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ABSTRACT versaries more closely. However, in both cases, the security robot
or UAV team will not know exactly which kinds of adversaries may

In adversarial multiagent domains, security, commonly defined as . X
be active on any given day.

the ability to deal with intentional threats from other agents, is a h for choosi licy f . h
critical issue. This paper focuses on domains where these threats A common approach for choosing a policy for agents in suc .
come from unknown adversaries. These domains can be modeledfcenarosisto model the scenarios as Bayesian games. A Bayesian

as Bayesian games; much work has been done on finding equilibriagh"j‘me is a ?ame in thifh agents may belo_rt:? to one or mgre typfefs;
for such games. However, it is often the case in multiagent security 1€ tyPe of an agent determines its possible actions and payoffs.

domains that one agent can commit to a mixed strategy which its The distributign of adversary types that an agent will face may
adversaries observe before choosing their own strategies. In '[hisbe known or mferred_ from h|stor|ca|_data. Usually, these games
case, the agent can maximize reward by finding an optimal strat- are _a_me_llyzed accordlng to the solution con.c_ep't of a Bayes-Nash
egy, without requiring equilibrium. Previous work has shown this equilibrium, an extension of th‘? Nash equllqllbrlum for Bay(;smn_
problem of optimal strategy selection to be NP-hard. Therefore, games. However, in many settln_gs, a Nas or Bayes'Nas equi-
we present a heuristic called ASAP, with three key advantages to librium is not an approprlate solutlon concept, since it assumes that
address the problem. First, ASAP searches for the highest-rewardthe agents stra_tegles are clhosen smultanepusly [5]- bef
strategy, rather than a Bayes-Nash equilibrium, allowing it to find N SOme settings, one player can commit to a strategy before

feasible strategies that exploit the natural first-mover advantage Ofthe_other players cho_ose their str_ategies, and by d(_)ing S0, anain
the game. Second, it provides strategies which are simple to under-2 higher reward than if the strategies were chosen simultaneously.

stand, represent, and implement. Third, it operates directly on the ghese scenarilosgre known as Stackelbergf_games d[6|*]1' Ina fsltlackel-
compact, Bayesian game representation, without requiring conver- °€"d 9ame, a leader commits to a strategy first, and then a follower

sion to normal form. We provide an efficient Mixed Integer Linear (OF 9roup of followers) selfishly optimize their own rewardsn-

Program (MILP) implementation for ASAP, along with experimen- sideringlg the action cfhosen by t_he Ieadé_nr example, tr]le securiltly
tal results illustrating significant speedups and higher rewards overf’lgt?nt (eader)_may Irst commit to a mixed strategy for patrolling
other approaches. various areas in order to be unpredictable to the robbers (follow-

ers). The robbers, after observing the pattern of patrols over time,
can then choose their own strategy of choosing a location to rob.
1. INTRODUCTION To see the advantage of being the leader in a Stackelberg game,
consider a simple game with the payoff table as shown in Table 1.

In many multiagent domains, agents must act in order to pro- The leader is th | d the foll is th | |
vide security against attacks by adversaries. A common issue that' '€ 1€ader is the row player and the follower is the column player.

agents face in such security domains is uncertainty about the ad_Here, the leader's payoff is listed first.
versaries they may be facing. For example, a security robot may
need to make a choice about which areas to patrol, and how often
[17]. However, it will not know in advance exactly where a robber
will choose to strike. A team of unmanned aerial vehicles (UAVS)
[1] monitoring a region undergoing a humanitarian crisis may also
need to choose a patrolling policy. They must make this decision
without knowing in advance whether terrorists or other adversaries
may be waiting to disrupt the mission at a given location. It may 5
indeed be possible to model the motivations of types of adversaries
the agent or agent team is likely to face in order to target these ad-
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Table 1: Payoff table for example normal form game.

The only Nash equilibrium for this game is when the leader plays
and the follower plays 2 which gives the leader a payoff of 2.
However, if the leader commits to a uniform mixed strategy of
playing 1 and 2 with equal (0.5) probability, the follower’s best
response is to play 3 to get an expected payoff of 5 (10 and 0 with
equal probability). The leader’'s payoff would then be 4 (3 and 5
Permission to make digital or hard copies of all or part of this work for With equal probability). In this case, the leader now has an incen-
personal or classroom use is granted without fee provided that copies aretive to deviate and choose a pure strategy of 2 (to get a payoff of
not made or distributed for profit or commercial advantage and that copies 5). However, this would cause the follower to deviate to strategy
bear this notice and the full citation on the first page. To copy otherwise, to 2 a5 well, resulting in the Nash equilibrium. Thus, by committing
republish, to post on servers or to redistribute to lists, requires prior specific to a strategy that is observed by the follower, and by avoiding the

permission and/or a fee. . . . .
AAMAS'07May 14—18 2007, Honolulu, Hawai'i, USA. temptation to deviate, the leader manages to obtain a reward higher

Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ... $5.00. than that of the best Nash equilibrium.



