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Abstract—We present an efficient and implementable algo- In this work we consider the problem of maximizing

rithm for maximizing data extraction from energy limited wire-  data extraction in energy-limited WSN. In particular, we are
less sensor networks. A distinguishing feature of this algorithm concerned with algorithms that can achieve close to optimal

is that it arrives at efficient routing solutions after few itera- f ft | f iterati ds of
tions, which is vital for efficient performance in energy limited performance after only a few iterations (rounds of commu-

networks. The algorithm uses sub-gradient optimization to solve hications). In fact, since the actual operating conditions are
the dual of a data extraction problem constructed by relaxing the subject to uncertainty, one might argue that an algorithm

energy constraints. We show through computational experiments that reaches near-optimal routing solutions quickly without
that, for the problem considered, both centralized and distributed optimality guarantee is preferable to an algorithm that is
versions of the algorithm arrive at routing solutions that are on . ;
average better than 10% from optimal after only 10 iterations. guara_nteed to conver_gg to the .optlmal SOIUt'On,bUt takgs a
long time to reach efficient solutions. The paper is organized

as follows: We review recent results in routing algorithms
and contrast them to our work in Section Il. In Section Il

Wireless Sensor Networks (WSN) constitute a paradigme describe the problem, model, and a general sub-gradient
that is already revolutionizing the availability and qualityalgorithm. In Section IV we present three centralized variants
of information for many applications including battlefieldof the sub-gradient algorithm for the maximal data extraction
and homeland security surveillance, wildfire monitoring, ajsroblem. We discuss a distributed version of the algorithm in
quality/environmental control, manufacturing monitoring an@ection V and present computational results comparing these
control, and structural integrity monitoring. It is possible thaimplementations in Section VI. We finish with concluding
in the future WSN will become integral to our everyday livesemarks in Section VII.
in ways that are difficult to imagine today [1].

We consider a WSN composed of nodes with sensing, Il. LITERATURE REVIEW
processing, and communicating functions integrated into aWe classify recent routing protocols for sensor networks in
small unit with a finite energy supply. These nodes are two broad classes, which we discuss below in more detail: net-
be deployed in large numbers without close human superwerk dependent protocols [3,4,9-11] and optimization based
sion, possibly into unfriendly territory, for various informationprotocols [2,12-14].
gathering tasks. Within its energy limits, the WSN must sense,Network dependent routing protocols exploit various net-
process, and transmit information to a base station or simlork properties for efficiency. For example LEACH [3], PE-
node, where a remote end-user can access it. Since comm@#ASIS [4], andDirected Diffusion[9] exploit the possibility
cation is often the most expensive operation for a sensor nodédata aggregation at the nodes to achieve important energy
an efficient algorithm to route the data gathered is crucial savings. The algorithms proposed in [10,11] rely on some
efficiently use the limited energy [2]. For instance, if everhigh-energy agents in the network which create directed paths
node transmits its data directly to the sink node, nodes witietween the source of information and the sink. Thus the
little data to send will be left with unused energy while datalgorithms can save the energy typically used for flooding
can be stranded in a node that depleted its energy. In additiqoeries through the network. In general terms, since network
since the limited energy in effect limits the life of the networkgependent protocols exploit particular features of the network,
the WSN can not spend much time coordinating a routirthey could conceivably perform poorly in a network without
policy and must reach an efficient data gathering mechanishese properties, in addition it is difficult to obtain performance
rapidly. If not it would spend a significant percentage of itbounds for these routing heuristics as they do not compute or
lifetime operating inefficiently. approximate an optimal solution.

|. INTRODUCTION



Optimization based protocols are implementing an iterativeceiver circuitry and.,,,=800pJ/byte/rA for the transmitter
optimization algorithm on some problem over the sensamplifier. The transmission energy costs and receiving energy
network. Examples of such protocols for sensor networkssts for ak-byte message and distandeare given by
include: sub-gradient algorithms for the maximum lifetime Transmitting: Bz, (k, d) = €cleck + Eampkd?
problem, i.e. maximizing the time until the first node runs out Receiving: Er, (k) = celeck -
of energy, see [12-14], and approximate solutions to maximw¥e also assume that = 1 byte and the radio channel is
data extraction problem [2]. The prior work on sub-gradielymmetric, so that the energy required to transmit a byte of
based methods considers additional assumptions, such asirifermation is the same from nodeo node; and from node
use of potential functions, to ensure efficient performance.to node: for a given signal to noise ratio.

