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Abstract

Despite the recent advances in distributed MDP frame-
works for reasoning about multiagent teams, these frame-
works mostly do not reason about resource constraints, a
crucial issue in teams. To address this shortcoming, we pro-
vide four key contributions. First, we introduce EMTDP, a
distributed MDP framework where agents must not only
maximize expected team reward, but must simultaneously
bound expected resource consumption. While there exist
single-agent constrained MDP (CMDP) frameworks that
reason about resource constraints, EMTDP is not just a
CMDP with multiple agents. Instead, EMTDP must resolve
the miscoordination that arises due to policy randomiza-
tion. Thus, our second contribution is an algorithm for
EMTDP transformation, so that resulting policies, even if
randomized, avoid such miscoordination. Third, we prove
equivalence of different techniques of EMTDP transforma-
tion. Finally, we present solution algorithms for these EMT-
DPs and show through experiments their efficiency in solv-
ing application-sized problems.

1. Introduction

Teamwork is critical in a large number of multiagent do-
mains, from simulated soccer teams to distributed sensors
for monitoring, to future robotic teams on Mars [9, 8]. These
teams must often adhere to certain resource constraints, e.g.,
when communicating, agents must consume only limited
communication bandwidth, or when monitoring, each sen-
sor agent must only consume limited energy (as much as it
can replenish itself) [8].

This paper provides a novel formalization for team-
work in uncertain domains where agents must operate un-
der resource constraints. Recently there has been a signifi-
cant interest in formalizations of teamwork via distributed
MDPs, where domain costs and uncertainties are treated as
first class citizens [7, 11, 5]. Unfortunately, most of these
previous formalizations fail to address teamwork with re-

source constraints. Incorporating resource constraints into
distributed MDP frameworks is difficult, since they require
maximizing expected team rewards while simultaneously
limiting expected resource consumption. In particular, we
focus on an important class of soft constraints, which are not
easily modelled by explicitly representing resources and im-
posing infinite penalties in states violating constraints. For
instance, bandwidth limit on communication may be soft,
not hard and precise. Exceeding bandwidth limit within any
single run is not a disaster; but if the team consumes more
than its bandwidth limit on average, it jeopardizes the com-
munications of other agents/applications on the same net-
work. Similarly, given a replenishable sensor agent, it must
limit its expected energy consumption to the amount it can
be replenished in the next period. Exceeding this bound in
one period is not a catastrophe (unless exceeded repeat-
edly). Let us consider that, the sensor has k units of en-
ergy initially and can replenish m units every time step. The
amount of energy the sensor can use up is a soft constraint
because spending more than m units occasionally is fine as
long as it can make up the extra expended energy in the next
few time steps. Constraints involving averaging a quantity,
in general, are soft constraints because as long as the aver-
age is maintained there is no hard bound on how the re-
source should be used at each time step [8]. The impor-
tance of such soft constraints is seen by the continued work
in operations research literature, which has developed sin-
gle agent Constrained MDPs (CMDPs) for reasoning about
expected resource consumption[1]. Indeed, hard constraints
may lead to severe inflexibility in the tasks a team performs.

This paper takes a key step in enabling distributed MDP
frameworks to reason about resource constraints, and in
the process provides four key contributions. First, we pro-
pose EMTDP (extended MTDP[7]), where agents must op-
timize expected joint rewards while simultaneously bound-
ing expected resource consumption. Second, we identify a
novel coordination challenge in EMTDPs due to its dis-
tributed nature (a problem absent in CMDPs) and present
an EMTDP transformation algorithm to address this chal-
lenge. Optimal policies in CMDPs can be obtained via lin-



ear programming and are randomized[1]. Unfortunately, in
distributed settings, agents simply cannot execute such ran-
domized policies without additional coordination, which in
turn consumes its own resources. Thus, to enable execution
by multiple agents, EMTDP policies must include appro-
priate communication, while bounding the expected com-
munication costs (possibly to zero). We provide a novel,
polynomial-time algorithm to transform an abstract con-
joined EMTPD, which is similar to a CMDP, to an actual
EMTDP where randomized policies can be executed by
multiple agents with appropriate communication.