The problem of choosing an optimal strategy for the leader to trol, but the robber will know the mixed strategy the security agent
commit to in a Stackelberg game is analyzed in [5] and found to has chosen. For example, the robber can observe over time how
be NP-hard in the case of a Bayesian game with multiple types of often the security agent patrols each area. With this knowledge, the
followers. Thus, efficient heuristic techniques for choosing high- robber must choose a single house to rob. We assume that the rob-
reward strategies in these games is an important open issue. Methber generally takes a long time to rob a house. If the house chosen
ods for finding optimal leader strategies for non-Bayesian games by the robber is not on the security agent’s route, then the rob-
[5] can be applied to this problem by converting the Bayesian game ber successfully robs the house. Otherwise, if it is on the security
into a normal-form game by the Harsanyi transformation [8]. If, on agent’s route, then the earlier the house is on the route, the easier
the other hand, we wish to compute the highest-reward Nash equi-it is for the security agent to catch the robber before he finishes
librium, new methods using mixed-integer linear programs (MILPs) robbing it.

[18] may be used, since the highest-reward Bayes-Nash equilib- We model the payoffs for this game with the following variables:
rium is equivalent to the corresponding Nash equilibrium in the
transformed game. However, by transforming the game, the com-
pact structure of the Bayesian game is lost. In addition, since the e wv; 4: value of the goods in hougéo the robber.
Nash equilibrium assumes a simultaneous choice of strategies, the
advantages of being the leader are not considered.

In this paper we introduce an efficient heuristic method for ap- e ¢,: cost to the robber of getting caught.
proximating the optimal leader strategy for security domains, known
as ASAP (Agent Security via Approximate Policies). This method
has three key advantages. First, it directly searches for an optimal
strategy, rather than a Nash (or Bayes-Nash) equilibrium, thus al- The security agent’s set of possible pure strategies (patrol routes)
lowing it to find high-reward non-equilibrium strategies like the one is denoted byX and includes all-tuplesi =< w1, wa, ..., wq >
in the above example. Second, it generates policies with a supportwith w; ...wq = 1...m. where no two elements are equal (the
which can be expressed as a uniform distribution over a multiset of agent is not allowed to return to the same house). The robber’s
fixed size as proposed in [13]. This allows for policies that are sim- set of possible pure strategies (houses to rob) is denoté doyd
ple to understand and represent [13], as well as a parameter (the sizéncludes all integerg = 1...m. The payoffs (security agent,
of the multiset) that controls the simplicity of the policy and can be robber) for pure strategies; are:
tuned. Third, the method allows for a Bayes-Nash game to be ex-
pressed compactly without requiring conversion to a normal-form
game, allowing for large speedups over existing Nash methods such ~ ® pice+(1—p1)(—viz), =picg+(1—p1)(vi ), forj =1 € i.

as [18] and [12]. _ _ , With this structure it is possible to model many different types

The rest of the paper is organized as follows. In Section 2 we of rophers who have differing motivations; for example, one robber
fully describe the patrolling domain and its properties. Section 3 may have a lower cost of getting caught than another, or may value
introduces the Bayesian game, the Harsanyi transformation, andihe goods in the various houses differently. If the distribution of
existing methods for finding an optimal leader's strategy in a Stack- gjfferent robber types is known or inferred from historical data,
elberg game. Then, in Section 4 the ASAP algorithm is presented then the game can be modeled as a Bayesian game [6].
for normal-form games, and in Section 5 we show how it can be
adapted to the structure of Bayesian games with uncertain adver-
saries. Experimental results showing a higher reward and faster3' BAYESIAN GAMES
policy computation in comparison to existing Nash methods are A Bayesian game contains a set/§fagents, and each agent
shown in Section 6. We then conclude with a discussion of related must be one of a given set of typés. For our patrolling domain,
work in Section 7. we have two agents, the security agent and the roldhes. the set

of security agent types aréd is the set of robber types. Since there
is only one type of security agerft; contains only one element.

