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ABSTRACT ports or airports. Adversaries may be unobserved terrorists with
unknown capabilities and actions, who can learn the schedule from
observations. |If the schedule is deterministic, then these adver-

esaries may exploit schedule predictability to intrude or attack and

cause tremendous unanticipated sabotage. Alternatively, consider a

team of UAVs (Unmanned Air Vehicles)[2] monitoring a region un-

&grgoing a humanitarian crisis. Adversaries may be humans intent
on causing some significant unanticipated harm — e.g. disrupt-
ing food convoys, harming refugees or shooting down the UAVs

Security in multiagent systems is commonly defined as the abil-
ity of the system to deal with intentional threats from other agents.
This paper focuses on domains where such intentional threats ar
caused by unseen adversaries whose actions or payoffs are un
known. In such domains, action randomization can effectively de-
teriorate an adversary’s capability to predict and exploit an agent/ag
team’s actions. Unfortunately, little attention has been paid to in-
tentional randomization of agents’ policies in single-agent or de-

centralized (PO)MDPs without significantly sacrificing rewards or d—.ﬁt_heladversgr);’s calpa_lllailities, actionshor p;yoffs are unknot\)/v n and
breaking down coordination. This paper provides two key con- difficult to model explicitly. However, the adversaries can observe

tributions to remedy this situation. First, it provides three novel the UAVs and exploit any predictability in UAV surveillance, e.g.

algorithms, one based on a non-linear program and two based on€"929€ in unknown harmful actions by avoiding the UAVS’ route.
While we cannot explicitly model the adversary’s actions, capa-

linear programs (LP), to randomize single-agent policies, while at- " g -
prog (LP) gie-agent p bilities or payoffs, in order to ensure security of the agent/agent-

taining a certain level of expected reward. Second, it provides .

Rolling Down RandomizationRDR), a new algorithm that effi- team we make two worst case assumptions about th_e adver_sary.

ciently generates randomized policies for decentralized POMDPs (We show Iater_that av_ve_aker adversary, i.e. one who fails to satl_sfy
these assumptions, will in general only lead to enhanced security.)

via the single-agent LP method. ! N .
The first assumption is that the adversary can estimate the agent’s
Categories and Subject Descriptors state or belief state. In fully observable domains, the adversary esti-
1.2.8 [Artificial Intelligence]: Distributed Artificial Intelligence - ~ Mates the agents state to be the current world state which both can
Multi Agent Systems observe fully. If the domain is partially observable, we assume that
the adversary estimates the agent's belief states, because: (i) the

General Terms adversary eavesdrops or spies on the agent’s sensors such as sonar

Security, Design, Theory or radar (e.g., UAV/robot domains); or (ii) the adversary estimates
the most likely observations based on its model of the agent’s sen-

Keywords o sors; or (iii) the adversary is co-located and equipped with similar

Safety and Security in Agent Systems, Teamwork, MDP, POMDP, sensors. The second assumption is that the adversary knows the

Decentralized POMDP agents’ policy, which it may do by learning over repeated observa-
tions or obtaining this policy via espionage or other exploitation.

1. INTRODUCTION Thus, we assume that the adversary may have enough informa-

In many adversarial domains, it is crucial for agent and agent tion to predict the. agents’ actions with certainty if the agents fol-
teams based on single-agent or decentralized (PO)MDPs to ranowed a deterministic policy. Hence, our work maximizes policy
domize policies in order to avoid action predictability. Such policy andomization to thwart the adversary's prediction of the agent's
randomization is crucial for security in domains where we cannot actions based on the agent's state and minimize adversary’s ability
explicitly model our adversary’s actions and capabilities or its pay- {0 cause harm . Unfortunately, while randomized policies are cre-
offs, but the adversary observes our agents’ actions and exploits any?ted as a side effect [1] and turn out to be optimal in some stochastic
action predictability in some unknown fashion. Consider agents 9ames [10], little attention has been paid to intentionally maximiz-

that schedule security inspections, maintenance or refueling at seai"d randomization of agents’ policies even for single agents. Obvi-
ously, simply randomizing an MDP/POMDP policy can degrade an
agent’s expected rewards, and thus we face a randomization-reward
tradeoff problem: how to randomize policies with only a limited
Permission to make digital or hard copies of all or part of this work for 0SS in expected rewards. Indeed, gaining an explicit understanding
personal or classroom use is granted without fee provided that copies areof the randomization-reward tradeoff requires new techniques for
not made or distributed for profit or commercial advantage and that copies policy generation rather than the traditional single-objective max-
bear th|s notice and the full citation on th_e first page. To copy otherW|se,_t_o imization techniques. However, generating policies that provide
rzeumtigzgrf(;ﬁglséfg fzeervers or to redistribute to lists, requires prior specific appropriate randomization-reward tradeoffs is difficult, a difficulty
KAM AS'06May 8-12 2006, Hakodate, Hokkaido, Japan. that is exacerbated in agent teams based on decentralized POMDPs,
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as randomization may create miscoordination. (2) below, wherer* (s, a) is the probability of taking action a in

This paper provides two key contributions to remedy this situa- state s. It turns out that™ is deterministic and uniformly optimal
tion. First, we provide novel techniques that enable policy random- regardless of the initial distributiofx; }jcs [4] i.e., 7*(s, a) has
ization in single agents, while attaining a certain expected reward a value of either 0 or 1. However, such deterministic policies are
threshold. We measure randomization via an entropy-based met-undesirable in domains like our UAV example.
ric (although our techniques are not dependent on that metric). In
particular, we illustrate that simply maximizing entropy-based met- . z*(s,a)
rics introduces a non-linear program that does not guarantee poly- 7 (s,a) = m . @
nomial run-time. Hence, we introduce our CRLP (Convex com- aca ’
bination for Randomization) and BRLP (Binary search for Ran- 2.1 Randomness of a policy
domization) linear programming (LP) techniques that randomize
policies in polynomial time with different tradeoffs as explained
later. The second part of the paper provides a new algorithm, RDR
(Rolling Down Randomization), for generating randomized poli-
cies for decentralized POMDPs, given a threshold on the expected
team reward loss. RDR starts with a joint deterministic policy
for decentralized POMDPs, then iterates, randomizing policies for
agents turn-by-turn, keeping policies of all other agents fixed. A
key insight in RDR is that given fixed randomized policies for other
agents, we can generate a randomized policy via CRLP or BRLP,
i.e., our efficient single-agent methods.

