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Abstract This paper analyzes the use of a constant critical level policy for fast-

moving items where rationing is used to provide differentiated service levels to two

demand classes (high and low priority). Previous work on critical level models, with

either a continuous or periodic review policy, has only considered slow-moving items

with Poisson demand. In this work we consider a continuous review (Q,r,C) policy

with two demand classes that are modeled through continuous distributions and the

service levels are measured by the probability of satisfying the entire demand of each

class during the lead time. We formulate a service level problem as an non-linear

problem with chance constraints for which we optimally solve a relaxation obtaining

a closed form solution that can be computed easily. For instances we tested, compu-

tational results show that our solution approach provide good-quality solutions that

are on average 0.3% from the optimal solution.

Keywords Inventory system · critical level rationing · fast-moving items · service

level · continuous distributed demand · two demand classes

1 Introduction

In the last decades the distribution channels of fast-moving consumer goods (FMCG)

have been concentrated on large retails chains, which demand a large quantity of

items and are therefore in a position to request high service level in terms of prod-

uct availability at the supplier’s expense. In this paper, we consider a supplier of
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fast moving items that serves several customers, including large retails chains, and

is likely to face a stock-out. Given this situation, the supplier would likely prefer to

meet the higher service level requested by the large retail chain to ensure a good re-

lationship with the businesses that most impact the bottom line. This makes a natural

situation where the supplier decides to meet demand with differentiated service lev-

els and segment operationally their customers based on service levels. The simplest

segmentation is to classify customers into two demand classes: (i) High-priority class

that would correspond to large retail chains that require high levels of service and, (ii)

Low-priority class that would represent small retailers that have to settle for a lower

level of service.

An efficient way of providing differentiated service levels is through a critical

level policy. This policy is an inventory control model for rationing inventory between

different classes of customers, where in addition to using the advantage of the pooling

effect (Eppen (1979)), it has the flexibility of providing different service levels to

different customer classes without having to maintain a large inventory for classes

that require less service level than the maximum. This policy can be implemented

for several ordering and review policies. For example, a traditional (Q,r) model is

extended using a critical level policy to a (Q,r,C) inventory model, where Q is the

fixed batch size, r is the reorder point and C := {C1, ...,Cn−1} denote a set of critical

levels for rationing n classes of demand (Nahmias and Demmy (1981); Melchiors

et al (2000); Deshpande et al (2003); Isotupa (2006); Arslan et al (2007); Wang et al

(2013a)), and (S− 1,S) policies are extended to a (S− 1,S,C), where S denotes the

base stock level (Ha (1997a,b, 2000); De Vericourt et al (2000, 2002); Bulut and

Fadiloğlu (2011); Piplani and Liu (2014) for make-to-stock production system, and

Dekker et al (2002, 1998); Möllering and Thonemann (2010); Fadıloğlu and Bulut

(2010); Wang et al (2013b) for lot-for-lot inventory systems).

Let us now consider the implementation of a critical level policy for a supplier

of fast-moving consumer goods. Previous work on critical level policy has only con-

sidered the case of discrete demand, in particular Poisson distributed demand, which

is used to model demand for slow-moving items. For example, items with low in-

ventory turnover such as spare parts whose demand is less frequent. For fast-moving

items it is usually more representative and efficient to model the demand over a time

period with a continuous distribution, e.g., normal or gamma distributions (Peterson

and Silver (1979), Axsäter (2006), Ramaekers and Janssens (2008)). Furthermore,

to the best of our knowledge, there does not exist previous work that implements a

critical level policy when a continuous distribution is used to model the demand of

fast-moving items.

The objective of this paper is to determine the optimal parameters of a constant

critical level (Q,r,C) inventory policy for fast-moving items, where the rationing

is used to provide differentiated service levels to two classes of demand (high and

low priority). Although Bulut and Fadiloğlu (2011) show that a (Q,r,C) policy with

constant threshold value C is not a optimal rationing policy, it is easy to implement

and is still an active area of research.

In this paper, the service level for each demand class is measured by service

level type 1 and to determine the operational characteristics of the inventory system

we use a hitting time approach. We also consider the threshold clearing mechanism



Critical Level Rationing In Inventory Systems With Continuously Distributed Demand 3

of Deshpande et al (2003) to allocate backorders when multiple outstanding orders

exist. The problem assumes a fast-moving item which makes it reasonable to model

the demand over a time period by a continuous distribution with positive support.

Given the inventory control strategy, we formulate a non-linear problem with chance

constraints, denoted (SLP), to determine the parameters of the critical level policy.

We propose to solve a relaxation of (SLP) which is able to provide good bounds.

For strictly increasing non-negative demand, we characterize the optimal solution of

this relaxation through a system of equations. We further extend this solution, under

mild assumptions, when the normal distribution is used as an approximation of the

non-negative demand.

The main contributions in this paper can be summarized as follows: (i) we present

a new critical level inventory model and solution technique when demand is modeled

through continuous distributions, (ii) we develop expressions for the service level

type 1 under rationing and (iii) we provide exact expressions for the steady state

backorders under rationing.

The rest of this paper is structured as follows. A review of related work is dis-

cussed in the next section. In section 3 we describe the context in which the inven-

tory system operates and present the service level problem analyzed in this work. In

section 4 we derive expressions for the approximation using a normal distributed de-

mand. In section 5, we derive the structural properties of the service level constraints

that allow us to find the optimal solution for the relaxation of (SLP). We present our

numerical experiments to evaluate the quality of the proposed solutions in section 6.

Section 7 presents our conclusions and future extensions to this work.

2 Related work

A comprehensive review of inventory rationing can be found at Kleijn and Dekker

(1999) and a classification at Teunter and Haneveld (2008). In particular, Kleijn and

Dekker (1999) classified inventory systems subject to multiple classes of demand

based on the review policy (continuous and periodic) and the number of classes (2 or n

classes). The above classification is extended by Teunter and Haneveld (2008), incor-

porating shortage treatment (backorder or lost sale), rationing policy (no-rationing,

static, dynamic), the ordering policy and the way that the time is modeled (discrete

or continuous).

Our model corresponds to a constant critical level (Q,r,C) policy of continuous

review and demand. In this sense, Nahmias and Demmy (1981) were the first ones

that studied the continuous review policy with two demand classes. They assumed

a (Q,r,C) policy, Poisson demand, full-backorders and deterministic lead time. This

work does not determine the optimal parameters of the critical level policy, but de-

velops an approximate expression for the expected backorder per cycle for both de-

mand classes when there is at most one outstanding order and uses the hitting time to

model the inventory behavior. Melchiors et al (2000) also analyze a (Q,r,C) inven-

tory model, deterministic lead time and two demands classes, but unlike Nahmias and

Demmy (1981), they consider a lost sales environment. In order to determine the op-

timal parameters of the critical level policy these authors propose a cost optimization
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problem and present a numeric procedure for its resolution. They assumed Poisson

demand and used the hitting time and renewal theory to operationally characterize

the inventory system. Isotupa (2006) presents a model with the same assumptions as

Melchiors et al (2000) but with exponentially distributed lead time.

When implementing a continuous review (Q,r,C) critical level policy with full-

backorder, it may happen that the incoming replenishment batch is not large enough

to cover the backorders. Therefore, it is important how the backorders of the different

classes are satisfied. According to Möllering and Thonemann (2010) it is optimal to

fill backorders from high priority classes first when dealing with penalty costs. This

form of clearing the backorders is called priority clearing mechanism. This policy is

difficult to analyze mathematically and given its complexity the literature has focused

on manageable but sub-optimal rules, e.g., the threshold clearing mechanism from

Deshpande et al (2003) and the FCFS type clearing scheme from Arslan et al (2007).

Deshpande et al (2003) analyzed the same rationing model as Nahmias and Demmy

(1981), but without restricting the number of outstanding orders. They derived ex-

pressions for the average backorders per cycle and for the expected steady-state on-

hand inventory and backorder using a state-dependent demand approach. Based on

these expressions, Deshpande et al (2003) proposed a cost optimization model and

developed algorithms to compute the optimal parameters of the critical level policy.

Arslan et al (2007) presents a service level model to obtain the optimal parameters of

a critical level policy with multiple demand classes under the assumptions of Pois-

son demand, deterministic lead time, and a continuous-review (Q,r) policy. Wang

et al (2013a) analyzed the rationing policy under the same operational conditions

than Deshpande et al (2003), but considered a mixed service criteria with penalty

costs and service level constraints (fill-rate). In that work, they show numerically that

the priority clearing mechanism does not always outperform the threshold clearing

mechanism when dealing with service levels constraints.

In certain situations a dynamic rationing policy, which allows the critical level

to change based on the number and ages of outstanding orders, can outperform a

constant critical level policy (Q,r,C). Fadiloglu and Bulut (2010) examine a dynamic

rationing policy, in a continuous review (Q,r) inventory model with Poisson demand

and deterministic lead time. The authors use simulation-based approaches to find

efficient solutions for the cases with backordering and lost sales.

