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Abstract We describe a useful theoretical approach — the flow optimization
framework — that can be used to identify the fundamental perfor-
mance limits on information routing in energy-limited wireless sensor
networks. We discuss the relevant recent literature, and present both
linear constant-rate and non-linear adaptive rate models that optimize
the tradeoff between the total information extracted (Bits) and the to-
tal energy used (Joules) for a given sensor network scenario. We also
illustrate the utility of this approach through examples, and indicate
possible extensions.

Keywords: Wireless Sensor Networks, Optimization, Network Flows, Fundamental
Limits

Introduction

Because of the unique characteristics of wireless sensor networks (se-
vere energy constraints, unattended operation, many-to-one flows, data-
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centric operation), information in these systems presents novel design
challenges. Several protocols have been proposed for querying, routing
and in these sensor networks, that have been primarily validated via
simulations and limited experimentation. These include cluster-based
and chain-based data gathering techniques [1, 2], attribute-based rout-
ing [3, 4], indexed storage and retrieval [5], database-style querying [6, 7],
and active query techniques [8, 9]. Given the severe resource constraints,
application-specificity, and need for robust performance in sensor net-
works, it is clearly crucial to complement these ongoing routing protocol
development efforts by the concurrent development of a strong theoret-
ical understanding.

There are significant challenges inherent in developing such a theory
— traditional tools such as queuing theory [10] can be used to ana-
lyze throughput and delay issues, but these are of secondary importance
in energy-limited sensor networks. Network information theoretic ap-
proaches involving exact analysis have traditionally resulted in limited
progress [11], but more recently there has been an attempt to provide
useful results by focusing on asymptotic behavior. For example, Gupta
and Kumar [12] and Xie and Kumar [13] have analyzed the asymptotic
capacity of multihop wireless networks; work that has been extended to
consider mobility [14] as well as directional antennae [15]. The capacity
of wireless sensor networks has been addressed by taking into account
spatial correlations in data from nearby nodes [16, 17]. Other theo-
retical efforts in the area of sensor networks have been focused on un-
derstanding the complexity and optimality of data-aggregation [18, 19],
and first-order mathematical modeling of specific querying and routing
protocols such as ACQUIRE [9] and Directed Diffusion [20].

In this chapter, we describe a useful theoretical approach — the
framework — that can be used to identify the fundamental performance
limits on information routing for a specified network. In particular, we
focus on a data-gathering application, consisting of n nodes with given
locations and finite remaining energies, and explore how information
should be routed in the network to maximize the total information ex-
tractable from the network. We first survey the recent literature on
variants of flow optimization models that have been proposed for wire-
less networks by several authors in recent years. We then present two
models for the flow optimization approach – the first is an optimization
model with non-linear convex constraints permitting rate adaptation
through transmit power control; the second is a simpler linear optimiza-
tion model in which the rate is kept fixed on all links. We then illustrate
the usefulness of such models through some numerical examples, show-
ing how the information extracted varies with available energy, how the
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two models (linear and non-linear) compare, and how reception costs
impact optimal routing behavior.

The key feature of flow optimization-based modeling of sensor net-
works is that it is a computational framework. Thus, it yields perfor-
mance bounds not in the form of closed-form expressions, but rather
numerically, for specified scenarios. As we show, this framework is well
suited to explore the impact of different design variables such as node
location, energy distribution, rate-adaptation etc. The framework is
also useful as a benchmark for comparing the performance of imple-
mentable protocols on a test-suite of scenarios. The basic optimization
models we present are for single-sink data gathering scenarios, and in-
corporate energy constraints and costs for transmission, reception and
sensing, channel capacity constraints, as well as information constraints
including fairness. These models assume a (TDMA/FDMA like) sched-
uled medium access scheme with no interference. However, as we shall
discuss, these models can be extended in principle to incorporate soft
interference, data aggregation, richer energy models, and to some extent
even mobility.

1. Flow Optimization in Wireless Networks

Network flow optimization, which forms the foundation of the ap-
proach we describe in this chapter, is an established area of Operations
Research and is described in detail in the book by Ahuja, Magnanti
and Orlin [21]. In the simplest max-flow problem, a graph G = (V,E)
is given with a specified source node s and a sink node t. The edges
of the graph have capacities Cij and the objective is to determine the
flows on the edges fij with capacity and flow conservation constraints
that maximize the total flow from s to t. A generalization of this is
the multi-commodity flow problem where the goal is to maximize the
sending of several different commodities (each possibly having different
sources and sinks) over a network with restricted capacity. In recent
years, flow optimization has been applied by several researchers to the
analysis of multi-hop wireless networks.

