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SUMMARY

A nascent ridesharing industry is being enabled by new communication technologies and motivated by the
many possible benefits, such as reduction in travel cost, pollution, and congestion. Understanding the
complex relations between ridesharing and traffic congestion is a critical step in the evaluation of a
ridesharing enterprise or of the convenience of regulatory policies or incentives to promote ridesharing.
In this work, we propose a new traffic assignment model that explicitly represents ridesharing as a mode
of transportation. The objective is to analyze how ridesharing impacts traffic congestion, how people can
be motivated to participate in ridesharing, and, conversely, how congestion influences ridesharing, including
ridesharing prices and the number of drivers and passengers. This model is built by combining a ridesharing
market model with a classic elastic demand Wardrop traffic equilibrium model. Our computational results
show that (i) the ridesharing base price influences the congestion level, (ii) within a certain price range,
an increase in price may reduce the traffic congestion, and (iii) the utilization of ridesharing increases as
the congestion increases. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With rapid population growth and city development, traffic congestion has become an important issue,
especially in large cities. The 2012 Annual Urban Mobility Report developed by the Texas Transpor-
tation Institute [1] estimates that (i) the amount of delay endured by the average commuter was
38 hours, up from 16hours in 1982, and (ii) the cost of congestion is more than $120bn, nearly
$820 for every commuter in the USA. At the same time, there is no public support for increased spend-
ing on infrastructure capacity expansion. Thus, there is a need for innovative transportation modes that
can be implemented to improve transportation conditions in a cost-efficient manner. Ridesharing
appears as one such innovative transportation mode that could at least help mitigate the congestion in-
crease, as it can tap into the significant amount of unused capacity in transportation networks.
Benefits of ridesharing include travel cost savings, reducing travel time, mitigating traffic conges-

tion, conserving fuel, and reducing air pollution [2–5]. However, ridesharing is still not a regular trans-
portation alternative and is considered an informal and disorganized activity. The lack of efficient
methods to coordinate itineraries and schedules is an important factor that inhibits the wide adoption
of ridesharing. Recently, technological advances including global positioning systems and mobile
devices have greatly enhanced the communication capabilities of travelers, facilitating the creation
of ridesharing in real time. Taking advantage of this opportunity, a number of companies, such as
Avego (Carma), SideCar, flinc, and CarpoolWorld, have emerged to develop systems where travelers
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(including both drivers and passengers) can be matched in real time via Web browsers and mobile apps
[6]. In a sense, these companies are establishing a marketplace for drivers to offer up their empty seats
to other travelers. In these newly developed systems, the drivers receive a compensation for participat-
ing, which can be in the form of smaller travel times, reduced tolls, or direct payment that help mitigate
the travel costs. The essential difference of such ridesharing systems from traditional public transit
systems is that they do not hire professional drivers and they function as a matching agency that pairs
passengers with “citizen” drivers.
In this paper, we study a transportation system where ridesharing has the ability of capturing a sig-

nificant portion of travel demand via a real-time matching agency. In this system, we assume that the
passengers will pay the drivers for the ridesharing services to share the travel cost. The ridesharing
price is an abstraction to represent compensation that drivers take into account in their decision to par-
ticipate in ridesharing, such as a reduction in travel time or toll costs that will occur by being able to
use high-occupancy vehicle (HOV) lanes. We assume that the system operates as an open marketplace
and thus the ridesharing price will be determined by the market as well as congestion conditions.
The purpose of this paper is to determine how attractive ridesharing will be to travelers in a given

city where the ridesharing market exists. The key decision factors would include the complex interac-
tion between traffic congestion, the ridesharing price, and its adoption, that is, the number of drivers
and passengers that participate in ridesharing. For instance, to decide whether to participate in
ridesharing, drivers may weigh the inconvenience, such as loss of privacy, against the compensation
they may earn for taking on passengers. In turn, passengers would trade off the inconvenience, such
as security concerns and loss of freedom, against the travel time and cost of a shared ride. These
trade-offs would balance in an equilibrium that determines congestion, the ridesharing price, and the
number of drivers and passengers that participate in ridesharing. For example, an increase in
ridesharing could lead to a reduction in congestion and possibly an increase in ridesharing price, which
in turn would make driving more attractive. On the other hand, an increase in ridesharing price would
reduce the number of potential passengers, leading to an increase in potential drivers and congestion.
Understanding how ridesharing would influence traffic congestion is fundamental in the evaluation of
a ridesharing enterprise or in assessing the convenience of regulatory policies or incentives to promote
ridesharing.
To achieve this goal, we propose a new static traffic assignment model based on a user-equilibrium