From the literature review conducted only Dekker et al (2002), Arslan et al (2007),

Wang et al (2013b) and Möllering and Thonemann (2010) use a service level problem

approach to determine the optimal parameters of the critical level policy. These four

articles consider the same service level problem: to minimize the expected on-hand

inventory subject to having the service level provided to each class exceed its preset

level. Depending on the operating conditions defined for the inventory system, what

varies is the formulation of the inventory on-hand value and the service level provided

to each class. Dekker et al (2002) analyzed the critical level policy when the inven-

tory system works under a continuous review lot-for-lot policy, lost sales and Poisson

demand. These authors derive expressions for fill-rate and present an efficient method

to obtain optimal solutions. Möllering and Thonemann (2010) analyze a periodic re-

view base-stock policy with two demand classes, deterministic lead time, discrete

demand distribution and full backorder. That work models the inventory system as a
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multidimensional Markov chain and optimally solves a service level problem, based

on a service level of type 1 and another on fill-rate. Wang et al (2013b) analyzed the

same model as Möllering and Thonemann (2010), but considered an anticipated ra-

tioning policy. This policy reserves inventory for the high priority classes considering

a constant critical level and the coming replenishment of the next period.

In summary, previous research on inventory rationing solved periodic or continu-

ous review problems with discrete demand. Therefore, to the best of our knowledge,

there is no constant critical level model for the case of continuous demand distribu-

tion considered in this paper.

3 Service level problem for strictly increasing non-negative demand

Consider a facility that holds inventory of a single type of product to serve two de-

mand classes i = 1,2, where class 1 is high priority and class 2 is low priority. Let

Di(t, t + τ) be the total demand of class i in the interval (t, t + τ], and D(t, t + τ) =
D1(t, t+τ)+D2(t, t +τ) the total demand of both classes in the interval (t, t +τ]. We

denote by FDi(τ)(x) the cumulative distribution function of the total demand of class i

in [0,τ] and FD(τ)(x) the cumulative distribution function of the total demand of both

classes in [0,τ].

In this paper we consider fast-moving items for which is more representative and

efficient to model the demand over a time period by a continuous distribution. Fol-

lowing Zheng (1992) we assume that the total demand of each class are represented

by a nondecreasing stochastic process with continuous sample paths, and station-

ary and independent increments. For simplicity, we will refer to this as strictly in-

creasing non-negative demand. This is a common assumption in stochastic inventory

models (Axsäter (2006)) and is implicitly assumed in most (elementary) textbooks

on inventory management. However, the assumptions of independence and conti-

nuity are conflicting; therefore, rigorously speaking, the assumption is approximate

(Browne and Zipkin (1991)). Note that under stationary and independent increments,

Di(τ) := Di(0,τ) = Di(t, t + τ) for any t ≥ 0, i = 1,2.

Inventory is replenished according to a continuous review (Q,r,C) policy that

operates as follows. When the inventory position falls below a reorder level r, a re-

plenishment order for Q units is placed and arrives a fixed L > 0 time units later.

Demand from both classes are filled as long as the on-hand inventory level is greater

than the critical level C, otherwise only high priority demand is satisfied from in-

ventory on-hand and low priority demand is backordered. If on-hand inventory level

reaches zero both demands are backordered. To clear backlogged orders, we consider

the threshold clearing mechanism of Deshpande et al (2003).

Given the inventory control strategy, our objective is to find the parameters of

the critical level policy that minimize the sum of ordering and holding costs per unit

time subject to satisfying the required service level for each class. In this paper, the

service level is measured by the probability of satisfying the entire demand of each

class during the lead time from on-hand inventory (service level type 1), which does

not depend of the replenishment batch quantity. Let αi(r,C) be the provided service
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level to class i and α i the preset service level for class i, where α1 > α2 > 0. Then,

the service level problem is:

min
Q,r,C

AC(Q,r,C) (1)

s.t: αi(r,C)≥ α i ∀i = 1,2 (2)

r,C ≥ 0. (3)

where AC(Q,r,C) is the average cost per unit time, i.e., the sum of ordering and hold-

ing costs per unit time. To develop expressions for αi(r,C), i = 1,2, and AC(Q,r,C)
we use a hitting time approach as in Nahmias and Demmy (1981) and the threshold

clearing mechanism of Deshpande et al (2003) to allocate backorders when multiple

outstanding orders exist.

The hitting time τx
H,D is defined as the amount of time that elapses until the de-

mand D reaches x for the first time, i.e.,

τx
H,D = inf{τ > 0 | D(τ)> x}. (4)

Since we assume strictly increasing non-negative demand, we have P(τx
H,D ≤

τ) = P(D(τ)≥ x). Therefore, the distribution function of the hitting time τx
H,D, for a

fixed x > 0 is Fx
H,D(τ) = 1−FD(τ)(x), and its density distribution is:

f x
H,D(τ) =−

∂FD(τ)(x)

∂τ
. (5)

Many authors have discussed the hitting time process for strictly increasing non-

negative demand. However, an explicit expression for the density of hitting time is

not possible in many cases. Meerschaert and Scheffler (2008) develop a density for-

mula for the hitting time of any strictly increasing non-negative demand based on the

Laplace transform of the hitting time. Park and Padgett (2005) derived a exact density

distribution of hitting time for a gamma process using the same procedure described

by equation (5).

3.1 Average cost per unit time.

Let µ be the total average demand per unit of time, h be the holding cost per unit and

unit time and S the ordering cost. Then the average cost per unit time is AC(Q,r,C) =
S

µ
Q
+hE(OH(∞)), where OH(∞) is the steady-state on-hand inventory (Axsäter (2006)).

In a (Q,r,C) policy with full-backorders and deterministic lead time, the inven-

tory level is the on-hand inventory net of all backorders, i.e., IL(t +L) =OH(t+L)−
B1(t+L)−B2(t+L), where IL(t+L) denotes the inventory level, OH(t+L) denotes

on-hand inventory and Bi(t +L) denotes class i backorders, i = 1,2, all at time t +L.

Furthermore, for a (Q,r,C) policy with full-backorders and deterministic lead time it

is still valid that IL(t+L) = IP(t)−D(L), where IP(t) denotes the inventory position

at time t (Deshpande et al (2003)). Under strictly increasing non-negative demand,

IP(t) will be uniformly distributed on (r,r +Q] in steady state and independent of
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lead time demand (Zheng (1992) refers to Serfozo and Stidham (1978) and Browne

and Zipkin (1991) for a detailed discussion of this assumption). Then, the on-hand

inventory at time t +L is OH(t +L) = IP(t)−D(L)+B1(t +L)+B2(t +L). Taking

expected value and limit t → ∞, the expected on-hand inventory at steady-state is

E(OH(∞)) = Q
2
+ r−µL+E(B∞

1 (Q,r,C))+E(B∞
2 (Q,r,C)), where E(B∞

i (Q,r,C)) is

the class i steady-state backorder, i = 1,2. Then, the average cost per unit time is:

AC(Q,r,C) = S
µ

Q
+ h

(

Q

2
+ r− µL+E(B∞

1 (Q,r,C))+E(B∞
2 (Q,r,C))

)

(6)

We now develop expressions for the backorders of the low and high priority class

in steady state using a hitting time approach, the inventory position and the thresh-

old clearing mechanism. We first describe how the inventory system behaves under

rationing, and the threshold clearing mechanism of Deshpande et al (2003).

Consider an arbitrary time t + L. By definition, there is rationing at time t + L

when C >OH(t+L)≥ IL(t+L) = IP(t)−D(t, t+L). Using the hitting time τ
IP(t)−C
H,D

defined in equation (4), this last condition states that if there is rationing at t + L

then τ
IP(t)−C
H,D < L. Note that τ

IP(t)−C
H,D corresponds to the time required for IP(t)−C

demands.

Define tc as the first time after t when IP(t)−C demand is observed, that is,

tc = t + τ
IP(t)−C
H,D . If rationing ocurrs at t + L then we have that τ

IP(t)−C
H,D < L. The

threshold clearing mechanism of Deshpande et al (2003) only comes into play when

backorders exist on arrival of a replenishment order and uses tc to separate which

backorders need to be cleared once the replenishment order arrives. The general rules

to clear the backorders when the replenishment order arrives are:

1. If the entering replenishment batch is large enough to clear all the backorders and

leave the on-hand inventory level above C, then clear all backorders,

2. Otherwise:

2.1 Clear all backlogged demand that arrived before tc in the order of arrival

(FCFS),

2.2 Clear any remaining backlogged class 1 demands using FCFS until either all

class 1 backorders are filled, or no on-hand inventory remains,

2.3 Carry over (i.e. continue backlog) all class 2 demands that arrive after tc.

Note that rule 1 ensures that OH(t) = IL(t) when OH(t) ≥ C. Rule 2.2 and 2.3

mean that all remaining backorders that cannot be fulfilled by the entering replenish-

ment batch, are carried over to be satisfied in the following replenishment arrivals.

Using the hitting time definition it easy to show that the backorders of both low-

and high-priority at time t +L , deduced by Deshpande et al (2003), are respectively:

B2(t +L) =

{

D2(L− τ
IP(t)−C

H,D ) if τ
IP(t)−C

H,D < L

0 ∼
(7)

B1(t +L) =

{

D1(L− τ
IP(t)−C
H,D − τC

H,D1
) if τ

IP(t)−C
H,D + τC

H,D1
< L ,

0 ∼
(8)
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where τC
H,D1

= inf{τ > 0 | D1(τ) > C} corresponds to the time required for C de-

mands of class 1. The equivalence between equations (7), (8) and the expressions

developed by Deshpande et al (2003), are given by the fact that: D2(tc, t + L) =

D2(L− τ
IP(t)−C
H,D ) and [D1(tc, t +L)−C]+ = D1(L− τ

IP(t)−C
H,D − τC

H,D1
).

