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In this work we consider the shortest path problem with uncertainty in arc lengths and convex risk measure

objective. We explore efficient implementations of sample average approximation (SAA) methods to solve

shortest path problems when the Conditional Value at Risk (CVaR) and Entropic risk measures (E) are

used and there is correlation present in the uncertain arc lengths. Our work uses decomposition techniques

to achieve an efficient implementation of SAA methods for these non-linear convex integer optimization

problems. A computational study shows the effect of geometry, uncertainty correlation and dispersion, and

risk measure parameters on efficiency and accuracy of the methods developed.
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1. Introduction

Real life problems such as the vehicle routing problem (Laporte (1992)), the facility loca-

tion problem (Drezner (1996)) or the lot sizing problem (Drexl and Kimms (1997), Jans

and Degraeve (2008)) contain inherent shortest path problems as an important compo-

nent. Given that deterministic shortest path sub-problems are solvable in polynomial time

(Ahuja et al. (1993)), decomposition techniques are a natural option to tackle these prob-

lems in a fast way. Nevertheless, assuming deterministic data is unreasonable in a number

of applications and doing so can lead to poor solutions in practice (Bertsimas and Sim

(2004)). Consequently, other ways to evaluate the cost of a path that take into account

its uncertainty are necessary. Unfortunately, doing so spoils the special properties of the

classical shortest path problem and leads to problems that are more difficult to solve. For
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instance, the shortest path problem satisfies total unimodularity, which guarantees that

when we use a linear objective, the linear programming relaxation reaches an integer opti-

mal solution. Nevertheless, taking into account uncertainty leads to a convex objective

that cannot make use of this property. Previous work has put a lot of effort into methods

to incorporate uncertainty in optimization problems (Avriel and Williams (1970), Tint-

ner (1955), Wets (1966)). For an introduction to stochastic programming in general, the

reader may refer to Birge and Louveaux (2011), Shapiro et al. (2014) or Ben-Tal et al.

(2009) for an introduction to robust optimization. Specific methods have been developed

for optimization problems under uncertainty exploiting particular problem structure. For

instance, the lot sizing problem with uncertain costs or lead times in Atamtürk and Zhang

(2007), the vehicle routing problem with time windows and uncertain data in Ghiani et al.

(2003) and the facility location problem with uncertainty in Snyder (2006).

Taking the expected value of the cost of a path appears as a natural way to quantify the

uncertain travel time of the path but ignores the dispersion of the underlying distributions,

which can be significant. For example, consider two nodes s and t connected by two paths.

The first path has a fixed travel time of 6 minutes and the second one has an uncertain

travel time, it can be 1 minute or 9 minutes, each with probability 0.5. Then, in expected

value, the best choice is the second path with an expected travel time of 4.5 minutes,

but it has the highest variability between the two possibilities. Taking the second path is

riskier with a 50% delay half of the time. This amount of delay can be unacceptable in

certain applications, such as emergency dispatching systems, where increases in delay can

lead to increases in fatalities. This notion of risk aversion was mathematically defined in

the early work of Von Neumann and Morgenstern (1944) where the risk perceived by a

rational agent is modeled by the expected value of their convex disutility function. Such

a way to define risk is also called certainty equivalent under some utility function (Yaari

(1969, 1987)).

A risk measure ρ(·) is a real valued mapping of a set of random variables used to quantify

the degree of risk aversion of a random variable. There are some desirable features a risk

measure could have. It should be normalized, i.e.: the zero random variable has zero risk,

invariant by translation, i.e.: when minimizing a random cost X, the risk associated to the

random variable X+a for any real a is exactly ρ(X)+a, and finally should be monotone,

i.e.: if a random variable X dominates stochastically another random variable Y (Levy
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(2006)) which we write X ⪰ Y , then we have ρ(X)⩽ ρ(Y ) in the case of a minimization

problem, and ρ(X)⩾ ρ(Y ) in a maximization context. Convexity is also a desired property

of a risk measure. For example, when optimizing a portfolio mixing different assets is a

good way to reduce the dispersion of a portfolio in practice. The latter can be modeled

via the convexity of the risk measure considered. The expected value or the CVaR of a

random variable are typical examples of convex risk measures. The concept of coherent

risk measures axiomatically defines the set of properties that a risk measure should satisfy

(Artzner et al. (1999)), and shows that CVaR is a coherent risk measure. In Kusuoka

(2001) they prove that CVaR is central amongst coherent risk measures, showing that any

coherent, co-monotone and law invariant risk measure - or distortion risk measures - is

equivalently representable as a convex combination of CVaRs at different levels of security.

An early work presenting a solution approach for a risk averse problem appears in

Markowitz (1952), where they use the variance to represent the dispersion of the data,

giving birth to the mean-risk model. Nikolova et al. (2006), Lim et al. (2011) used this

latter model to solve CVaR minimization shortest path problems with uncorrelated and

normal distributions on edge travel times. Rockafellar and Uryasev (2000) proved that

minimizing a CVaR objective is a standard convex optimization problem. Nevertheless,

this requires the minimization of an expectation, which can even be difficult to compute

for a large number of correlated random variables. Sample average approximation (SAA)

methods (Kleywegt et al. (2002)) provide a standard framework to approximately solve

these difficult problems. To the best of our knowledge, all the literature on risk averse

shortest path problems assumes uncorrelated uncertain travel times (or costs). Ignoring

the correlation that may be present in random travel times might return shortest paths

solutions failing to consider the path travel time distribution (Agrawal et al. (2012, 2010)).

As shown in Yang et al. (2013) the correlation in uncertain travel times is indeed present

in transportation networks.

In figures 2 and 1 we see an illustration of the influence of correlations on the shortest

path problem. Let X,Y,Z ∼B(1,3) be Bernoulli random variables that can take the values

1 or 3 with the same probability 0.5. The risk associated to a path P in this example will

be the mean-risk objective, given by the sum of the expected value and variance over path

P , explicitly ρ(P ) =E[P ]+σ2[P ]. Let P1 and P2 be the paths passing respectively through

the upper edge and the lower edge. In a first case (figure 1) there is no correlation between
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the three edges. We have E(P1) = 4, E(P2) = 3 and σ2(P1) = σ2(P2) = 2. The risk associated

to the path P1 is then ρ(P1) = 6 while the risk of the lower path is ρ(P2) = 5, making the

second one preferable. In the second case (figure 2) the distributions remain the same, but

X

4−Y

Z − 1

Figure 1 Without considering correlations

we assume there is full correlation between the edges’ travel times, i.e.: X = Y = Z. We

have E(P1) = 4, E(P2) = 3, σ2(P1) = 0 and σ2(P2) = 4. The risk associated to the path P1

passing through the upper edge is ρ(P1) = 4 while the risk of the lower path is ρ(P2) = 7

meaning that the first one is chosen. In this example we can see that ignoring correlations

X

4−X

X − 1

Figure 2 Considering correlations

can lead to take a path that is 75% worse than the optimal one. SAA methods can handle

correlations between the random variables. Nevertheless, it may sometimes require large

samples to guarantee the quality of the solution obtained (Lim et al. (2011)) at the cost

of solving larger optimization problems.