(UE) assumption that would take into consideration the unique characteristics of ridesharing. Such a
model could allow us to analyze how ridesharing and traffic congestion would interact with each other
and also to determine the impact that different regulatory interventions could have on ridesharing, and
hence on traffic. Therefore, the goal of this paper is to establish a static traffic assignment model that
can determine (i) the ridesharing price, (ii) how ridesharing will impact the traffic congestion condi-
tions, and (iii) the number of travelers that participate in ridesharing. Existing traffic assignment
models have to be extended to consider the specific characteristics of ridesharing, where (i) the
cost/price of ridesharing is determined by the number of people participating and (ii) the offer for
shared rides (capacity of the transportation mode) varies with congestion and price. The approach to
accomplish this is to combine two equilibrium models: a market pricing model that we refer to as
the economic equilibrium system and a traditional traffic equilibrium system. Through common price
and congestion parameters, the two systems interact with each other and thus become one integrated
system that determines the prices and the congestion levels simultaneously.
Note that in this paper, we assume there exist drivers and passengers, and we do not model each in-

dividual’s choice between these transportation alternatives. We assume that there are separate utility
functions for drivers and passengers used to represent an elastic demand and that both drivers and
passengers decide independently whether to travel or not. The number of drivers in the network will
be captured by the driver utility function, and the number of passengers will be determined by the
passenger utility function. A potential driver can only decide whether to drive or not travel at all. A
potential passenger can only decide to take a shared ride or not (they may choose other public transit,
but they will not drive and thus will not impact traffic). In any case, if a driver determines not to drive
or a passenger determines not to take a ride, they will not be considered in the scope of this paper and
will not influence traffic congestion or the balance in ridesharing trips. We are only interested in how
many drivers and passengers are in our system.
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In addition, the drivers in a ridesharing setting include both solo drivers (who drive alone) and
ridesharing drivers (who take on passengers). We treat them the same because we are evaluating the
ridesharing market from a system point of view and our model does not make specific assignments
of passengers to vehicles. Therefore, the only quantity of interest for congestion and balance in the
ridesharing market is the number of drivers.
The paper is organized as follows. The literature review is presented in Section 2 where we discuss

existing ridesharing systems and traffic assignment problems that help determine the traffic congestion
cost. Section 3 describes the integrated model in detail and gives its mathematical formulation.
Section 4 briefly describes our solution approach and presents the computational results and analysis.
We finish the paper with conclusions in Section 5.

2. LITERATURE REVIEW

Ridesharing is a joint trip of at least two participants that share a vehicle and requires coordination with
respect to itineraries [6]. Ridesharing has drawn much interest in both industry and academic fields in
recent years. According to Furuhata et al. [6], ridesharing activities can be divided into three main
types: (i) unorganized ridesharing; (ii) semi-organized ridesharing; and (iii) organized ridesharing.
Unorganized ridesharing, which involves family, colleagues, neighbors, and friends, has a long his-

tory, yet is limited scaled because of inefficient communication methods. Semi-organized ridesharing
services occur spontaneously among individual travelers motivated by access to faster HOV lanes or
reduced toll. Examples of this type of ridesharing service are casual carpooling [4, 7] and slugging,
which formed in the Washington D.C. area free of charge to the participants [8, 9]. These services
run on their own momentum; they are not started or run by a public or private entity [10]. Therefore,
they are limited to specific locations or circumstances and are difficult to replicate elsewhere.
Organized ridesharing is operated by agencies that provide ride-matching opportunities for partici-

pants without regard to any previous historical involvement [11]. With innovative technologies, inhib-
itors of ridesharing can be overcome, and a number of private matching agencies have emerged during
the last decade [2, 11–14]. By introducing mobile technologies such as smart phones as well as global
positioning systems, ridesharing systems can be implemented in a real-time fashion, and its degree of
adoption will increase when agencies can help match any two participants with their travel itineraries
and current locations.
However, there are still a limited number of papers that deal with issues of dynamic/real-time

ridesharing services [15]. Although most of the existing papers focus on the matching mechanisms
of real-time ridesharing services, the pricing problem has received less attention in the literature. Pric-
ing specifies the amount of money transferred between the involved parties (drivers and passengers),
including how to share the costs of gas, toll, and parking and how to charge transaction fees by the
matching agencies [6].
One type of pricing for dynamic ridesharing is based on the auction mechanism, where drivers or