Taking expectation of equations (7) and (8) and conditioning on the inventory po-

sition IP(t), the expected backorders at steady state of class 1 and 2 are respectively:

E(B∞
2 (Q,r,C)) =

µ2

Q

∫ r+Q

r

∫ L

0
(L− τ) f

y−C
H,D (τ)dτdy , (9)

E(B∞
1 (Q,r,C)) =

µ1

Q

∫ r+Q

r

∫ L

0
(L− τ)( f

y−C
H,D ∗ fC

H,D1
)(τ)dτdy , (10)

where: f
y−C
H,D (τ) = − ∂FD(τ)(y−C)

∂τ ; fC
H,D1

(τ) = − ∂FD1(τ)
(C)

∂τ ; and we denote by f
y−C
H,D ∗

fC
H,D1

(τ) =
∫ τ

0 f
y−C
H,D (τ − t) fC

H,D1
(t)dt the convolution of f

y−C
H,D (τ) and fC

H,D1
(τ).

3.2 Service level type I under rationing policy

We now develop expressions for αi(r,C) of class i = 1,2 using the hitting time ap-

proach. We first describe the events to fully meet the demand of each class during the

lead time under strictly increasing non-negative demand.

The conditions to fully meet the demand for class 2 in the lead time, under non-

negative demand, are that: (i) there does not exist rationing, i.e., τr−C
H,D > L, where τr−C

H,D
is defined in equation (4) and corresponds to the time required for r −C demands,

or (ii) rationing occurs and there is no class 2 demand, i.e., τr−C
H,D < L and D2(τ) =

0 , ∀τ ∈ [τr−C
H,D ,L] . Since D2(τ) is defined as strictly increasing non-negative demand,

the probability that rationing occurs and there is no demand of the class 2 during this

period is zero. Therefore, the service level provided to the low priority class is:

α2(r,C) = P(D(L) ≤ r−C) = FD(L)(r−C). (11)

The conditions to fully meet the demand of class 1 in the lead time, under non-

negative demand, are that: (i) rationing does not exist or (ii) rationing occurs and the

class 1 demand during this period not reach the critical level C, i.e., τr−C
H,D < L and

τC
H,D1

≥ L− τr−C
H,D . Therefore, the service level provided to the high priority class is:

α1(r,C) = P(D(L)≤ r−C)+P(D1(L− τr−C
H,D )≤C ∩ τr−C

H,D < L), (12)

because, P(τC
H,D1

> L− τr−C
H,D ∩ τr−C

H,D < L) = P(D1(L− τr−C
H,D ) ≤ C ∩ τr−C

H,D < L).

Conditioning on the hitting time τr−C
H,D , the service level provided to the high priority

class can be expressed as:

α1(r,C) =
∫ L

0
P(D1(L− τ)≤C) f r−C

H,D (τ) dτ +P(D(L)≤ r−C)

=

∫ L

0
P(D1(L− τ)≤C) f r−C

H,D (τ) dτ +α2(r,C). (13)
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Note that equation (13) verifies that α1(r,C)≥ α2(r,C).
Under strictly increasing non-negative demand, the definition of the hitting time

τr−C
H,D implies that reorder point is strictly greater than the critical level, i.e., r >C ≥ 0.

Otherwise the (Q,r,C) policy is not interesting because the provided service level to

low priority class is zero. For example, if r =C ≥ 0 in every lead time exist rationing

and the only possibility to fully meet the demand for class 2 is that there is no class

2 demand during the lead time (in this case the lead time is equal to rationing period

for class 2). Then, under strictly increasing non-negative demand and r = C ≥ 0,

α2(r,r) = P(D2(L) ≤ 0) = 0. In the same way, we can conclude that under strictly

increasing non-negative demand, for any C > r ≥ 0, α2(r,C) = 0. Therefore, in this

paper we will study only the case where r >C ≥ 0.

3.3 Problem formulation

Using equation (11) and (13) we can write the service level problem for strictly in-

creasing non-negative demand, denoted (SLP), as the following optimization prob-

lem.

Problem (SLP):

min
Q,r,C

S
µ

Q
+ h

(

Q

2
+ r− µL+E(B∞

1 (Q,r,C))+E(B∞
2 (Q,r,C))

)

(14)

s.t:

∫ L

0
P(D1(L− τ)≤C) f r−C

H,D (τ) dτ +P(D(L)≤ r−C)≥ α1 (15)

P(D(L)≤ r−C)≥ α2 (16)

r >C ≥ 0, (17)

where E(B∞
1 (Q,r,C)) and E(B∞

2 (Q,r,C)) are given by equations (9) and (10) respec-

tively. We note that the constraint r > C in (17) is implied by constraint (16) for

demand with positive support, as the probability of that demand being less than zero

equals zero and cannot be bigger or equal to α2 > 0. We express this strict inequality

here to remind us of what the feasible region looks like.

4 SLP using normal distribution as approximation of non-negative demand

A common practice in stochastic inventory models is to use the normal distribution as

an approximation of the non-negative demand, i.e., the stochastic inventory models

are formulated based on the characteristics of the non-negative demand and then are

implemented using normal distribution as an approximation. The problem with the

normal distribution is that there is always a small probability of negative demand.

The normal distribution is a good approximation of non negative demand when the

coefficient of variation is less than or equal to 0.5, i.e., CV ≤ 0.5 (Peterson and Silver

(1979)) in which case the probability of being less than 0 is less than 0.0228.

To solve (SLP) using normal distribution as approximation of the non-negative

demand, the expressions that characterize the hitting time τr−C
H,D and τC

H,D1
, and the
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backorders, under normally distributed demand, are required. For this, consider that

each class i has identical and independent normally distributed demand per unit time,

with mean µi > 0 and variance σ2
i > 0, Di(τ)∼N(µiτ,σ

2
i τ), and D(τ)∼N(µτ,σ2τ),

where µ = µ1+µ2 and σ2 =σ2
1 +σ2

2 . Following equation (5), the density distribution

of the hitting time τr−C
H,D under normally distributed demand is:

f r−C
H,D (τ) =

(

r−C+ µτ

2τ

)

1

σ
√

τ
ϕ

(

r−C− µτ

σ
√

τ

)

, (18)

where ϕ(x) is the density function of the standard normal distribution. In the same

way, the density distribution of the hitting time τC
H,D1

under normally distributed de-

mand is:

fC
H,D1

(τ) =

(

C+ µ1τ

2τ

)

1

σ1

√
τ

ϕ

(

C− µ1τ

σ1

√
τ

)

.

Then, the expected backorders in steady state given by equations (9) and (10)

under normally distributed demand become:

E(B∞
2 (Q,r,C)) =

µ2

Q

∫ L

0

(

G

(

r−C− µτ

σ
√

τ

)

−G

(

r+Q−C− µτ

σ
√

τ

))

σ
√

τdτ ,

(19)

E(B∞
1 (Q,r,C))=

µ1

Q

∫ L

0

∫ L

t
fC
H,D1

(t)

(

G

(

r−C− µ(τ − t)

σ
√

τ − t

)

−G

(

r+Q−C− µ(τ − t)

σ
√

τ − t

))

σ
√

τ − t dτdt

(20)

where G(x) =
∫ ∞

x (v− x)ϕ(v)dv = ϕ(x)− x(1−Φ(x))) is the loss function (Axsäter

(2006)) and Φ(x) is the distribution function of the standard normal distribution.

5 Solution approach

Consider the following relaxation of (SLP), obtained by dropping the expected back-

order expressions:

Problem (RSLP):

min
Q,r,C

S
µ

Q
+ h

(

Q

2
+ r− µL

)

(21)

s.t: (15),(16),(17).

It is easy to show that (RSLP) is a relaxation of (SLP) because the objective

function of the (RSLP) is less than or equal to the objective function of (SLP) and the

feasible region is the same. Therefore, the optimal solution of the problem (RSLP)
is a lower bound (LB) of problem (SLP). Also, if we solve (RSLP), and then use the

resulting parameters (Q,r,C) to evaluate the objective function of (SLP) we obtain a

feasible solution and, hence, an upper bound (UB) for the problem (SLP). Thus, we

have a method that gives a lower bound and an upper bound of the original problem.

Note that (RSLP) is separable in two sub-problems. The first sub problem min-

imizes S
µ
Q
+ h Q

2
without constraints on Q and gives the replenishment batch Q =



Critical Level Rationing In Inventory Systems With Continuously Distributed Demand 11

√

2µS
h

that corresponds to the EOQ problem and the second sub problem, denoted

(SLP0), is

Problem (SLP0):

min
r,C

r (22)

s.t: (15),(16),(17).

Therefore, the service level problem reduces to determining the optimal reorder

point and critical level (r,C) that minimize the reorder point r subject to satisfying

the required service levels.

To determine the optimal parameters of (SLP0) we take advantage of the structure

of the constraints (15), (16) and (17). From these constraints we derive structural

properties that are necessary to obtain the exact solution to the (SLP0) problem.

Proposition 1 α2(r,C) is increasing in r and decreasing in C and only depends on

(r−C).

Proof From equation (11) we have α2(r,C) = FD(L)(r−C). The result follows since

the distribution function is a monotonically increasing function. ⊓⊔

The main consequence of proposition 1 is that, given a reorder point r, the maxi-

mum service level provided to the low priority class is α2(r,0).

5.1 Solution characterization for (SLP0): increasing non-negative demand

For any strictly increasing non-negative demand that represent the total demand of

class i, with i = 1,2, we obtain the following structural properties.