The motivation for use of entropy-based metrics to randomize
our agents’ policies stems from information theory. It is well known
that the expected number of probes (e.g., observations) needed to

We borrow from information theory the concept of entropy of a
set of probability distributions to quantify the randomness, or in-
formation content, in a policy of the MDP. For a discrete probabil-
ity distributionps, . . ., p, the only function, up to a multiplicative
constant, that captures the randomness is the entropy, given by the
formulaH = — "7, pilog p; [15]. We introduce aveighted en-
tropy function to quantify the randomness in a polieyf an MDP
and express it in terms of the underlying frequencyNote from
the definition of a policyr in (2) that for each statethe policy de-

' fines a probability distribution over actions. The weighted entropy
is defined by adding the entropy for the distributions at every state
weighted by the likelihood the MDP visits that state, namely

identify the outcome of a distribution is bounded below by the en-  Hy, () = - Z Laca®(s@) Z (s, a)log 7(s, a)

tropy of that distribution [15]. Thus, by increasing policy entropy, 6 YiesY  loh

we force the opponent to execute more probes to identify the out- 1 (s, )

come of our known policy, making it more difficult for the oppo- = = Z Z z(s,a) log <> )
nent to anticipate our agent’s actions and cause harm. In particular, Ljes % {chach 2aca®(s,0)

in our (PO)MDP setting, the conflict between the agents and the \ve note that the randomization approach we propose works for
adversary can be interpreted as a game, in which the agents generyjternative functions of the randomness yielding similar results. For

ate a randomized policy above a givgn expected reward thresh(.)ld;examme we can define auditive entropytaking a simple sum of
the adversary knows the agent’s policy and the adversary's actionthe individual state entropies as follows:

is to guess the exact action of the agent/agent-team by probing. For

example, in the UAV setting, given our agent’s randomized pol-

icy, the adversary generates probes to determine the direction our 14 =~ > > ml(s,a)logn(s,a)
UAV is headed from a given state. Thus, in the absence of specific sesacd

knowledge of the adversary, we can be sure to increase the average Y (s9) < z(s, a) >
number of probes the adversary uses by increasing the lower bound cSaca Daeaz(s; @) Yacaz(s,a) ’
given by the entropy of the policy distribution at every state.

We now present three algorithms to obtain random solutions that

2. RANDOMIZATION: SINGLE AGENTS maintain an expected reward of at ledst;, (a certain fraction

Before considering agent teams, we focus on randomizing single of the_ maximal e>.<pect<.aq rewalia. obtained solving (1))' These
agent MDP policies, e.g. a single MDP-based UAV agent is moni- algorithms result in po_Il_C|es tha}t, in our UAV-type domains, enab_le
toring a troubled region, where the UAV gets rewards for surveying an agehnt to get a sufflc:jently h::?ﬂ (_axpect?d r?ward_, de.g. ds_utrv§_3|/_|trlg
various areas of the region, but as discussed above, security requiregnOUg area, using randomized flying routes fo avoid predictabiiity.
it to random_ize its monitoring strategies to avoi_d predictability. 2.2 Maximal entropy solution

An MDP is denoted as a tuplésS, A, P, R). S is a set of world
states{s1, ..., sm}, A the set of actionga, . .., ax }, P the set of
tuplesp(s, a, j) representing the transition function and R the set o

tuplesr (s, a) denoting the immediate reward. (s, a) represents pected reward can be controlled by enforcing that feasible solu-

the number of times the MDP visits stat@nd takes action and tions achieve at least a certain expected rewgd.. The follow-
o represents the number of times that the MDP starts in each state. P .

;'€ S, then the optimal policy, maximizing expected reward, is ing problem maximizes the weighted entropy while maintaining the
derived via the following linear program [4]: expected reward abowgn:

We can obtain policies with maximal entropy but a threshold ex-
f pected reward by replacing the objective of Problem (1) with the
definition of the weighted entrop#/w (x). The reduction in ex-

o (s, a)
max Z Z r(s,a)z(s,a) max T ¥ esa SEZS%:E(S’ a)log <EdeA x(s,d)>
s€SacA . .
st S w(a) = 33 plsa, (s, a) = oy O s.t. ZAx(J, a) — ZS ZAP(S, a,7)x(s,a) = a; 5
acA sESacA Vjies @€ s€5 Vjes @)
z(s,a) >0 Vse€ S,ae A Z E r(s,a)x(s,a) > Emin

seSacA
If 2* is the optimal solution to (1), optimal policy* is given by z(s,a) >0 Vs e S,ae A



Fmin is an input domain parameter (e.g. UAV mission specifica-
tion). Alternatively, if E* denotes the maximum expected reward
from (1), then by varying the expected reward threshbigd, €

THEOREM 1. Consider a solutiork, which satisfiesAz = «
andz > 0. Letz™ be the solutionto (1) an@ € [0, 1]. If zg is the
solution to (4) therxs = (1 — B)z* + Bz.

[0,E*]we can explore the tradeoff between the achievable expected proof: We reformulate problem (4) in terms of the slack= = —

reward and entropy, and then select the appropdate,. Note
that for Emin = 0 the above problem finds the maximum weighted
entropy policy, and fo2.,in = E™, Problem (3) returns the maxi-
mum expected reward policy with largest entropy. Solving Problem
(3) is our first algorithm to obtain a randomized policy that achieves
at leastEnin expected reward (Algorithm 1).

Algorithm 1 MAX-ENTROPY(Emin)

1: Solve Problem (3) wittE,iy, letz g, be optimal solution
2: return zp_, (maximal entropy, expected reward E,i,)

Unfortunately entropy-based functions likéy (x) are neither
convex nor concave i, hence there are no complexity guarantees
in solving Problem (3), even for local optima [16]. This negative
complexity motivates the polynomial methods presented next.