In this chapter, we assume a given directed network G = (V,E) with m = |E| edges,

n= |V | nodes, a source node s∈ V , and a sink node t∈ V . We define the set of paths from

s to t on G with the standard st-path polytope (Ahuja et al. (1993)) below

x∈X =

x∈ {0,1}m :
∑

k:(j,k)∈E

xjk−
∑

i:(i,j)∈E

xij = bj ∀j ∈ V

 , (1)

where the right hand side vector b satisfies bs = 1, bt =−1, and bj = 0 for all j ∈ V \ {s, t}.

The uncertain shortest path problem considers uncertain costs cij on every edge (i, j)∈E

such that the cost vector c= (cij)(i,j)∈E follows some distribution that we can sample. We
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make no further assumptions regarding the uncertain cost vector, in particular we do not

assume the uncertainty between arcs is independent.

Given an st-path solution x ∈ X and an uncertain cost vector c, its total cost c⊤x is

a random variable that we can evaluate with a convex risk measure with ρ
(
c⊤x

)
. The

problem considered in this work is to find the st-path which minimizes this risk aversion

measure, namely

(Pρ) w∗ =min
x∈X

ρ
(
c⊤x

)
. (2)

In this chapter, we will only consider risk measures of the form ρ
(
c⊤x

)
=E

[
u
(
c⊤x

)]
with

u some positive, nondecreasing and strictly convex disutility function such that ρ(0) = 0. At

least with this type of risk measures, we can prove that problem (2) is NP-hard by reducing

it to the set partition problem: Given a set of N positive integers (ai)i∈{1,...,N}, we want

to find a partition {N1,N2}, N1 ∩N2 = ∅, N1 ∪N2 = {1, ...,N} such that
∑
i∈N1

ai =
∑
i∈N2

ai.

Assuming that the ai are ”deterministic random variables”, finding the shortest path in

a1

−a1

a2

−a2

aN

−aN

Figure 3 Reduction to Set Partition Problem

the network depicted in figure 3 with respect to the quadratic risk measure
(
c⊤x

)2
solves

the set partition problem. Indeed, for this construction we have that this shortest path

problem has an optimal solution of value 0 if and only if the parameters (ai)i∈{1,...,N} define

a solvable instance of the partition problem. Further, if the instance is not solvable then

the optimal path defines the partition minimizing the difference of weights between N1 and

N2.

In general, even the evaluation ρ
(
c⊤x

)
of some solution x∈X can be challenging. We can

approximate this optimization problem using SAA methods if we can sample the uncertain

total cost. In this chapter we propose efficient implementations of the SAA methodology

to solve large instances of the risk averse shortest path problem (Pρ) in (2). In particular

we focus on algorithms to solve problem (Pρ) when using the Conditional Value at Risk

measure and the Entropic risk measure.
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In the next section we present basic definitions and the general framework of the SAA

methodology. We present the different formulations and algorithms that we implemented to

solve (Pρ) under each risk measure in section 2. This section states the SAA problems that

we have to solve and introduces the decomposition algorithms implemented for each risk

measure. We discuss simplifications that are possible when considering the entropic risk

measure with uncorrelated uncertainty. We present the computational results in section 4

and conclude in section 5.

2. Solution Approaches Proposed

In the following, we assume that we can generate samples of the random variable c. We focus

our attention on SAA methods to solve these problems. Given a sample of S realizations

of c, (cs)s∈{1,...,S} of respective probabilities (ps)s∈{1,...,S}, we can approximate the risk of a

solution x∈X as follows:

E
[
u
(
c⊤x

)]
≈

S∑
s=1

psu
(
(cs)⊤ x

)
(3)

Consequently, the sample average approximation of (2) can be written:

(PS) wS :=min
x∈X

{
wS(x) :=

S∑
s=1

psu
(
(cs)⊤ x

)}
(4)

In our study, we will consider two specific risk measures for the random cost c⊤x: the

Conditional Value at Risk which for a given tolerance ϵ∈]0,1] can be written as described

in Rockafellar and Uryasev (2000):

CVaRϵ(c
⊤x) =min

z∈R

{
z+ ϵ−1E

[(
c⊤x− z

)
+

]}
(5)

and the Entropic Risk Measure (Pratt (1964), Arrow (1965)) at level α ∈ R that can be

defined as:

Eα

(
c⊤x

)
= α lnE

[
e

c⊤x
α

]
(6)

Notice that the entropic risk measure is a risk aversion measure whenever α > 0, a risk

seeking measure when α < 0 and models a risk neutrality as Eα

(
c⊤x

)
−→
α→0

E
[
c⊤x

]
. We

remark that minimizing risk measure (6) is equivalent to minimizing E
[
e

c⊤x
α

]
. This allows

us to use the SAA formulation (4) to solve the optimization problem. The CVaR risk mea-

sure is equivalent to the minimization problem (5). This shows that it is the minimization

of the expectation of some function.
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2.1. Conditional Value at Risk

Monolithic form (CM). A first way to solve the CVaR minimization problem is to directly

solve its associated sampled problem (7):

(CVaRS
ϵ ) wS := min

x∈X

{
CVaRS

ϵ (c
⊤x) :=min

z∈R
z+ ϵ−1

S∑
s=1

ps

(
(cs)⊤ x− z

)
+

}
(7)

which is equivalent to the following MIP formulation:

wS := min
z,η,x

z+ ϵ−1

S∑
s=1

ηs

(CVaRS
ϵ ) s.t. :x∈X

ηs ⩾ ps

(
(cs)⊤ x− z

)
∀s∈ {1, ...S}

η⩾ 0

(8a)

(8b)

(8c)

(8d)

Given some feasible solution x ∈X, an important remark done in Espinoza and Moreno

(2014) provides a quick way to compute an estimated value CVaRS
ϵ (c

⊤x) of CVaRϵ(c
⊤x).