passengers specify their least or highest preferred price, respectively [16]. A related example can be
found in eBay, where multiple sellers offer the same commodity with different deadlines and the clear-
ing prices are not identical. Another type of pricing is called cost sharing, where a price is determined
by a cost calculation formula specified by a matching agency. Several different cost-sharing mecha-
nisms have been designed, and they are applicable to share the transportation cost in a static setting
[17, 18]. This type of pricing is difficult to implement in dynamic ridesharing because it should involve
the consideration of fairness when splitting the cost with multiple passengers who may be picked up or
dropped off at any time during the trip. A third type of pricing is more negotiable, where the matching
agencies are not involved in pricing. The price is negotiated between the potential participants (either
drivers or passengers) while they determine whether or not to participate in the ridesharing activity [6].
There are few papers discussing the relationship or the interaction between rideshare pricing and

traffic congestion. Yang and Huang [19] discussed the carpooling behavior and the optimal congestion
pricing in a multilane highway with or without HOV lanes where the first-best pricing and the second-
best pricing models were formulated and compared. The models, however, were limited to identical
commuters (single origin and single destination), and the number of passengers in each carpooling
vehicle is fixed to one. Later, Qian and Zhang [20] studied the morning commute problem with three
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modes: transit, driving alone, and carpool. They analyzed the interactions among the three modes and
how different factors affect their mode shares and network performance. Again, the model is limited to
a single origin and single destination network and does not consider the tremendous interactions of
rideshare pricing among different origin-destination (OD) pairs.
To study the effects of multiple OD pairs, one classic model is the traffic assignment problems

(TAPs), which evaluates the distribution of travelers among different routes and OD pairs. There are
many methods to assign traffic to paths, a standard assumption in TAP is the UE assumption, also
known as Wardrop’s user traffic equilibrium law [21]. According to this assumption, the travel times
(congestion costs) in all the used paths are equal and less than those which would be experienced by a
single vehicle on any unused path. In other words, no traveler can reduce their travel cost/congestion
by switching to another route at the equilibrium [22]. However, by traveling, every individual causes
congestion and helps determine the travel cost for everyone else. Therefore, the traffic assignment
problem with the UE assumption establishes a model that predicts how travelers choose their routes
given a road network. In this paper, the TAP refers to the TAP with UE assumption. There could exist
several fastest routes in this assumption, as long as they have the same travel (time) cost.
One of the most important variations of TAP is elastic demand. By introducing a “utility” (or “dis-

utility”) function, the problem decides not only how people will choose their paths but also how many
people would travel given certain congestion conditions. This kind of model serves to illustrate those
cases where people might not travel when the traffic is highly congested. The problem can also be for-
mulated as a convex optimization problem with a decreasing convex utility function for a trade-off be-
tween congestion and demand. The elastic demand TAP is well studied in the literature [23–30].
Another variation of the traffic assignment is the multi-mode model, where two or more transit

modes, say private vehicle and public transit, are being studied simultaneously. The multi-mode
variant also includes another characteristic of traffic equilibrium: multiclass model, where travelers
are divided into several classes, say high and low income. In the work of Aashtiani and Magnanti
[31], the total demand of travelers in all modes is a constant, and the well-known logit model is applied
in deciding the demand for each mode. They also proved the existence and uniqueness of the solution
to their model. Boyce and Bar-Gera [32] described the formulation, estimation, and validation of com-
bined models for making detailed urban travel forecasts. Their model was based on a large-scale,
multiclass model of peak period urban travel (Chicago region). Other models and methods of multi-
mode traffic assignment problems can be found in [28, 33, 34].
There exist many solution approaches to the traffic assignment problems. One of them is to

model it as a convex optimization problem. The model can be formulated using either arc-based
variables [30, 35, 36] or path-based variables [22, 29, 37, 38], which have been shown to be equivalent
[22, 39, 40]. One of the most widely used methods to solve the TAP in convex optimization is the
Frank–Wolfe method [41, 42], which works as a reduced gradient method. It generally makes good
progress toward the optimum during the first iterations, but convergence often slows down substantially
when close to the optimal solution. Another well-used solution approach is the Analytic Center Cutting
Plane Method (ACCPM) [43], which is related to the Dantzig–Wolfe decomposition method. It is based
on a column generation technique defining a sequence of primal linear programming (LP) maximization
problems. This method is efficient for solving UE models with fixed demands. Later, Babonneau and
Vial [29] extended ACCPM to solve UE models with elastic demands. They showed that ACCPM is
capable of solving large instances at a high level of accuracy.
A more generalized form of convex optimization is the complementarity problem. The Karush–