2. THE PATROLLING DOMAIN During the game, the robber knows its type but the security agent

In most security patrolling domains, the security agents (which d0€s not know the robber's type. For each agent (the security agent
could be UAVs [1] or security robots [17]) cannot feasibly patrol O the robber), there is a set of strategies and a utility function
all areas all the time. Instead, they must choose a policy by which un : 01 X 02 X 01 x o2 — R. _
they patrol various routes at different times, taking into account A Bayesian game can be transformed into a normal-form game
factors such as the likelihood of crime in different areas, possible USINg the Harsanyi transformation [8]. Once this is done, new,
targets for crime, and the security agents’ own resources (numberlinéar-program (LP)-based methods for finding high-reward strate-
of security agents, amount of available time, fuel, etc.). It is usu- 9ies for normal-form games [5] can be used to find a strategy in the
ally beneficial for this policy to be nondeterministic so that robbers transformed game; this strategy can then be used for the Bayesian
cannot safely rob certain locations, knowing that they will be safe 9ame. While methods exist for finding Bayes-Nash equilibria di-
from the security agents [15]. To demonstrate the utility of our al- €ctly, without the Harsanyi transformation [11], they find only a

gorithm, we use a simplified version of such a domain, expressed single equilibrium in the general case, which may not be of high
as a game. reward. Recent work [18] has led to efficient mixed-integer linear

The most basic version of our game consists of two players: the Program techniques to find the best Nash equilibrium for a given

security agent (the leader) and the robber (the follower) in a world @gent. However, these techniques do require a normal-form game,
consisting ofm houses] ...m. The security agent's set of pure ~ and so to compare the policies given by ASAP against the optimal

strategies consists of possible routesidiouses to patrol (in an  Policy, as well as against the highest-reward Nash equilibrium, we

order). The security agent can choose a mixed strategy so that theNust apply these techniques to the Harsanyi-transformed matrix.
robber will be unsure of exactly where the security agent may pa- 1€ next two subsections elaborate on how this is done.

e v, value of the goods in hougeo the security agent.

e ¢,: reward to the security agent of catching the robber.

e p;: probability that the security agent can catch the robber at
thelth house in the patrop{ < p;y < 1’ <1).

o —u g, v g fOrj=10¢1i.



3.1 Harsanyi Transformation From the Bayesian game in Table 2, we constructed the Harsanyi
The first step in solving Bayesian games is to apply the Harsanyi transformed bimatrix in Table 3. We denclé = o7* = o, and
Q= 032 as the index sets of the security agent and robbers’ pure

transformation [8] that converts the incomplete information game 2 vel iR and C h di
into a normal form game. Given that the Harsanyi transformation strategn_es, respeqtlve Y, Wt an as the corresponding pay-
off matrices. R;; is the reward of the security agent a6§; is

is a standard concept in game theory, we explain it briefly through h d of the robb hen th ; k
a simple example without introducing the mathematical formula- the reward o the robbers when the sgcurlty agent takes pure strat-
egy: and the robbers take pure strategyA mixed strategy for the

tions. Let us assume there are two robber typemndb in the i . O 2 I )
Bayesian game. Robberwill be active with probabilitycr, and security agent is a probability distribution over its set of pure strate-
X gies and will be represented by a vectot (pz1, pz2, - - -, Pa|x|)s

robberb will be active with probabilityl — «.. The rules described h < p 1 H s th bability th
in Section 2 allow us to construct simple payoff tables. wherep,; > 0and3_psi = 1. Here,p,; is the probability that
the security agent will choose itth pure strategy.

Assume that there are two houses in the world (1 and 2) and Th imal mixed for th . be found
hence there are two patrol routes (pure strategies) for the agent:, e optimal mixed strategy for the security agent can be foun

{1,2} and {2,1}. The robber can rob either house 1 or house 2 in time polynomial in the number of rows in the normal form game
an’d hence h;a has two strategies (denotet} 22 for robber type using the foIIowing linear program formulation from [5].

l). Since there are two types assumed (denoted asdb), we For every possible pure strategyy the follower (the set of all
construct two payoff tables (shown in Table 2) corresponding to robber types),

the security ag_ent playin_g a separate game with e_ach of the two max Y. x peiRij
robber types with probabilities and1 — «. First, consider robber £V eQy Cy >3 .
typea. Borrowing the notation from the domain section, we assign 5L J ) Luicoy Peitij = 2 g0y Peitiy!
the following values to the variable®; , = vi,q = 3/4,v2,0 = ZieX Pzi =1

va,q = 1/4,¢0 = 1/2,¢4 = 1,p1 = 1,p2 = 1/2. Using these Viex,pei >=0

values we construct a base payoff table as the payoff for the game ) .

