijYij + ψjH1j + θ̂j
∑

k∈K

zαk
H3kj

}
(33)

s.t: (6), (7), (8), (29), (31), (25), (27).

Problem (CQSCA):

min
X,Y,V,H1,H3

∑

j∈J

{
fjXj +

∑

i∈I

d̂ijYij + ψjH1j + θ̂j
∑

k∈K

zαk
H3kj

}
(33)

s.t: (6), (7), (8), (10), (11), (12), (29), (31), (25), (27).
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Problem (CQLRU):

min
X,Y,V,Z,W,H1,H2

∑

j∈J

{
fjXj +

∑

i∈I

d̂ijYij + ψjH1j + θ̂jH2j

}
(34)

s.t: (6), (7), (8), (10), (12), (16), (19), (17), (18), (29), (30), (25), (26).

Problem (CQGRU):

min
X,Y,H1,H4

∑

j∈J

{
fjXj +

∑

i∈I

d̂ijYij + ψjH1j + θ̂jzα1
H4j

}
(35)

s.t: (6), (7), (8), (29), (25), (32), (28).

Problems (CQLSS), (CQSCA), (CQLRU), and (CQGRU) can be trivially shown to be equivalent to

problems (LSS), (SCA), (LRU), and (GRU), respectively. However, they have a linear objective function

and second-order cone constraints. We can solve this problem using CPLEX 12.4, which handles second-order

cone constraints in an efficient way.

5. Model properties

In what follows, we describe a number of properties of the models that allow us to establish a possible

ordering among the optimal objective functions of problems associated with LSS, SCA, GRU, LRU, and

LCL policies. For the joint location-inventory problem using LCL policy to provide differentiated service

levels, we use the formulation of Escalona et al. (2015), denoted (LCL).

Proposition 1. Z∗
LSS ≤ Z∗

SCA and Z∗
LRU ≤ Z∗

SCA, where Z
∗
LSS, Z

∗
LRU , Z

∗
SCA are the optimal objective

function of problems (LSS), (LRU), and (SCA), respectively.

Proof. The proof of Proposition 1 follows directly from the fact that problems (LSS) and (LRU) are

relaxations of problem (SCA). In the case of problem (LSS), it is easy to show that is a relaxation of

problem (SCA). Therefore, the optimal solution of problem (LSS) is a lower bound of problem (SCA), i.e.,

Z∗
LSS ≤ Z∗

SCA.

Let us now consider the following reformulation of problem (SCA):

min
X,Y,V,W,Z

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂j

√∑

i∈I

σ2
iW

2
ij



 (15)

s.t: (6), (7), (8), (10), (11), (12), (16), (17), (18), (19).

It is easy to show that problem (LRU) is a relaxation of the reformulation of (SCA). Therefore, the

optimal solution of the problem (LRU) is a lower bound of problem (SCA), i.e., Z∗
LRU ≤ Z∗

SCA.
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Proposition 2. Z∗
LRU ≤ Z∗

GRU , where Z
∗
GRU is the optimal objective function of problem (GRU).

Proof. Consider the following reformulation of problem (GRU):

min
X,Y,V,W,Z

∑

j∈J



fjXj +

∑

i∈I

d̂ijYij + ψj

√∑

i∈I

µiYij + θ̂j

√∑

i∈I

σ2
iW

2
ij



 (15)

s.t: (6), (7), (8), (10), (11), (12), (16), (17), (18), (19)

Zj ≥ zα1
∀j ∈ J (36)

It is easy to show that problem (LRU) is a relaxation of the reformulation of problem (GRU). Therefore,

the optimal solution of problem (LRU) is a lower bound of problem (GRU), i.e., Z∗
LRU ≤ Z∗

GRU .