Toumpis and Goldsmith analyze capacity regions for general-purpose
multi-hop wireless networks [22, 23]. Using a linear-programming opti-
mization based formulation (that is equivalent to a network flow prob-
lem), the authors study the characteristics of the maximum information
throughput that can be obtained in a wireless network with arbitrary
topology. Non-linear constraints are considered in the optimization mod-
els for wireless networks discussed in [24, 25]. In these works the authors
consider jointly optimizing the routing as well as rate-adaptive power
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control and bandwidth allocation. They also treat the constraints im-
posed by interference in their models. It should be noted however that
all of these models do not consider energy constraints that are important
in sensor networks.

Chang et al. use the flow optimization formulation to maximize the
lifetime of an ad hoc network in [26]. They propose a class of flow
augmentation and flow redirection algorithms that balance the energy
consumption rates across nodes based on the remaining battery power
of these nodes. Optimization models have also been used to study max-
imum lifetime conditions for sensor networks. Bhardwaj and Chan-
drakasan [27] develop upper bounds on the based on optimum role
assignments to sensors (e.g. whether they should act as routers or ag-
gregators). Kalpakis et al. examine the MLDA (Maximum Lifetime
Data Aggregation) problem and the MLDR (Maximum Lifetime Data
Routing) problem in [28], again formulating it using network flows. They
use the solution obtained by solving the LP to construct an optimal data
gathering schedule. Ordóñez and Krishnamachari have developed non-
linear models (permitting rate-adaptation) for maximizing information
extraction in wireless sensor networks subject to energy and fairness
constraints [29, 30].

Recent research has also looked into obtaining implementable algo-
rithms (based on flow optimization) that provide near-optimal perfor-
mance. Garg and Konemann propose and present an excellent discussion
of fast approximation techniques for solving the multi-commodity flow
problem [31]. Chang, et al apply the Garg-Konemann algorithm to the
problem of maximizing the network lifetime of an ad hoc network in
[32]. Sadagopan and Krishnamachari [33] extend the Garg-Konemann
to provide approximation algorithms for a maximum information extrac-
tion problem in sensor networks, and also present faster, implementable,
heuristics that are also shown to be near-optimal.

We will now describe both non-linear and linear flow optimization
models for wireless sensor networks, and present some illustrations of
the utility of this framework.

2. Optimization Models for Wireless Sensor
Networks

We now present flow optimization models that investigate the trade-off
between maximum information extraction and minimum energy require-
ments for a given network topology. We begin by looking at non-linear
models with , in which the flow rates on each link can be adapted by
varying transmit powers. We then examine simpler linear models in
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which the rates are kept constant. In both models, we assume that
there are n source nodes, and a sink numbered n+1, located with pair-
wise distances dij in a given area. In the basic models it is assumed that
there is an overall energy budget of Etot (Joules) to distribute among
the sensor nodes (this could be easily modified to a per-node energy
budget of Etot/n if needed). The transmit power on link (i, j) is Pij
(Joules/sec), while β and C are the sensing and reception energy costs
(Joules/bit). It is assumed that the relation between the flow rate fij
and transmission power Pij on a link is given by Shannon’s capacity:

fij ≤ log

(

1 +
Pijd

−2
ij

η

)

. (1.1)

This expression assumes that the decay factor of the medium is d−2
ij ,

the communication channel has a noise power of η, and that all trans-
missions are scheduled (e.g. via TDMA/FDMA) such that they are
non-interfering.