against robber type. For example, if the security agent chooses 1 hen, for all feasible follower strategigschoose the one that max-
route{1,2} when robber is active, and robber chooses house 1,  IMiZ€S3_,c x pwiRij, the reward for the security agent (leader).
the robber receives a reward of -1 (for being caught) and the agentTep=: variables give the optimal strategy for the security agent.
receives a reward of 0.5 for catching the robber. The payoffs for the . Note that while this method is polynomial in the number of rows

game against robber typeare constructed using different values. N the transformed, normal-form game, the number of rows in-
creases exponentially with the number of robber types. Using this

(€

Security agent] 1z 2.0 method for a Bayesian game thus requires runt&ad"2| separate
Robber o : : linear programs. This is not a surprise, since finding the optimal
1 15 ~375. 175 strategy to commit to for the leader in a Bayesian game is NP-hard
3, -125,-125] -1, 5 [5]
Robber b
L -9,.6 | -275,.225 4. HEURISTIC APPROACHES
2 -.025,-.025| -.9,.6

Given that finding the optimal strategy for the leader is NP-hard,
Table 2: Payoff tables: Security Agent vs Robbers and b we provide a heuristic approach. In this heuristic we limit the pos-
sible mixed strategies of the leader to select actions with probabil-
ities that are integer multiples df/k for a predetermined integer
'k. Previous work [15] has shown that strategies with high entropy
are beneficial for security applications when opponents’ utilities
are completely unknown. In our domain, if utilities are not con-
sidered, this method will result in uniform-distribution strategies.
One advantage of such strategies is that they are compact to rep-
resent (as fractions) and simple to understand; therefore they can
be efficiently implemented by real organizations. We aim to main-
tain the advantage provided by simple strategies for our security
application problem, incorporating the effect of the robbers’ re-
wards on the security agent’s rewards. Thus, the ASAP heuristic
will produce strategies which ateuniform A mixed strategy is
denotedk-uniform if it is a uniform distribution on a multisef of
pure strategies withS| = k. A multiset is a set whose elements
sa i ; may be repeated multiple times; thus, for example, the mixed strat-

3.2 Fmdmg an Optlmal Strategy egy corresponding to the multisét, 1, 2} would take strategy 1

Although a Nash equilibrium is the standard solution concept for with probability 2/3 and strategy 2 with probability 1/3. ASAP al-
games in which agents choose strategies simultaneously, in our selows the size of the multiset to be chosen in order to balance the
curity domain, the security agent (the leader) can gain an advantagecomplexity of the strategy reached with the goal that the identified
by committing to a mixed strategy in advance. Since the followers strategy will yield a high reward.
(the robbers) will know the leader’s strategy, the optimal response  Another advantage of the ASAP heuristic is that it operates di-
for the followers will be a pure strategy. Given the common as- rectly on the compact Bayesian representation, without requiring
sumption, taken in [5], in the case where followers are indifferent, the Harsanyi transformation. This is because the different follower
they will choose the strategy that benefits the leader, there must(robber) types are independent of each other. Hence, evaluating
exist a guaranteed optimal strategy for the leader [5]. the leader strategy against a Harsanyi-transformed game matrix

Using the Harsanyi technique involves introducing a chance node
that determines the robber’s type, thus transforming the security
agent’s incomplete information regarding the robber into imperfect
information [3]. The Bayesian equilibrium of the game is then pre-
cisely the Nash equilibrium of the imperfectinformation game. The
transformed, normal-form game is shown in Table 3. In the trans-
formed game, the security agent is the column player, and the set
of all robber types together is the row player. Suppose that robber
type a robs house 1 and robber typeobs house 2, while the se-
curity agent chooses patrfl,2}. Then, the security agent and the
robber receive an expected payoff corresponding to their payoffs
from the agent encountering robheat house 1 with probability
and robbeb at house 2 with probability — «.