We observe that the SCA policy can have a better cost performance than the GRU policy when the

demand classes are spatially separated, i.e., when the classes are highly spatially segmented. To illustrate

when this occurs, consider a small example with two retailers, I = {A,B}, shown in figure 1. Retailer A is

class 1 and retailer B is class 2, i.e. N1 = {A} and N2 = {B}. In this example, each retailer location is also

a candidate DC location, i.e. I = J .

A B

d̂AB , d̂BA

µA, σ
2
A, fA µB, σ

2
B , fB

Figure 1: Small segmented network

For simplicity, we assume aj = 0, hj = h, and Sj = S for any j = A,B. Under the SCA policy it is easy

to show that it is optimal to assign demands at retailer A to a DC at A and to assign demands at retailer B

to a DC at B, i.e., X∗
A = X∗

B = 1, Y ∗
AA = Y ∗

BB = 1. On the other hand, using the GRU policy, it is easy to

show that X∗
A = X∗

B = 1, Y ∗
AA = Y ∗

BB = 1 when fB ≤ d̂BA and fA ≤ d̂AB. Therefore, under fB ≤ d̂BA and

fA ≤ d̂AB , the SCA policy has a better cost performance than the GRU policy, i.e., Z∗
GRU > Z∗

SCA, because

zα1
> zα2

.

Proposition 3. For two demand classes, Z∗
LCL < Z∗

LSS and Z∗
LCL < Z∗

LRU , where Z
∗
LCL is the optimal

objective function of problem (LCL).

Proof. Consider the optimal distribution network for the joint location-inventory problem using a LCL policy

to provide differentiated service levels to two demand classes. This network will have a lower total cost than

implementing a LSS or LRU policy, because, in a single echelon, Escalona et al. (2017b) showed that, under

normally distributed demand and two demand classes, the optimal reorder point of the LCL policy is strictly

less than the reorder point induced by the LRU and LSS policies.

12



The main consequences of propositions 1, 2, and 3 is that, for a network with two demand classes:

• the LCL policy induces the lowest cost for a distribution network able to provide differentiated service

levels in terms of product availability; and

• the LSS and LRU policies compete for being the best alternative to LCL policy, while GRU and SCA

policies are the worst alternatives to LCL policy, because there are only five ways to order the optimal

objective function:

(i) Z∗
LCL ≤ Z∗

LSS ≤ Z∗
LRU ≤ Z∗

GRU ≤ Z∗
SCA; (ii) Z∗

LCL ≤ Z∗
LSS ≤ Z∗

LRU ≤ Z∗
SCA ≤ Z∗

GRU ; (iii)

Z∗
LCL ≤ Z∗

LRU ≤ Z∗
LSS ≤ Z∗

GRU ≤ Z∗
SCA; (iv) Z

∗
LCL ≤ Z∗

LRU ≤ Z∗
LSS ≤ Z∗

SCA ≤ Z∗
GRU ; and (v)

Z∗
LCL ≤ Z∗

LRU ≤ Z∗
GRU ≤ Z∗

LSS ≤ Z∗
SCA.

In what follows we establish the most likely order relationship under different demand configurations and

spatial distribution of customer classes.

6. Computational Study

In this section, we present the numerical tests and their results. The main objectives of the computational

study are to: (i) determine good alternative policies at the LCL policy to design distribution networks

able to provide differentiated service levels under different demand configurations and spatial distribution

of customer classes; and (ii) to quantify the relative cost of using different policies at the LCL policy to

design distribution networks able to provide differentiated service levels. To illustrate the performance of

the different policies, we carried out computational experiments for instances with 49 nodes from Daskin

(2011). We generated several test problems with different demand configurations and spatial distribution of

customer classes, and compared the LSS, SCA, GRU, LRU, and LCL inventory policies to determine the

most likely order relationship among the policies in terms of total cost. In all cases, each retailer location is

also a candidate DC location, i.e., there are as many candidate DC locations as retailer locations for each

instance.

We analyze 10 different configurations in terms of demand and spatial distribution of customer classes.