Kuhn–Tucker conditions of the convex optimization problem include complementary slackness condi-
tions, which together with variable nonnegativity form a complementarity problem. Facchinei
and Pang in their book “Finite-Dimensional Variational Inequalities and Complementarity Problems,
Volume I,” pages 41–46, gave the detailed formulation of the UE as a complementarity problem.
The benefit of formulating the UE as a complementarity problem instead of a convex optimization
is that it does not require an objective function. In some cases, it is hard for some types of TAPs to
have an explicit objective function. Agdeppa et al. [44] studied the traffic equilibrium problem with
nonadditive costs, that is, the cost of a path does not equal the sum of the costs of the arcs belonging
to the path. The paper formulates the problem as a monotone mixed complementarity problem under
appropriate conditions, and hence, the existence and uniqueness of the solution can be proved.
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With rapid urban development and dramatic information explosion, the efficiency and the scalability
have both become significant issues and stimulate researches to find better algorithms. Another type of
solution approach for TAPs is based on the network features of the problem. Researchers have been
focusing on specialized algorithms making use of the actual paths of the traffic network. For example,
Jayakrishnan et al. [45] proposed a path-based algorithm, and their results show that their method
converges in 1/10 iterations than the conventional Frank–Wolfe algorithm. Later, Bar-Gera [46] uti-
lized the acyclic subnetworks rooted at origins and designed a new approach called the origin-based
algorithm. In a following paper, Bar-Gera [38] introduced an efficient solution method called the traffic
assignment by paired alternative segments algorithm. Instead of comparing two entire paths, the traffic
assignment by paired alternative segments algorithm focuses on pairs of alternative segments. These
algorithms are efficient but are only designed to solve the basic traffic assignment model with fixed
demands. To the best of our knowledge, they have not been applied to models with elastic demands
or multiple modes.
Although there is rich literature on elastic demand TAPs and multi-modal TAPs, these models can-

not easily be adapted to ridesharing because of the existence of an endogenous modal price. Although
vehicle tolls and transit fares have been considered in the prior literature [32], these costs are treated as
exogenous, known ahead of time and independent of how users occupy the transportation network.
Ridesharing prices on the other hand could conceivably be determined by the amount of ridesharing
that occurs because of traffic conditions. For instance, in the presence of high congestion (or high
transportation costs due to high gas prices), it is plausible that more drivers are willing to participate
in ridesharing, thus lowering the ridesharing price. A low ridesharing price would increase the number
of people willing to be passengers reducing congestion. The presence of this endogenous transporta-
tion mode price, whose dependence on congestion is not straightforward, is a novel feature of the
TAP studied here. Finally, we note that few papers have considered the impact that, even an exoge-
nous, ridesharing cost would have on traffic congestion.

3. MATHEMATICAL MODEL

To describe the interactions between traffic congestion and ridesharing activities in the market, we con-
sider the elastic demand traffic assignment model under the UE assumption. Suppose drivers and pas-
sengers are traveling according to their own decisions. Drivers can decide to travel or not depending on
both traffic congestion and ridesharing conditions (prices, number of travelers, etc.). Passengers may
also decide to take a shared ride or not according to the traffic congestion and the ridesharing price.
The following model captures the aforementioned decision activities and the interactive impacts

among traffic congestion, the number of travelers, and the price paid for ridesharing services. Such in-
teractions include, as shown in Figure 1, (i) traffic congestion would impact the number of travelers
and the ridesharing price, (ii) the number of travelers (or more specifically, the number of drivers)
would determine traffic congestion and also will influence the price, and (iii) the ridesharing price
would impact the number of travelers and also the traffic congestion.

3.1. Problem description

Consider a transportation network represented by a graph with nodes and arcs, where nodes could be
origins, destinations or intermediate stops, and arcs are direct roads that connect two nodes. Each

Figure 1. Interaction among congestion, number of travelers, and ridesharing price.
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individual travels from an origin to a destination, which is called an OD pair. For each OD pair, there
exist multiple paths that start from the same origin and end at the same destination. The congestion cost
of each path is evaluated by the travel time along that path, which is a summation of travel times on
each arc that builds up the path. The travel time of each arc is determined by the number of vehicles
(drivers) traveling on that link/arc. Therefore, each arc may be shared by multiple paths (may or
may not from the same OD pair), and conversely, each path of a certain OD pair may encounter drivers
from other OD pairs. This fact is essential because a slight change in the number of drivers on one arc
may impact the travel times or congestion costs of many paths. A UE is a state where for each OD pair,
the travel times of all used paths are equal or less than those which would be experienced by a single
vehicle/driver on any unused path [21].
In addition to UE, to include the specific features of ridesharing, we also assume that

• Elastic demand: the number of drivers (respectively passengers) of each OD pair is not fixed. It is
determined by drivers’ (respectively passengers’) willingness to travel, that is, the utility function.
Drivers and passengers have different utility functions.