Indeed, given a sample (cs, ps)s∈{1,...,S} we have:

CVaRS
ϵ (c

⊤x) :=min
η,z

{
z+ ϵ−1

S∑
s=1

psηs : ηs ⩾ (cs)⊤ x− t, ηs ⩾ 0, t∈R

}
(9)

when taking the dual and changing variables we obtain:

CVaRS
ϵ (c

⊤x) :=max
π

{
ϵ−1

S∑
s=1

psπs (c
s)⊤ x :

S∑
s=1

psπs = ϵ, π ∈ [0,1]S
}

(10)

We can solve this second problem sorting the scenarios by decreasing csx and fill the

equality constraint with the best scenarios. Let suppose we have such an ordering c(1)x⩾
c(2)x⩾ ...⩾ c(S) and let s∗ := max

{
s′ ∈ {1, ..., S} :

s′∑
s=1

p(s) ⩽ ϵ

}
. Then it is easy to see that

an optimal solution for the dualized problem (10) is:

π∗
s =


1 ∀s∈ {(1), ..., (s∗)}

ϵ−
s∗∑

s′=1

p(s′) s= (s∗+1)

0 ∀s∈ {(s∗+2), ..., (S)}

(11)
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We can compute this optimal solution in O(S lnS) time and extract an upper bound on

the optimal value of problem (8) from it. Based on the solution given by (11) we define

the partition induced by x as:

Qx := {{(1), ..., (s∗)} ,{(s∗ +1)} ,{(s∗ +2), ..., (S)}} (12)

Although we are able to cast the problem directly as a MIP and evaluate its estimated

value quickly, we expect this monolithic form to be slow to solve in practice due to the

large number of scenarios we must potentially generate to have a good approximation. To

tackle this, we will present in the following two algorithms tailored to solve the monolithic

formulation: a subgradient algorithm and a decomposition based method.

Subgradient (CS). As suggested in Künzi-Bay and Mayer (2006), given that the functions

ρ(c⊤·) : x 7−→ ρ
(
c⊤x

)
are convex, we can represent them as the point-wise maximum of its

subgradients. Replacing in problem (2) we obtain formulation (13):

w∗ :=min
η,x

η

(∂Pρ) s.t. :x∈X

η⩾ ρ
(
c⊤x0

)
+ d⊤(x−x0) ∀x0 ∈X,∀d∈ ∂[ρ(c⊤·)](x0)

(13a)

(13b)

(13c)

Which has an infinite number of constraints in general. Nevertheless, the piecewise linearity

of CVaR allows to cast the latter problem (13) into the following formulation (14):

wS :=min
z,x,η

z+ ϵ−1η(
∂CVaRS) s.t. :x∈X

η⩾
∑
s∈C

ps

(
(cs)⊤ x− z

)
∀C ∈ S

(14a)

(14b)

(14c)

Where S is the set of all subsets of {1, ..., S}. This suggests an iterative algorithm solving

relaxed problems and generating cuts whenever constraints (14c) are violated. We first

solve a relaxation of problem (14) containing only one constraint of type (14c) with S =

{{1, ..., S}}. Let (x̃, z̃, η̃) be the current optimal solution of problem (14) of objective value

w̃. We remark that (x̃, z̃) is feasible for (8), so we have w̃⩽ z̃+ ϵ−1
S∑

s=1

(
(cs)⊤ x̃− z̃

)
+
. Let

us define C̃ =
{
s∈ {1, ..., S} : (cs)⊤ x̃− z̃ > 0

}
. If w̃⩾

∑
s∈C̃

ps

[
(cs)⊤ x̃− z̃

]
then we can easily

see that the current solution (x̃, z̃) is feasible and optimal for the complete problem (7). In
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the other case we add the constraint corresponding to C̃ and we solve again the resulting

problem with S ←S ∪ C̃. We remark that the first step with S = {{1, ..., S}} is equivalent

to solve the original problem (2) with ρ≡E, which is as hard as solving the deterministic

version. In our context of a shortest path problem, any existing polynomial algorithm like

Dijkstra’s solves it efficiently. We show a pseudo code of this method in Algorithm 1.

Algorithm 1: Pseudocode of CS algorithm

Data: A problem (CVaRS
ϵ )

Result: A δ-optimal solution x̃ of (CVaRS
ϵ )

1 Generate S equiprobable samples cs;

2 S ←{1, ..., S};

3 repeat

4 compute the optimal solution x̃ of (∂CVaRS
ϵ ) with objective value w̃;

5 C̃ = {s∈ {1, ..., S} : csx̃− z̃ > 0};

6 S ←S ∪ C̃;

7 until CVaRS
ϵ (c

⊤x̃)− w̃⩽ δ;

8 return x̃

Aggregation scheme (CA). In Espinoza and Moreno (2014) the authors developed a com-

putationally fast aggregation technique to solve the CVaR minimization problem in the

case of continuous linear programming problems (i.e.: when X is a polyhedron). We show

that their approach is valid as well for any feasible set X ⊆Rm. Let Q=
{
Q1, ...,QQ

}
be a

partition of {1, ..., S}. Summing of all type (8c) constraints corresponding to the scenarios

of a single bundle Qq we obtain the following aggregated constraint:

∑
s∈Qq

ηs ⩾
∑
s∈Qq

ps

(
(cs)⊤ x− z

)
∀q ∈ {1, ...,Q}

Defining η̃q =
∑

s∈Qq

ηs, p̃q =
∑

s∈Qq

ps and c̃q = p̃−1
q

∑
s∈Qq

psc
s, we can write this last constraint as

follows:

η̃q ⩾ p̃q

[
(c̃q)⊤ x− z

]
∀q ∈ {1, ...,Q}
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Given that the η̃s are built upon a partition the following problem is a relaxation of (8):

w̃Q := min
z,η̃,x

z+ ϵ−1

Q∑
q=1

η̃q

(CVaRQ
ϵ ) s.t. :x∈X

η̃q ⩾ p̃q

(
(c̃q)⊤ x− z

)
∀q ∈ {1, ...,Q}

η̃⩾ 0

(15a)

(15b)

(15c)

(15d)