Proposition 2 If D1(τ) is a strictly increasing non-negative demand, then α1(r,C) is

increasing in r and C. (Proof. A)

The main consequence of proposition 2 is that, given a reorder point r, the minimum

service level provided to high priority class is α1(r,0).
Let r0

i be the minimum reorder point r such that the service level provided to the

class i, given a critical level C = 0, is greater than or equal to his preset service level

α i, i.e., r0
i = min{r | αi(r,0)≥ α i}, with i = 1,2. Since functions αi(r,0) for i = 1,2

are increasing in r, from propositions 1 and 2, we have that r0
i solves αi(r,0) = α i for

i = 1,2. In particular this gives

r0
2 = F−1

D(L)(α2). (23)

Furthermore, from equation (13) we have that α1(r,0) = α2(r,0) for any r ≥ 0,

because FD1(τ)(0) = 0 for any τ > 0. Then, since α1(r
0
1,0) = α1 > α2 = α2(r

0
2,0) =

α1(r
0
2 ,0), and α1(r,0) is increasing in r we conclude that 0 < r0

2 < r0
1 for any α2 > 0.

Using proposition 1 and 2 we propose the following general solution for the

(SLP0) problem.
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Proposition 3 If Di(τ), with i = 1,2, are strictly increasing non-negative demand

and α2 > 0, then the optimal parameters of the critical level policy are obtained from

the equation system formed by α1(r,C) = α1 and α2(r,C) = α2, i.e.,

r∗−C∗ = F−1
D(L)(α2), (24)

∫ L

0
P(D1(L− τ)≤C∗) f r∗−C∗

H,D (τ) dτ = α1 −α2, (25)

and the service levels provided to each class are equal to their preset levels, i.e.,

αi(r
∗,C∗) = α i, i = 1,2.

Proof Let C2(r) be the maximum critical level, given a reorder point r, that ensures

a service level α2, i.e., C2(r) = max{C | α2(r,C) ≥ α2}. From proposition 1 we can

derive that C2(r) is solution of α2(r,C) = α2. Then, C2(r) = r−F−1
D(L)(α2) = r− r0

2,

i.e., C2(r) is increasing and linear in r. Note that, C2(r) < r for any α2 > 0. In the

same way we define C1(r) as the minimum critical level, given a reorder point r, that

ensures a service level α1, i.e., C1(r) = min{C | α1(r,C) ≥ α1}. From proposition 2

we obtain that C1(r) is solution of α1(r,C)=α1 and that C1(r) is strictly decreasing in

r. Once C1(r) and C2(r) are defined, the feasible region of (SLP0) problem where all

(r,C) satisfy that α1(r,C)≥ α1, α2(r,C)≥ α2 > 0, and r >C ≥ 0, is the intersection

of the areas above C1(r) and below C2(r). The feasible region is shown in figure 1.

b

C
C2(r)

C1(r)

r0
2 r0

1
rr∗

C∗

r =C

Feasible
Region

Fig. 1: Feasible region of SLP0 problem and α2 > 0.

The figure 1 shows that the optimal reorder point r∗ of (SLP0) problem occurs

when C2(r) = C1(r) = C∗. Therefore, the optimal parameters of the critical level

policy are obtained from the equation system formed by α1(r,C) =α1 and α2(r,C) =
α2, and the presets service levels are satisfied exactly. Note that the existence of an

r such that C∗ = C2(r) = C1(r) is guaranteed, because 0 < r0
2 < r0

1 as shown above,

C1(r) is strictly decreasing and continuous in r, C1(r
0
1) = 0, and from equation (12)

we obtain that there exists an r > 0 such that C1(r) = r > 0 for any α1 > 0. The

argument is complete noting that C2(r) = r− r0
2 < r is linear and increasing in r. ⊓⊔
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Some consequences of the above proof are: (i) the optimal reorder point r∗ is

strictly greater than the optimal critical level C∗ because r0
2 > 0 when α2 > 0, there-

fore, the constraint (17) may be replaced by: r,C ≥ 0; and (ii) the optimal critical

level is strictly greater than zero, i.e., C∗ > 0, because r0
2 < r0

1 .

Proposition 3 provides a general solution for (SLP0) when Di(τ) of class i = 1,2,

are represented with strictly increasing non-negative demand, and α2 > 0. Solving

for the optimal solution remains challenging in general, as equations (24)-(25) have

to be solved numerically and include the distribution function of D(L) and the density

function of τr−C
H,D which have to be derived from the input.

5.2 Solution characterization for (SLP0): normally distributed demand

Recall that we use the normal distribution as approximation of the non-negative de-

mand. Under normally distributed demand we obtain the following structural proper-

ties.

Proposition 4 Under normally distributed demand, the function α1(r,C) is strictly

increasing in r for any 0 ≤C < r.

Proof Using equation (13), the service level provided to the high priority class using

normal distribution can be write as:

α1(r,C) =

∫ L

0

{

∫

C−µ1(L−τ)

σ1
√

L−τ

−∞
ϕ(x)dx

}

f r−C
H,D (τ) dτ +P(D(L)≤ r−C)

and changing the order of integration we have:

α1(r,C) =

∫ ∞

C−µ1L

σ1

√
L

{

∫ L

τ(x)
f r−C
H,D (τ)dτ

}

ϕ(x)dx+

∫

C−µ1L

σ1

√
L

−∞

{

∫ L

0
f r−C
H,D (τ)dτ

}

ϕ(x)dx+P(D(L)≤ r−C)

=

∫ ∞

C−µ1L

σ1

√
L

{P(D(τ(x)) ≤ r−C)−P(D(L)≤ r−C)}ϕ(x)dx

+

∫

C−µ1L

σ1

√
L

−∞
{1−P(D(L)≤ r−C)}ϕ(x)dx+P(D(L)≤ r−C)

=

∫ ∞

C−µ1L

σ1

√
L

P(D(τ(x)) ≤ r−C)ϕ(x)dx+

∫

C−µ1L

σ1

√
L

−∞
ϕ(x)dx

=
∫ ∞

C−µ1L

σ1

√
L

P(D(τ(x)) ≤ r−C)ϕ(x)dx+P(D1(L)≤C),

where τ(x) is obtained from: xσ1

√
L− τ =C−µ1(L−τ). Although τ(x) is the result

of a quadratic equation, the proof remains valid. ⊓⊔
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Under normally distributed demand there is always a probability for negative de-

mand. This fact makes it difficult to prove that α1(r,C) is increasing in C for any

r > C ≥ 0, as we have for strictly increasing non-negative demand. We provide the

expression for
∂α1(r,C)

∂C
in (31) in the appendix. Our numerical computations however

have shown that such monotonicity of α1(r,C) with respect to C exists for large val-

ues of the reorder point r. We therefore make this monotonicity an assumption, which

we validate with computational results in section 6.

Assumption 1 Assume normally distributed demand and let r̂1 be the solution of

α1(r̂1,0) = 0.5. Then, for any r ≥ r̂1 the function α1(r,C) is an increasing function

of C in the interval C ∈ [0,r).

The main consequence of assumption 1 is that, given a reorder point r ≥ r̂1, the

minimum service level provided to high priority class is α1(r,0).
From proposition 4 we derived that r0

1 is solution of α1(r,0) = α1 and under nor-

mally distributed demand we can obtain from equation (13) that α1(r,0) > α2(r,0)
for any finite r ≥ 0. Then, as αi(r,0) is increasing in r, with i = 1,2, we infer that the

relationship between r0
2 and r0

1 depends on the difference α1−α2. Thus, we have two

cases: (1) r0
2 < r0

1 if α1−α2 is large enough; or (2) r0
2 > r0

1 if α1−α2 is small. A sim-

ple way to discriminate if we are in case 1 or 2 is to evaluate numerically α1(r
0
2, 0).

Then, if α1(r
0
2 , 0) < α1, we are in case 1, otherwise, we are in case 2. The method

proposed in this paper to solve the (SLP0) problem using normally distributed de-

mand, depends on which case occurs. Note that under normally distributed demand

r0
2 = F−1

D(L)(α2) = µL+ zα2
σ
√

L ≥ µL > 0 if α2 ≥ 0.5, where zα2
is the inverse stan-

dard normal distribution for a preset service level α2.

Using proposition 4 and assumption 1 we propose the following solution for

the (SLP0) problem using normally distributed demand as approximation of non-

negative demand.

Proposition 5 Under normally distributed demand, the assumption 1 and α2 ∈ [0.5,1),
the optimal parameters of the critical level policy are obtained from the following

system of equations:

(a) If α1(r
0
2 ,0)< α1:

r∗−C∗ = µL+ zα2
σ
√

L, (26)

∫ L

0
P(D1(L− τ)≤C∗) f r∗−C∗

H,D (τ) dτ = α1 −α2, (27)

and the service levels provided to each class are equal to their preset levels, i.e.,

αi(r
∗,C∗) = α i, i = 1,2.