The sub-gradient optimization method is classic in non-linear
optimization [7], and has been used to develop distributéd Mathematical Programming Model
algorithms for network flow [15] and flow control in networks The problem of maximizing data output given limited

without energy constraints but with fixed capacity [6]. "bnergy at the nodes and the above energy expenditure in
[2], the authors propose an apprOX|mqte algor!thm that USf&nsmissions and receptions can be written as a linear pro-
network topology and current energy information to derivg ., mming problem, see [2]. The problem constraints are:

a metric with which to route the information. Opt|m|zat|on(1) Energy Constraint: the amount of data transmitted and

based protocols are both general and can provide performa%leeived by a sensor is limited by the energy available at the
bounds based on the optimization problem over the ”emoré%nsor node.

We consider a WSN model similar to the one in [2](2

however we introduce a routing protocol based on sub-gradi€l,sor minus the amount of the data received by the sensor

optimization as opposed to the heuristic developed in [2]. Prigf st pe less than or equal to all data collected by the sensor
work on sub-gradient based protocols for WSN consider maxs 4 aiso greater than or equal to O.

imizing lifetime of the network, which simplifies the problem | ., f.; be the amount of the data transmitted from nade

to be solved. In contrast, the network problem consider?gl nodej, then the maximal data extraction problem is:
here is to maximize data extraction. Although maximum data

is related to maximizing lifetime of the network, it has onepax Z fins1

Flow conservation: the amount of data transmitted by a

significant difference: in maximum data extraction the network (int1)eA

operates until energy in all nodes is depleted, not until the i

fiﬁst node exhausts ?ti energy. Maximizingpdata extraction is & Z fis(L+ ﬁd?j) + Z fusE' ieN (1)
reasonable situation in surveillance applications, for example, (il eA} {7lG,eA}

where nodes provide intrusion information, although with 0< Z fij — Z fii < Di ieN (2)
lower quality, until the last node ceases to operate. Another {j1G.)eA} {jl(,i)eA}

difference with prior optimization based algorithms on WSN fi; >0 (i,j) € A

is that the sub-gradient algorithm implemented in this paper
does not use potential functions or additional assumptions,jhere g = Seme pi — Bruax
solves a dual of the maximal data extraction problem. Felec

Finally we mention that, to our knowledge, our work is To simplify notation, we have normalized the energy in
the first to focus on the transient behavior of protocols #i®rms of receptions, that is to say, each reception consumes a
particular whether they exhibit fast convergence to efficietit of energy, while each transmission from ) consumes
solutions. Prior work is usually concerned with the asymptotic+ 3d3;. This model considers that each node has a maximal
convergence of the protocol. We use the optimal solution amount of dataD; .. to be transmitted. Hence if there are no
the maximal data extraction problem as a benchmark for tagergy limit constraints (1), then we can extract all data avail-

Eelec

protocol, as suggested in [5]. able in the networkmax 37 ; . 1)ca fin+1 = 2 n Dinax-
We denote the set of flows that satisfy the routing conditions
I1l. PROBLEM DEFINITION by X, that is:
We consider a WSN with fixed sensor nodes that gather 0< Z fis Z fi<Di. ieN

data to be sent to a sink node, denoted as notie. Let X ={ el
D:, .. be the total amount of the data (bytes) collected by the

nodei, and £ .. be the total energy of the node Let d;;

be the Euclidean distance between nodesd j. We denote
by N, the set of sensor nodes, antl the set of directed g partial Lagrangian Relaxation

arcs ¢, j), in the complete graph € N,j € N U {n + 1}. . . .
. - We now consider the problem obtained by the Lagrangian
The energy consumed in transmitting data from one Sensor I9,, aion of the energy constraints, that is incorporating these

another depends on the distance between them according todf\gstraints in the objective with the a multiplier, or prige,
following radio model, as presented in [2,8]. We consider thagt £(f) denote the vector of energy consumption at each node

a radio dissipates...=400nJ/byte to run the transmitter orgiven flow f, that is&'(f) = 31 i jeay fis (1 + B8d5;) +