2.3 Efficient single agent randomization
The idea behind these polynomial algorithms is to efficiently

Bz of the solutionz over 8z leading to the following problem :

BrTz 4+ max rTz
st. Az=(1- P
z>0,

The above problem is equivalent to (4), where we used the fact that
AZ = «. Letz"* be the solution to this problem, which shows that
xg = z* + BZ. Dividing the linear equatiodlz = (1 — )«, by
(1—p) and substituting. = z/(1— /) we recover the deterministic
problem (1) in terms of u, with,* as the optimal deterministic
solution. Renaming variable u to x, we obtafiéﬁz* = z*, which
concludes the proof. []

Sincezs = (1 — B)z* + Bz, we can directly find a random-
ized solution which obtains a target expected rewarfl,gf,. Due
to the linearity in relationship betweery and/3, a linear relation-
ship exists between the expected reward obtainedstfy.e 7 z5)

i _ rTa* By T —
and 3. In fact setting8 = “#——2% makesr' zg = Ewnin.

rTo*—r Tz
We now present below algorithjfn CRLP based on the observations

solve problems that obtain policies with a high expected reward made abouf andz.

while maintaining some level of randomness. (A very high level of
randomness implies a uniform probability distribution over the set

of actions out of a state, whereas a low level would mean determin-
istic action being taken from a state). We then obtain a solution that
meets a given minimal expected reward value by adjusting the level 2: Setf =

of randomness in the policy. The algorithms that we introduce in

Algorithm 2 CRLP(Ewmin, T)

1: Solve Problem (1), let* be the optimal solution

—Enin
rTa*x—rTg

3. Setzg = (1 — B)z* + Bz

Ty

this section consider two inputs: a minimal expected reward value 4: retum z; (expected reware: Eviy, entropy based ofiz)

FEmin and a randomized solutian (or policy 7). The inputz can

be any solution with high entropy and is used to enforce some level

Algorithm CRLP is based on a linear program and thus obtains,

of randomness on the high expected reward output, through linear;, polynomial time, solutions to problem(4) with expected reward

constraints. For example, one such high entropy input for MDP-
based problems is the uniform policy, whetrés, a) = 1/|A|. We

enforce the amount of randomness in the high expected reward so

lution that is output through a paramet@re [0, 1]. For a given
[ and a high entropy solution, we output a maximum expected
reward solution with a certain level of randomness by solving (4).

max Z Z r(s,a)z(s,a)

s€SacA

st > z(ja) =Y. p(s,a,j)a(s,a) = a; @)
acA s€eSacA V] cS
z(s,a) > Bx(s,a) Vse S,ae A.

which can be referred to in matrix shorthand as

max 7z
st. Az =«
x> [T

As the parameteg is increased, the randomness requirements

valuesEwin € [E, E*]. Note that Algorithm CRLP might unnec-
essarily constrain the solution set as Problem(4) implies that at least
B> .ca Z(s,a) flow has to reach each stateThis restriction may
negatively impact the entropy it attains, as experimentally verified
in Section 5. This concern is addressed by a reformulation of Prob-
lem (4) replacing the flow constraints by policy constraints at each
stage. For a givep € [0, 1] and a solutior (policy calculated
from z), this replacement leads to the following linear program

max Z Z r(s,a)z(s,a)

s€SacA
st Y x(,a) =YY p(s,a,i)ax(s,a) =a;, ViE€S
a€A s€ESacA
z(s,a) > B7(s,a) Z z(s,b), VseS,a€cA.
beA

®)
For 8 = 0 this problem reduces to (1) returnidg", for 8 = 1
it returns a maximal expected reward solution with the same policy
as7. This means that fof at values 0 and 1, problems (4) and (5)

of the solution become stricter and hence the solution to (4) would obtain the same solution if policy is the policy obtained from the

have smaller expected reward and higher entropy. g~er 0 the

flow functionz. However, in the intermediate range of 0 to 1 for

above problem reduces to (1) returning the maximum expected re- 3, the policy obtained by problems (4) and (5) are different even if

ward solutionE™; and for3 = 1 the problem obtains the maximal
expected reward (denotdg) out of all solutions with as much ran-
domness as. If E* is finite, then Problem (4) returnsfor 8 = 1
andE = ZSGS ZaGA T(Sﬁ a’)‘f’.(s7 a’)'

Our second algorithm to obtain an efficient solution with a ex-
pected reward requirement 8%,.;, is based on the following result
which shows that the solution to (4) is a convex combination of the
deterministic and highly random input solutions.

7 is obtained fromz. Thus, theorem 1 holds for problem (4) but
not for (5). Table 1, obtained experimentally, validates our claim
by showing the maximum expected rewards and entropies obtained
(entropies in parentheses) from problems (4) and (5) for various
settings of3, e.g. for3 = 0.4, problem (4) provides a maximum
expected reward of 26.29 and entropy of 5.44, while problem (5)
provides a maximum expected reward of 25.57 and entropy of 6.82.
Table 1 shows that for the same valuetin Problems (4) and



(5) we get different maximum expected rewards and entropies im- 3.1  MTDP: A Decentralized POMDP model

plying that the optimal policies for both problems are different, e use notation from MTDP (Multiagent Team Decision Prob-
hence Theorem 1 does not hold for (5). Indeed, while the expected|em) [14] for our decentralized POMDP model; other models are
reward of Problem (4) is higher for this example, its entropy is equivalent [3]. Given a team of agents, an MTDP is defined
lower than Problem (5). Hence to investigate another randomizationys 3 tuple: (S, A, P, €, O,R). S is a finite set of world states