1.2 2.1}
{1a, 1o} —Ta— 9(1 — ), .ba+ .6(1 —a) —375a — .275(1 — a), .125a + .225(1 — a)
{Ta, 2} —1a — .025(1 — a), .ba — .025(1 — a) — 3750 — 9(1 — a), 1250 + .6(1 — )
{24, 1} — 1250 — .9(1 — ), —.125a + .6(1 — ) “To— 275(1 — @), o+ .225(1 — «)
24,2y} | —125a — .025(1 — ), —.1250 — .025(1 — ) —Ta— 9(1 — ), ba+ .6(1 — a)

Table 3: Harsanyi Transformed Payoff Table

is equivalent to evaluating against each of the game matrices for In the following subsections, we first define the problem in its
the individual follower types. This independence property is ex- most intuititive form as a mixed-integer quadratic program, and
ploited in ASAP to yield a decomposition scheme. Note that the LP then show how this problem can be converted into a mixed-integer
method introduced by [5] to compute optimal Stackelberg policies linear program.
is unlikely to be decomposable into a small number of games as it
was shown to be NP-hard for Bayes-Nash problems. Finally, note : :
that ASAP requires the solution of only one optimization problem, 4.1 Mlxed-lnteger Quadratlc Program
rather than solving a series of problems as in the LP method of [5]. We begin with the case of a single type of follower. Let the

For a single follower type, the algorithm works the following leader be the row player and the follower the column player. We
way. Given a particulak, for each possible mixed strategyor the denote byz the vector of strategies of the leader anthe vector
leader that corresponds to a multiset of sizevaluate the leader's  of strategies of the follower. We also dencteand Q the index
payoff fromz when the follower plays a reward-maximizing pure sets of the leader and follower’s pure strategies, respectively. The
strategy. We then take the mixed strategy with the highest payoff. payoff matriceskR andC correspond to:R;; is the reward of the

We need only to consider the reward-maximizing pure strate- leader and”;; is the reward of the follower when the leader takes
gies of the followers (robbers), since for a given fixed strategy  pure strategy and the follower takes pure strategyl et k be the
of the security agent, each robber type faces a problem with fixed size of the multiset.
linear rewards. If a mixed strategy is optimal for the robber, then  We first fix the policy of the leader to sonieuniform policy
so are all the pure strategies in the support of that mixed strategy.z. The valuez; is the number of times pure strategys used in
Note also that because we limit the leader’s strategies to take onthe k-uniform policy, which is selected with probability; /k. We
discrete values, the assumption from Section 3.2 that the followers formulate the optimization problem the follower solves to find its
will break ties in the leader’s favor is not significant, since ties will optimal response to as the following linear program:
be unlikely to arise. This is because, in domains where rewards are
drawn from any random distribution, the probability of a follower 1
having more than one pure optimal response to a given leader strat- max Z Z pCiati @

egy approaches zero, and the leader will have only a finite number ot le:Q o )
of possible mixed strategies. v p ;eég 4;

Our approach to characterize the optimal strategy for the security

agent makes use of properties of linear programming. We briefly . . - ,
outline these results here for completeness, for detailed discussio The ObJeCt'Ye function maximizes the fo!lowers expected reward
and proofs see one of many references on the topic, such as [2] givenz, while the constraints make feasible any mixed straiggy

Every linear programming problem, such as: for the follower. The dual to this linear programming problem is

the following:
maxcl x | Az = b,z >0,
. . . . min a
has an associated dual linear program, in this case: 1
T T st. a> Z —Cijzs jE€Q. ()
minb y| A"y > c. ieXk

These primal/dual pairs of problems satisfy weak duality: Forany
andy primal and dual feasible solutions respectivelyz < bTy.

Thus a pair of feasible solutions is optimaldfz = b7y, and

the problems are said to satisfy strong duality. In fact if a linear
program is feasible and has a bounded optimal solution, then the
dual is also feasible and there is a pait y* that satisfies” 2* =
bTy*. These optimal solutions are characterized with the following
optimality conditions (as defined in [2]):

From strong duality and complementary slackness we obtain that
the maximum reward value for the followeris the value of ev-

ery pure strategy witly; > 0, that is in the support of the optimal
mixed strategy. Therefore each of these pure strategies is optimal.
Optimal solutions to the follower’'s problem are characterized by
linear programming optimality conditions: primal feasibility con-
straints in (2), dual feasibility constraints in (3), and complemen-
tary slackness

e primal feasibility: Ax = b, z > 0
1 .
e dual feasibility: ATy > ¢ q; <a - Z k@'ﬂ%) =0 JEQ.

ieX
e complementary slackness;(A”y — ¢); = 0 for all 4.
_ o These conditions must be included in the problem solved by the
Note that this last condition implies that leader in order to consider only best responses by the follower to
T T 4T T the k-uniform policyz.
=z Ay=by, . . o .
cr=e Y Y The leader seeks thie-uniform solutionz that maximizes its
which proves optimality for primal dual feasible solutionandy. own payoff, given that the follower uses an optimal respar{ss.