• Unified driver utility function: the utility function of drivers is identical for all drivers across OD
pairs. For this model, one utility function is employed for all drivers, including both solo and
ridesharing drivers. It is determined by traffic congestion and ridesharing prices. Note that we
may define two different utility functions for both solo and ridesharing drivers, yet the two can be
combined as one generalized function (APPENDIX A).

• Same OD pair: ridesharing drivers would only be willing to take on passengers that travel between
the same OD pair, that is, drivers would not pick up or drop off any passenger in the middle of their
route, even if no detour is required. Not restricting ridesharing to the same OD pair would require
more variables in order to keep track of how drivers may pick up or drop off a passenger in the mid-
dle of their trips. Ridesharing among travelers of the same OD pair can represent situations where
each node in the graph represents a neighborhood (area) and there still exist a number of people trav-
eling between the same two neighborhoods (areas). Such simplification helps us grasp the most
essential features of ridesharing activities.

• Congestion cost: the travel time or the congestion cost is calculated only by the total number of
vehicles/drivers (including both solo and ridesharing drivers). That is to say, the number of passen-
gers in each vehicle does not contribute to the congestion cost.

• Inconvenience cost: the passenger pick-up and drop-off times will be treated as part of the inconve-
nience cost of drivers.

• The ridesharing prices: passengers would pay drivers some fee for the trip. The price is determined
by the availability of vehicles and requests of passengers for each OD pair. The fee can be seen as a
form of compensation to the drivers for the additional cost and inconvenience and turns out to limit
the number of passengers in the network.

• Unlimited capacity: the vehicle capacity, that is, the number of passengers per vehicle is unlimited.
Under this assumption, we do not distinguish different types of drivers in the model, because all pas-
sengers can be squeezed into one vehicle or may be distributed evenly among all available vehicles.
It is reasonable from the perspective of the total travel cost: a driver can be either driving alone or
sharing a ride only when the costs of the two are equal. In other words, suppose the travel cost of
a solo driver is only the congestion cost, whereas the travel cost of a ridesharing driver is the con-
gestion cost plus the inconvenience cost minus the ridesharing income. In this case, the inconve-
nience cost of ridesharing will be canceled by the income (or profit) of sharing a ride. Otherwise,
all drivers would prefer the lower total cost: either driving alone or taking on passengers. In this
work, we ignore how passengers are assigned to vehicles/drivers because other behavioral consider-
ations (security, environmental conscience, and economics) influence these decisions.

• Aggregate form: based on the aforementioned assumptions, we are not treating drivers or passengers
individually. We are considering an aggregate model per OD pair, that is, all the drivers of each OD
pair are collaborating and so do all the passengers. Such simplification helps us understand how
ridesharing activities would impact the traffic congestion at a system level.

Given the aforementioned assumptions, the main interactions between travelers, ridesharing prices,
and traffic congestion can be summarized as follows (also see Figure 1).
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• The traffic congestion cost is calculated by the total number of drivers.
• The total number of drivers is determined by traffic congestion and the ridesharing prices according

to the drivers’ willingness to travel on the road. Similarly, the number of passengers is also deter-
mined by traffic congestion and the ridesharing prices according to the passengers’ willingness to
participate in ridesharing.

• The ridesharing prices are determined by the interaction between ridesharing drivers and passengers
and are also dependent on the congestion cost.

Our goal is to derive a model that reflects the aforementioned interactions and provides the number
of travelers (both drivers and passengers), ridesharing prices, and congestion cost (travel time) for each
OD pair at the equilibrium.
In the succeeding text is a list of notations that we use to formulate an elastic demand TAP model

that includes ridesharing. Note that we use an arc-based formulation of the traffic assignment UE
model such as in [29] or [36].