reward tradeoff point, we introduce our third algorithm BRLP, which (¢, ~ s 1 4 = X1<i<nA;, WhereAs, ..., A,, are the sets of
uses problem (5) to perform a binary search to attain a policy with action for agents 1 ta. A joint action is represented &s , . . . , an).
expected rewar®.,in € [F, £*], adjusting the parametgi. P(si,{a1,...,an),sy), the transition function, represents the prob-
| 5ea I 5 I 7 I 5 I 5 | ability that the current state is, if the previous state is; and the
- - - - revious joint action iga1,...,an). Q = Xi1<i<n$; is the set
irolgiemgg; 52;471 g;g; ;gég gggg; ;ggi ggg; ggg? Eggg Ef joint otiservations V\f(hciellﬁi is ?hle> set of obégriatiozns for agents
rovem Sl S Sadll SR i. O(s,{ai,...,an),w), the observation function, represents the
Table 1: Maximum expected rewards(entropies) for various3 probability of joint observationo € €, if the current state is
and the previous joint action i&1, ..., a,). We assume that ob-
Algorithm 3 BRLP(Eumin, 7) servations of each agent are independent of each other’s observa-
- — — . — tions, i.e.O(s, (a1, ...,an),w) = O1(s,{(a1,...,Qn)yw1) * ... "
%2 g%téin; 3’0%{ 1,andG = 1/2. On(s,{a1,...,an),wn). The agents receive a single, immediate
3: Solve Problem (5), let:3 and E£(3) be the optimal solution and ex- ~ JoINnt rewardR(s,. (a1, aE an)). For deterministic policies, each
pected reward value returned agenti chooses its actions based on its polidy, which maps its
4: while |E(8) — Emin| > edo observation history to actions. Thus, at timagent will perform
St if E(B) > Emin then actionII; (&!) whered! = wy, .....,w!. II = (IIy, ....., I1,,) refers
g; ol SEEthl =8 to the joint policy of the team of agents. In this model, execution is
8 SSetﬁ -3 distributed but planning is centralized; and agents don’t know each
9: 5= Bt By other’s observations and actions at run time.
10:  Solve F2’roblem (5), let:; and E(8) be the optimal solution and Unlike previous work, in our work, policies are randomized and

expected reward value returned hence agents obtain a probability distribution over a set of actions
: return x5 (expected reware: Eniy, £ €, entropy related t@z) rather than a single action. Furthermore, this probability distribu-
tion is indexed by a sequence of action-observation tuples rather
than just observations, since observations do not map to unique

Given inputz, algorithm BRLP runs in polynomial time, since at actions. Thus in MTDP, a randomized policy mab$ to a prob-
ability distribution over actions, wher@! = (!, ... ¥!) and

each iteration it solves an LP and for tolerance,df takes at most
E@O)-EW) ) : ;

(0] (f iterations to converge (E(0) and E(1) expected re- ¥t = (a!~,w!). Thus, at timet, agenti will perform an action

wards correspond to 0 and 1 values®f selected randomly based on the probability distribution returned by

. IL;(P}). Furthermore we denote the probability of an individual
2.4 Incorporating models of the adversary action under policyT; given * as P (a!| ).
Throughout this paper, we sebased on uniform randomization
7 = 1/|A|. By manipulatingz, we can accommodate the knowl- 3.2 |llustrative UAV team Domain
edge of the behav_ic_)r of the adversary. For instance, if the agent To demonstrate key concepts in our algorithms, we introduce a
know_s that a specific statecannot be targeted .by the adversary, simple UAV team domain that is analogous to the illustrative multi-
thenz for that state can have all values 0, implying that no entropy agent tiger domain [11] except for an adversary — indeed, to enable

lcci_nstr?ln’;rl]s r:ﬁgisza;y. Itr; such casfet\sl,lltl not ?ﬁ a C(impflette tso- dreplicable experiments, rewards, transition and observation prob-
ution orh N du ra kerfconceE re:%; ?]n de selso IS a ?15 andapilities from [11] are used. Consider a region in a humanitarian
ﬁﬁcggn_ls_ht at arelu; erns r? lgtta% .h 'tf at Aci no_t so VC?R;[LE . crisis, where two UAVs execute daily patrols to monitor safe food
jneorem 1 does not. old and there ore gorithm IS convoys. However, these food convoys may be disrupted by land-
not valid. In this case, a hlgh-enyropy §o|ut|on_that meets a target \ineg placed in their route. The convoys pass over two regions:
expected rewgrd can still be obtained via AIgonthm BRLP. . Leftand Right. For simplicity, we assume that only one such land-
Before tu_rnlng t_o a_gent teams next, we qunckly_d|scuss appl_yl_ng mine may be placed at any point in time, and it may be placed
the_se algorithms in _smgle agent P.OMDP.S' For single-agent finite- in any of the two regions with equal probability. The UAVs must
harizon POMDP$ W'th kn.own stgrtlng belief St‘fites[lzl' we convert destroy the landmine to get a high positive reward whereas try-
the POMD.P t_o (f'n'te. horlzori)ehef MDR, a_llowmg BRLP/CRLP . ing to destroy a region without a landmine disrupts transportation
to be applied, .returnl.ng a randgmlzgd policy. However, addressing and creates a high negative reward; but the UAV team is unaware
unknown starting belief states is an issue for future work. of which region has the landmine. The UAVs can perform three
actionsShoot-left, Sensand Shoot-rightbut they cannot commu-

3. FROMSINGLEAGENTTOAGENT TEAMS nicate with each other. We assume that both UAVs are observed
The logical first step in moving to agent teams would be to start with equal probability by some unknown adversary with unknown
with multiagent MDPs, where a centralized planner provides poli- capabilities, who wishes to cause sabotage. Our worst case assump-
cies to multiple agents in a fully observable setting. However, such tion about the adversary is as stated in Section 1: (a) the adversary
multiagent MDPs are equivalent to single agent MDPs [14]. In- has access to UAV policies due to learning or espionage (b) the
deed, assuming a shared, observable random device — justifiedadversary eavesdrop or estimates the UAV observations. Thus, if
given a fully observable setting — our BRLP/CRLP algorithms can the policy is not randomized, the adversary may exploit UAV ac-
already generate randomized policies for such multiagent MDPs. tion predictability in some unknown way such as jamming UAV
Hence, this section focuses on the more general decentralized POM&#Pso0rs, shooting down UAVs or attacking the food convoys, etc.
that are not equivalent to single agent POMDPs [3]. Since little is known about the adversary’s ability to cause sabo-

[EEN
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tage, the UAV team must maximize the adversary’s uncertainty via one agent (say agent 2), which enables us to create a single agent

policy randomization, while ensuring an above-threshold reward.
When an individual UAV takes actioBenseit leaves the state
unchanged, but provides a noisy observation OR or OL, to indi-
cate whether the landmine is to the left or right. Thleoot-left
and Shoot-rightactions are used to destroy the landmine, but the
landmine is destroyed only if both UAVs simultaneously take ei-
ther Shoot-lefior Shoot-rightactions. Unfortunately, if agents mis-
coordinate and one tak&hoot-leftand the otheBShoot-rightthey

incur high negative reward as the landmine is not destroyed but the
food-convoy route is damaged. Once the shoot action occurs, the

problem is restarted (the UAVs face a landmine the next day).