Consequently we have w̃Q ⩽ wS, which is tight when the optimal solution x̃ of (15) is

optimal as well for (8). On the contrary, when w̃Q < wS, we can refine the constraints

(15c) when evaluating the optimal solution of problem (15). Espinoza and Moreno (2014)

propose the following refinement scheme: start with Q= {{1, ..., S}} and solve (CVaRQ
ϵ ),

then get its optimal solution x̃’s estimated objective value CVaRS
ϵ (c

⊤x̃) and its induced

partition Qx̃. If CVaR
S
ϵ (c

⊤x̃)− w̃Q ⩽ 10−6, we stop because x̃ is optimal with respect to

machine precision. Otherwise we refine the partition Q←{Qi
x̃ ∩Qj :Qi

x̃ ∈Qx̃,Qj ∈Q} and

iterate. We remark that when refining Q we always obtain another partition of {1, ..., S}

with a greater or equal number of subsets. Furthermore, if refining the partition does not

change its cardinality we can deduce that for each Qj ∈Q we have ∃i∈ {1,2,3} :Qj ⊂Qi
x̃.

This implies that the solution (x̃, z̃, η̄) with η̄s := η̃q, ∀s∈Qq is feasible for (8) and has the

same objective value as the relaxed problem (15), implying its optimality.

The algorithm solves at most S aggregated problems until Q = {1, ..., S}, where the

problem becomes exactly the one in (8). Aside from this worst case, we expect from this

procedure to solve only a few problems with reduced size instead of a brute force resolution

of the complete problem. In Espinoza and Moreno (2014) they show that for LP problems

this procedure can be several orders of magnitude better than standard methods when

using LP-tailored approaches. We show a pseudo code of this algorithm in Algorithm 2.

Our implementation of these two methods (CA and CS) considers the case when X has

integer solutions, given by the shortest path polytope. We tested two different frameworks:

one solving directly the MIP, and another one solving first the LP relaxation - obtaining

a partition for CA and a set of subgradient cuts for CS - and then solve the MIP with the

same algorithm but starting with the constraints added during the first step for CS or the

partition returned by the LP for CA. We will denote CA/IP(CS/IP) the direct resolution

of the integer programming problem and CA/LP+IP(CS/LP+IP) the latter way.
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Algorithm 2: Pseudocode of CA algorithm

Data: A problem (CVaRS
ϵ )

Result: A δ-optimal solution x̃ of (CVaRS
ϵ )

1 Generate S equiprobable samples cs;

2 Q←{{1, ..., S}};

3 repeat

4 compute the optimal solution x̃ of (CVaRQ) with objective value w̃;

5 Q←{Qi
x ∩Qj :Qi

x ∈Qx,Qj ∈Q};

6 until CVaRS
ϵ (c

⊤x̃)− w̃⩽ δ;

7 return x̃

2.2. Entropic Risk Measure

We want to solve the following optimization problem:

min
x∈X

Eα

(
c⊤x

)
:= α lnE

[
e

c⊤x
α

]
(16)

Uncorrelated case In the case where the variables are uncorrelated, the problem (16) can

be solved with a single run of any shortest path algorithm. Indeed, if random variables are

independent, the expected value of their product is the product of their expected values

and we have:

Eα

(
c⊤x

)
= α

m∑
i=1

lnE
[
e

cixi
α

]
Noticing that:

lnE
[
e

cixi
α

]
=

0 If xi = 0

lnE
[
e

ci
α

]
If xi = 1

we can solve (16) by solving the equivalent following problem:

min
x∈X

α
m∑
i=1

xi lnE
[
e

ci
α

]
which is a standard shortest path problem with arc costs given by α lnE

[
e

ci
α

]
. This

expected value can be approximated by the following SAA formulation:

min
x∈X

{
ES

α

(
c⊤x̃

)
:= α

m∑
i=1

xi ln
S∑

s=1

pse
csi
α

}
(17)
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In practice, C programming language’s ’double’ type accepts numbers up to 10308 so the

sums
S∑

s=1

pse
csi
α cannot be allowed to be greater than 10308. In order to give more slack

to the values of α used, i.e.: be able to tackle cases with smaller values of α, for each

edge i ∈ {1, ...,m} we compute c̄i = max
s∈{1,...,S}

csi which can be used to write the following

equivalence:

ES
α

(
c⊤x̃

)
= α ln

[
S∑

s=1

pse
csi
α

]
= c̄i +α ln

[
S∑

s=1

pse
csi−c̄i

α

]
(18)

Noticing that
csi−c̄i
α

⩽ 0, the exponential values will then always be below one, turning the

problems numerically tractable.

We will not consider this formulation further in our work as it heavily relies on the

absence of correlation between the random variables. Nevertheless, the scaling method we

just described will be extensively used in the next algorithms.

Subgradient (ES). Similar to CVaR, given that the function Eα(c
⊤·) : x 7−→ α lnE

[
e

c⊤x
α

]
is convex, so we can represent it as the point-wise maximum of its tangent planes. We can

write the subgradient-cuts formulation of the SAA version of (16) as follows:

min
x∈X,t∈R

t : t⩾ α ln

[
S∑

s=1

pse
(cs)⊤x0

α

]
+


S∑

s=1

pse
(cs)⊤x0

α cs

S∑
s=1

pse
(cs)⊤x0

α


⊤ (

x−x0
)
, ∀x0 ∈X

 (19)

In contrast with CVaR, formulation 19 has an infinite number of constraints. We can use the

iterative Algorithm 1 to solve the problem with a given tolerance. Indeed, at each iteration

k we can add the subgradient cut corresponding to the current incumbent solution xk and

compare the lower bound it returns with the sampled value of the incumbent solution to

evaluate the optimality gap. Again, there are scaling issues with the computation of the

entropy and its gradient values so the cut we add at each iteration can be equivalently

transformed to:

t⩾mk +α ln

[
S∑

s=1

pse
(cs)⊤xk−mk

α

]
+


S∑

s=1

pse
(cs)⊤xk−mk

α cs

S∑
s=1

pse
(cs)⊤xk−mk

α


⊤ (

x−xk
)

(20)

With mk := max
s∈{1,...,S}

{
(cs)⊤ xk

}
. As for CVaR we notice that the first step with only one

gradient cut is equivalent to solving a deterministic version of the original problem and
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we can solve it with Dijkstra’s algorithm because of the positiveness of the gradient of

the entropic risk measure. As for algorithms CS and CA, we tested the IP and LP+IP

frameworks for ES.