N set of nodes.
A set of arcs.
O � N set of origins.
D � N set of destinations.
K set of OD pairs, K � O�D
k 2 K OD pair, where k ¼ ok; dkð Þ; ok 2 O; dk 2 D.
a 2 A arc.
pk ridesharing price for each passenger of OD pair k 2 K.
qk number of passengers for OD pair k 2 K.
λ 0ð Þ
k free-flow time (fixed) for OD pair k 2 K.
λk congestion cost for OD pair k 2 K; λk � λ 0ð Þ

k .
δk total number of drivers for OD pair k.
xka amount of flow (number of drivers) for OD pair k 2 K on arc a 2 A.
ya total amount of flow on arc a 2 A; ya ¼ Σk2Kxka.
δ vector with components δk; δ 2 ℝ Kj j.
xk vector with components xka with respect to k; xk 2 ℝ Aj j.
x vector with components xka; x 2 ℝ Kj j� Aj j.
y vector with components ya;y 2 ℝ Aj j.

3.2. Adding ridesharing prices to an elastic demand traffic assignment problem

In the elastic demand traffic assignment problem, the objective function consists of two components:
the sum of the integrals of the congestion cost over all arcs and the sum of the integrals of the utility
function over all OD pairs.
We consider that each arc a has a congestion function tta(ya) to represent the travel cost/time of tra-

versing arc a when there is a flow of ya on that arc. We assume that this is a strictly increasing function
of ya. The classic Bureau of Public Roads function [47] is one of the most widely used
congestion functions.
The utility function of drivers is denoted byΛk(δk,pk), which is a function of the total number of drivers

δk and ridesharing price pk for OD pair k. It provides the worst congestion cost the drivers could endure
given the number of vehicles and the ridesharing price. Therefore, it represents an aggregate utility for
all drivers (including both solo drivers and ridesharing drivers) according to certain traffic congestion
and ridesharing prices. The aforementioned utility function looks like one in the standard elastic demand
model, except that it includes the ridesharing price as a second variable. In elastic demand models, this
driver utility function decreases with δk as more drivers (more congestion) make a trip less appealing.
The dependence on the ridesharing price will capture the fact that a payment for taking on passengers
can be a form of compensation to drivers. We therefore assume that the utility function increases with
the ridesharing price, that is, drivers may accept worse traffic condition if there is an increase in their com-
pensation of providing ridesharing services, while the number of drivers stays the same.
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From the aforementioned definitions, we have the following relationship between the number of
drivers and the traffic congestion (Figure 2): when the number of drivers (or the amount of traffic flow)
δk (or ya) increases, the congestion cost tta(ya) would increase, whereas the utility Λk(δk, pk) would
decrease. Also, the utility Λk(δk, pk) would increase if the ridesharing price pk goes up. The traffic
equilibrium is attained balancing these two relationships.
The ridesharing price for every OD pair should be determined by the balance between supply and

demand for shared rides in the market. The economic equilibrium system [48] is adopted to describe
the trade-off between the ridesharing price and the number of drivers and passengers, where drivers
are the supply and passengers are the demand. Let us denote by Sk qkð Þ the aggregate supply function
and by Dk qkð Þ the aggregate demand function for each OD pair k. These functions represent for the
supply (respectively demand) the price at which drivers are willing to offer (respectively passengers
are willing to pay) given the number of available ridesharing seats (the number of passengers) qk.
The price pk and the number of passengers qk is determined when these two functions are equal, that
is, Sk qkð Þ¼Dk qkð Þ¼pk for each OD pair k.
In the next subsection, we will give an explicit form to these supply and demand functions. In

particular, we include the fact [4, 7, 8] that the willingness of drivers to participate in ridesharing is
increasing with the congestion cost, making it possible for drivers to ask for a lower price. Therefore,
the supply function is decreasing in the congestion level λk, giving a supply function of the form
Sk qk; λkð Þ. We note that these aggregate supply and demand functions should be such that ridesharing
is only possible when there are drivers traveling on that OD pair. We show in Section 4.2 how this is
enforced for specific supply and demand functions.
In sum, we are trying to evaluate the ridesharing market by modifying an elastic demand traffic

assignment model and incorporating the balance between supply and demand for shared rides in every
OD pair. This can be expressed as the following model:

min
x;y

X
a2A
∫
ya

0
tta sð Þds�

X
k2K ∫

δk

0
Λk r; pkð Þdr (1)

s:t: Nxk � Δkδk ¼ 0; ∀k 2 K (2)

X
k2K

xka � ya ¼ 0; ∀a 2 A (3)

Figure 2. Traffic equilibrium.
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Sk qk;λk
� � ¼ Dk qkð Þ¼pk; ∀k 2 K (4)

xka � 0; ∀a 2A; ∀k 2 K (5)