4. RANDOMIZATION: AGENT TEAMS

Letp; be the probability of adversary targeting aggrindHv (7)
be the weighted entropy for ageis policy. We design an algo-
rithm that maximizes thenultiagent weighted entropyiven by
> pi* Hw (i), in MTDPs while maintaining the team's ex-

pected joint reward above a threshold. Unfortunately, generating

optimal policies for decentralized POMDPs is of higher complex-
ity (NEXP-complete) than single agent MDPs and POMDPs [3],

i.e., MTDP presents a fundamentally different class where we can-

not directly use the single agent randomization techniques.
Hence, to exploit efficiency of algorithms like BRLP or CRLP,

we convert the MTDP into a single agent POMDP, but with a method
that changes the state space considered. To this end, our new itera-

tive algorithm called RDR (Rolling Down Randomization) iterates
through finding the best randomized policy for one agent while fix-
ing the policies for all other agents — we show that such iteration
of fixing the randomized policies of all but one agent in the MTDP

POMDRP if agent 1 uses an extended state, i.e. at each tiagent
1 uses an extended state = (s*, ¥4). Here, ¥4 is as intro-
duced in the previous section. By usiaf as agent 1's state at
time ¢, given the fixed policy of agent 2, we can define a single-
agent POMDP for agent 1 with transition and observation function
as follows.
P/l af,efth) = P((s"F, WET) (st WY), at)
= P(wy"![s'T1, a, ¥ at)
- P(s"ts", ab, W5, af) - P(ab|s", ¥5, af)
= P(s", (ab,al), s 1) - Oa(s", (b, af), w5t)
- P12 (a|WY)
O’(et1+l,a’i,wi+l) :Pr(w{+1|et1+l,at1)

= Ol (St+17 <a57 at1>7wi+l)

(6)

™)

Left) .5
Right() .5

0.0
oo
1275
0225
oo
0.0

Left(SL, CL) 0.0
Left(SL, OR) 0.0
Left(Sense, OL) 7225
Left(Sense, OF) 1275
Left(SE, OL} 0.0
Left(SE, OF) 0.0
Raight(SL, COL)

Left(SL, OL)
Left(SL, OR)
Left(Sense, CL)
Left(Sense, OR)
Left(SR, OL)
Left(ZR, OF)
0.0

Right(SL,OL) 00

Right(ZL, Ok) 0.0 Right(SL, OR) 0.0
Right(Sense, OL) 0225 Right(Sense, OL) 1275
Right(Sense, OR) 1275 Right(Sense, OR) 7225
Right(SE, OL) 0.0 Right(SE, OL) 0.0
Right(SE, OR) 0.0 Right(SE, OR) 0.0

Figure 1: RDR applied to UAV team domain

leads to a single agent problem being solved at each step. Thus,

each iteration can be solved via BRLP or CRLP. For a two agent

case, we fix the policy of agentand generate best randomized
policy for agentj and then iterate with agepits policy fixed.

Overall RDR starts with an initial joint deterministic policy cal-
culated in the algorithm as a starting point. Assuming this fixed
initial policy as providing peak expected reward, the algorithm then
rolls down the reward, randomizing policies turn-by-turn for each
agent. Rolling down from such an initial policy allows control of

the amount of expected reward loss from the given peak, in ser-

vice of gaining entropy.The key contribution of the algorithm is
in the rolling down procedure that gains entropy (randomization)
and this procedure is independent of how the initial policy for peak
reward is determined. The initial policy may be computed via al-
gorithms such as [6] that determine a global optimal joint policy

(but at a high cost) or from random restarts of algorithms that com-

pute a locally optimal policy [11, 5], that may provide high quality

policies at lower cost. The amount of expected reward to be rolled

down is input to RDR. RDR then achieves the rolldown fid steps
whered is an input parameter.

The turn-by-turn nature of RDR suggests some similarities to
JESP [11], which also works by fixing the policy of one agent

Thus, we can create a belief state for ageit the context of
j’s fixed policy by maintaining a distribution ovef = (s*, ¥}).
Figure 1 shows three belief states for agent 1 in the UAV domain.
For instanceB? shows probability distributions ovef. In e? =
(Left(Sense, OL)), Leftimplies landmine to the leftis the current
state, Sense is the agent 2’s action at time 1, OL (Observe Left)
is agent 2's observation at time 2. The belief update rule derived
from the transition and observation functions is given in (8), where
denominator is the transition probability when actigrfrom belief
stateB? results inwi™ being observed. Immediate rewards for the
belief states are assigned using (9).