Our third contribution illustrates the equivalence of a se-
ries of EMTDP transformations in terms of expected re-
wards of optimal policies. Furthermore, we show that any
EMTDP transformation must add non-linear, non-convex
constraints into the optimization problem, yielding an opti-
mization problem over a non-convex feasible region. There
is no polynomial algorithm for finding a global optimal for
a non-convex problem [10], in fact even finding a local op-
timum of a non-convex problem is in general not polyno-
mial, with current non-linear solvers only able to guaran-
tee convergence [6]. Thus, in contrast to CMDPs [1, 3]
which can be solved via linear programming, we cannot
provide polynomial results for EMTDPs in the most gen-
eral sense. Hence our final contribution is a computation-
ally efficient algorithm to obtain approximate solutions for
EMTDPs with a guaranteed error bound. Experimental re-
sults for two separate domains are presented.

The rest of the paper begins with the conjoined
EMTDP. An automated method of transformation to the ac-
tual EMTDP model follows, followed by our solution
approach and computational results. Our results general-
ize to randomized policies in other settings as well e.g.,
in hostile settings, randomized policies may reduce pre-
dictability.

2. Conjoined EMTDP

Conjoined EMTDP is a useful tool for users, providing
a layer of abstraction to model agent-teams with resource
constraints in uncertain domains. However, optimal policies
yielded by a conjoined EMTDP may not be executable by
a team of agents, due to a lack of appropriate inter-agent
coordination. As with other research on distributed MDPs
[2], we introduce a 2-agent conjoined EMTDP for expos-
itory purposes. We deal with a fully observable environ-
ment. In particular, a 2-agent conjoined EMTDP is defined
as a tuple: 〈S , A, P,R,C1,C2,T1,T2,N,Q〉. It consists of a
finite set of states S . Given two individual actions al and
am of the two agents in our team, the team’s joint action
â = (al, am) ∈ A. P = [pâ

i j](≡ p(i, â, j)) is the transition ma-
trix, providing the probability of transitioning from state i to
state j, given the team’s joint action â, R = [riâ] is the vec-

tor of joint rewards obtained when an action â is taken in
state i. C1 = [c1iâk] is the vector to account for cost of re-
source k when action â is taken in state i by agent 1. (C2
is similarly defined.) T1 = [t1k] and T2 = [t2k] are vec-
tors of amounts of available resources k for agents 1 and
2 respectively. N = [niâ] is the vector of joint communica-
tion costs incurred by the agents when an action â is taken in
state i. Communication costs are treated as joint costs to il-
lustrate our ability to model shared resources such as band-
width. Q is threshold on communication costs that can be
used by the team of agents. A conjoined EMTDP is thus
similar to a CMDP [1] with multiple agents.

The goal in the conjoined EMTDP is to maximize the
total expected reward, while ensuring that the expected re-
source consumption is maintained below threshold. For-
mally, this requirement can be stated as a linear program,
extending the linear program for CMDPs [3] to a two agent
case, as shown below. xiâ is the expected number of times
an action â is executed in state i and α j is the initial proba-
bility distribution over the state space.

Max
∑

i
∑

â xiâriâ
∑

â x jâ −
∑

i
∑

â xiâ pâ
i j = α j∑

i
∑

â xiâc1iâk ≤ t1k∑
i
∑

â xiâc2iâk ≤ t2k∑
i
∑

â xiâniâ ≤ Q
xiâ ≥ 0

Figure 1 shows a small example of a conjoined EMTDP.
There are two agents, A and B, with actions a1, a2 and
b1, b2 respectively, leading to joint actions â1 = (a1, b1),
â2 = (a1, b2), â3 = (a2, b1), â4 = (a2, b2). We also show the
transition probabilities for each of the actions. For illustra-
tion, the reward and costs for â4 are also shown. States S4
through S7 are terminal states, and action a1b1 is an aban-
don action (to not play the game). Conjoined EMTDPs such
as this yield randomized optimal policies e.g., the optimal
policy here specifies that in S1, p(â1) = 0, p(â2) = 0.56,
p(â3) = 0.44 and p(â4) = 0. If the two agents A and B are
supplied this policy, they will fail in its execution, unless ad-
ditional coordination occurs. In particular, suppose based on
this policy for joint actions, agent A chooses its own actions
such that p(a1) = 0.56 and p(a2) = 0.44. However, when A
selects a1, it has no guarantee that B will select b2 — in fact,
due to its own randomization, B may simultaneously select
b1. Thus, the team may jointly execute â1 = (a1, b1), even
though the policy specifies p(â1) = 0.