Exponential approximation (EEA). Since α ln(·) is nondecreasing we have that minimizing

the entropic risk measure is equivalent to solving the following problem:

min
x∈X

S∑
s=1

pse
(cs)⊤x

α (21)

This last method consists in approximating each of the exponentials rather than the entire

function. The classical way to approximate a convex function is to define a priori a set

(tk)k∈{0,...,K} of K +1 points on the domain [l, u] of the function to approximate such that

l= t0 < t1 < ... < tK−1 < tK = u. Adding an extra continuous variable for each scenario, we

approximate each exponential by the point-wise maximum of its tangents in the discretiza-

tion points as follows:

w̃K := min
z,x

S∑
s=1

pszs

(ES
K) s.t. :x∈X

zs ⩾ etk

[
1+

(cs)⊤ x

α
− tk

]
∀s∈ {1, ..., S},∀k ∈ {1, ...,K}

(22a)

(22b)

(22c)

Which is a relaxation of the original problem since tangents are always under the function

for convex functions. One can choose the discretization such that the error of approximation

is arbitrarily small at the cost of the number of breakpoints. Nevertheless, there are several

reasons to limit the number of breakpoints for our discretization: 1) each scenario must have

its own discretization, adding together S(K+1) extra constraints and S extra continuous

variables, 2) the original path polyhedron can already be large, 3) the interval [l, u] can

be particularly large if the random variables have a high variability and 4) scaling issues

can be prohibitive: as u grows etk can be out of the acceptable range of modern computing

abilities.
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Our approach consists in premultiplying the whole objective function by e−
M
α with

(cs)⊤ x⩽M,∀x∈X,∀s∈ {1, ..., S} and use an approximation of t 7−→ et on ]−∞,0] result-

ing in the following formulation:

w̃K(M) := min
z,x

S∑
s=1

pszs

(ES
K(M)) s.t. :x∈X

zs ⩾ etk

[
1+

(cs)⊤ x−M

α
− tk

]
∀s∈ {1, ..., S}

∀k ∈ {1, ...,K}

(23a)

(23b)

(23c)

We notice that the exponential can be well approximated over ]−∞,0] with a fairly small

number of points. Using the points tk := 2 ln
(

k
K

)
with K = 10 gives an approximation of

maximum absolute error of 6.15 ·10−3. Due to the structure of the exponential function, we

have that the optimal solution of formulation (23) gives a lower bound for problem (16).

Indeed, we have that:

e
M
α w̃K(M) =min

x

S∑
s=1

ps max
k∈{1,...,K}

{
etk+

M
α

[
1+

(cs)⊤ x

α
−
(
tk +

M

α

)]}
(24)

Which is a piecewise linear lower approximation of the exponential function with points(
tk +

M
α

)
k∈{1,...,K}. Further, given that

S∑
s=1

ps = 1 the absolute error of the approximated

objective function is the same as the individual absolute error across the scenarios. Figure

4 illustrates the approximations done here.

t 7−→ et

t 7−→ e
M
α
+t

t0 tK M
α
+ t0

M
α
+ tK

b

b

b

b

b

b

b

b

Figure 4 Lower piecewise linear approximations of t 7−→ et and t 7−→ e
M
α

+t

Given that e−M > 0, the resulting problem to solve is equivalent to (22). Still, although

this approach has no scaling issues it loses numerical precision in practice because of big
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values of M . We can see that taking M ∗ := max
s∈{1,...,S}

(cs)⊤ x∗ with x∗ the optimal solution

of the real problem (16), then solving (23) must return x∗ as every (cs)⊤x−M∗

α
is negative,

i.e.: where the exponential is correctly approximated. This suggests an iterative search of

the value of M ∗, successively solving (23) and updating M := max
s∈{1,...,S}

(cs)⊤ x̃ with x̃ the

last optimal solution. We repeat the process until the gap between the estimated entropic

value of x̃, ES
α

(
c⊤x̃

)
and M +α ln w̃K(M) is smaller than a given tolerance δ. In practice,

there is a last computational issue with the lower bound returned by the approximated

problem (23). Actually, CPLEX solver considers zero every value smaller than 10−6 so

in reality the solver stops whenever the reduced costs are smaller than this tolerance.

Hence, there are two issues with the solution returned: 1) The absolute gap of the solution

returned by the relaxed problem is a 10−6e
M
α approximation of the linear approximation

problem and hence, can be suboptimal and can fail to provide a lower bound. and 2) The

approximation provides a solution of objective value zero hence providing a −∞ lower

bound. This can be tackled considering that the value e
M
α w̃K(M) is a genuine lower bound

whenever w̃K(M)> 10−6. Because of these computational problems, there is no guarantee

that EEA returns an optimal solution for (ES
α). We show a pseudo code in Algorithm 3.

Algorithm 3: Pseudocode of EEA algorithm

Data: A problem (ES
α)

Result: A feasible solution x̃ of (ES
α)

1 Generate S equiprobable samples cs;

2 x̃∈ argmin

{
S∑

s=1

ps (c
s)⊤ x : x∈X

}
;

3 M ←max
{
(cs)⊤ x̃ : s∈ {1, ..., S}

}
;

4 repeat

5 Solve (ES
K(M)) of ’optimal’ solution x̃ and objective value w̃;

6 M ← max
s∈{1,...,S}

(cs)⊤ x̃;

7 until (w̃ > 10−6)∧
(
ES

α

(
c⊤x̃

)
− w̃⩽ δ

)
;

8 return x̃ is a feasible solution of (ES
α).
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3. General framework

Now that we can formulate the sample average approximation of our problems, we want

to guarantee how close the solution to this approximate problem is to the real solution. In

this goal, Kleywegt et al. (2002) developed a framework successively solving SAA problems

for discrete stochastic optimization problems giving computational bounds on the real

(not sampled) optimization problem (2). In what follows we assume that the scenarios are

uniformly distributed, i.e.: ps =
1
S
for any scenario s∈ S.