(b) If α1(r
0
2 ,0)≥ α1:

C∗ = 0, (28)

r∗ = µL+ zα2
σ
√

L, (29)

and service levels provided to each class are: α1(r
∗,0)≥ α1 and α2(r

∗,0) = α2

for high and low priority class respectively.
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Proof Under normally distributed demand, C2(r) = r− r0
2 = r−µL− zα2

σ
√

L, and

continues to be increasing and linear in r. On the other hand, from proposition 4

we can obtain that C1(r) is solution of α1(r,C) = α1 and under assumption 1 we

can conclude that C1(r) is strictly decreasing in r at least from some r > C ≥ r̂1

until r ≤ r0
1 . Then, under normally distributed demand, the feasible region of (SLP0)

problem using normally distributed demand where all (r,C) satisfy that α1(r,C)≥α1,

α2(r,C)≥ α2, with α2 ∈ [0.5,1), and r >C ≥ 0, is the same as defined for the proof

of proposition 3, but in this case, it can take two different forms, shown in figure

2. If α1(r
0
2 ,0) < α1, then r0

2 < r0
1 which induces the first feasible regions shown in

figure (2a) when α2 ∈ [0.5,1). If α1(r
0
2,0)≥α1, then r0

2 > r0
1 , which induces a second

feasible region shown in figure (2b) when α2 ∈ [0.5,1). Note that r0
2 ≥ µL > r̂1 when

α2 ∈ [0.5,1).

b

C2(r)

C1(r)

r0
2 r0

1r̂1 rr∗

C∗

C

r =C

Feasible
Region

(a) α1(r
0
2, 0)< α1 and α2 ∈ [0.5,1)

C2(r)

C1(r)

r0
2r0

1r̂1 r

C

r =C

Feasible
Region

(b) α1(r
0
2 , 0)≥ α1 and α2 ∈ [0.5,1)

Fig. 2: Feasible regions for SLP0 problem using normally distributed demand and

α2 ∈ [0.5,1)

The figure (2a) shows that the optimal reorder point r∗ of the (SLP0) problem

using normally distributed demand occurs when C2(r) = C1(r) =C∗. Therefore, the

optimal parameters of the critical level policy are obtained from the equation system

formed by α1(r,C) = α1 and α2(r,C) = α2. From figure (2b) we conclude that the

minimum reorder point that guarantees a service level α1 provided to high priority

class and a service level α2 provided to the low priority class is r0
2 . Therefore, r∗ =

r0
2 = µL+ zα2

σ
√

L and C∗ = 0. ⊓⊔
Some consequences of the above proof are: (i) given equation (26), the equation

(27) only depends on C∗; (ii) if α1(r
0
2,0) < α1, then r0

2 is a lower bound of (SLP0)

problem using normally distributed demand when α2 ∈ [0.5,1); (iii) if α1(r
0
2,0)<α1

and α2 ∈ [0.5,1), then r∗ >C∗, because r0
2 ≥ µL > 0, therefore, constraint (17) may

be replaced by: r,C ≥ 0; and (iv) if α1(r
0
2,0) < α1 and α2 ∈ [0.5,1), then C∗ > 0,

because 0 < r0
2 < r0

1 when α2 ∈ [0.5,1).
The proposition 5 is a general solution for the (SLP0) problem using normally

distributed demand under assumption 1 and α2 ∈ [0.5,1). On the other hand, similar
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to the general solution in the case with demands with non-negative support, it can be

difficult to compute the critical level C∗ from equation (27).

The following results compare the reorder point induced by the critical level pol-

icy with the reorder point induced by the round-up policy and separate stock policy.

Let ru be the reorder point induce by the round-up policy and rs be the reorder point

induced by the separate stock policy. The reorder point of the round-up policy is

obtained from FD(L)(ru) = α1 and the reorder point of the separate-stock policy is

obtained from rs = rs
1 + rs

2, where rs
1 is solution of FD1(L)(r

s
1) = α1 and rs

2 is solution

of FD2(L)(r
s
2) = α2. Under normally distributed demand, ru = µL + zα1

σ
√

L, and

rs = µL+ zα1
σ1

√
L+ zα2

σ2

√
L, where zα1

is the inverse standard normal distribu-

tion for a preset service level α1. Note that, under normal distributed demand, ru ≤ rs

if zα1
≤ zα2

σ2
σ−σ1

and that
σ2

σ−σ1
> 1.

Proposition 6 Under normally distributed demand, the assumption 1 and α2 ∈ [0.5,1),
the optimal reorder point of the critical level policy is strictly less than the reorder

point induced by the round-up policy, i.e., r∗ < ru, and strictly less than the reorder

point induced by the separate stock policy, i.e., r∗ < rs, when α1(r
0
2, 0)≥ α1,

Proof From equation (13) we note that α1(ru,0) > α1 because we assume that the

lead time and the parameters of the demand per unit time of both classes are finite and

α1 < 1. From propositions 5(a) we obtained that α1(r
∗,C∗) = α1 and r∗ > C∗, and

from assumption 1 we derive that α1(r
∗,C∗) = α1 ≥ α1(r

∗,0). Therefore, it holds

that α1(ru,0)> α1 ≥ α1(r
∗,0) and from proposition 4 we conclude that ru > r∗. On

the other hand, from proposition 5(b) we obtained that α2(r
∗,0) = FD(L)(r

∗) = α2.

By definition, α1 > α2, then FD(L)(ru)> FD(L)(r
∗), and we conclude that ru > r∗.

Following similar logic to compare the optimal reorder point of the critical level

policy with respect to the reorder point induced by the separate stock policy, from

proposition 5(b) we obtain that r∗ = µL+ zα2
σ
√

L. Since α1 > α2, we conclude that

r∗ < rs from the triangle inequality. ⊓⊔

Unfortunately, we have not found a simple proof that the reorder point induced

by the critical level policy is strictly less than the reorder point induced by separate

stock policy when α1(r
0
2 , 0)<α1 and α2 ∈ [0.5,1). The derivation requires checking

that
∫ L

0
P

(

D1(L− τ)≤ zα1
σ1

√
L+ zα2

σ2

√
L− zα2

σ
√

L
)

f
r0
2−0

H,D (τ) ∂τ > α1 −α2 ,

(30)

which is not much different from solving the system of equations (26)-(27) and seeing

if r∗ < rs.

6 Computational study

In this section, we present our numerical study and its results. The main objective

of the computational study is to show how good is the performance of our solution

approach, compared the critical level policy with the separate stock and round-up

policies and provide numerical evidence to validate assumption 1.
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For simplicity, we use normally distributed demand as an approximation to the

non-negative demand, solving RSLP, from which we obtain a lower bound of SLP.

Let (Q∗,r∗,C∗) be the optimal critical level policy controls of RSLP; ACRSLP(Q
∗,r∗,C∗)

be the objective function of RSLP; and ACSLP(Q
∗,r∗,C∗) be the objective func-

tion of SLP given the optimal critical level policy controls of RSLP. Note that

ACRSLP(Q
∗,r∗,C∗) = LB, ACSLP(Q

∗,r∗,C∗) =UB and UB > LB. In order to evaluate

the performance of our solution, we carried out several test problems and computed

the percentage of optimality gap, Gap(%), expressed as 100× (UB−LB)/LB.

Recall that RSLP is separable in the EOQ and SLP0 problems. Then, for each

test problem we determine the replenishment batch solving the EOQ model, i.e., Q∗ =
√

2µS/h, and the reorder point r∗ and the optimal critical level C∗ solving the system

of non-linear equations given in proposition 5.

The equation systems of proposition 5 were programmed by a C code using Brent-

Dekker method. Backorders in the steady state given by equations (19) and (20) were

also programmed in C code, like the numerical experiments to validate assumption 1.

All test were carried on a PC with Intel Core i7 2.3 GHz processor and 16 GB RAM.

The time to compute the parameters of the critical level policy are on average 0.0011

seconds and in the worst case 0.0019 seconds.

6.1 Experimental result for (SLP) problem using normally distributed demand

In order to cover a wide range of data, we design a set of 10 experiments to evaluate

the performance of our solution approach and to compare the critical level policy

with the separate stock and round-up policies. In each experiment we fix the preset

service levels α1 and α2, and consider a base case with the following parameters:

normal demand distributions with mean µ1 = µ2 = 25 and coefficient of variation

CV1 =CV2 = 0.2 (σ2
1 = σ2

2 = 25), lead time L = 5, ordering cost S = 300 and holding

cost per unit and unit time h = 0.75. We conduct experiments studying the sensitivity

of the solutions to changing parameters CVi, µi, S, and h. This gives a total of 135

experiments for each setting of the preset service levels.

Our numerical results show that our solution approach is able to provide good-

quality solutions that are on average 0.3% and at worst 7.8% from the optimal solu-

tion. Table 1 show the average and maximum relative gap over 45 instances for the

ten settings of preset service levels and different values of S.

Table 1 shows that the maximum relative gap occurs when there is maximum

difference between the preset service levels and the ordering cost is minimal (S =
100). As an example, table 2 shows the relative optimality gap for the 135 problems

of the experiment: α1 = 0.975 and α2 = 0.75.