{7lGi.5)€eA} {jl(5,))eA}



Z{j‘(meA} f; for any ¢ € N. Then the Lagrangian dual Proof: See [7], pages 610-612 and 629. ]

function is given by Proposition 2: The sub-gradients ab(p(t)) atp(t) are given
by
D) = maxL{f.p) D)\ _ 0DB®) _ i e ;
fex ( ap )i— ap =- @) -EY
K {(i n;é{j"“ B gp ewn-r ]} Proof: Let ¢‘(t) = 6%(1’}’5”) = —(&(f*(t)) — E) where
’ f*(t) = argmax; x L(f, p(t)). We know that
= max { D fna(—p' = Bpdly +1) + dOFE-p1) ==> @ - O)E (1) - B
(i,n+1)€A ieN
. , . o = @ =) @ (E (@) - E)
Y fulp - B'd —pJHZplEZ} ' .gn;l ;
{eeazn - [0 =Y P EE @) - ).
Setp”t! = —1 and define j=n+1 ieN
B(p) = max Z fiy(=p" = Bp'd}; — p’) Givenp let f = argmax .y L(f, p). From the definition of
ex -
(i.7)€A D(p) we have
as the part ofL(f,p) which involves f, then the Lagrangian D) = Z T =3 UG - EY
dual becomes j=n+1 iEN
D(p) = max L(f.p) = Bp) + ZpiEi. > Z fi® =3 _p' €W ®) - £
1EN j=n+1 iEN

Since the original problem is a linear program (LP), therReplacing this inequality in the previous equation and substi-
its Lagrangian dualD : min,>o D(p), is also an LP. Also, tuting the definition ofD(p(t)) yields
since both are feasible, the primal and dual attain the same T .
finite optimal objective function value, see [7]. Therefore, 9 ) —p()) < D(p) - D(p(®)) ,
we solve the dual problem to obtain the optimal objectighich proves thatyi(t) = —(¢i(f*(t)) — E') is the sub-
function value, and in the process provide a routing solutiQftadient of D(p(t)) at p(t). n
that achieves this value. Although sub-gradient type algorithms converge to the
optimal solution, this convergence can be very slow [7]. We

. . re inter in ing whether, for the problem in ion,
We use the sub-gradient projection optimization method e interested in studying whether, for the proble questio

Ris convergence is sufficiently efficient in the first iterations
solve D : min,>¢ D(p), see [6,7]. This method is an iterative g y

lqorith h i h iterat 1 th : d as to provide solutions that are already reasonably close to the
algorithm where at each lteratian+ - (€ prices per nhode, optimal to be considered efficient routing heuristics.
p(t+1) € N7, are set by the recursion

p(t+1) = [p(t) — aug(®)]" . (3)
Here,[z]T = max{z, 0} denotes the positive part of g(¢) €

C. Sub-gradient projection method

IV. CENTRALIZED ALGORITHM

We now describe the implementation details for the sub-

. b i s g =~ gradient projection method for the maximal data extraction
9D(p(t)) is a sub-gradient oD(p) at p(t), andar > 0iS  hlem The following implementations use a routing solution
the step-size at theé-th iteration. Thus at each iteration off0 the problem without energy constraints and decide a
the sub—_grad|et:1t mglthod, we tske a:j.step in the direction L?i{ique step size at each iterate. Hence, these are centralized
a n'egatlve sub-gradient. A su_ '9"" |ent.D(p) a_t pT(tZ IS algorithms. Although these are not realistic algorithms from an
defined as any vectay that satisfies the inequality” (p —

implementation point of view, we seek to determine whether
p(t)) < D(p)—D(p(t)) for anyp. Given a pricep(t), let f*(t) P P

d h \ution th e h these algorithms can achieve fast enough convergence to an
enote the solution that m.aX|m|zes.t e Lagrar_lgﬁq.i,p(t)) efficient solution as to justify pursuing this approach in a
over f € X, andp* the optimal solution that minimizes dua distributed setting

problem D(p).