Non-linear Adaptive Rate Models

In this model the link rates fij and transmission powers Pij are design
variables, and T is total time duration of (in seconds) communication
on each link. Thus

∑n
j=1 fj,n+1T represents the total number of bits

extracted by the sink from the network. The objective of our first model
is therefore to find the coordinated operation of all nodes by setting
transmission powers and flow rates in order to maximize the amount of
information that reaches the sink:

max
n
∑

j=1

fjn+1T

s.t.
n+1
∑

j=1

fij −
n
∑

j=1

fji ≥ 0

n+1
∑

j=1

fij −
n
∑

j=1

fji ≤ αi

n
∑

j=1

fjn+1

n
∑

i=1

(βfin+1 + Pin+1)T +

n
∑

i=1

n
∑

j=1

(Cfij + Pij)T ≤ Etot

fij ≤ log

(

1 +
Pijd

−2
ij

η

)

fij ≥ 0, Pij ≥ 0

(1.2)
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Since we do not consider aggregation in this simple model, the first
constraint ensures that outgoing flow from a node is never less than the
incoming flow. The second constraint imposes the fairness requirement
that source i may not contribute more than a fraction αi of the total
flow to the sink. The third constraint imposes a network-wide energy
constraint on the weighted costs of transmissions, receptions and sensing.
Note that we do not explicitly constrain the communication between any
pairs of nodes here, since we assume that we can make use of an ideal
non-interfering schedule of transmissions; however it would be trivial to
incorporate an additional constraint that limits the maximum transmit
power of all nodes to minimize interference.

We simplify this problem using the arc-incidence matrix N , which for
a network with n + 1 nodes and m arcs, is a n + 1 by m matrix with
coefficients equal to 0, 1 or −1. The matrix is defined by

Ni(k,l) =







1 if i = k
−1 if i = l
0 otherwise .

With this notation we can show that the problem is equivalent to:

max
n
∑

j=1

fjn+1T

s.t. 0 ≤ Nf ≤ α

n
∑

j=1

fjn+1

n
∑

i=1

n+1
∑

j=1

κjfijT + ηd2
ij

(

efij − 1
)

T = Etot

f ≥ 0 ,

(1.3)

where we define κj = C if j = 1 : n and κn+1 = β. A related dual
problem to the problem above, which minimizes the energy to obtain a
certain amount of information bout (in bits), is

min

n
∑

i=1

n+1
∑

j=1

(

κjfij + ηd2
ij(e

fij − 1)
)

s.t. 0 ≤ Nf ≤ α
∑n

j=1 fjn+1
n
∑

j=1

fjn+1T = bout

f ≥ 0 .

(1.4)
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We can show that the optimal solutions for Problems (1.3) and (1.4)
are in fact related, a relationship that illustrated with the following
example. In Figure 1.1 we plot both the maximal information extracted
as a function of the energy bound and minimum energy needed as a
function of the information bound. The experiments that originated
these results considered the sameWSN with all nodes placed in a straight
line, the sink node at one end, 10 sensor nodes uniformly distributed
from a distance 1 to 10 of the sink, and the following values for other
problem parameters: β = 0.00001, C = 0.00005, η = 0.0001, T = 1, and
αi = 0.20 for all i. The minimum information bound was varied from
bout = 1, to bout = 20 when solving Problem (1.4), and the maximum
energy bound was varied from Etot = 0.01 to Etot = 0.2 when solving
Problem (1.3).
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Figure 1.1. Optimal energy versus information

Linear Constant Rate Model

An alternative, computationally simpler, linear flow optimization model
is obtained if we do not permit rate adaptation and assume that there
is a fixed transmission rate fij = R (bits/sec) for each link in the net-
work. The transmission powers are therefore also fixed and given by
Pij = ηdij(e

R − 1) (in J/sec). In this model our decision variables are
how many bits to send from i to j, bij . Given that the transmission
rate is fixed the time taken for transmission on a given link is therefore
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variable and depends on the number of bits sent (recall that this was a
constant T for all links in the previous model).

The corresponding problem to Problem (1.3) in which the goal is to
maximize the bits extracted for a given total energy budget is

max

n
∑

j=1

bjn+1

s.t. 0 ≤ Nb ≤ α
n
∑

j=1

bjn+1

n
∑

i=1

n+1
∑

j=1

κjbij +
ηd2

ij

R

(

eR − 1
)

bij = Etot

b ≥ 0 .

(1.5)

The corresponding problem to Problem (1.4) in which we minimize
the energy usage subject to a given information requirement bout is

min
n
∑

i=1

n+1
∑

j=1

κjbij +
ηd2

ij

R

(

eR − 1
)

bij

s.t. 0 ≤ Nb ≤ αbout
n
∑

j=1

bjn+1 = bout

b ≥ 0 .