The pattern of behavior of the relative optimality gap observed in table 2 is re-

peated for all ten experiments, i.e., the relative gap is decreasing in S and increasing in

h. The maximum gap occurs when class 2 dominates on mean and variance (µ2 = 100

and CV2 = 0.6), the ordering cost is minimal (S = 100) and the holding cost per unit

and unit time is maximum (h = 1.25). Note that we obtain Q from EOQ problem,

therefore, for a low ordering cost and high holding cost per unit and unit time, we

hope a low batch size. Then, for a low batch size and domain of low priority class in
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Gap(%)

S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max

0.975 0.55 1.37 7.81 0.55 3.36 0.35 2.15

0.975 0.65 0.81 4.39 0.33 1.95 0.21 1.26

0.975 0.75 0.44 2.26 0.18 1.02 0.12 0.67

0.975 0.85 0.19 0.93 0.08 0.43 0.05 0.28

0.975 0.95 0.05 0.18 0.02 0.09 0.01 0.06

0.800 0.75 0.87 3.03 0.34 1.32 0.22 0.85

0.850 0.75 0.70 2.80 0.28 1.22 0.18 0.79

0.900 0.75 0.58 2.59 0.23 1.14 0.15 0.74

0.950 0.75 0.48 2.38 0.20 1.06 0.13 0.69

0.999 0.75 0.38 2.04 0.16 0.93 0.10 0.61

Table 1: Optimality Gap(%) between lower and upper bounds

Gap(%)

µ1 = 100,µ2 = 25 µ1 = µ2 = 25 µ1 = 25,µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 0.03 0.01 0.01 0.02 0.01 0.00 0.11 0.04 0.02

0.75 0.07 0.03 0.02 0.06 0.02 0.01 0.29 0.11 0.06

1.25 0.11 0.04 0.03 0.09 0.03 0.02 0.46 0.17 0.11

0.4 0.4 0.25 0.09 0.03 0.02 0.07 0.03 0.02 0.35 0.13 0.08

0.75 0.21 0.09 0.06 0.19 0.07 0.04 0.91 0.35 0.22

1.25 0.30 0.13 0.09 0.29 0.11 0.07 1.36 0.55 0.35

0.6 0.6 0.25 0.16 0.06 0.04 0.14 0.05 0.03 0.67 0.25 0.16

0.75 0.35 0.16 0.10 0.36 0.14 0.09 1.60 0.67 0.43

1.25 0.48 0.23 0.16 0.53 0.22 0.14 2.26 1.02 0.67

0.6 0.2 0.25 0.15 0.06 0.04 0.09 0.03 0.02 0.15 0.05 0.03

0.75 0.34 0.15 0.10 0.22 0.09 0.05 0.40 0.15 0.09

1.25 0.46 0.22 0.15 0.34 0.14 0.09 0.62 0.24 0.15

0.2 0.6 0.25 0.04 0.01 0.01 0.09 0.03 0.02 0.65 0.24 0.15

0.75 0.10 0.04 0.02 0.23 0.09 0.05 1.57 0.65 0.41

1.25 0.15 0.06 0.04 0.35 0.14 0.09 2.23 0.99 0.65

Table 2: Optimality Gap(%) when α1 = 0.975 and α2 = 0.75

mean and variance, we expected high backorders class 2 for the critical level policy.

Since our solution approach is based on a relaxation which despises backorders of

class 2, we expect a high gap between lower and upper bound when the parameters

induce high backorders of class 2.

In the next set of results we compare the efficiency of the critical level policy

obtained with the proposed approach against the separate stock and round-up policies.

For every one of the 135 problem parameters considered above and ten preset service

levels settings, we determine the three different policies and compute for each the

operational costs. As we expected, the critical level policy outperformed both the

separate stock and round-up policies in the 1350 problems considered. Table 3 shows

the average and maximum relative benefit of the critical level policy with respect

to the round-up and separate stock for the 10 settings of preset service levels and

different values of S.

Table 3 shows that in all experiments, the average relative benefit is greater with

respect to the separate stock policy, but the maximum relative benefit is reached when

comparing against the round-up policy. We also note that the relative benefit to the

round-up is more sensitive and, by contrast, using two separate lot sizes and two

separate reorder points causes a more homogeneous benefit. The maximum relative

benefit, with respect to round-up or separate stock policies, occurs when there is max-

imum difference between the preset service levels and the ordering cost is minimal
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Benefit (%) vs Round-up

S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max

0.975 0.55 18.27 46.88 13.45 38.43 11.34 34.07

0.975 0.65 16.01 41.10 11.73 33.44 9.87 29.57

0.975 0.75 13.38 34.16 9.76 27.62 8.20 24.36

0.975 0.85 9.96 24.95 7.24 20.06 6.08 17.65

0.975 0.95 4.04 8.97 2.93 7.19 2.46 6.33

0.800 0.75 3.74 8.08 2.52 5.90 2.04 4.96

0.850 0.75 5.89 14.07 4.04 10.63 3.30 9.07

0.900 0.75 8.24 20.45 5.77 15.84 4.76 13.68

0.950 0.75 11.21 28.41 8.04 22.53 6.70 19.68

0.999 0.75 19.63 48.15 15.02 40.94 13.03 37.06

Benefit (%) vs Separate stock

S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max

0.975 0.55 24.56 32.43 25.27 31.08 25.53 30.79

0.975 0.65 24.55 31.65 25.24 30.62 25.51 30.40

0.975 0.75 24.55 30.79 25.22 30.09 25.49 29.96

0.975 0.85 24.56 29.77 25.21 29.43 25.47 29.41

0.975 0.95 24.61 30.10 25.20 29.88 25.45 29.78

0.800 0.75 26.28 31.21 26.43 30.52 26.49 30.28

0.850 0.75 25.99 30.82 26.23 30.29 26.32 30.09

0.900 0.75 25.59 30.38 25.96 30.04 26.10 29.91

0.950 0.75 25.02 30.45 25.56 30.11 25.77 29.97

0.999 0.75 22.97 32.14 24.05 30.18 23.67 24.67

Table 3: Benefit of the critical level vs. Round-up and Separate stock policies

(S = 100). As an example, table 4 shows the relative benefit regarding round-up and

separate stock for the 135 problems of the experiment: α1 = 0.975 and α2 = 0.75.

The pattern of the maximum relative benefit regarding round-up policy, observed

in table 4, is repeated for all ten experiments, i.e., the maximum benefit occurs when

the class 2 dominates on mean and variance (µ2 = 100, CV2 = 0.6), the ordering

cost is minimal (S = 100) and the holding cost per unit and unit time is maximum

(h = 1.25). Clearly, the round-up policy is highly inefficient when the class 2 domi-

nates mean and variance, because under this situation, this policy provides too much

inventory to the low priority class causing a high reorder point and therefore a high

cost. On the other hand, when ordering cost is low and holding cost per unit and unit

time is high, batch sizes are small and the expected backorder increases. We observe

that the expected backorders induced by the critical level are greater than those in-

duced by the round-up policy, but its effect on cost is relatively low compared with

the effect of the reorder point. Note that, as Deshpande et al (2003) observed, the

relative benefit regarding Round-up is decreasing in S.

Finally, we analyze how the preset service levels impact the total cost. From equa-

tions (26) and (27) we conclude that increasing the preset service level of the high

priority class causes the optimal critical level C∗ and reorder point r∗ to increase.

Consequently, we expect an increase in the holding and total costs. In the same way,

we conclude from equations (26) and (27) that increasing the preset service level of

the low priority class causes the optimal reorder point to increase and the optimal

critical level to decrease. Therefor, we expect an increase in the holding cost per unit

time, but smaller than when α1 increases. Table 5 shows how ACSLP(Q
∗,r∗,C∗) in-
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Benefit(%) vs Round-up

µ1 = 100,µ2 = 25 µ1 = µ2 = 25 µ1 = 25,µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 2.97 1.90 1.52 4.33 2.65 2.10 11.59 7.41 5.93

0.75 4.40 2.97 2.43 6.80 4.33 3.46 17.17 11.59 9.47

1.25 5.16 3.59 2.97 8.26 5.37 4.33 20.14 14.02 11.59

0.4 0.4 0.25 4.93 3.38 2.78 7.53 4.84 3.89 18.87 12.95 10.64

0.75 6.67 4.93 4.17 11.04 7.53 6.17 25.54 18.87 15.97

1.25 7.48 5.73 4.93 12.89 9.07 7.53 28.60 21.93 18.87

0.6 0.6 0.25 6.32 4.57 3.84 9.98 6.69 5.45 23.83 17.24 14.47

0.75 8.09 6.32 5.49 13.91 9.98 8.35 30.43 23.83 20.70

1.25 8.83 7.16 6.32 15.80 11.75 9.98 33.21 26.97 23.83

0.6 0.2 0.25 6.04 4.35 3.65 7.36 4.79 3.86 12.48 8.12 6.54

0.75 7.75 6.04 5.24 10.65 7.36 6.07 18.06 12.48 10.28

1.25 8.48 6.85 6.04 12.34 8.82 7.36 20.91 14.95 12.48

0.2 0.6 0.25 3.76 2.44 1.97 9.15 5.95 4.79 24.36 17.55 14.71

0.75 5.45 3.76 3.10 13.25 9.15 7.53 31.24 24.36 21.12

1.25 6.31 4.50 3.76 15.37 10.96 9.15 34.16 27.62 24.36

Benefit(%) vs Separate stock

µ1 = 100,µ2 = 25 µ1 = µ2 = 25 µ1 = 25,µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 24.06 24.59 24.77 29.25 29.27 29.27 24.62 24.95 25.06

0.75 23.32 24.06 24.33 29.23 29.25 29.26 24.12 24.62 24.79

1.25 22.89 23.75 24.06 29.21 29.24 29.25 23.81 24.41 24.62

0.4 0.4 0.25 23.17 23.94 24.23 29.16 29.21 29.23 23.99 24.53 24.71

0.75 22.20 23.17 23.56 29.10 29.16 29.19 23.28 23.99 24.26

1.25 21.71 22.74 23.17 29.07 29.14 29.16 22.90 23.68 23.99

0.6 0.6 0.25 22.56 23.45 23.80 29.06 29.14 29.17 23.54 24.18 24.42

0.75 21.56 22.56 23.00 28.98 29.06 29.10 22.79 23.54 23.86

1.25 21.10 22.10 22.56 28.94 29.02 29.06 22.42 23.20 23.54

0.6 0.2 0.25 21.56 22.79 23.26 29.96 29.73 29.64 28.43 27.33 26.95

0.75 20.12 21.56 22.16 30.25 29.96 29.84 29.95 28.43 27.87

1.25 19.43 20.90 21.56 30.39 30.09 29.96 30.79 29.09 28.43

0.2 0.6 0.25 23.42 24.16 24.42 25.40 26.89 27.39 18.93 21.27 22.10

0.75 22.46 23.42 23.79 23.25 25.40 26.16 15.88 18.93 20.11

1.25 21.96 23.00 23.42 22.03 24.48 25.40 14.27 17.59 18.93

Table 4: Benefit(%) vs. Round-up and Separate stock when α1 = 0.975 and α2 = 0.75

creases, for different input parameters, when α2 = 0.75 and the preset service level

of the high priority class increase from α1 = 0.975 to α1 = 0.999.