Constraint (3) represents the flow decomposition constraint, that is, the total amount of flow on each
arc equals the sum of flows over all OD pairs on that arc. Constraint (4) describes the demand–supply
balancing constraint from the succeeding text, where λk equals the congestion that δk drivers create.
Constraint (5) is the nonnegativity constraint of variables.
Constraint (2) depicts the flow conservation constraint in a compact form, where N and Δk are

coefficient matrix and vector. N ¼ i; að Þ½ �i 2 N ; a 2 A is an Nj j� Aj j matrix with element

i; að Þ ¼
1; node i 2 N is the head of arc a 2 A; i:e:; a ¼ j; ið Þ
�1; node i 2 N is the head of arc a 2 A; i:e:; a ¼ i; jð Þ
0; otherwise

8><
>:

and Δk ¼ Δk
i

� �
i 2 N is a vector in ℝ Nj j for any k 2 K, with element

Δk
i ¼

1; i¼dk 2 D
�1; i¼ok 2 O
0; otherwise

8><
>:

In other words, for each OD pair k, constraint (2) is a compact form of Nj j constraints, each of which
is a flow conservation constraint at each node: (i) if it is a demand (destination) node, all incoming
flows minus all outgoing flows should be equal to the demand of OD pair k; (ii) if it is a supply (origin)
node, the difference should be the negative value of the demand; or (iii) if otherwise, the difference
must be zero.
Note that in this model, we are focusing on the congestion cost caused by the drivers only; therefore,

the objective in expression (1) is defined only with respect to the drivers’ total congestion cost and total
utility cost. The passengers’ utility will be taken into account when determining the ridesharing prices,
that is, in constraint (4). Models (1)–(5) show how the ridesharing price influences the drivers’ willing-
ness to travel and the traffic congestion. Next, we illustrate how the traffic congestion impacts the
ridesharing prices, where the passengers’ utility would be introduced.

3.3. Determining ridesharing prices including traffic congestion

The ridesharing prices, as a type of compensation to the drivers, are determined by the number of
drivers and passengers participating in the ridesharing activities.
For a given OD pair k, suppose pk is the price for each passenger and qk is the number of passengers

in total. We assume that the drivers will have a joint utility given by U(pk, qk, λk) = pkqk�W(qk, λk),
which represents a revenue of pkqk minus an additional inconvenience cost W(qk, λk) for providing
qk ridesharing seats in total when the congestion cost is λk. Assume that W(qk, λk) is convex
and quadratic in terms of qk. By setting ∂U

∂qk
pk; qk; λkð Þ ¼ 0, the maximum utility would be attained at

pk ¼ ∂W
∂qk

qk; λkð Þ ¼ Sk qk; λkð Þ, which gives us the supply function. We consider thatSk qk; λkð Þ is increas-
ing in qk and decreasing in λk, given the fact that, from the perspective of drivers, the price should
increase with the number of passengers, qk, but should decrease with the traffic congestion (in order
to mitigate the congestion for faster travel). Therefore, the inconvenience costW(qk, λk) is also decreas-
ing with respect to the congestion cost λk. This is applicable, because the drivers are more likely to take
on passengers under higher congestion cost. Suppose picking up passengers takes a driver 5minutes,
no matter how much the congestion cost is. Therefore, the inconvenience cost would become less
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when the congestion cost is 100minutes, compared with a cost of 10minutes, because both drivers and
passengers are traveling on the same OD pair. As a result, it is reasonable that both the price and the
inconvenience cost should decrease with congestion, from the perspective of drivers.
On the other hand, we wish to maximize the benefit to the passengers as well. Suppose u(qk) is the

utility function of passengers, that is, the benefit one can obtain being a passenger. With a total cost
pkqk, the profit of all passengers is u(qk)�pkqk. Hence, assuming that u(qk) is concave and quadratic
with respect to qk, the maximal utility of passengers will be received at pk¼ du

dqk
qkð Þ ¼ Dk qkð Þ, which

gives us the demand function in the economic equilibrium model. In addition, we consider that
D qkð Þ is decreasing in qk, because as the price increases, the number of passengers should decrease.
Given the aforementioned assumptions, we should have the following patterns (Figure 3): when the

number of passengers qk increases, drivers (supply) would increase the price pk, whereas passengers
(demand) would decrease it. Also, the price from the drivers would drop if the traffic congestion λk
increases. The economic equilibrium that determines the ridesharing price is obtained at the intersec-
tion. The preceding text is true for all OD pairs.