We now present results that outline the correctness of the Method 1: optimal value
sub-gradient algorithm and detail how to compute the sub-g,, firt centralized algorithm, which is referred to as
gradient for this problem. We omit the proof of the well knNowR yothod 1. uses the optimal value of the dual problBrip*)
result on convergence of the sub-gradient projection algorithig, 5 iculate the step-size. It is therefore a purely theoretical

and refer the.reader o [7]. o . algorithm which will be used for comparison purposes. The
Proposition 1. The sub-gradient prl()){g(ctggr})(r;]%thod With itery orithm considers a fixed integer value to control the
ates defined by (3) wher@ < o, = S (g2 CONVEIYI®S rate of decrease of the diminishing step size, an iteration limit

andp(t) — p*. ITLIM, and an optimal tolerance value of TOL.



Algorithm 1 Centralized Algorithm-Method 1: and have residual energy be the g€etThe Hop_LB initial

1: At t=0, setp’(0) = 0, Vi € N, or other initial values. solution allows a nodé € K to send part of its information
2: while ¢ < ITLIM and|D(p(t)) — D(p(t —1))| > TOL do to the sink through some nodec L, if it is beneficial to
4315 gg't"e problemB(p(t)), let £*(t) be the optimal solution. e network. We obtain this improved lower boufbp_LB
' i i using the procedure below:
D(p(t)) = B(p(t) + Y _p'()E g the pro elo
iEN
m D(p(t)—D(*) Algorithm 2 Hop_LB procedure:
5 Setay = M RS0 —— —0E = FE°
‘ PORCHGE L: Initially, set LB = 0, E* = Ep,ay
6. Setg'(t) = —(£'(f"(t) — E) A A 2: while # > Di,. andi € N do
7:  Compute a new pricep’(t + 1) = [p*(t) — cug(t)]" ; i o\ _ ;
8- Sett=t+1 3 E'=FE"—(1+8dj;)Dhax, D(i) =0, LB = LB + Dyax-

4: while D(i) =0 andE®* > 0 and: € N do
5. find the close nodg with D(j) > 0 to sink node,

, - 6: let fi; = min(-—5——, —£
In Algorithm 1, the formula %, satisfies the usual if] ) (2+5d3<3+1> ”ij)j ; ,
conditions for a diminishing step size;™- .= 0, and £ lb;('):fEDZ')(z—J}-QdiL<%+B)£”éff-% E? — (1 + Bdy;) fis,
Do ol = oo, see [7]. In the experimental section belowg. While]i e_N Ofo h - 7
we usem = 1. Since we cannot use the valip*) to setstep o: if ﬁ < D(i) then
sizes, our next two centralized methods consider variations of B "“’g]; o
Model 1 which use a lower bound dd(p*) instead. 10: =Lb+ LHRAZ )
11:  else
B. Method 2:§_LB 12: LB = LB+ D(i)

' ; : 13: LB is the Hop_LB.
We modify Method 1 above simply by replacing a lower Is the Hop

boundé_L B instead of the optimal solution value(p*) when

computing the step size. Note that the lower bound for Method Fop_ LB is
The t-th iteration lower boundi_LB(t) is obtained by fixed, independent of the current iterate of the sub-gradient

scaling down the flowf(¢t) obtained at each iteration toalgorithm, and can be determined a priori. This is in contrast

obtain a feasible flow. This guarantees that it provides a lowerMethod 2 which is updated at each iteration from the current

bound, which iS5 _LB(t) = >_y; i_41)(:,j)eay 0/5;(t) where optimal solutionf*(t).