The first 5 configurations consider that the spatial distribution of customer classes is random and the last

5 configurations consider that the spatial distribution of customer classes is segmented, i.e., demand classes

are spatially separated. For each configuration, we generate 1000 random instances. Table 2 show the 10

configurations.

In each configuration, as shown in Table 2, what changes is the class that dominates on demand and/or

nodes. To illustrate the concept of dominance in demand and/or nodes, consider configuration 2 where class

1 dominates on demand, i.e.,
∑

i∈N1
µi >

∑
i∈N2

µi, and class 2 dominates in nodes, i.e., |N1| < |N2|.
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Network dominance

Configuration Spatial distribution Demand Nodes

1 Random No class dominates No class dominates

2 Random Class 1 Class 2

3 Random Class 1 Class 1

4 Random Class 2 Class 1

5 Random Class 2 Class 2

6 Segmented No class dominates No class dominates

7 Segmented Class 1 Class 2

8 Segmented Class 1 Class 1

9 Segmented Class 2 Class 1

10 Segmented Class 2 Class 2

Table 2: Configurations

Test problems used the following common criteria and parameters: service level requirements α1 =

U [0.95, 0.99] and α2 = U [0.5, 0.9]; cost per unit to ship between retailer i and candidate DC site j, dij equal

to the distance between retailer i and candidate DC j multiplied by a transport rate cij = c, ∀i ∈ I, j ∈ J ,

where c = U [0.005, 0.02]; demand per unit time at each retailer is normally distributed with coefficient of

variation CVi = U [0.1, 0.5]; fixed (per unit time) cost of locating a DC at candidate site j, fj = U [100, 300];

cost per unit to ship between external supplier and candidate DC site j, aj = a, ∀j ∈ J , where a = U [0.3, 0.7];

ordering cost from candidate DC site j, Sj = S, ∀j ∈ J , where S = U [500, 1000]; and lead time, Lj = {2, 3, 4}

with discrete uniform distribution. In section Appendix A, we show how each configuration was built.

Problems (CQLSS), (CQSCA), (CQLRU), and (CQGRU) were solved using CPLEX 12.4. The location-

inventory model using the LCL policy was also solved with CPLEX 12.4 using the procedure described in

Escalona et al. (2015), from which an upper bound is obtained for problem (LCL). Let ẐLCL be the objective

function of problem (LCL) using the procedure described in Escalona et al. (2015). For all instances and

inventory policies tested, we used a termination criterion of a 10−5 optimality gap. All tests were carried on

a PC with Intel Core i7 2.3 GHz processor and 16 GB RAM.

6.1. Experimental results for the test problems

For all configurations, we observed that the solution obtained using the procedure described in Escalona et al.

(2015) induces the lowest cost for a distribution network able to provide differentiated service levels. There-

fore, for the instances we test, the consequences of propositions 1, 2, and 3 are still valid when using ẐLCL

instead of Z∗
LCL. Table 3 shows, for each configuration, the percentage of instances associated with each

ordering of the objective functions.

As table 3 shows, for most of the tested instances of the configurations 1, 3, 4, 5, 6, 8, 9, and 10, LSS is

the best alternative to the LCL policy. However, in most tested instances of configurations 2 and 7, LRU
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Spatial random configurations Segmented spatial configurations

1 2 3 4 5 6 7 8 9 10

ẐLCL ≤ Z∗
LSS ≤ Z∗

LRU ≤ Z∗
GRU ≤ Z∗

SCA 88% 32% 65% 54% 80% 27% 9% 53% 8% 18%

ẐLCL ≤ Z∗
LSS ≤ Z∗

LRU ≤ Z∗
SCA ≤ Z∗

GRU 0% 1% 1% 46% 17% 48% 12% 12% 89% 56%

ẐLCL ≤ Z∗
LRU ≤ Z∗

LSS ≤ Z∗
GRU ≤ Z∗

SCA 6% 52% 4% 0% 3% 11% 44% 13% 0% 8%

ẐLCL ≤ Z∗
LRU ≤ Z∗

LSS ≤ Z∗
SCA ≤ Z∗

GRU 0% 0% 1% 0% 0% 13% 34% 7% 2% 17%

ẐLCL ≤ Z∗
LRU ≤ Z∗

GRU ≤ Z∗
LSS ≤ Z∗

SCA 6% 16% 30% 0% 0% 0% 1% 15% 0% 0%

Table 3: Order of the distribution network cost according to an inventory policy

is the best alternative to LCL, i.e., when the high-priority class dominates on demand and the low-priority