Therefore the leader solves the following integer problem:

1
max Z Z %Rijq(:v)j T
i€X jeQ
Diexwi=k
x; € {0, 1,...

s.t. “)

k.

Problem (4) maximizes the leader’s reward with the follower’s best
responseq; for fixed leader’s policyz and hence denoteg(z),)

by selecting a uniform policy from a multiset of constant giz&Ve
complete this problem by including the characterizatiory@f)
through linear programming optimality conditions. To simplify
writing the complementary slackness conditions, we will constrain
q(x) to be only optimal pure strategies by just considering integer
solutions ofg(z). The leader’s problem becomes:

1
max,, > Y 7 Rijwia;
1€X JjEQ
> ri=k
Z]‘EQ g =1 .
0<(a—Ycx #Cumi) < (1 —q;)M
€T, € {O, 1, ,k}
q; € {0,1}.

Here, the constamt/ is some large number. The first and fourth
constraints enforce &-uniform policy for the leader, and the sec-

s.t.

©)

ond and fifth constraints enforce a feasible pure strategy for the

follower. The third constraint enforces dual feasibility of the fol-

lower’s problem (leftmost inequality) and the complementary slack-

ness constraint for an optimal pure stratedgr the follower (right-

most inequality). In fact, since only one pure strategy can be se-

lected by the follower, say;, = 1, this last constraint enforces that
a= ZieX %Cihxi imposing no additional constraint for all other
pure strategies which hayg = 0.

We conclude this subsection noting that Problem (5) is an in-
teger program with a non-convex quadratic objective in general,

as the matrixR need not be positive-semi-definite. Efficient solu-

tion methods for non-linear, non-convex integer problems remains
a challenging research question. In the next section we show a re-

formulation of this problem as a linear integer programming prob-
lem, for which a number of efficient commercial solvers exist.

4.2 Mixed-Integer Linear Program

We can linearize the quadratic program of Problem 5 through the

change of variables;; = z;q¢;, obtaining the following problem

1
maXgq,z ZiEX ZjEQ ERijZij

s.t. Diex Z]EQ zij =k
2 Sk
kq; <Y ex2is <k
ZjeQ g =1

0<(a—Ycx 5Cii(Xheqzin) < (1 —a)M
Zij € {0, 1,...., k}
qj S {0, 1}

(6)

ProPOSITION 1. Problems (5) and (6) are equivalent.

Proof: Considerz, ¢ a feasible solution of (5). We will show
thatq, z;; = ziq; is a feasible solution of (6) of same objective

that) .., zij = z:@s)_ ., q; = 1 explains constraints 1, 2, and
5 of (6). Constraint 3 of (6) is satisfied becagsg, y zi; = kq;.

Let us now considey, = feasible for (6). We will show that and
T =, cq Zij are feasible for (5) with the same objective value.
In fact all constraints of (5) are readily satisfied by construction. To
see that the objectives match, notice thaj;if= 1 then the third
constraint in (6) implies thaEieX zin = k, which means that
z;; = 0forall: € X and allj # h. Therefore,

Tiq; = § Zildj = Zihqj = Zij-.
leQ

This last equality is because both are 0 wheg h. This shows
that the transformation preserves the objective function value, com-
pleting the proof.

Given this transformation to a mixed-integer linear program (MILP),
we now show how we can apply our decomposition technique on
the MILP to obtain significant speedups for Bayesian games with
multiple follower types.

5. DECOMPOSITION FOR MULTIPLE AD-
VERSARIES

The MILP developed in the previous section handles only one
follower. Since our security scenario contains multiple follower
(robber) types, we change the response function for the follower
from a pure strategy into a weighted combination over various pure
follower strategies where the weights are probabilities of occur-
rence of each of the follower types.

5.1 Decomposed MIQP

To admit multiple adversaries in our framework, we modify the
notation defined in the previous section to reason about multiple
follower types. We denote bythe vector of strategies of the leader
andg' the vector of strategies of followérwith L denoting the in-
dex set of follower types. We also denote Byand @ the index
sets of leader and followéls pure strategies, respectively. We also
index the payoff matrices on each followerconsidering the ma-
tricesR' andC".