(1.6)

We will now undertake a comparison of the adaptive and constant rate
models. The latter model, involving a linear program is computationally
more tractable, but as one may expect, we find that the loss of a degree
of freedom (rate adaptation) results in inefficiency.

3. A Comparison of the Non-linear and Linear
models

We consider Problems (1.3) and (1.5). In other words we will compare
how much information bout (bits) can be extracted from a given sensor
network according to each model, when we are given a limited budget of
overall energy Etot (Joules). We will compare the total information that
can be extracted with the same budget of energy for each model. For
the comparisons we will tune the model parameter T for the non-linear
adaptive rate model, and the parameter R for the linear constant rate
model. These parameters in effect tune the throughput (bits/second)
with which information is extracted from the network in each model.
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Simple example

As an illustration, we first consider a simple problem with two source
nodes in line with the sink; one of the nodes provides all the information
(i.e. α1 = 0 and α2 = 1). We assume that all the information is
originating from the node furthest from the sink. In this example we
compare the performance of the non-linear and linear models by studying
which outputs more data for a given amount of energy Etot. We assume
that the sink is at (0, 0) and the nodes at (1, 0) and (2, 0), and that we
have a sensing cost β (in J/bit), reception cost C (in J/bit) and a noise
power η. It is straightforward to show that for the non-linear model the
optimal flow rate f for this example satisfies

CfT + βfT + 2η
(

ef − 1
)

T = Etot

⇒ (C + β)f + 2η
(

ef − 1
)

=
Etot

T
(1.7)

and the optimal number of bits b for the linear model in turn satisfies
the relation

Cb+ βb+ 2η
(

eR − 1
) b

R
= Etot

b =
EtotR

2η (eR − 1) +R(C + β)
(1.8)

Note that the optimal solution in both cases depend on a tunable
parameter T for the non-linear model and R for the linear model. We
study now how the optimal solutions vary with these parameters.

We considered additional problem parameters as Etot = 1, η = 0.01,
β = 0.001, and C = 0.001. We compute the total amount of bits that
can be extracted from the linear and non-linear models (b and f ∗ T
respectively) for different values of their respective tunable parameters
(R and T respectively). In Figure 1.2 we plot the total bits that are
extracted versus the flow rate in doing so for both models:

Analytically it is easy to show that limR→0 b(R) = Etot

2η+C+β , and

limR→∞ b(R) = 0. The function b(R) is maximized for the rate that
satisfies eR(1 − R) = 1, which occurs when R is zero, i.e. as small as
possible.

As there is no explicit analytical expression of the optimal solution for
the optimal flow rate f , we can only obtain approximate limits for the
total flow extracted at T tends to 0 and ∞. As T → ∞ the expression
(C + β)f + 2η(ef − 1) → 0, therefore (C + β)f + 2η(ef − 1) = (C +

β)f +2η
∑

∞

k=1
fk

k! ≈ (C + β+2η)f , and thus limT→∞ Tf(T ) ≈ Etot

2η+C+β .
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Figure 1.2. Total bits sent to sink versus flow rate for linear and non-linear models,
simple example

Likewise as T → 0, then (C + β)f + 2η(ef − 1) → ∞ and thus (C +
β)f + 2η(ef − 1) ≈ 2ηef , which implies that Tf(T ) ≈ T log(Etot

2ηT ) →
0. Thus for the non-linear model the total information extracted is
maximized for a large T . For both the linear and non-linear models,
these observations are consistent with figure 1.2 which shows that the
maximum total information is extracted when the overall throughput is
kept as low as possible (i.e. to the left of the curve).

General case

We consider a square grid scenario, with a 3× 3 uniform square grid
of sensor nodes in a [0, 10]2 square sending information to a sink located
outside the square, located at (−3, 5), other problem parameters were
set as αi = 0.15 for all nodes, β = 0.00001, η = 0.0001, Etot = 10, and
cost C = 0.001.

In figure 1.3 we compare the total bits extracted for each the linear and
non-linear models respectively as a function of the total rate to the sink.
Note that the non-linear model outputs much more information for the
same level of energy, at all rate levels. This shows that the computational
tractability of the constant rate linear models comes at the expense of
some inefficiency. Rate adaptation can provide significant additional
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Figure 1.3. Total bits sent to sink versus flow rate for linear and non-linear models,
square example

information for the same budget (it is nearly an order of magnitude
higher in this scenario).