Increase (%) the total cost

µ1 = 100,µ2 = 25 µ1 = µ2 = 25 µ1 = 25,µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 10.06 6.59 5.32 4.28 2.62 2.07 2.98 1.83 1.45

0.75 14.47 10.06 8.32 6.75 4.28 3.42 4.65 2.98 2.39

1.25 16.72 12.01 10.06 8.20 5.32 4.28 5.62 3.69 2.98

0.4 0.4 0.25 16.22 11.51 9.59 7.96 5.12 4.11 5.37 3.48 2.80

0.75 21.24 16.22 13.95 11.71 7.96 6.52 7.79 5.37 4.42

1.25 23.47 18.56 16.22 13.70 9.60 7.96 9.04 6.44 5.37

0.6 0.6 0.25 20.36 15.26 13.02 11.03 7.39 6.02 7.29 4.94 4.04

0.75 25.21 20.36 17.98 15.41 11.03 9.22 10.02 7.29 6.13

1.25 27.19 22.69 20.36 17.54 13.00 11.03 11.30 8.53 7.29

0.6 0.2 0.25 20.31 15.19 12.94 10.13 6.64 5.36 5.53 3.49 2.78

0.75 25.21 20.31 17.91 14.55 10.13 8.38 8.35 5.53 4.48

1.25 27.22 22.66 20.31 16.80 12.09 10.13 9.89 6.74 5.53

0.2 0.6 0.25 11.00 7.32 5.95 6.57 4.22 3.38 4.77 3.18 2.58

0.75 15.48 11.00 9.17 9.70 6.57 5.38 6.67 4.77 3.98

1.25 17.71 13.01 11.00 11.35 7.94 6.57 7.59 5.62 4.77

Table 5: ACSLP(Q
∗,r∗,C∗) increase (%) between using ᾱ1 = 0.999 and ᾱ1 = 0.975.

From table 5 we observe that increase the service level of the high priority class

from α1 = 0.975 to α1 = 0.999, increases the total cost in 9.8% average, and as
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expected, the maximum increase of ACSLP(Q
∗,r∗,C∗) occurs when the class 1 dom-

inates on mean and variance (µ1 = 100 and CV1 = 0.6), the ordering cost is minimal

(S = 100) and the holding cost per unit and unit time is maximum (h = 1.25). This

is because, when class 1 is larger in mean and variance, more items are reserved for

the high priority class and the threshold level C increases. On the other hand, a low

ordering cost and high holding cost per unit and unit time produce a small batch size

and high backorders for class 2. Then, the high class 2 backorders cause the holding

cost per unit time to increase. The result is a higher holding cost and thus a higher

total cost. Table 6 highlights how ACSLP(Q
∗,r∗,C∗) increases for different imput pa-

rameters, when α1 = 0.975 and the preset service level of low priority class increase

from α2 = 0.75 to α2 = 0.85.

Increase (%) the total cost

µ1 = 100,µ2 = 25 µ1 = µ2 = 25 µ1 = 25,µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500

0.2 0.2 0.25 0.73 0.46 0.37 1.20 0.73 0.57 3.50 2.17 1.72

0.75 1.08 0.73 0.59 1.92 1.20 0.95 5.40 3.50 2.82

1.25 1.27 0.88 0.73 2.35 1.50 1.20 6.47 4.31 3.50

0.4 0.4 0.25 1.07 0.73 0.60 2.06 1.30 1.04 5.97 3.93 3.17

0.75 1.44 1.07 0.90 3.09 2.06 1.68 8.47 5.97 4.95

1.25 1.61 1.24 1.07 3.64 2.51 2.06 9.69 7.09 5.97

0.6 0.6 0.25 1.23 0.89 0.74 2.70 1.77 1.43 7.78 5.37 4.41

0.75 1.55 1.23 1.07 3.85 2.70 2.24 10.41 7.78 6.61

1.25 1.68 1.38 1.23 4.41 3.21 2.70 11.58 9.00 7.78

0.6 0.2 0.25 1.14 0.82 0.69 1.88 1.21 0.97 3.67 2.32 1.85

0.75 1.44 1.14 0.99 2.77 1.88 1.54 5.52 3.67 2.98

1.25 1.56 1.29 1.14 3.24 2.27 1.88 6.52 4.47 3.67

0.2 0.6 0.25 0.96 0.62 0.50 2.69 1.71 1.37 8.15 5.58 4.58

0.75 1.40 0.96 0.79 4.00 2.69 2.19 10.99 8.15 6.90

1.25 1.62 1.15 0.96 4.70 3.26 2.69 12.27 9.46 8.15

Table 6: ACSLP(Q
∗,r∗,C∗) increase (%) between using α2 = 0.85 and α2 = 0.75

From table 6 we observe that increase the service level of the low priority class

from α2 = 0.75 to α2 = 0.85, increases the total cost in 3% average, and as expected,

the maximum increase of ACSLP(Q
∗,r∗,C∗) occurs when the class 2 dominates on

mean and variance (µ2 = 100 and CV2 = 0.6), the ordering cost is minimal (S =
100) and the holding cost per unit and unit time is maximum (h = 1.25). This is

because, high class 2 backorders are produced in the critical level policy when class

2 dominates and the batch size is small.

The results obtained by using normally distributed demand are similar to those

obtained by using a Poisson process (obtained from Deshpande et al (2003)). How-

ever, using normally distributed demand as an approximation of strictly increasing

non-negative demand allows us to observe the effect of changes in variance on the

critical level policy, i.e., how changing the coefficient of variation CV (ratio of stan-

dard deviation to mean) affects our results. For any parameters setting that we tested,

we observe that increasing σ2
i , equivalent to increasing CVi for a fixed µi, causes an

increase in ACSLP(Q
∗,r∗,C∗). This is because, we expect high backorders and large

reorder point r and critical level C, when variance of class i increases for i = 1 or 2.

Furthermore, we observe from table 4 that:

– benefit with respect to round-up is increasing in CVi for i = 1,2,
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– benefit with respect to separate stock is decreasing in CV1 when µ1 dominates and

increasing when µ1 = µ2 or µ2 dominates,

– benefit with respect to separate stock is decreasing in CV2.

6.2 Numerical evidence: assumption 1

Proposition 5 that characterizes the optimal critical level solution in the case of

normally distributed demand makes the assumption that α1(r,C) is increasing in

C ∈ [0,r) for a large enough r (assumption 1). In order to numerically validate this

assumption and cover a wide range of data, a set of 8 experiments were designed.

In each experiment we generate 100000 random sets of {L,µ1,CV1,µ2,CV2}, within

predefined limits that appear in table 7. For each randomly generated set of parame-

ters, we also generate a random reorder point in the interval [µL,µL+ z0.9999σ
√

L]
and a random critical level in the interval [0,r). Then, for each random set {L,µ1,CV1,µ2,CV2,r,C}
we evaluate

∂α1(r,C)
∂C

and α1(r,0). We provide the expression for
∂α1(r,C)

∂C
in (31) in the

appendix. For each experiment we obtain the minimum α1(r,0) such that the service

level provided to the high priority class is increasing in C, i.e., min{α1(r,0) | ∂α1(r,C)/∂C ≥
0}. The first experiment randomly vary the parameters within the limits of the base

case. Then, the limits of these parameters are varied. Table 7 shows the parameters

limits at each experiment and the result obtained.

Exp. L µ1 CV1 µ2 CV2 {min{α1(r,0) | ∂α1(r,C)/∂C ≥ 0}}
1 [1,5] (0,25] (0,0.2] (0,25] (0,0.2] 0.4268

2 [1,25] (25,100] (0,0.2] (0,25] (0,0.2] 0.4206

3 [1,25] (0,25] (0.2,2] (0,25] (0,0.2] 0.3334

4 [1,25] (0,25] (0,0.2] (25,100] (0,0.2] 0.3715

5 [1,25] (0,25] (0,0.2] (0,25] (0.2,2] 0.4813

6 [1,25] (25,100] (0,0.2] (25,100] (0,0.2] 0.3642

7 [1,25] (0,25] (0.2,2] (0,25] (0.2,2] 0.4346

8 [1,25] (25,100] (0.2,2] (25,100] (0.2,2] 0.4535

Table 7: Numerical evidence for assumption 1

Based on the results shown in Table 7, we infer that for any r ≥ r̂1, with r̂1 solution

of α1(r̂1,0) = 0.5, the function α1(r,C) is an increasing function of C in the interval

C ∈ [0,r), i.e., we infer that assumption 1 seems to be valid at least within the limits

of the experiments of Table 7.