Using this modified notation, we characterize the optimal solu-
tion of follower I's problem given the leaders k-uniform poliey
with the following optimality conditions:

S =
JEQ
1
iex
1
qé’(al—Z%dﬂi) =0
iex
q§'~ > 0

Again, considering only optimal pure strategies for follower
problem we can linearize the complementarity constraint above.
We incorporate these constraints on the leader’s problem that se-
lects the optimak-uniform policy. Therefore, given priori prob-

function value. The equivalence of the objective functions, and abilities p', with [ € L of facing each follower, the leader solves
constraints 4, 6 and 7 of (6) are satisfied by construction. The fact the following problem:



maxXg,q Z Z Z %Rijxiqé

i€X lEL jeQ

iz =k

2icQ lqi =1

0 S (a - ZieX %
z; € {0,1,....,k}
qﬁ- € {0,1}.

Problem (7) for a Bayesian game with multiple follower types
is indeed equivalent to Problem (5) on the payoff matrix obtained
from the Harsanyi transformation of the game. In fact, every pure
strategyj in Problem (5) corresponds to a sequence of pure strate-
giesj;, one for each followet € L. This means thag; = 1 if
and only ifqél = 1foralll € L. In addition, given the pri-
ori probabilitiesp’ of facing playerl, the reward in the Harsanyi
transformation payoff table iR;; = >,_, p'R};,. The same re-
lation holds betweer’ and C'. These relations between a pure

s.t.
(7)
ijfﬂi) <(1- Q§)M

tively, constraint 6 ensures that all the adversaries are calculating
their best responses against a particular fixed policy of the agent.
This shows that the transformation preserves the objective function
value, completing the proof.

We can therefore solve this equivalent linear integer program
with efficient integer programming packages which can handle prob-
lems with thousands of integer variables. We implemented the de-
composed MILP and the results are shown in the following section.

6. EXPERIMENTAL RESULTS

The patrolling domain and the payoffs for the associated game
are detailed in Sections 2 and 3. We performed experiments for this
game in worlds of three and four houses with patrols consisting of
two houses. The description given in Section 2 is used to generate
a base case for both the security agent and robber payoff functions.
The payoff tables for additional robber types are constructed and
added to the game by adding a random distribution of varying size
to the payoffs in the base case. All games are normalized so that,

strategy in the equivalent normal form game and pure strategies infor each robber type, the minimum and maximum payoffs to the

the individual games with each followers are key in showing these
problems are equivalent.

5.2 Decomposed MILP

We can linearize the quadratic programming problem 7 through
the change of variableg; = z;¢}, obtaining the following prob-
lem

maXgq,z ZiEX ZZGL ZjeQ %Ri‘j'zéj

s.t. ZiEX ZjEQ zij =k
ZjeQ Zﬁj <k
qu < ZieX Zﬁj <k
Yiedi=1
0< (@ = Yiex #05( heq#in) < (1 —d5)M
2jeq 2 = 2jca Zi
zl; €40,1,....,k}
q;' €{o0,1}

(€

PROPOSITION 2. Problems (7) and (8) are equivalent.

Proof: Considerz, ¢!, o' with [ € L a feasible solution of (7).
We will show thatg', o', 2}, = z:¢} is a feasible solution of (8)

of same objective function value. The equivalence of the objective
functions, and constraints 4, 7 and 8 of (8) are satisfied by con-
struction. The facttha} ., z;; = z: @s)_ ., ¢; = 1 explains
constraints 1, 2, 5and 6 o?(S). Constraint 3 of (8) is satisfied be-
causey_,  zi; = k.

Lets now considet’, 2!, a! feasible for (8). We will show that
q',a' andz; = 3., z}; are feasible for (7) with the same ob-
jective value. In fact all constraints of (7) are readily satisfied by
construction. To see that the objectives match, notice for éach
oneq§ must equal 1 and the rest equal 0. Let us sathat: 1,

then the third constraint in (8) implies thaf ;. zﬁjl = k, which
means thakﬁj = 0forall € X and allj # 7. In particular this
implies that

o 11 1
Ti = Zij = Ziji = Zigps
JEQ

the last equality from constraint 6 of (8). Therefarg} = 2i;, ¢} =
zﬁj. This last equality is because both are 0 wheg# j;. Effec-

security agent and robber are 0 and 1, respectively.
Using the data generated, we performed the experiments using
four methods for generating the security agent’s strategy:

e uniform randomization
o ASAP

e the multiple linear programs method from [5] (to find the true
optimal strategy)

e the highest reward Bayes-Nash equilibrium, found using the
MIP-Nash algorithm [18]

The last three methods were applied using CPLEX 8.1. Because
the last two methods are designed for normal-form games rather
than Bayesian games, the games were first converted using the
Harsanyi transformation [8]. The uniform randomization method is
simply choosing a uniform random policy over all possible patrol
routes. We use this method as a simple baseline to measure the per-
formance of our heuristics. We anticipated that the uniform policy
would perform reasonably well since maximum-entropy policies
have been shown to be effective in multiagent security domains
[15]. The highest-reward Bayes-Nash equilibria were used in order
to demonstrate the higher reward gained by looking for an optimal
policy rather than an equilibria in Stackelberg games such as our
security domain.