3.1. Stochastic lower bound

The optimal sampled value wS is a random variable whose realizations depend on the

samples that were selected. Its relation to the optimal value of (2), w∗, is given by (25)

due to the convexity of the expected value:

E [wS]⩽w∗ (25)

We can estimate this expected value averaging the optimal values of problem PS generating

several samples of size S and solving the associated problem. Let T be the number of

times we generate a different set of samples and solve PS. Then, given a confidence level

γ ∈ [0,1] and the objective values (wt
S)t∈{1,...,T} of the T different problems, by the central

limit theorem we have:

P

[
LN,T :=

1

T

T∑
t=1

wt
S −ϕ−1

(
1− γ

2

) 1√
T
σS ⩽w∗

]
⩾ 1− γ

2
(26)

With:

σ2
S =

1

T − 1

T∑
t=1

(
wt

S −
1

T

T∑
t′=1

wt′

S

)2

(27)

Namely, the resolution of several sampled problems gives a lower bound of the real optimal

value with confidence at least 1− γ
2
. When using suboptimal resolutions with known relative

gaps (gt)t∈{1,...,T} and objective values (wt
S)t∈{1,...,T}, notice that we cannot directly multiply

each sampled objective value wt
S by 1

1+gt
because of the correcting term containing the

standard deviation. One way to tackle this issue is to adjust the sampled objective values

by a factor of 1
1+max{gt:t∈{1,...,T}} .
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3.2. Stochastic upper bound

When solving the T sampled problems we can keep some feasible solution x ∈X and we

know that w∗ ⩽ E
[
u
(
c⊤x

)]
. Now, we can have an estimation of E

[
u
(
c⊤x

)]
generating

another sample of size S ′ >> S. It is common practice to refer to the sample S used for

each of the sampled problems solved for the lower bound as the ”in-sample” and this larger

sample S ′ as the ”out-of-sample”. Again, by the central limit theorem we have that:

P
[
w∗ ⩽US′(x) :=wS′(x)+ϕ−1

(
1− γ

2

) 1√
S ′

σS′(x)

]
⩾ 1− γ

2
(28)

With:

σ2
S′(x) :=

1

S ′− 1

S′∑
s=1

[
u
(
(cs)⊤ x

)
−wS′(x)

]2
(29)

In other words, it is possible to obtain an upper bound of the real optimal value by

computing an accurate estimation of the objective value of some feasible solution. Now

that we have lower and upper bounds we can compute the stochastic gap, i.e.: the real gap

of our solution x∈X with the real optimal value with confidence at least 1− γ:

P [LN,T ⩽w∗ ⩽US′(x)]⩾ 1− γ (30)

A common practice is to store the solution corresponding to the lowest objective value

wt
S returned by one of the T deterministic equivalent problems and use it to build the

stochastic upper bound.

4. Computational Experiments
4.1. Experimental Set-up

Network generation. We generated grid networks of r× r nodes with r ∈ {5,7,10,13,15}.

Each network has exactly the same geographical dimensions (a square with sides of 1.5

kilometer on each side), the only difference residing in the topology of the network. In

addition to the grid roads, each instance includes a ’highway’ that can be of three types

as depicted in figure 5: straight crosses (dashed), tilted crosses (dotted) or ring-shaped

(solid).
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Figure 5 Example of Grid networks generated for r= 13

Distributions generation. For each edge i∈E we considered a constant mean speed µi of 50

km (80 km) for grid edges (highway edges). To generate more instances we perturbed these

reference values with an uniform noise ui ∼U [0.5,1.5] such that the resulting mean speed on

edge i is µ′
i := µiui. For each instance, we generated ten times a perturbation with a different

random seed. We also generated randomly special covariance matrices Σ= (σij)(i,j)∈{1,...,m}2 ,

where σii = σ2
i is the variance of the random variable associated with edge i ∈ {1, ...,m}.

Given a vector of expected values µ′ = (µ′
i)i∈{1,...,m} we considered instances with different

coefficients of variation c ∈ {0.5,2} for normal streets and c ∈ {1,4} for highways (riskier)

such that the standard deviations are defined as σi = cµ′
i. We considered the uncorrelated

and correlated cases. We built the correlations in a way that all the highway edges (street

edges) are positively correlated with each other, but there is negative correlation between

highway and street edges. This will highlight the risk-hedging effect obtained by forcefully

passing through both types of edges in spite that one type is riskier than the other. We

generated correlation matrices C defined by a product C =LL⊤ with L= (lij)(i,j)∈{1,...,m}2 a

lower triangular matrix whose rows are unitary vectors. Given a correlation matrix C and

standard deviations (σi)i∈{1,...,m} we can then compute a covariance matrix Σ as follows:

Σ=Diag
(
(σi)i∈{1,...,m}

)
·C ·Diag

(
(σi)i∈{1,...,m}

)
(31)

Which has all the required properties to be a correlation matrix. We considered that

travel times on graph edges are random following Log-normal distributions as indicated

by Westgate et al. (2013) in the case of transportation networks, of joint-parameters (p,S)
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with p = (pi)i∈{1,...,m} and S = (sij)(i,j)∈{1,...,m}2 . Given some expected value vector µ and

a covariance matrix Σ we wanted to generate samples from the associated log-normal

distribution. We know that such a distribution is a log-normal of parameters (p,S) with:
pi = ln

(
µ2
i√

µ2
i+σii

)
sij = ln

(
1+

σij

µiµj

) (32)

Moreover, given some decomposition S = L⊤L we have LX + p ∼ N (p,S) with Xi ∼

N (0,1). Putting everything together, we can sample multivariate log-normal distributions

of mean vector µ and covariance matrix Σ by generating univariate standard normal sam-

ples x= (xi)i and applying the transformation z = exp(Lx+ p). We generated the standard

normal distribution samples via Box-Muller transform: given u and u′ two independent

draws of an uniform law U [0,1] then:

x=
√
−2 lnu cos(2πu′)

x′ =
√
−2 lnu sin(2πu′)

Are distributed as independent N (0,1) random variables.