7 Conclusions

In this paper we analyzed the constant critical level policy for fast-moving items

when rationing is used to provide differentiated service levels to two demand classes

(high and low priority). The inventory system operates under continuous review (Q,r)
policy, with a critical threshold value C, full-backorder, deterministic lead time, and

the service level provided to each class is measured by service level type 1.
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Using the hitting time approach and the threshold clearing mechanism to satisfy

backorders when multiple outstanding orders exist, we develop expressions for ser-

vice levels type I under rationing and expected backorders of high and low priority

classes. We formulate a service level problem as a nonlinear problem with chance

constraints (service level constraints) to determine the optimal parameters of the crit-

ical level policy. We propose to optimally solve a relaxation, which allows us to

obtain good-quality bounds. For strictly increasing non-negative demand, we char-

acterize the optimal solution of the relaxed service level problem through a system of

equations and, under mild assumptions, when normally distributed demand is used as

approximation of the non-negative demand.

The computational results show that our solution approach can find good-quality

solutions that are on average 0.3% and at worst 7.8% from the optimal solution. Given

the nature of our relaxation, the maximum gap(%) occurs when the class 2 dominates

on mean and variance, the ordering cost is minimal, the holding cost per unit and unit

time is maximum and difference between the preset service levels is maximum.

As expected, the critical level policy outperformed both the separate stock and

round-up policies in terms of total cost. Using normally distributed demand as an

approximation of strictly increasing non-negative demand allows us to observe the

effect of varying the coefficient of variation of the demand distribution, situation that

is not possible with Poisson demand process. We observe that the benefit of critical

level policy with respect round-up is increasing in the variance of the demand distri-

butions for both classes, and the benefit with respect separate stock is decreasing in

the variance of class 2 demand, decreasing in the variance of class 1 demand when the

mean of class 1 demand is larger and increasing when the mean of class 2 dominates.

In addition, we observe the following managerial insights:

– the average savings induced by the critical level policy are greater with respect to

separate stock, but the maximum savings are achieved when comparing to round

up policy.

– critical level policy leads to significant savings with respect to round-up when

class 2 dominates on mean and variance, the ordering cost is minimal, holding

cost per unit and unit time is maximum and difference between preset service

levels is maximum.

– critical level policy leads to significant savings with respect to separate stock

when class 2 dominates on mean, class 1 dominates on variance, the ordering

cost is minimal, holding cost per unit and unit time is maximum and difference

between preset service levels is maximum.

– the cost of increasing the service level of the high priority class is significantly

greater than the cost of increasing the service level of the low priority class.

There are a number of questions and issues left for future research. The first one,

is to solve exactly the SLP problem or solve a relaxation that does not drop backo-

rders. Second is to expand the results to more than two classes. Third is to broaden

the measures of service level. For instance we could use the fill-rate as service level

measures, leading to different problems and therefore different solutions. In particu-

lar, the fill-rate or ready rate depend of the replenishment batch quantity, therefore,

although we consider a relaxation, the service level problem is not separable as in our
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case. Therefore, the problem becomes more difficult to solve because the replenish-

ment batch quantity, the reorder point and the critical level must be optimized jointly

in the same service level problem. Another line of future work is to propose a cost

optimization problem where backorders of each class are penalized with different

cost.
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A Proof of proposition 2

Lemma 1 Let X, Y be two univariate continuous random variables, where Y has positive support. Then,

for any C we have

P(X +Y >C)≥ P(X >C) .

Proof We note that the set of realizations {ω | X(ω)> C} ⊂ {ω | X(ω)+Y(ω)> C}, which gives the

inequality P(X +Y >C)≥ P(X >C). ⊓⊔

Given the lemma 1, the demonstration of proposition 2 is:

Proof Let τ r−C
R,D = min{τ r−C

H,D ,L} be the time to rationing, which corresponds to the amount of time that

elapses from the moment an order is placed until the critical level C is reached if this event occurs during
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the lead time. If the hitting time τ r−C
H,D does not occur during lead time then the time to rationing is defined

as τ r−C
R,D = L. In this case, rationing coincides with the reception of the replenishment batch, and therefore,

to be precise, rationing is not produced.

Given a k > 0 we have that, for every demand realization ω , the hitting time satisfies τ r−C
H,D (ω) <

τ r+k−C
H,D (ω). This is because exactly k additional units of demand are necessary to reach C, and the demand

is a strictly increasing non-negative demand. This implies that for any k > 0 we have that

τ r−C
R,D (ω)< τ r+k−C

R,D (ω) ∀ω s.t. τ r−C
H,D (ω)< L,

L = τ r−C
R,D (ω) = τ r+k−C

R,D (ω) ∀ω s.t. τ r−C
H,D (ω)≥ L .

From these relations we have that τ r+k−C
R,D − τ r−C

R,D ≥ 0 with probability 1, which combined with the as-

sumptions on the demand gives us D1(L− τ r−C
R,D ) = D1(L− τ r+k−C

R,D )+D1(τ
r+k−C
R,D − τ r−C

R,D ), where the last

term is a positive support random variable when τ r−C
H,D < L. We therefore have

α1(r,C) = P(D1(L− τ r−C
R,D )≤C)

= P(D1(L− τ r−C
R,D )≤C | τ r−C

H,D ≥ L)P(τ r−C
H,D ≥ L)+P(D1(L− τ r−C

R,D )≤C | τ r−C
H,D < L)P(τ r−C

H,D < L)

= P(D1(L− τ r+k−C
R,D )≤C | τ r−C

H,D ≥ L)P(τ r−C
H,D ≥ L)

+ P(D1(L− τ r+k−C
R,D )+D1(τ

r+k−C
R,D − τ r−C

R,D )≤C | τ r−C
H,D < L)P(τ r−C

H,D < L)

≤ P(D1(L− τ r+k−C
R,D )≤C | τ r−C

H,D ≥ L)P(τ r−C
H,D ≥ L)+P(D1(L− τ r+k−C

R,D )≤C | τ r−C
H,D < L)P(τ r−C

H,D < L)

= P(D1(L− τ r+k−C
R,D )≤C) = α1(r+ k,C) .

Here the inequality uses lemma 1 with X = D1(L− τ r+k−C
R,D ) and Y = D1(τ

r+k−C
R,D − τ r−C

R,D ).

We repeat the argument to show the tendency of α1(r,C) with respect to C. Given any k > 0 we have

that τ
r−(C+k)
H,D (ω)< τ r−C

H,D (ω) for any demand realization ω . Similarly, for any k > 0, we now have

τ
r−(C+k)
R,D (ω)< τ r−C

R,D (ω) ∀ω s.t. τ
r−(C+k)
H,D (ω)< L

L = τ
r−(C+k)
R,D (ω) = τ r−C

R,D (ω) ∀ω s.t. τ
r−(C+k)
H,D (ω)≥ L .

The demand can be now separated D1(L− τ
r−(C+k)
R,D ) = D1(L− τ r−C

R,D )+D1(τ
r−C
R,D − τ

r−(C+k)
R,D ), where for

every demand realization ω this last term satisfies D1(τ
r−C
R,D − τ

r−(C+k)
R,D )(ω)≤ k. This because τ r−C

R,D (ω)−
τ

r−(C+k)
R,D (ω)≤ τ r−C

H,D (ω)− τ
r−(C+k)
H,D (ω) and D1(τ

r−C
H,D − τ

r−(C+k)
H,D )≤ D(τ r−C

H,D − τ
r−(C+k)
H,D ) = k by definition

of hitting time. This gives

α1(r,C) = P(D1(L− τ r−C
R,D )≤C) = P(D1(L− τ r−C

R,D )≤C | τ
r−(C+k)
H,D ≥ L)P(τ

r−(C+k)
H,D ≥ L)

+ P(D1(L− τ r−C
R,D )≤C | τ

r−(C+k)
H,D < L)P(τ

r−(C+k)
H,D < L)

= P(D1(L− τ
r−(C+k)
R,D )≤C+ k | τ

r−(C+k)
H,D ≥ L)P(τ

r−(C+k)
H,D ≥ L)

+ P(D1(L− τ
r−(C+k)
R,D )≤C+D1(τ

r−C
R,D − τ

r−(C+k)
R,D ) | τ

r−(C+k)
H,D < L)P(τ

r−(C+k)
H,D < L)

≤ P(D1(L− τ
r−(C+k)
R,D )≤C+ k | τ

r−(C+k)
H,D ≥ L)P(τ

r−(C+k)
H,D ≥ L)

+ P(D1(L− τ
r−(C+k)
R,D )≤C+ k | τ

r−(C+k)
H,D < L)P(τ

r−(C+k)
H,D < L)

= P(D1(L− τ
r−(C+k)
R,D )≤C) = α1(r,C+ k) .

Here we add a k in the first term of the second equality because D1(L−τ
r−(C+k)
R,D )=D1(0) when τ

r−(C+k)
H,D ≥

L, so that first probability equals 1. The inequality comes from the fact that P(D1(τ
r−C
R,D −τ

r−(C+k)
R,D )≤ k) =

1. ⊓⊔
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B Partial derivative of α1(r,C) with respect to C

Here we give the expression of
∂ α1(r,C)

∂C
in the case when the demands for both classes are normally dis-

tributed and the density function of the hitting time τ r−C
H,D is given by equation (18). We denote by ϕ̄µ ,σ2 (x)

the density function of a normal random variable with mean µ and variance σ2. The partial derivative then

can be expressed as:

∂α1(r,C)

∂C
=

∫ L

0

(

r−C+µτ

2τ
− C+µ1(L− τ)

2(L− τ)

)

ϕ̄µ1(L−τ),σ2
1
(L−τ)(C)ϕ̄µτ,σ2τ (r−C)dτ . (31)