class dominates in nodes, the best alternative to LCL is the LRU policy in most of the tested instances.

We also observed that the spatial distribution of customer classes determines the worst performing policy

when designing a distribution network able to provide differentiated service levels. From table 3, we observe

that for a random spatial distribution of customer classes, the SCA policy performed worst in most of the

tested instances. For example, when spatial distribution of customer classes is random and no class dominates

in demand or nodes (configuration 1) it is very likely that the SCA policy will be the worst-performing policy,

because in this configuration, in 100% of the tested instances, it was the policy with the worst performance.

On the other hand, from table 3, we observe that in most of the instances tested in configurations 6, 9, and

10, the worst-performing policy is the GRU policy. Then, as we expected, when the high-priority class does

not dominate on demand in a spatially segmented network, the GRU policy has the worst performance in

most of the tested instances.

To quantify the benefit of designing a distribution network able to provide differentiated service levels

using the LCL policy, we compute the benefit for each instance tested as Benefit(%) = 100 × (Ẑ(·) −

Z∗
LCL)/Ẑ(·). Table 4 shows the average and maximum relative benefit of the LCL policy versus LSS, LRU,

GRU, and SCA policies for random and segmented spatial distribution.

From table 4, we observe that the benefit induced by the LCL policy with respect to the other policies

tested is higher in a random network than in a segmented network. Furthermore, when the spatial distribution

of demand classes is random, the cost of a distribution network able to provide differentiated service levels

using the SCA policy is on average 8% more expensive than the cost of using LCL policy and in the

worst case 18.3% when no class dominates in demand or nodes (configuration 1). When the low-priority

class dominates in demand, high-priority class dominates in nodes, and the spatial distribution of customer

classes is segmented, the cost of a distribution network able to provide differentiated service levels using the

GRU policy is on average 6.6% more expensive than using LCL policy, and in the worst case is 18.9% more

expensive.

We compute the CPU time of each location-inventory model for the test set described above. Table 5
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Spatial random configuration

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

Benefit (%) Average Max Average Max Average Max Average Max Average Max

LCL vs LSS 0.9% 2.4% 1.9% 4.8% 0.5% 1.6% 0.2% 1.9% 0.6% 2.4%

LCL vs LRU 1.6% 4.5% 1.7% 4.7% 0.6% 3.5% 4.1% 9.4% 1.4% 5.6%

LCL vs GRU 2.0% 6.1% 2.7% 6.9% 0.6% 2.4% 7.6% 19.3% 3.5% 9.7%

LCL vs SCA 11.9% 18.3% 8.9% 17.7% 7.0% 14.6% 7.7% 14.3% 7.3% 17.3%

Segmented spatial configuration

Configuration 6 Configuration 7 Configuration 8 Configuration 9 Configuration 10

Benefit (%) Average Max Average Max Average Max Average Max Average Max

LCL vs LSS 0.3% 2.2% 0.7% 3.7% 0.3% 1.1% 0.2% 1.0% 0.2% 1.4%

LCL vs LRU 0.4% 3.0% 0.6% 3.5% 0.3% 1.4% 1.4% 6.8% 0.4% 2.4%

LCL vs GRU 2.2% 6.0% 2.3% 6.8% 0.6% 2.5% 6.6% 18.9% 3.0% 9.5%

LCL vs SCA 2.1% 13.8% 2.6% 12.8% 1.9% 9.6% 2.2% 10.0% 1.9% 10.6%

Table 4: Benefit of LCL versus LSS, LRU, GRU, and SCA policies for random and segmented spatial distribution

shows the average and maximum CPU times of the LSS, SCA, LRU, GRU, and LCL policies for random

and segmented spatial distribution.