Based on our experiments we present three sets of graphs to
demonstrate (1) the runtime of ASAP compared to other common
methods for finding a strategy, (2) the reward guaranteed by ASAP
compared to other methods, and (3) the effect of varying the pa-
rameterk, the size of the multiset, on the performance of ASAP.
In the first two sets of graphs, ASAP is run using a multiset of
80 elements; in the third set this number is varied. The first set of
graphs, shown in Figure 1 shows the runtime graphs for three-house
(left column) and four-house (right column) domains. Each of the
three rows of graphs corresponds to a different randomly-generated
scenario. Thes-axis shows the number of robber types the secu-
rity agent faces and thg-axis of the graph shows the runtime in
seconds. All experiments that were not concluded in 30 minutes
(1800 seconds) were cut off. The runtime for the uniform policy
is always negligible irrespective of the number of adversaries and
hence is not shown.

The ASAP algorithm clearly outperforms the optimal, multiple-
LP method as well as the MIP-Nash algorithm for finding the highest-
reward Bayes-Nash equilibrium with respect to runtime. For a
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reward. Results here are for the three-house domain. The trend is

domain of three houses, the optimal method cannot reach a solu-that as as the multiset size is increased, the runtime and reward level
tion for more than seven robber types, and for four houses it can- both increase. Not surprisingly, the reward increases monotonically
not solve for more than six types within the cutoff time in any of as the multiset size increases, but what is interesting is that there is
the three scenarios. MIP-Nash solves for even fewer robber typesrelatively little benefit to using a large multiset in this domain. In
within the cutoff time. On the other hand, ASAP runs much faster, all cases, the reward given by a multiset of 10 elements was within
and is able to solve for at least 20 adversaries for the three-houseat least 96% of the reward given by an 80-element multiset. The
scenarios and for at least 12 adversaries in the four-house scenarruntime does not always increase strictly with the multiset size;
ios within the cutoff time. The runtime of ASAP does not increase indeed in one example (scenario 2 with 20 robber types), using a
strictly with the number of robber types for each scenario, but in multiset of 10 elements took 1228 seconds, while using 80 elements
general, the addition of more types increases the runtime required. only took 617 seconds. In general, runtime should increase since a

The second set of graphs, Figure 2, shows the reward to the patrollarger multiset means a larger domain for the variables in the MILP,
agent given by each method for three scenarios in the three-houseand thus a larger search space. However, an increase in the number
(left column) and four-house (right column) domains. This reward of variables can sometimes allow for a policy to be constructed
is the utility received by the security agent in the patrolling game, more quickly due to more flexibility in the problem.
and not as a percentage of the optimal reward, since it was not pos-
_slble to obtain the_optlmal _reward as the numb_er of robber types 7. SUMMARY AND RELATED WORK
increased. The uniform policy consistently provides the lowest re-
ward in both domains; while the optimal method of course pro-  This paper focuses on security for agents patrolling in hostile en-
duces the optimal reward. The ASAP method remains consistently vironments. In these environments, intentional threats are caused
close to the optimal, even as the number of robber types increasesby adversaries about whom the security patrolling agents have in-
The highest-reward Bayes-Nash equilibria, provided by the MIP- complete information. Specifically, we deal with situations where
Nash method, produced rewards higher than the uniform method,the adversaries’ actions and payoffs are known but the exact ad-
but lower than ASAP. This difference clearly illustrates the gains in versary type is unknown to the security agent. Agents acting in
the patrolling domain from committing to a strategy as the leader the real world quite frequently have such incomplete information
in a Stackelberg game, rather than playing a standard Bayes-Nastabout other agents. Bayesian games have been a popular choice to
strategy. model such incomplete information games [3]. The Gala toolkit

The third set of graphs, shown in Figure 3 shows the effect of the is one method for defining such games [10, 9] without requiring
multiset size on runtime in seconds (left column) and reward (right the game to be represented in normal form via the Harsanyi trans-
column), again expressed as the reward received by the securityformation [8]; Gala's guarantees are focused on fully competitive
agent in the patrolling game, and not a percentage of the optimal games. Much work has been done on finding optimal Bayes-Nash



Runtime Reward traveled [4, 14], without reasoning about any explicit model of an

700 0.7 adversary[15].
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