6 = mingi(t)>O,Vi W
Then the lower bound_LB = max;—g 1,2, 0_-LB(t) V. DISTRIBUTED ALGORITHM

C. Method 3:Hop_LB The centralized algorithm assumes we can compute the step-
Method 3 also modifies Method 1 simply by constructin ize globally and get the optimal floyi* (¢) at each time period
. In this section, we extend the centralized algorithm to a

a lower bound toD(p*) for computing the step size. At” " . X
") puiing P stributed model. In the experimental section below we show

the beginning of the centralized algorithm, we use a flon\% o h ok £ th b
obtained by transmitting directly from each node to the si at we malnt_am n pa_rt t-e quick convergence o the sub-
gradient algorithm in this distributed implementation.

(see Fig.1), which gives the following lower bound Bx{p*): , i ) )
. i B : The centralized algorithms discussed above are coordinated
DT_LB = Z-mm{D , == ¢. However, we improve . o L . )
i g max? 1+0d7, ) in two steps: in determining’*(¢), the optimal solution to
this lower bound by considering the feasible fldop_LB B(p(t)), and in setting the step size. The steps of computing

obtained fromDT'.LB by allowing flow to take a single hop e gyb.gradient and the new price can be done separately at
to the sink if its beneficial to the system. each node.

— — To obtain f*(¢), we have to solve the following problem
S which has a linear objective function, which can be separated
grouping all outgoing arcs of each node:

B(p) = max S lfi(=p' = Bp'd — )]
’ (i,7)€A

Hence the only coordination has to do with the flow constraints

Fig.1: Direct Transmit Fig.2: One-hop transmit f € X. Our distributed algorithm approximately solves this
o o problem by increasing or decreasing the flow at each arc

. . fi; independently according to the sign of the objective cost
In Fig.2, we consider some nodes that cannot send all thedefficientu,; := —p' — Bp'd2, —p’, while maintaining a close

collected data directly to sink node because they have limitgslfeasible flow with the information available. If we denote
energy and large distance to the sink. Let these nodes /ét—1) = > ; eay fii(E—=1) =3¢ j.0eay fii(t—1) the
the setK and let nodes that have sent all their informatioamount of flow that originates at nodegiven flow f(¢ — 1),



then the flow update heuristic is given by reception of a single byte consumes one unit of energy. The
) ; - valuee,.. IS so that each 0.01J of energy allows about 25,000
min {f” (t - 1) + max {Dmaxf IL‘L’L(t - 1)5 1} 5 1+’6d?j } receptions [2]

F(0) if vij >0 @ We present numerical results for two different scenarios:
ij(t) = one considers homogeneous nodes, that is, all nodes have
it —1) — i(t—1),1},0} if vy ' >
max{fiy (¢ = 1) = max{pue(t = 1), 1}, 0} if vy <0 the same energy (25,000) and the same available data 10,000
fij(t=1) if v;; =0 (approximately 10k). The second scenario considers nodes

. . . E?r . .
Note that the solution obtained by this heuristic can vaifith different ratios of ;=—. This heterogeneous scenario

depending on the order in which the arcs are updated, drfj'Sider three types of nodes: high energy nodes with a ratio of
that in factf(¢) could violate slightly the flow constraints. 2200, with E* = 250,000 and D, = 100; medium energy

To determine the step size in a distributed algorithm, wWiPdes with ratio 2.5 fo* = 25,000 and Dy, = 10, 000;
select a predetermined value at every iteratiQn= ;.

and low energy nodes with ratio 0.5 fdt’ = 2,500 and

m—+t? i . .
wherea, andm are fixed parameters. This rule for selecting’max = 5, 000. The type of node in a heterogeneous scenario

step sizes has been shown to lead to convergent sub-gradierielected randomly maintaining even proportions: 17 high

algorithms, see [6,7]. Algorithm 3 presents the details of tfR€rgy nodes, 17 medium energy nodes, and 16 low energy
distributed algorithm. nodes. It is clear that high energy nodes have residual energy

but no data, while low energy nodes are exhausted even

Algorithm 3 Distributed Algorithm with substantial data left to transmit to sink node. We use
1: AL1=0, setp'(0) = 0, Vi € N, or other initial values. AMPL and LOQO software in our computational experiments.
2: while ¢ < ITLIM and [D(p(t)) — D(p(t — 1))| > TOL do For each problem setting, we generate 30 random instances
3 Computevy; = —p'(t) — Bp'(t)d%, — p’ (t) objective coeffi- and execute the algorithms on each instance. We report the