Thus, a conjoined EMTDP, i.e., a straightforward gener-
alization of a CMDP to a multiagent case, results in random-
ized policies, which a team cannot execute without addi-
tional coordination. One simple solution is to add a commu-
nication action before each joint action. For example agent
A could choose â3, and communicate its choice to agent B.
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Figure 1. Original EMTPD

Unfortunately, forcing a communication action before every
single action can violate communication constraints, since
communication itself consumes resources. Thus, a solution
that limits communication costs is essential.

3. From conjoined EMTDP to EMTDP

This section presents an automatic transformation of a
conjoined EMTDP to an actual EMTDP, where the result-
ing optimal policies can be executed in multiagent settings,
via appropriate communication (with communication costs
within resource limits). One key assumption in these trans-
formations is that the communication cost is directly pro-
portional to the length of the message; thus small mes-
sage sizes are preferred. We illustrate the key concepts
in EMTPD transformations by focusing on one specific
sequential transformation, given in Figure 2. Figure 2-a
shows a portion of a conjoined EMTDP, where agent A
with actions a1 to am and B with actions b1 to bn act joinly
(aib j). Figure 2-b shows the transformation of this con-
joined EMTDP into an actual EMTDP. This transformation
is sequential in that one of the agents, in this case agent A,
first chooses one of its actions ai and also decides whether
to communicate this choice to its teammate, agent B. Thus,
C(ai) in Figure 2-b refers to A’s selection and communica-
tion of action ai to B, incurring the cost of communication,
and going to Aic (with probability 1-p f ); while NC(ai) re-
sults in state Aio, where agent A selected ai but decided not
to communicate this choice to B to avoid communication
costs. Note, since communication may fail with a proba-
bility p f , C(ai) may transition to Aio with a probability p f .
(While we discuss the transformation in a two agent case
for expository purposes, the n-agent case is discussed later.)

Once in state Aic or Aio, agent B chooses its action b j,
and the agents now jointly execute the action aib j. When
choosing its action, B observes which of the different Aic

state it is in, since any such state is reached only after
A’s communication. Unfortunately, agent B cannot distin-
guish between states Aio reached without A’s communica-
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Figure 2. Transformation.

tion. Thus, B’s action b j in such non-communication states
must be taken without observing which of the m states A1o

to Amo B is in. Thus, B will be unable to execute any ran-
domized policy which requires it (agent B) to select an ac-
tion b j with a different probability in a state say Aio vs a
state Ako. To avoid this problem, we require that for any
two states reached after non-communication, the probabil-
ity of B’s action selection must be identical, i.e., for any ac-
tion b j and states Aio and Ako, P(b j|Aio) = P(b j|Ako). This
restriction on probability of action execution in the EMTDP
translates into the addition of the following non-linear con-
straint into our original LP to solve an EMTDP. Specifically,
in terms of the state action variables in the original LP, given
any two states Aio and Ako, and any action b j, it is neces-
sary that:

Xoi j/(
n∑

u=1

Xoiu) = Xok j/(
n∑

u=1

Xoku)

⇒ Xoi j ∗ (
n∑

u=1

Xoku) = Xok j ∗ (
n∑

u=1

Xoiu)

(1)

Thus, to obtain an optimal policy in the actual EMTDP,
we must solve an optimization problem which includes
these non-convex constraints. Note that the non-linear con-
straints are only associated with states that are reached
non-communication. The optimal policy for a transformed
EMTDP thus obtained will require a random selection at
state S1 by agent A alone, and then in the next state (ei-
ther Aic or Aio) by agent B alone, thus avoiding the problem
faced in the conjoined EMTDP. Figure 3 shows transforma-
tion of the conjoined EMTDP shown in Figure 1. (Note that
the communication failure transitions are deleted to sim-
plify the diagram). The non-linear constraints in this case
affect only the actions taken from states s4 and s5, and en-
sure that P(b j|S4) = P(b j|S5) for j ∈ 1,2. This is because for
agent B, state S4 and S5 are indistinguishable, as they are
reached without A’s communication.