4. Multi-hop Behavior

Here we investigate how varying the reception cost C affects the hop-
ping behavior of the optimal solution. In this section we are simply
considering the non-linear model. Clearly a very high reception cost will
make preferable to send the information directly to the sink, while a very
inexpensive reception will allow for hopping in the optimal solution. An
approach is to use an optimization model to see for which values of C
the optimal routing hops and for which it does not. We first consider a
very simple example that is also amenable to an analytical solution and
then see how the insights can be generalized.

Simple example

To provide an initial solution to this question we consider a very
simplified problem consisting of only two sensor nodes, one of which
provides all the information (that is α1 = 0 and α2 = 1). The question is
to try to predict when node 2 will prefer to send the information directly
to the sink and when it will prefer to route it through node 1. In order
to avoid a trivial solution we place node 1 closer to the sink than node
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two, in fact for simplicity we place it exactly mid-way between node 2
and the sink. Assume also that we have bout = 1, that we have a sensing
cost of β, and noise parameter of η. Clearly the decision of whether
to route information or not will be affected for different reception costs
C. We note that for small values of C node 2 will find more attractive
to route its information through node 1. In this case node two has the
alternative to route part of the information and send the rest directly
to the sink. For high values of C the network will decide that it’s too
expensive to route information through node 1 and node 2 will send
everything directly. Here we investigate for what values of C will the
network decide to hop and for which to send the information directly.

With the use of optimization models we solve for the optimal routing
behavior given different values of the reception cost C. In Figure 1.4 we
plot the total value of flow that is sent directly to the sink from node 2 for
different reception cost values. This computational example additionally
has the following parameters values β = 0.00001 and η = 0.1. We note
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Figure 1.4. Flow to the sink without hopping as a function of the reception cost C

that for reception costs higher than a critical value (plotted as a dashed
vertical line) node 2 sends all the information directly to the sink. We
also note that it is never optimal to hop all the information, as for
any reception cost there is some fraction of the information being sent
directly. We finally note that there is a dramatic change in the type of
the routing solution as C varies from 10−2 to 0.3.
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Due to the simplicity of this example, we can analyze the results
further. We are simply comparing the solution in which we route all the
information directly at a cost

hs = β + η(e− 1)

with the case in which we send f1 from node 2 to node 1 and then to
the sink, and f2 = 1− f1 directly form node 2 to the sink, at a cost

hc(f1) = β +
1

4
η(ef1 − 1) + Cf1 +

1

4
η(ef1 − 1) + η(e1−f1 − 1)

= β + Cf1 +
1

2
η(ef1 − 1) + η(e1−f1 − 1) .

The amount of information that will be routed will be the minimizer of
function hc(f1) on the domain [0, 1].

We need to determine for what values of C will hc(f1) < hs for some
f1 ∈ (0, 1], which means that it is more convenient to route f1 than to
send everything directly. Equivalently we will determine for what value
of C, the function HC(f1) = hc(f1)− hs ≥ 0 for all f1 ∈ [0, 1], these are
the values of C that will make it more convenient to send directly rather
than route the information. It is easy to show that HC(f1) is a convex
function and HC(0) = 0, therefore to guarantee that HC(f1) ≥ 0 for
all f1 ≥ 0 it is sufficient to show that H ′

C(f1) ≥ 0. This last condition
reduces to C ≥ η(e − 1

2). This critical value for the reception cost is
C = 0.221828 for the problem parameters of this example. We plot this
value a vertical line in Figure 1.4. Note that the the optimal solution
routes all the information from sources directly to the sink precisely at
that critical value.

General case

To illustrate the general case we considered a 3×3 uniform square grid
of sensor nodes sending information to a sink located outside the square.
The example considers 9 nodes uniformly distributed in a [0, 10]2 square
with the sink located at (−3, 5), other problem parameters were set as
αi = 0.15 for all nodes, β = 0.00001, η = 0.0001, and bout = 10. The
reception cost C was varied between 10−5 and 1.