Parameters used. We chose the sample sizes used for each deterministic equivalent problem

(in-sample) to be in S ∈ {0.5,1,2,5,10} ·103 and the sample used for upper bounding (out

of sample) in S ′ ∈
{
(2k)k∈{1,...,10}

}
· 104. The base problem we want to solve is to find

the less risky path between the north-western and the south-eastern corners of each grid

network. We tested CVaRϵ for ϵ∈ {1,5,10,50,90,95,99}%. For the entropic risk measure,

the parameter α has units (like travel time) so we had to carefully choose its values. We

chose a reference path inside the grid network of 15 × 15 nodes with circular highway

and computed the sampled cumulative distribution of the travel time on that path, F (·),

with correlated travel times across edges and a high dispersion factor (c = 2). We then

chose α ∈ F−1 ({0.01,0.05,0.1,0.5,0.9,0.95,0.99}), whose rounded computed values are:

α ∈ {10,15,20,50,200,250,400} [s]. The parameter α captures an absolute risk aversion

and penalizes greatly paths whose random travel time exceeds α. This is why we kept the

same geographical dimensions for the grid networks to keep the same set of parameters for

testing all the instances.
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Experiments. To evaluate the influence of each parameter on the efficiency of the pro-

posed algorithms, we defined a base case and conducted experiments that let varied one

parameter at a time. First, we wanted to compare the computational efficiency of each

solution algorithm on deterministic equivalent problems. We took as a base case the grid

network of 10× 10 nodes with circular highway, presence of correlation, high dispersion

and a sample size of S = 2000. If an algorithm does not reach the optimal solution within

250 minutes, we return the incumbent solution with its respective optimality gap. We then

chose the algorithm with best computational behavior for each risk measure and used it to

solve T = 50 experiments with samples of size S = 2000 with a time limit of 250 minutes

for the whole run and 50 minutes for each deterministic equivalent problem solution. We

computed the stochastic bounds with 95% confidence (i.e. with γ = 0.05).

Risk measure Algorithm Framework Abbreviation

CVaR

Monolithical resolution - CM

Subgradient Algorithm
LP+IP CS/LP+IP

IP CS/IP

Aggregation method
LP+IP CA/LP+IP

IP CA/IP

Entropy
Subgradient algorithm

LP+IP ES/LP+IP
IP ES/IP

Exponential approximation method - EEA

Table 1 Frameworks abbreviations

4.2. Computational results

Deterministic Equivalent problems. In this section, we will present computational results

comparing the efficiency of the different methods we presented earlier. In this goal, we

compared the runtimes and the optimality gaps of the solutions returned by each of the

algorithms over a single deterministic equivalent problem. This determined which method

is most fit to compute stochastic bounds later. In table 2 we show averaged results over

ten random instances for each cell. We see that the monolithic version of CVaR has worse

solution times than the other algorithms, except when there are no correlations. We see

that CA/IP outperforms greatly all the other algorithms in terms of execution time. In the

general correlated case, we can rank - on average - the CVaR algorithms proposed here as

follows: [CA/IP] ⪰ [CA/LP+IP] ⪰ [CS/IP] ⪰ [CS/LP+IP] ⪰ [CM]. For the entropic risk

measure, we can see that ES/IP is always much faster than the other algorithms. EEA

behaves slowly in practice due to the number of iterations needed to find an adequate M ∗
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Param Value CM CA/LP+IP CA/IP CS/LP+IP CS/IP EEA ES/LP+IP ES/IP

Σ
I 59.1 195.6 154.7 1392(8) 1313(10.9) 1658.7(1.8) 1318.7(5.6) 1312.5(4.4)
̸= I 15.3 2.2 1.9 4.2 4.1 1243.7(3.6) 4.35 3.1

c
0.5 10.9 1.8 1.5 2 2 849.1(2.3) 2.1 1.7
2 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1

Shape
+ 13.6 2.2 1.9 6 5 1173.8(2.9) 7 4
× 15.2 2.2 2 6.9 6.6 1287.5(3.3) 9.3 5.7
O 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1

r

5 3.6 0.3 0.1 0.5 0.3 104.9(6.4) 0.3 0.2
7 7.5 0.7 0.4 1.1 0.9 329.6(3.8) 1 0.6
10 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1
13 24.8 4.5 4.4 6.9 6.3 2043.1(5.2) 9.9 8.7
15 33.9 7.7 7.7 10.4 9.9 1890.8(6.3) 17 13.2

S

500 2.1 0.6 0.7 2.4 2.8 156.9(1.9) 4.3 2.7
1000 6 1.3 1.2 3.3 3.7 379(3.6) 2.5 1.9
2000 15.3 2.2 1.9 4.2 4.1 1135.32(3.9) 4.4 3.1
5000 58.3 5 4.2 6.6 6.3 cutoff(2) 12.8 8.3
10000 177.5 9.5 7.7 10.7 9.6 cutoff(7.3) 19.6 10.5

Table 2 Average solution time for different instance parameters (time[s](gap[%]))

and then approximate correctly the exponentials. Furthermore, the optimality gaps are

often strictly positive because there is no guarantee that the stopping criterion ensures

that EEA returns an optimal solution. The cutoff symbol in this table means that for all

the instances tested, the time limit was reached before the stopping criterion is met. On

average, we can rank the Entropy frameworks as follows: [ES/IP] ⪰ [ES/LP+IP] ⪰ [EEA].

In the end, first solving the LP relaxation and then the original problem with the con-

straints generated is always slower. Although the number of iterations is smaller for LP+IP

frameworks, the fact they begin the integer resolution with a larger problem instead of

starting with a small one slows down significantly the algorithm. The correlations have

a great influence over the execution time. Indeed, we designed Σ such that alternating

between both types of streets helps to hedge against variability and thus reduces the opti-

mal region, speeding up the procedure. The correlation also groups several edges together

in their behaviors, having the solver aggregating variables and making branching more

efficiently. As expected, having more dispersion makes the problem harder as we are get-

ting further from an easy expected value minimization problem. The instance parameters

that are the most influential to the solution times are the network size and the number

of samples we used for the SAA. The network size being directly linked to the number of

integer variables, the execution time grows significantly fast with r. In a similar way, each

sample used adds an extra constraint and an extra continuous variable to CVaR problems.

The execution time for CA/IP grows linearly with S. For the entropy, although the number

of samples does not enlarge the problem solved by ES, it does substantially increase the
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solution time. In table 3, we can see once more than CA/IP (ES/IP) is the best scheme for

Param Value CM CA/LP+IP CA/IP CS/LP+IP CS/IP Param Value EEA ES/LP+IP ES/IP

ϵ

0.01 16.6 2.5 2.6 9.7 11.4

α

1000 1733.5 4.2 2.9
0.05 19.9 3.0 2.6 7.0 6.5 1500 1511.5 4.8 3.2
0.1 20.4 3.1 2.6 5.8 4.4 2000 1435 5.5 3.3
0.5 19.3 2.4 1.7 2.3 1.9 5000 1117.2(1) 7.4 5.7
0.9 11.0 1.4 1.4 1.5 1.5 20000 802.1(12.2) 3.8 2.6
0.95 10.2 1.4 1.3 1.4 1.4 25000 728.4(8.3) 2.7 2.0
0.99 9.9 1.3 1.3 1.4 1.4 40000 619.6(5.4) 2.1 1.6

Table 3 Algorithms comparison Vs. risk measure parameters (time[s](gap[%]))

CVaR (Entropy) resolution as we vary the risk measure parameters. In the following we

used these two algorithms to solve the repeated procedure with stochastic bounds compu-

tation. When loosening the risk aversion, we observe that the difficulty lowers significantly

for the less conservative parameters (see figure 6). Indeed, when the parameter changes to

reduce risk aversion the problem to solve tends to a determininistic problem which - in our

particular case - has a particularly nice structure. Nevertheless, we see that for both risk

measures(see figures 6a and 6b) the most difficult problems to solve are not necessarily

the most risk averse. We remark that entropy minimization problems are slightly slower

to solve than CVaR.