cients of B(p(t)). average of the relative error to true optimal solutioRste =
4: Updatef(t) according to (4) ctlrr,valueD(l?(t))—optimal,value % 100%.
5. Adjust sof(t) € X by modifying f;;'s with v;; = 0. optimal_value
6: SetB(p(t) =3 jyea fis (t)vij. _ A. Computational Results
7. SetD(p(t)) = B(p(t) + 3 ey P (DE". We conduct two computational experiments. The first in-
8: Setar = ag . . . . .
o Setg(t) = :”(Eti(f(t)) B vestigates whether the centralized versions of the algorithm

10- Conﬁlpute_a new pricey’ (t + 1') — [P'() — aug (O] achieve fast convergence to an efficient solution. Our second

11:  Sett=t + 1. ' set of experiments compare the centralized and distributed

versions of the algorithm against simple routing heuristics.

The distributed algorithm above suggests the following 1. The perforr_nan_ce of different centralized algorit_hm meth-
protocol which can be implemented on each sensor riodelds. As shown in Fig.3 for the homogeneous experiment, and

Algorithm 4 running on each node leads to a synchronizé:dg'A' for the heterogeneous experiment, we set initial value
¢(0) = 0. The three centralized methods converge to efficient

protocol since it requires that all nodes update flows befobe'”/. i ) X
broadcasting new prices. solutions at different speeds with Method 2 being the slowest
to converge. Method 1 and Method 3 both converge to 10%

of the optimal value within 10 iterations.

Algorithm 4 Synchronous Distributed Protocol at node

1. At t=0, setp’(0) = 0 and £;;(0) = 0 for j € N\ {i}.
2: while E* >0do v
3:  Broadcasts pricg’(¢) and receiveg’ (t) from nodej via arc

(7’7.7) 0% 1

28% 1 25%

20%

4:  Computev;; = —p'(t) — Bp'(t)d;; — p’ (t).
5. Computes the new flow ratg;(¢) for j € N \ {i} from (4).
6: Transmitsf;;(t) through arc(z, j) and receives;;(t). ©15% 1 £15% A
7.  Seta; = aoﬁ. D‘d" i
: i~ 1) = [y i _ Eit. ) rh
g: ggitnivi ﬁr'f_ep (t+1) = [p'(t) + (€' (F(1)) = EY)] B B
5% 5%
VI. COMPUTATIONAL EXPERIMENTS
Our computational experiments consider 50 sensor nodi . 0% S S S
randomly deployed in a 0.5krD.5km area with the sink node 1og 1o a0 3 1 15 10 20 30
at (0.25km, 0.5km). Each sensor node has limited power ar terations terations
the ability to transmit data to any other node, including the Fig.3: Homogeneous Fig.4: Heterogeneous

sink node. To send data, the sensor has to run its transmitter
and amplifier circuitry, with parameters, .. = 400nJ/byte 2. Comparison of different algorithms: Distributed Al-
and e,mp = 800pJ/byte/m respectively. We assume that agorithms (DA), Centralized Algorithms (CA), Direct trans-



mit(DT), and LEACH. Lagrangian relaxation on the energy constraints we formulate
Now, we contrast the performance of these sub-gradiemtrelated dual problem amenable to a solution via a sub-
based heuristics with two common protocols: algorithm DTradient projection method. We present both a centralized
where each sensor node sends its information directly to thied a distributed version of this algorithm and show through
sink, and LEACH. If the sink node is located far from certaicomputational experiments that these algorithms achieve close
nodes, DT will only be able to transmit small amounts of data optimal performance quickly (achieving 10% of optimal in
from these distant nodes, which would impair the performantess than 10 iterations on average). Although convergence of
of the network. Algorithm LEACH uses randomization tesub-gradient methods can be slow in theory, for our problem
designate some nodes as cluster heads, which receive da¢y quickly arrive at an efficient routing heuristic.
from sensors in the cluster and transmit it to the sink node.
The algorithm greatly improves on simple routing solutions VIl ACKNOWLEDGMENTS
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