To analyze the result for a general WSN we also construct a function
HC(f) that quantifies the difference between a hopping solution and a

non-hopping solution. Let f̂ be the optimal routing of information that
sends all information directly. That is it solves Problem (1.4) with the
additional constraint that

∑n
i,j=1 fij = 0. Then the minimal energy

needed to send directly to the sink a given amount of information bout
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Figure 1.5. Fraction of total flow on the network that goes directly to the sink as a
function of the reception cost C

is

hs = βbout +

n
∑

i=1

ηd2
in+1(e

f̂in+1 − 1) .

We define HC(f) for any feasible flow f to be the difference between the
energy consumed to send bout to the sink by routing through f and hs,
that is

HC(f) =
n
∑

i=1

n+1
∑

j=1

κjfij + ηd2
ij

(

efij − 1
)

− hs

=
n
∑

i,j=1

Cfij +
n
∑

i=1

n+1
∑

j=1

ηd2
ij

(

efij − ef̂ij

)

.

The condition that the reception cost must satisfy, in order to indicate
that it forces direct routing as the optimal solution, is that for every
feasible solution f we have HC(f) ≥ 0. It is easy to see that if f̃ is
a routing solution that sends all the information directly to the sink,
then HC(f̃) ≥ 0, and HC(f̂) = 0. Therefore C induces a no-hopping

optimal routing solution if ∇HC(f̂)
t(f − f̂) ≥ 0 for all feasible solutions
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f . Taking derivatives we have that

∇HC(f̂)
t(f − f̂) =

n
∑

i,j=1

(C + ηd2
ij)fij +

n
∑

i=1

ηd2
in+1e

f̂in+1

(

fin+1 − f̂in+1

)

= C
n
∑

i,j=1

fij +
n
∑

i=1

n+1
∑

j=1

ηd2
ije

f̂ij

(

fij − f̂ij

)

.

If f is a non-hopping feasible flow then we can show that ∇HC(f̂)
t(f −

f̂) ≥ 0, from the KKT conditions of f̂ . If f is a solution that does some
hopping, that is

∑n
i,j=1 fij > 0, then the condition that C has to satisfy

to force a non-hopping solution is

C ≥

∑n
i=1

∑n+1
j=1 ηd

2
ije

f̂ij

(

f̂ij − fij

)

∑n
i,j=1 fij

.

This condition implies that the threshold value for the reception cost
C∗, above which it is preferable to send all the information directly, is the
solution to the following maximization problem over an open domain:

C∗ = maxf,κ
1
κ

∑n
i=1

∑n+1
j=1 ηd

2
ije

f̂ij

(

f̂ij − fij

)

s.t. 0 ≤ Nf ≤ α
∑n

j=1 fjn+1
∑n

i,j=1 fij = κ

f ≥ 0
κ > 0

This example illustrates the possible use of the flow optimization mod-
els to examine qualitative issues such the use of multi-path routing versus
direct transmission to a base station.

5. Conclusions

In this chapter, we have described the flow optimization framework
for analyzing the fundamental limits of sensor network performance. We
reviewed some of the relevant recent literature on the subject, and il-
lustrated the framework by presenting several models including both
non-linear adaptive rate models as well as linear constant rate models.
We illustrated the utility of this framework by studying the energy-
information tradeoffs in sensor network, investigating the gains that are
possible through rate adaptation, and exploring the conditions under
which multi-hop routes are present in the optimal solution. Another
important use of the flow optimization framework is that the numer-
ical fundamental performance limits that it provides can be used as a
benchmark for measuring the performance of practical implementations.
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There are a number of directions in which the flow optimization mod-
els we have presented can be extended. The models above assume conser-
vation of flows at each node. If nodes can aggregate data, this constraint
must be changed. Data aggregation constraints can be best modelled by
incorporating multi-commodity flows. The models above assume that
the network has scheduled communications on all links. For a CDMA-
like environment, interference poses a non-convex constraint. There are
some techniques that can be used to handle such constraints approxi-
mately [25]. Models can also consider the possibility of mobile nodes, in
which locations and therefore inter-node distances can be varied as a de-
sign parameter at the expense of some energy for motion. However, this
may also introduce a non-convex constraint. Another area of open re-
search is in exploiting the structure of these optimization problems to de-
velop constructive, implementable algorithms that obtain near-optimal
performance in practice.
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