1 1 -
Bt (eft)y =" Bl(el) - P(st, (a},ab), s - PM2(a| W)
St

'02(8t+17 (ai’ a5)7w§+1) <01 (St+17 (aiv a%)zw

/P(wit!|Bf, a1)

™
®)
R(ai, B}) =Y Bi(el)- Y R(s', (al,ah)) - P"2(ab|®s)  (9)
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Thus, RDR’s policy generation implicitly coordinates the two

and computing the best-response policy of the second and iterat-agents, without communication or a correlational device. Random-
ing. However, there are significant differences between RDR and ized actions of one agent are planned taking into account the impact
JESP, as outlined below: (i) JESP uses conventional value iterationof randomized actions of its teammate on the joint reward. Algo-
based techniques whereas RDR creates randomized policies via LRithm 4 (at the end of paper) presents the pseudo-code for RDR
formulations. (ii) RDR defines a new extended state and hence for two agents, and shows how we can use beliefs over extended
the belief-update, transition and reward functions undergo a major states:! to construct LPs that maximize entropy while maintaining

transformation. (iii) The d parameter is newly introduced in RDR
to control number of rolldown steps. (iv) RDR climbs down from a
given optimal solution rather than JESP’s hill-climbing up solution.
RDR Details: For expository purposes, we use a two agent do-
main, but we can easily generalizertagents. We fix the policy of

a certain expected reward threshold. The inputs to this algorithm
are the parameters gdercentde@ndz. The parameter d specifies
the number of iterations taken to solve the problem. It also decides
the amount of reward that can be sacrificed at each step of the al-
gorithm for improving entropy. Parametgercentdespecifies the



percentage of expected reward the agent team forgoes for improv-jectives, exhibits an increase in the runtime as the expected reward
ing entropy. As with Algorithm 2, parameterprovides an input threshold increases. This trend that can be attributed to the fact that
solution with high randomness; and it is obtained using a uniform maximizing a non-concave objective while simultaneously attain-
policy as discussed in Section 2.3. Step 1 of the algorithm usesing feasibility becomes more difficult as the feasible region shrinks.
the Compute joint policy() function which returns a optimal joint
deterministic policy from which the individual policies and the ex-
pected joint reward are extracted. Obtaining this initial policy is
not RDR’s main thrust, and could be a global optimal policy ob-
tained via [6] or a very high quality policy from random restarts
of local algorithms such as [11, 5]. The input variapkrcentdec
varies between 0 to 1 denoting the percentage of the expected re-
ward that can be sacrificed by RDR. The step size as calculated in
the algorithm, denotes the amount of reward sacrificed during each o o o o o 100 o o 1w e 100
iteration. RDR then iterates 1/d times(step 3). Reward Threshold(%) Reward Threshold(%)

The function GenerateMDP generates all reachable belief states (a) (b)
(lines 2 through 6) from a given starting belief st&@nd hence Figure 2: Comparison of Single Agent Algorithms
a belief MDP is generated. The number of such belief states is
O(|A1||Q41 )T~ whereT is the time horizon. The extended states We conclude the following from Figure 2: (i) CRLP is the fastest
in each B increases by a factor|of;||22| with increasing T. Thus but provides the lowest entropy. (ii) BRLP is significantly faster
the time to calculate B(e) for all extended states e, for all belief than Algorithm 1, providing 7-fold speedup on average over the 10
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states B in agent 1's belief MDP @(|S|? (| A1 || A2| |1 ][Q2]) 7). MDPs over the entire range of thresholds. (iii) Algorithm 1 with
Lines 7 through 12 compute the reward for each belief state. The Hy (z) provides highest entropy among our methods, but the av-
total computations to calculate the reward is erage gain in entropy is only 10% over BRLP. (iv) CRLP provides

O(|S||A1]|Az|(|A1]|A2||1]|Q2))T~1). The belief MDP gener- a 4-fold speedup on an average over BRLP but with a significant
ated is denoted by the tup{#, A, trans, R). We reformulate the entropy loss of about 18%. In fact, CRLP is unable to reach the
MDP obtained to problem 4 and use our polynomial BRLP proce- maximal possible entropy for the threshold range considered in the
dure to solve it, using as input. Thus, algorithm RDR is exponen-  plot. Thus, BRLP appears to provide the most favorable tradeoff
tially faster than an exhaustive search of a policy space, and com-of run-time to entropy for the domain considered, and we use this
parable to algorithms that generate locally optimal policies [11].  method for the multiagent case. However, for time critical domains
CRLP might be the algorithm of choice and therefore both BRLP

5. EXPERIMENTAL RESULTS and CRLP provide useful tradeoff points.

We present three sets of experimental results. Our first set of ex-

periments examine the tradeoffs in run-time, expected reward an Rewar%g;resmld [ 6;59) [ - 735( 5 [ 5 4‘5(575)[ - (’)172(575) |
. . . | 0 . . . . B . . .
entropy for single-agent problems. Figures 2a and 2b show the re =0%% S7(L53) | TA7(252) 3.4(2.62) | 7.47(2.66)

sults for these experiments based on generation of MDP policies!
The results show averages over 10 MDPs where each MDP repre-
sents a flight of a UAV, with state space of 28-40 states. The states
represent the regions monitored by the UAVs. The transition func-
tion assumes that a UAV action can make a transition fromaregion 5]
to one of four other regions, where the transition probabilities were > 41 257 e
selected at random. The rewards for each MDP were also generated §32 e e 231 e Inst3
using random number generators. These experiments compare the “é?-g:

performance of our four methods of randomization for single-agent £ |

Table 2: RDR: Avg. run-time in sec and (Entropy), T = 2
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> T=:
policies. In the figuresCRLPrefers to algorithm 2BRLPrefers g1 ThEe 171
to algorithm 3; whereadfy (z) and H 4 (z) refer to Algorithm 0 R L —
1 with these objective functions. Figure 2a examines the tradeoff R;‘vard Thresr:gld(%) % 0 isc2ordhatic riuclo 12 14
between entropy and expected reward thresholds. It shows the av-
erage weighted entropy on the y-axis and reward threshold percent @) (b)
on the x-axis. The average maximally obtainable entropy for these Figure 3: Results for RDR