Spatial random configuration

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

Time (s) Average Max Average Max Average Max Average Max Average Max

LSS 34 8598 6 39 84 10689 8 485 34 7640

SCA 201 9345 30 8987 103 10245 28 1150 104 8319

LRU 220 9726 22 304 172 9729 113 9755 327 10471

GRU 69 10552 20 7246 85 10410 20 8299 76 8940

LCL 73 10801 10 2388 105 10801 10 2102 55 7014

Segmented spatial configuration

Configuration 6 Configuration 7 Configuration 8 Configuration 9 Configuration 10

Time (s) Average Max Average Max Average Max Average Max Average Max

LSS 130 10797 66 10447 14 276 12 277 11 166

SCA 53 9423 32 6688 16 389 21 1091 12 194

LRU 139 4695 33 3414 198 6343 134 8489 109 3940

GRU 136 9774 13 3976 15 229 10 2648 26 8898

LCL 154 10579 25 1862 88 10030 32 4323 85 7722

Table 5: Configurations CPU time

From table 5, we observe that for configurations 1, 3, 4, 5, 8, 9, and 10, LRU has the highest average

CPU time, and for the spatial random configuration, LSS policy has the lowest average CPU time.
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7. Conclusions

We have studied the effect of using GRU, LRU, SCA, LSS, and LCL policies on the design of a distribution

network providing differentiated service levels. For each policy, we have formulated an INLP and we have

shown how to reformulate these problems as CQMIPs that can be solved using standard optimization solvers.

Various relations among the models have been proved, from which we have obtained the following managerial

insights for a network with two demand classes.

• The LCL policy induces the lowest cost for a distribution network providing differentiated service levels

in terms of product availability.

• The LSS and LRU policies compete for being the best alternative to the LCL policy, while GRU and

SCA policies are the worst alternatives to the LCL policy.

• Policies that impose general service conditions over the entire distribution network perform worse than

those policies that impose conditions on the operation of the inventory system at each DC.

We have conducted several test problems under different demand configurations and spatial distribution

of customer classes, from which we have observed the following managerial insights.

• The benefit induced by the LCL policy with respect to the other policies tested is higher in a random

network than in a segmented network.

• When the high-priority class dominates on demand and the low-priority class dominates in nodes, the

best alternative to the LCL policy is the LRU policy in most of the instances we tested. For any other

demand configuration and spatial distribution of demand classes, LSS policy is the best alternative to

the LCL policy in most of the instances we tested.

• For a random spatial distribution of customer classes, the SCA policy performed worst, becoming on

average 8% more expensive than using LCL policy and in the worst case 18.3% when no class dominates

in demand or nodes.

• When the low-priority class dominates on demand in a spatially segmented network, the GRU policy

performed worst, becoming on average 6.6% more expensive than using the LCL policy, and 18.9% more

expensive in the worst case when high-priority class dominates in nodes.

The main issue left for future research is to formulate and solve the joint location inventory problem

using the LCL policy for more than two demand classes and determine whether our results and observations

remain valid for more than two demand classes.
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Escalona, P., Ordóñez, F., Kauak, I., 2017b. Critical level rationing in inventory systems with continuously

distributed demand. OR Spectrum 39, 273–301.
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Appendix A. Tested configurations

• Configuration 1. In this configuration, the spatial distribution of customer classes is random and no

class dominates in demand or nodes. The instances, for this configuration, were generated with the

following parameters: class of the retailer i, ri = {1, 2} with discrete uniform distribution; and demand

per unit time at each retailer is normally distributed with mean µi = U [10, 50];
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• Configuration 2. In this configuration, the high-priority class dominates in demand, i.e.,
∑

i∈N1
µi >

∑
i∈N2

µi; the low-priority class dominates in nodes; and the spatial distribution of customer classes is

random. The instances, for this configuration, were generated with the following parameters: |N1| =

{1, . . . , ⌈0.25|I|⌉} with discrete uniform distribution; |N2| = |I|− |N1|; µi = U [100, 500] for any i ∈ N1;

and µi = U [10, 50] for any i ∈ N2.