As shown in Figure 4, there are other methods of trans-
forming a conjoined EMTDP into an actual EMTDP. First,
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Figure 3. Transformed EMTDP

as shown in Figure 4-a, the order of communication ac-
tions in the sequential transformation can be changed. If
one agent has fewer actions than another (e.g., if n < m),
such a change in the order of communication may improve
the optimality of the resulting policy or reduce communica-
tion costs. Second, as shown in Figure 4-b, in a hierarchi-
cal transformation, an agent first decides which action to se-
lect, and only later whether to communicate this choice (C)
or not (NC). By choosing an action first, an agent’s com-
munication decision may be improved, potentially improv-
ing policy optimality. Our third extra-communication trans-
formation is similar to the sequential transformation, ex-
cept that agent A chooses actions for itself and for agent
B and communicates the choice of both to agent B. As dis-
cussed earlier, this would lead to extra overheads in commu-
nication. Finally, our simultaneous transformation, is shown
in Figure 4-d. Here, while the choice of communication is
done sequentially, no communication by A results in state
S2; and in S2, agent A and B simultaneously and ran-
domly select their actions. Additionally, combinations of
these transformations are also feasible.

We must select from these multiple transformations the
one that provides the most optimal policies. Fortunately, we
prove that none of our series of systematic transformation
can lead to any improvement in expected rewards or in re-
ducing communication costs. We begin with changing order
of communications.

Lemma 1 If in a given state Si all communication of mes-
sages of the same length have equal cost and the communi-
cation cost is a shared cost, then changing the order of com-
munication (e.g., whether agent A communicates as in fig-
ure 2-b vs agent B communicates as in Figure 4-a) has no
impact on the expected reward of the optimal EMTDP pol-
icy obtained, regardless of the number of actions of agent A
vs agent B in State Si.

Proof: We prove the result by showing that the optimal
policy when agent A communicates first is a lower bound
on the optimal policy when agent B communicates first, and
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vice versa.
Suppose that the flow Xi yields the optimal policy when

agent A communicates first ( as in Figure 2-b). We now con-
struct a feasible policy for the case when agent B commu-
nicates first (as in Figure 4-a) that has the same expected
reward, which proves half of the result as the optimal pol-
icy for Figure 4-a will have a reward at least this big. De-
fine YC ji = XCi j and YO ji = XOi j ; in essence, if in Figure
2-b, aib j has the flow Xi, then set the flow of b jai in Fig-
ure 4-a to Xi.

If we establish the above equivalences, then the follow-
ing three observations can be made. First, the expected
number of times any action aib j is executed after communi-
cation and after no communication is the same in Figure 2-
b and Figure 4-a. Thus, there is no impact on future states.
This means that the cost thresholds would be met even in
the new scenario. Second, the cost of communication in the
two cases becomes identical. In particular, in Figure 2-b,
given a constant cost κ of communication, the total cost of
communication is: κ ∗

∑n
i=1
∑m

j=1 Xci j/(1 − P f ). After set-
ting of Yc ji = Xci j, the communication cost in Figure 4-a is
κ ∗
∑m

j=1
∑n

i=1 Yc ji/(1 − P f ) = κ ∗
∑n

i=1
∑m

j=1 Xci j/(1 − P f ).
Third, given that non-linear constraints in Figure

2-b are satisfied, we can show that non-linear con-
straints in Figure 4-a are also automatically satisfied. In
particular, the non-linear constraints in Figure 2-b are de-
rived from the probability constraint that for any two
states Aio and A jo, where i, j ∈ {1..m}, and any ac-
tion bk where k ∈ {1..n}:



P(bk |Aio) = P(bk |A jo) (Fig 2-b)
⇒ Xoik/

∑n
u=1 Xoiu = Xo jk/

∑n
u=1 Xo ju (for i, j ∈ {1..m})

⇒ for k1, k2 ∈ {1...n},
Xoik1/Xo jk1 = Xoik2/Xo jk2 =

∑n
u=1 Xoiu/

∑n
u=1 Xo ju

⇒ Yok1i/Yok1 j = Yok2i/Yok2 j

⇒ Yok1i/
∑m

j=1 Yok1 j = Yok2i/
∑m

j=1 Yok2 j (as i, j ∈ {1..m})
⇒ for k1, k2 ∈ {1...n}, P(ai|Bk1o) = P(ai|Bk2o) (Fig 4-a)

These non-linear equations imply that the constraints on
states Bko in Figure 4-a are automatically satisfied. Thus by
setting the quantities in Figure 4-a equal to the quantities
in Figure 2-b, we have created a feasible policy for Figure
4-a which has the same expected reward as the optimal pol-
icy of Figure 2-b, thus the optimal policy for Figure 4-a is
better. The proof that the optimal policy when B communi-
cates first is a lower bound on the optimal policy when A
communicates first is analogous. �

One immediate conclusion from Lemma 1 is that the
agents no longer need to bother who should communi-
cate first. The centralized policy generator can assign an
arbitrary order. We are able to similarly prove equiva-
lence results for the hierarchical, extra-communication and
simultaneous transformation (remaining proofs are avail-
able at http://teamcore.usc.edu/paruchur-proofs.html). In
each case, one of the agents must select an action with-
out observation of its actual state, leading to non-linear con-
straints, e.g., the simultaneous transformation where in
state S2, agents A and B must act simultaneously. Once
again, non-linear constraints arise, and at least the follow-
ing non-linear constraints hold in Figure 4-d (N is the num-
ber of times action NC is executed in state S1):
for i ∈ {1...m} and j ∈ {1..n}, Zi j = P(ai|S 2) ∗ P(b j|S 2) ∗ N
⇒ i, l ∈ {1...m}, and j, k ∈ {1..n}, Zi j/Zik = Zl j/Zlk

In addition, since P(b j|S2) = P(b j|Aio)
⇒ Z1 j/

∑n
u=1 Z1u = Zi j/

∑n
u=1 Ziu

Thus, non-linear constraints must be added in the simul-
taneous case also. Indeed, no matter what style of trans-
formation is adopted, non-linear constraints must be added.
This is because expressing probabilities of events in EMT-
DPs requires divisions via Xia variables. And regardless of
the transformation that we choose for the EMTDP, we need
to express constraints using probabilities. Indeed, all trans-
formations either involve sequential action selection or si-
multaneous, and we showed non-convex constraints in each
case. Thus:

o Proposition 3: It is necessary to add non-convex con-
straints to solve the actual EMTDP.

This result is contrary to expectations. In particular, since
both MDPs and their resource constrained formulations
(CMDPs) are solvable via linear programming, and MTDPs
for observable environments are solvable via LPs, we ear-
lier expected that EMTDPs (resource constrained versions

of MTDPs) will also be solvable by LPs.

Since our sequential transformation has fewest numbers
of states, we will use that as the basis of our work. We
now present Algorithm 1 that achieves this sequential trans-
formation of conjoined EMTDP into a real EMTDP auto-
matically. (In fact our implementation creates a mathemat-
ical program as an output). The algorithm works by first
adding intermediate states with (and without) communica-
tion in SrcToComm and then adding transitions from the in-
termediate states to the destination states in CommToDest.
We assume that joint actions are processed in increasing
order of the index i (1 <= i <= m) for ai, and j for b j

(1 <= j <= n). In SrcToComm, communication actions
ai c leads to state sai c with probability 1-P f n (and state
sai nc with probability P f n); and non-communication ac-
tion ai nc deterministically transitions to state sai nc, where
the first agent has decided not to communicate its choice to
its teammate. From Lemma 1 selecting A or B to commu-
nicate first is not relevant. Line 13 in the Conversion algo-
rithm adds the constraints on probabilities of outgoing ac-
tions from sai nc — because of transitivity of equality, it
is sufficient to add probability constraints with respect to
just the first non-communication state sa1 nc. From line 4
and line 7 of the algorithm, the number of probability con-
straints can be seen as (m-1)*n to be later translated into
non-linear constraints using equation 1. Thus, this is a poly-
nomial time algorithm, with a complexity of O(|S |2 ∗ |A|),
where |A| = n ∗ m gives us the number of joint actions. In
the worst case, the resulting EMTDP has 2 ∗ |S | ∗ m addi-
tional states inserted.

Finally, Proposition 6 states that the algorithmic trans-
formation will indeed yield policies equivalent to the orig-
inal conjoined EMTDP given sufficient communication re-
sources.

o Proposition 4: If given a conjoined EMTDP E, and an
optimal policy π that provides an expected reward r while
meeting thresholds t, then a transformed EMTDP T(E) out-
put by Algorithm 1 provides an optimal policy π′, with an
expected reward r while meeting thresholds t, if for all com-
munication actions Ci, Cost(Ci) = 0, and P f (Ci) = 0.

Proof sketch: Given a policy π, for every joint action of
the two agents (ai, b j) to be taken in state si, we instead re-
quire in π′ that a communication action ai c be taken in state
si. Since P f (Ci) = 0, ai c will lead to only one outcome state
sai c. In this new state execute (ai, b j). Given Cost(Ci) = 0,
ai c will not change the expected reward or cost. Thus, we
are able to create the required policy π′.