0

1

2

3

0 0.2 0.4 0.6 0.8 1.0

CA/IP
CA/LP+IP

(a) CA time [s] Vs. ϵ∈]0,1]

0

2

4

6

8

0 10 20 30 40

ES/IP
ES/LP+IP

(b) ES time [s] Vs. α> 0

Figure 6 Execution time [s] Vs. parameter and LP+IP or IP frameworks.

Stochastic bounds. In this section, we will present computational results comparing the

quality of the solutions returned by the entire SAA framework. We ran the T experiments

for both measures and confirmed that solving the problems without considering correlations

can lead to solutions of poor quality. In table 4 we can see that for a random instance of

the base case, an uncorrelated solution can have a difference of optimality gap between

[17;43]%([5;53]%) when minimizing CVaR(Entropy). In figure 7, we can see that the sample
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Param Value gap[%] co gap[%] unco Param Value gap[%] co gap[%] unco

ϵ

0.01 11.87 46.24

α

1000 68.26 81.04
0.05 4.91 38.78 1500 69.23 87
0.1 4.12 34.53 2000 71.05 86.31
0.5 2.71 29 20000 90.58 96
0.9 1.8 19.28 25000 50.31 93.38
0.95 1.77 19.1 5000 56.92 94.56
0.99 1.75 18.93 40000 13.74 67.66

Table 4 Price of correlation for one instance of the base case.

size S is important for two reasons: it approximates better the original problem, improving

the lower bound and returns better candidate solutions, improving the upper bound. In
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Figure 7 Stochastic optimality bounds Vs. number of samples S.

figure 8, we observe that the risk aversion parameter plays a critical role in the difficulty

of our problem. In particular for the entropy, the gap is high for almost all the values of α

we considered, closing slowly when the risk aversion lowers. For CVaR, the optimality gap

becomes acceptable (< 5%) starting from ϵ⩾ 0.1.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1.0

US′

LS,T

(a) Bounds For CVaR Vs. ϵ∈]0,1]

0

40

80

120

160

0 8 16 24 32 40

US′

LS,T

(b) Bounds for Entropy Vs. α

Figure 8 Stochastic optimality bounds Vs. Risk Aversion parameter

Increasing the sample size S ′ improves (reduces) the quality of the upper bound of

CVaR and is computationally cheap. Nevertheless, for the Entropy the size S ′ of the out
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of sample needed to have accurate upper bounds can be potentially large. For conservative

parameters α, we observe that the upper bound is still unstable for the values of S ′ we

considered. In figure 9, the curve represents the upper bound in function of S ′ and the dots

the contribution of each scenario.
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Figure 9 Example of upper bound for entropy and scenario realizations (cs)⊤ x Vs. S′

We can see jumps in the upper bound curve between - expected - lowering periods. These

jumps appear because the entropic risk measure can be highly sensitive to worst cases. We

can show that we have:

max
s∈{1,...,S′}

(cs)⊤ x−α lnS ′ ⩽ α ln
S′∑
s=1

1

S ′ e
(cs)⊤x

α ⩽ max
s∈{1,...,S′}

(cs)⊤ x

These bounds show that the entropic risk measure highly sensitive to big realizations

(cs)⊤ x. Instead of having a smoothing effect of big values of S ′ we can observe the upper

bound US′ worsening. We ran a couple of small instances with very large out of samples

and could observe that for S ′ ≈ 106 an expected nonincreasing smooth curve appears.

In figure 10a we see an example where the risk averse response (solid) of CVaR1% passes

trough ”highway” edges to hedge against risk, using the negative correlations to its advan-

tage, while the risk neutral (dashed) - minimizing the expected value - passes right where

the mean value is minimal, without taking the volatility of travel times into account.

As such, in figure 10b we can see their respective cumulative distributions obtained with

a large out of sample of size S ′ = 100000. Without surprise, we can notice that the risk

averse path (solid) stochastically dominates the risk neutral one (dashed) in the worst
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(a) Risk averse path Vs. Risk neutral path
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(b) Cumulative distributions of a risk averse path

Vs. risk neutral path.

Figure 10 Comparison of risk averse optimal path for CVaR1% and a risk neutral optimal path

20% of the cases (for both solutions) lowering in a 2% the probability to have a travel

time greater than two minutes. Moreover, the expected travel time of a risk averse traveler

is about 1 minute 41 seconds against 1 minute 38 for the risk neutral traveler, but the

variances are respectively 1 minute 46 seconds for the risk averse traveler and 2 minutes

17 seconds for the risk neutral one.

5. Conclusions

In this work, we developed a complete framework to solve shortest path problems with

uncertainty in the travel times. We developed efficient techniques to solve SAA equivalent

problems for the CVaR and the Entropic risk measures. We extended a result from Espinoza

and Moreno (2014) of linearly constrained CVaR minimization, to any type of feasible

set, be it convex or not. We showed that our algorithms for CVaR minimization return

provably decent solutions within a reasonable CPU time. We empirically saw that Entropic

risk measures could generate prohibitive numerical issues when considering travel time

correlations. Conservative parameters can indeed cause either solving difficulties or the

impossibility to obtain good stochastic bounds. A natural way to tackle the difficulty

inherent to big samples and extend these results to real sized networks could come with

the use of importance sampling methods, where less samples but more representative are

used. In the particular case of CVaR frameworks, some recent works used a smoothing
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technique allowing to use state of the art algorithms to solve CVaR objective continuous

minimization problems. Indeed, the nondifferentiability of CVaR could be the cause of the

slow convergence of the subgradient framework in practice.
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