MDPs is 8.89 (shown by line on the top) and three of our four meth-
ods (except CRLP) attain it at about 50% threshold, i.e. an agent Our second set of experiments examine the tradeoffs in run-time,
can attain maximum entropy if it is satisfied with 50% of the max- expected joint reward and entropy for the multiagent case. Table
imum expected reward. However, if no reward can be sacrificed 2 shows the runtime results and entropy (in parenthesis) averaged
(100% threshold) the policy returned is deterministic. over 10 instances of the UAV team problem based on the original
Figure 2b shows the run-times, plotting the execution time in sec- transition and observation functions from [11] and its variations.
onds on the y-axis, and expected reward threshold percent on thed, the input parameter controlling the number of rolldown steps of
x-axis. These numbers represent averages over the same 10 MDPalgorithm 4, varies from 1 to 0.125 for two values of percent reward
as in Figure 2a. Algorithm CRLP is the fastest and its runtime is threshold (90% and 50%) and time horiz@+2. We conclude
very small and remains constant over the whole range of thresholdthat asd decreases, the run-time increases, but the entropy remains
rewards as seen from the plot. Algorithm BRLP also has a fairly fairly constant ford < .5. For example, for reward threshold of
constant runtime and is slightly slower than CRLP. Both CRLP and 50%, for d = 0.5, the runtime is 1.47 secs, but the run-time increases
BRLP are based on linear programs and hence their small and fairlymore than 5-fold to 7.47 when d = 0.125; however, entropy only
constant runtimes. Algorithm 1, for boti 4 () and Hw () ob- changes from 2.52 to 2.66 with this change in d.



Thus in our next set of graphs, we present resultsdfer .5, ministic the policy is, the fewer the probes the adversary needs to
as it provides the most favorable tradeoff, if other parameters re- run; if the policy is completely deterministic, the adversary need
main fixed. Figure 3a plots RDR expected reward threshold per- not run any probes as it knows the action. Therefore, the aim of
cent on thez-axis and weighted entropy on the y-axis averaged the agent/agent-team is to maximize the policy entropy, so that the
over the same 10 UAV-team instances. Thus, if the team needs toexpected number of probes asked by the adversary is maximized.

obtain 90% of maximum expected joint reward with a time hori- In contrast, the adversary minimizes the expected number of
zonT = 3, it gets a weighted entropy of 1.06 only as opposed to probes required to determine the agents’ actions. Hence, for any
3.62 if it obtains 50% of the expected reward for the sahand given states, the adversary uses the Huffman procedure to op-

T. Similar to the single-agent case, the maximum possible entropy timize the number of probes [8], and hence the total number of
for the multiagent case is also shown by a horizontal line at the top probes over the entire MDP state space can be expressed as fol-
of the graph. Figure 3b studies the effect of changing miscoordi- lows. LetS = {si,s2,...., sm } be the set of MDP states and
nation cost on RDR’s ability to improve entropy. As explained in A = {a1, az, ...., an } be the action set at each state. pét, a) =
Section 3.2, the UAV team incurs a high cost of miscoordination, {ps, ....., p, } be the probabilities of taking the action et , ....., a, },
e.g. if one UAV shoots left and the other shoots right. We now de- a; € A at states sorted in decreasing order of probability. The
fine miscoordination reduction factor (MRF) as the ratio between number of yes-no probes at statis denoted by s = p1 *1+.....+
the original miscoordination cost and a new miscoordination cost. p,—1 *(n—1)4py, * (n—1). If the weight of the states (see notion
Thus, high MRF implies a new low miscoordination cost, e.g. an of weight introduced in section 2) B = {w1,wa,...... s Wi }
MRF of 4 means that the miscoordination cost is cut 4-fold. We then the number of observations over the set of states is denoted
plot this MRF on x-axis and entropy on y-axis, with expected joint Observe-all= Y __,  {w.* (;}. Setting some weights to zero
reward threshold fixed at 70% and the time horizon T at 2. We implies that the adversary was not concerned with those states, and
created 5 reward variations for each of our 10 UAV team instances the number of observations in this situation is dendbdsberve-
we used for 3a; only 3 instances are shown, to reduce graph clut-select While the number of observations in both Observe-all and
ter(others are similar). Famstance 2the original miscoordination Observe-select are obtained assuming the adversary obtains an ac-
cost provided an entropy of 1.87, but as this cost is scaled down by curate policy of the agent or agent team, in real situations, an ad-
a factor of 12, the entropy increases to 2.53. versary may obtain a noisy policy, and the adversary’s number of
Based on these experiments, we conclude that: (i) Greater toler-observations in such a case is denoted Observe-noisy.
ance of expected reward loss allows higher entropy; but reaching Figure 4a demonstrates the effectiveness of entropy maximiza-
the maximum entropy is more difficult in multiagent teams — for tion using the BRLP method against an adversary using yes-no
the reward loss of 50%, in the single agent case, we are able to reactprobes procedure as his probing method for the single agent case.
maximum entropy, but we are unable to reach maximum entropy in The plot shows the number of observations on y-axis and entropy
the multiagent case. (ii) Lower miscoordination costs allow higher on the x-axis averaged over the 10 MDPs we used for our single-
entropy for the same expected joint reward thresholds. (iii) Varying agent experiment. The plot has 3 lines corresponding to the three

d produces only a slight change in entropy; thus we canduas adversary procedures namé@pserve-allObserve-sele@ndObserve-
high as 0.5 to cut down runtimes. (iv) RDR is time efficient because noisy. Observe-alland Observe-seledbave been plotted to study
of the underlying polynomial time BRLP algorithm. the effect of entropy on the number of probes the adversary needs.
14 5 For example, foObserve-allwhen entropy is 8, the average num-
12 45 ber of probes needed by the adversary is 9. The purpose of the

—Observe All
—x- Observe Select

ey
15}
w

Iy Observe-noisylot is to show that the number of probes that the
B adversary requires can only remain same or increase when using a
e noisy policy, as opposed to using the correct agent policy. The noise
e et in our experiments is that two actions at each state of the MDP have
7 Obsene oy incorrect probabilities. Each data point in tB&serve-noisgase

represents an average of 50 noisy policies, averaging over 5 noisy

- - - Observe Noisy
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Entropy ’ " Joint Entropy ! policies for each reward threshold over each of the 10 MDPs.
@) (b) Figure 4b plots a similar graph as 4a for the multiagent case, av-
eraged over the 10 UAV-team instances with two UAVs. The plot
Figure 4: Improved security via randomization has three lines namel@bserve-all Observe-selecand Observe-