We have focussed on a 2-agent case so far for simplic-
ity. Currently we are investigating into the N-agent scenario.
Our intuition is that the various transformations might have
some tradeoffs.



Algorithm 1 C()
1: Input:< S , A, P,R,C1,C2,T1,T2,N,Q >
2: Output:< S ′, A′, P′,C1′,C2′,T1′,T2′,N′,Q′ >
3: Conversion()

1: Conversion(){
2: Initialize: S ′ = S , A′ = A, P′ = P,R′ = φ,C1′ = φ,C2′ =
φ,T1′ = T1,T2′ = T2,N′ = φ,Q′ = Q

3: for all s ∈ S do
4: for all (â = (ai, b j)) ∈ A do
5: if sai nc < S ′ then
6: SrcToComm(s, â, sai nc, ai nc)
7: p′(s, â, sai nc)← 1
8: if (|p(s, < ai, ∗ >, ∗) > 0| > 1) then
9: SrcToComm(s, â, sai c, ai c)

10: n′(s, ai c)← Communication Model
11: p′(s, ai c, sai c)← 1 − P f

12: p′(s, ai c, sai nc)← P f

13: if i , 1 then
14: prob(b j|sai nc) = prob(b j|sa1 nc)
15: CommToDest(s, â, sai nc, ai nc)
16: if (|p(s, < ai, ∗ >, ∗) > 0| > 1) then
17: CommToDest(s, â, sai c, ai c)
18: for all s′ ∈ S ′ do
19: p′(s, â, s′)← 0
20: }

1: SrcToComm(S parent, Aparent, S current, Acurrent){
2: S ′ ← S ′

⋃
S current

3: A′ ← A′
⋃

Acurrent

4: r′(S parent, Acurrent), c1′(S parent, Acurrent),
c2′(S parent, Acurrent), n′(S parent, Acurrent)← 0

5: }

1: CommToDest(S parent, Aparent, S current, Acurrent){
2: for all s′ ∈ S ′ do
3: p′(S current, Aparent, s′)← p(S parent, Aparent, s′)
4: r′(S current, Aparent)← r(S parent, Aparent)
5: c1′(S current, Aparent)← c1(S parent, Aparent)
6: c2′(S current, Aparent)← c2(S parent, Aparent) }

4. Approximation algorithms

Two solution approaches exist for solving the EMTDP:
one is the use of global optimization software, still lim-
ited to small size problems. The second is to use a non-
linear solver to obtain a local optimum with no guarantee
of global optimality. Here we propose a solution scheme
for the EMTDP based on binary search which exploits the
problem structure to obtain solutions that are guaranteed to
be close to the global optimal even for large sized problems.
At the heart of our binary search is the problem of finding a
local optimal solution to a non-convex program, that is not a
polynomial problem but can be solved efficiently with cur-
rent algorithms for non-linear optimization.

If the upper(U) and lower(L) bounds on the optimal to-
tal reward are known, the binary search method looks for
a solution to the EMTDP that additionally has an expected
reward ≥ U+L

2 . This is achieved by using a non-linear op-

timization solver on a bounded EMTDP problem, formed
by adding the constraint on expected reward to the EMTDP.
The outcome of the non-linear solver will either be a point
that satisfies the first order optimality conditions, if a fea-
sible solution to the bounded EMTDP problem exists, or
a proof that there are no points with a reward greater than
U+L

2 . In the first case we have found a solution with a ex-
pected reward R ≥ U+L

2 , thus the optimal expected reward is
≥ R, and we can set the new lower bound to L = R. If there
is no solution with reward higher than U+L

2 , then the opti-
mal expected reward must be lower than this value, and we
can set the new upper bound to U = U+L

2 .
An initial upper bound on the expected reward is ob-

tained by solving the linear programming problem obtained
by removing the non-linear constraints of the EMTDP. An
initial lower bound is the expected reward of any feasible
solution to the EMTDP, for example the first local optimal
obtained by the non-linear solver on the EMTDP.

o Proposition 5: A solution with total reward within ε
of the optimal expected reward is attained after solving a
bounded EMTDP with a non-linear solver O(log 1

ε
) times.