• Configuration 3. In this configuration, the high-priority class dominates in nodes and demand, and the

spatial distribution of customer classes is random. The instances for this configuration were generated

with the following parameters: |N2| = {1, . . . , ⌈0.25|I|⌉} with discrete uniform distribution; |N1| =

|I| − |N2|; µi = U [10, 50] for any i = 1, 2.

• Configuration 4. Low-priority class dominates in demand, i.e.,
∑

i∈N2
µi >

∑
i∈N1

µi; the high-priority

class dominates in nodes; and the spatial distribution of customer classes is random. The instances,

for this configuration, were generated with the following parameters: |N2| = {1, . . . , ⌈0.25|I|⌉} with

discrete uniform distribution; |N1| = |I| − |N2|; µi = U [100, 500] for any i ∈ N2; and µi = U [10, 50] for

any i ∈ N1.

• Configuration 5. Low-priority class dominates in nodes and demand, and the spatial distribution of

customer classes is random. The instances, for this configuration, were generated with the following

parameters: |N1| = {1, . . . , ⌈0.25|I|⌉} with discrete uniform distribution; |N2| = |I| − |N1|; µi =

U [10, 50] for any i = 1, 2.

• Configuration 6. In this configuration, the spatial distribution of customer classes is segmented and no

class dominates in demand or nodes. We select a node at random and then determine its nearest |I|/2

nodes. We assigned class 1 to this set of nodes and we assigned class 2 to the rest. Demand per unit

time at each retailer is normally distributed with mean µi = U [10, 50].

• Configuration 7. In this configuration, the spatial distribution of customer classes is segmented, the

high-priority class dominates in demand, and the low-priority class dominates in nodes. We select

a high-priority class node at random and then determine its nearest nodes. The instances, for this

configuration, were generated with the following parameters: |N1| = {1, . . . , ⌈0.25|I|⌉} with discrete

uniform distribution; |N2| = |I| − |N1|; µi = U [100, 500] for any i ∈ N1; and µi = U [10, 50] for any

i ∈ N2.

• Configuration 8. In this configuration, the high-priority class dominates in nodes and demand, and the

spatial distribution of customer classes is segmented. We select a low-priority class node at random

and then determine its nearest nodes. The instances, for this configuration, were generated with the
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following parameters: |N2| = {1, . . . , ⌈0.25|I|⌉} with discrete uniform distribution; |N1| = |I| − |N2|;

µi = U [10, 50] for any i = 1, 2.

• Configuration 9. In this configuration, the low-priority class dominates in demand,

the high-priority class dominates in nodes, and the spatial distribution of customer classes is segmented.

We select a high-priority class node at random and then determine its nearest nodes. The instances

for this configuration were generated with the following parameters: |N2| = {1, . . . , ⌈0.25|I|⌉} with

discrete uniform distribution; |N1| = |I| − |N2|; µi = U [10, 50] for any i ∈ N1; and µi = U [100, 500] for

any i ∈ N2.

• Configuration 10. The low-priority class dominates in nodes and demand, and the spatial distribution

of customer classes is segmented. We select a low-priority class node at random and then determine

its nearest nodes. The instances, for this configuration, were generated with the following parameters:

|N1| = {1, . . . , ⌈0.25|I|⌉} with discrete uniform distribution; |N2| = |I| − |N1|; µi = U [10, 50] for any

i = 1, 2.
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