. . . . noisywith the same definitions as in the single agent case butin a
Our third set of experiments examine the tradeoffs in entropy of istributed POMDP setting. However, in plot 4b the y-axis repre-

the agent/agent-team and the total number of observations (probesgI

the enemy needs to determine the agent/agent-team actions at eac ents joint number of yes-no probes and the x-axis re_presents joint
; ) . . : .~ .~ “entropy. Both these parameters are calculated as weighted sums of
state. The primary aim of this experiment is to show that maximiz-

ing policy entropy indeed makes it more difficult for the adversary the individual parameters for each UAV, assuming that the adver-

to determine/predict our agents’ actions, and thus more difficult for sary assigns equal weight to both the UAVs.

the adversary to cause harm, which was our main goal at the begin-be\:vgf %%erfa‘iigr‘g (fo(lals_vr\]/g\g rfggr;s;) li(r)ltcsr:;sigdagb:ol(i% Tzﬁtpoum_in-
ning of this paper. Figures 4a and 4b plot the number of observa- Y P policy by

tions of enemy as function of entropy of the agent/agent-team. In creases, whether the adversary monitors the entire state sfises\(e-

particular for the experiment we performed, the adversary runs yes- allr)m?irslUStoﬁcpa(r)tbcs)felrtv%?fg;/; 'ifilgggl)al1;?ee?dnvuer:1$§e? gfb(t)?)lggr_
no probes to determine the agents action at each state, i.e. pmbegationz VF\)/henycom ared to the adversar ot?tainin an accurate pol-
that return an answer yes if the agent is taking the particular ac- icy. (iii) As entro pincreases the a en¥s’ olic tgends to becorgle
tion at that state in which case the probing is stopped, and a no m)(/).re uniform ang)rzence the e,ffect ofgnoise gn th)é number of yes-no
otherwise. The average number of yes-no probes at a state is the robes reduces. In the extreme case where the policy is tota)lll uni-
total number of observations needed by the adversary to determine’ ) - policy y

. . form theObserve-alandObserve-noispoth have same number of
the correct action taken by the agent in that state. The more deter-



probes. This can be observed at the maximal entropy point in plot [6] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic

4a. The maximal entropy point is not reached in plot 4b as shown programming for partially observable stochastic games. In
in the results for RDR. From the above we conclude that maximiz- AAAI, 2004.
ing entropy has indeed made it more difficult for the adversary to [7] J. Hu and P. Wellman. Multiagent reinforcement learning:
determine our agents’ actions and cause harm. theoretical framework and an algorithm.I@ML, 1998.

[8] D. A. Huffman. A method for the construction of minimum
6. SUMMARY AND RELATED WORK redundancy codes. Rroc. IRE 40 1952.

This paper focuses on security in multiagent systems where in- [9] T. Jaakkola, S. Singh, and M. Jordan. Reinforcement
tentional threats are caused by unseen adversaries, whose actions ~ €arning algorithm for partially observable markov decision
and capabilities are unknown, but the adversaries can exploit any ~ ProblemsAdvances in NIPS7, 1994.
predictability in our agents’ policies. Policy randomization for [10] M. Littman. Markov games as a framework for multi-agent
single-agent and decentralized (PO)MDPs, with some guaranteed  reinforcement learning. IML, 1994.
expected rewards, are critical in such domains. To this end, this pa-[11] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.

per provides two key contributions: (i) provides novel algorithms, Taming decentralized POMDPs: Towards efficient policy
in particular the polynomial-time CRLP and BRLP algorithms, to computation for multiagent settings. IBCAI, 2003.
randomize single-agent MDP and POMDP policies, while attaining [12] S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP
a certain level of expected reward; (ii) provides RDR, a new algo- algorithm for complex multiagent environments AAMAS
rithm to generate randomized policies for decentralized POMDPs. 2005.
RDR can be built on BRLP or CRLP, and thus is able to efficiently [13] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a
provide randomized policies. Finally, while our techniques are ap- formalization of teamwork with resource constraints. In
plied for analyzing randomization-reward tradeoffs, they could po- AAMAS 2004.
tentially be applied more generally to analyze different tradeoffs [14] D. V. Pynadath and M. Tambe. The communicative
between competing objectives in single/decentralized (PO)MDP. multiagent team decision problem: Analyzing teamwork
More details about this work can be accessed at theories and modelSAIR, 16:389-423, 2002.
hitp://www-scf.usc.edu/ paruchur/japan. ppt. o . [15] C. Shannon. A mathematical theory of communicatitime
Randomization as a goal has received little attention in the lit- Bell Labs Technical Journapages 379-457,623,656, 1948.

erature, and is seen as a means or side-effect in attaining othe
objectives, e.g., in resource-constrained MDPs [1] or memoryless
POMDP policy generators [9] (for breaking loops). In [13] coor-
dination of multiple agents executing randomized policies in a dis- -
tributed MDP se?ting%s discussed, gut there randcl?mization occurs A1gorithm 4 RDR(d, percentdec, 7)

as a side-effect of resource constraints; furthermore, agents com- 1: 71, 72, Optimalreward « Compute_joint_policy()
municate to resolve the resulting team miscoordination. In contrast, 2: stepsize < percentdec - Optimalreward - d

our work explicitly emphasizes maximizing entropy in policies, 3: for i «<— 1to 1/d do

and attains implicit coordination (no communication) over random- 4: M DP — Generate MDP(b, 11, . ;,Mods: 1)

ized policies in decentralized POMDPs. Significant attention has 5. Entropy,II,\og, < BRLP(Optimalrew — stepsize *
been paid to learning in stochastic games, where agents must learn i,T)

dominant strategies against explicitly modeled adversaries [10, 7].

r[16] S. Vavasis. Nonlinear optimization: Complexity issues. In
University Press, New Yorik991.

Such dominant strategies may lead to randomization, but random- +* GenerateMDP (b, 2, T) :
ization itself is not the goal. Our work in contrast does not require 2: reachablg0) « {b}
an explicit model of the adversary and, in this worst case setting, 3: for ¢ 1t?_ic do
hinders any adversary’s actions by increasing the policy’s weighted 4. forall B'"" ¢ reachabl¢t — 1) do
entropy through efficient algorithms, such as BRLP. S forall a; € As, w1 € Qludo
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