5. Experimental Results on Two Domains

We first present results from our illustrative real EMTDP
(Figure 3) to provide key observations about the impact of
resource and communication thresholds on policy random-
ization. Figure 5-a shows the results of varying communica-
tion threshold (x-axis) and resource thresholds (y-axis) on
the value of the optimal policies (z-axis). In this case, the
small size of the problem enables optimal policies obey-
ing resource and communication constraints to be obtained
efficiently via a global optimizer. We make two key ob-
servations. First, with extreme (very low or very high) re-
source thresholds, communication threshold makes no dif-
ference on the value of the optimal policy. In particular, in
extreme cases, the actions are deterministic. On one extreme
(zero resource threshold), agents deterministically choose
not to play the game at all (state S7) thus gaining a zero ex-
pected reward. At the other extreme, with high resources
(resource threshold 8) agents gain an expected reward of
11.05, but the agents can choose actions deterministically
and thus communication does not help. Second, in the mid-
dle range of cost thresholds, where policies are randomized,
communication makes the most difference; indeed, the op-
timal value is seen to increase as communication threshold
increases. For instance, when resource cost threshold is 6,
the value of the optimal policy obtained without communi-
cation is 8.3923, but with high communication threshold of
7, the optimal policy provides a value of 10.7211.

Figure 5-b zooms in on one slice in Figure 5-a (when re-
source threshold is fixed at 7). It shows the changes in prob-
ability of communication actions and non-communication



actions in the optimal policy (y-axis), with changes in
communication threshold (x-axis). P(comm ai) denotes the
probability of executing the action to communicate ai (simi-
larly for non-communication actions). This graph illustrates
that as the communication threshold increases, communi-
cation actions increase in probability, e.g., as the commu-
nication threshold increases from 0 to 8 the P(comm a2)
increases from 0 to 0.35. The trend is opposite for non-
communication actions.
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Figure 5. Effect of thresholds on rewards/policy.

Comm Threshold→ 0 3 6
Conjoined 10.55 10.55 10.55

Deterministic 0 0 0
Miscoordination No No No

EMTDP 6.99 8.91 10.55

Table 1. Comparing expected rewards.

Table 1 compares the expected rewards of different poli-
cies with changes in communication threshold for the exam-
ple in Figure 1 (with resource threshold = 5). The first row
shows three settings of the communication thresholds (0, 3,
6). Row 2 shows the expected rewards obtained by an opti-
mal conjoined EMTDP policy. The expected reward (10.55)
is an ideal upper-bound for benchmarking and the reward is
unaffected by the communication threshold. Row 3 illus-
trates the results of a deterministic policy that can be exe-
cuted within the resource constraints: giving a very low ex-
pected reward of zero. In this case, agents can only execute
action a1b1. Row 4 shows the results, where agents take the
optimal policy of the conjoined EMTDP and attempt to exe-
cute it without coordination, as discussed in Section 2. Un-
fortunately, in all cases, resource constraints are violated,
because they execute action a2b2 which consumes signifi-
cant resources. Finally, row 5 shows the expected reward of
the actual EMTDP (Figure 3) for comparison. It is able to
avoid the problems faced by policies in row 3 and 4. How-

ever, with communication threshold of 0, the EMTDP must
settle for the optimal expected reward of 6.99; as the com-
munication threshold increases, finally the EMTDP attains
the reward obtained by the conjoined EMTDP.

Our second domain is inspired by the recent and planned
Mars missions, whereby within a decade, significant num-
bers of rovers and UAVs may be deployed on Mars. We as-
sume a team of two rovers, and several scientists, where
each scientist has a daily routine of observations he/she
wishes to conduct. Since there are many scientists, a rover
can only use a limited amount of energy in serving one sci-
entist. One experiment being conducted by a scientist is ob-
serving Martian rocks. The team of rovers must maximize
the observation output within the energy budget provided
to the scientist. This is a soft constraint because exceed-
ing the energy bound on one day is not a catastrophic mis-
sion failure. However overutilizing the given energy budget
frequently can interrupt other scientist’s work. Uncertainty
arises in this domain because a rover’s action has only a
0.75 chance of succeeding in its observation. The EMTDP
in this domain has 180 total states, leading to a non-linear
program of 1500 variables, and 40 non-linear constraints
over 200 variables.

Reward as function of BS(binary search) 
tolerance

96
97

98

99
100

101
102

103
104

105

0 0.2 0.4 0.6 0.8 1

Communication Threshold

E
xp

ec
te

d 
R

ew
ar

d

BS(.001)

BS(.01)

BS(.1)

BS(1)

BS(5)

(a)

Comparison of runtimes

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Communication Threshold

T
im

e 
( 

in
 s

ec
s 

)

BS(.001) BS(.01) BS(.1)

BS(1) BS(5)

(b) Intel Pentium 4 CPU 2.40 GHz

Figure 6. Binary Search with various tolerances

For this problem, we apply our approximate binary
search method (global optimization in this case is ex-
pensive). We illustrate that this method enables us to
tradeoff time for precision, paving the way towards practi-
cal methods to solve large EMTDPs. In particular, Figure
6-a plots the rewards obtained, varying the communica-
tion threshold (x-axis) and plotting the upper and lower
bounds on the optimal reward for various levels of toler-
ance ε(y-axis). The plot of BS(ε) shows the upper bound
on the reward for a tolerance ε; the lower bound for all tol-
erances coincides with the line BS(0.001). Thus, for BS(5)
and a communication threshold of 0.6, the optimal solu-
tion is between the lower bound of 102.2 and the upper
bound of 104.1. When we reduce ε to 0.001, the up-



per and lower bounds converge, providing us very precise
bounds on expected rewards. In general, as the commu-
nication threshold increases, the rovers improve their ex-
pected reward, via increased communication. Figure 6-b
shows that the price of precision in expected rewards is
the total run time. Here we plot run-time (y-axis) vs com-
munication threshold (x-axis). As we decrease ε, the run
time is seen to increase, e.g., at the communication thresh-
old of 0.2, ε of 0.001 runs at about 22 seconds, 4.5 times
slower than when ε is 5.

One key observation is that with the exception of com-
munication threshold of 0, the running times decrease as
the communication threshold is increased. This is because
a problem that has more resources for communication ob-
tains a local optimal solution that is closer to the initial up-
per bound we can obtain, and thus the binary search per-
forms less iterations. The special case of zero communi-
cation threshold forces some variables to be zero thus re-
ducing the size of the non-convex problem. If our sys-
tem is severely constrained in communication, we are bet-
ter off assuming that there is no communication, because
the marginal improvement in reward is offset by the longer
computational effort to determine the optimal solution.

6. Summary and Related Work

This paper provides a novel formalization of teamwork
with resource constraints. It provides a distributed MDP
framework called EMTDP, where agents must not only
maximize their expected team reward, but they must si-
multaneously bound their expected resource consumption.
Second, we introduce an automated algorithm for EMTDP
transformation. Thus problems may be formulated using
the more abstract conjoined EMTDP and our transforma-
tion ensures that resulting policies, even if randomized,
avoid miscoordination. We also prove equivalence of differ-
ent EMTDP transformation strategies. Third, we illustrated
that despite fully observable environments, EMTDPs ne-
cessitate non-linear programs using non-convex constraints.
Finally, we provide an approximation algorithm for solv-
ing EMTDPs with guaranteed error bounds and illustrate
its efficiency on a problem of 1500 variables, and 40 non-
linear constraints. Our results are applicable in other set-
tings where multiple agents must coordinate over random-
ized policies, e.g., in hostile settings randomized policies
may provide unpredictability.

In terms of related work, distributed POMDP research
[7, 2, 5] has focused on maximizing the total expected re-
ward, but not on resource bounds, the focus of this paper.
Current POMDP research would include resources as part
of the reward, but that may lead to undesirable behaviors
as the agents try to minimize resource consumption at the
expense of their true objective. Furthermore, the issue of

policy randomization has not been addressed. Within sin-
gle agent MDPs, CMDPs enable reasoning about resource
constraints[1, 3]. However, generalizing CMDPs to multia-
gent domains requires coordination of randomized policies,
the key contribution in this paper. Indeed, recent research on
applying distributed MDPs for multiagent teams [4] com-
plements our research in two ways. First, they do not ad-
dress the central question in this paper of coordination of
randomized policies. In addition, while we focus on con-
sumable resources such as fuel, time etc, [4], they do not
focus on such resources. Another area of related work is
the Mathematical Programming literature, which has sig-
nificant amount of research on global optimization algo-
rithms, none of which has polynomial complexity in gen-
eral [10]. Our binary search approach exploits the structure
of the problem by constructing upper and lower bounds to
find a solution strategy with better complexity guarantees.
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