3.4. Combining the pricing model with elastic demand traffic assignment problem

Combining the two equilibria together (Figures 2 and 3), we can see the following changing pattern
depicted in Figure 4: when increasing the congestion cost λk, the ridesharing price pk would decrease
and the number of passengers qk would increase (from the economic equilibrium, Figure 3). When
decreasing the price pk, both the congestion cost λk and the number of drivers δk would decrease
(from the traffic equilibrium, Figure 2), and vice versa. Therefore, the two equilibrium models
influence each other, and they will try to balance these interactions in a common equilibrium.
To formulate a tractable optimization problem that represents the combined equilibria described

earlier and stated in general terms in models (1)–(5), we consider specific functional forms for the

Figure 4. Changing pattern.

Figure 3. Economic equilibrium.
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supply and demand functions of the economic equilibrium, as well as specific driver utility and con-
gestion functions of the traffic equilibrium. The following result presents a tractable formulation for
the combined equilibrium model using generic quadratic functions for the economic utilities and linear
function for the driver’s utility function.

3.4.1. Model formulation
Consider the following definition of the cost/utility functions:

• Congestion cost: tta(ya).
• Driver utility function: Λk(δk, pk) =αkpk� βkδk.
• Driver inconvenience cost: W qk; λkð Þ ¼ bkq2k þ dk

λk
qk þ ek; bk > 0; dk � 0; λk > 0.

• Passenger utility function: u qkð Þ ¼ �f kq2k þ gkqk þ hk; f k > 0.

Then, the combined equilibrium model generated from Equations (1) to (5) can be formulated as
follows.

min
x;y

X
a2A
∫
ya

0
tta sð Þds�

X
k2K ∫

δk

0
Λk rð Þdr (6)

s:t: Nxk � Δkδk ¼ 0; ∀k 2 K (7)

∑
k2K

xka � ya ¼ 0 ∀a 2 A (8)

0 � δk � αkbkgk
βk bkþf kð Þ þ

αkdkf k
βk bkþf kð Þ

1

λ 0ð Þ
k

� λ 0ð Þ
k

βk
; ∀k 2 K (9)

xka � 0; ∀a 2 A; ∀k 2 K (10)

where

Λk δkð Þ≜ βk
2
δk þ Γk δkð Þ

2 bkþf kð Þ þ
αkbkgk

2 bkþf kð Þ (11)

Γk δkð Þ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2k bk þ f kð Þ2δ2k � 2αkβkbkgk bk þ f kð Þδk þ 4αkdkf k bk þ f kð Þ þ a2kb

2
kg

2
k

� �q
(12)

for all k 2 K. Note that pk can also be expressed as a function of δk, thus Λk(δk, pk) is replaced by Λk

(δk), that is, from a two-variable function to a one-variable function.

3.4.2. Model analysis

Proposition 1. Models (6)–(10) are generated from models (1)–(5), substituting pk (and its corre-
sponding constraint (4)) by δk from the result of the economic equilibrium.

Proof. See APPENDIX B.

Proposition 2. If the parameters satisfy the following,

• bk, fk> 0 and dk�0,
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• gk � dk=λ
0ð Þ
k ; ∀k 2 K,

• akdkf k
bkþf k

� λ 0ð Þ
k

h i2
; ∀k 2 K

then model (6)–(10) are convex optimization problems.

Proof. See APPENDIX C.

Proposition 3. Under the assumptions of Proposition 2, there exists an optimal solution to model
(6)–(10) because of convexity. Moreover, the optimal solution is a UE.

Proof. See APPENDIX D.

4. COMPUTATIONAL RESULTS

As introduced in Section 3, Equations (6)–(10) are convex optimization problems with a convex ob-
jective function and linear constraints. In our computational experiments, we solved this problem using
the Frank–Wolfe algorithm.

4.1. Frank–Wolfe algorithm

Let z denote the solution triplet (x, yδ). Let F(z) and Z denote, respectively, the objective function and
the feasible space defined by constraints (7)–(10), that is,

F zð Þ ¼ F x; y; δð Þ≜
X
a2A
∫
ya

0
tta sð Þds�

X
k2K ∫

δk

0
Λk rð Þdr;

Z≜ z ¼ x; y; δð Þ x; y; δð Þ satisfying 7ð Þ � 10ð Þgjf

The core idea of the Frank–Wolfe algorithm is to approximate the objective function by its first-
order Taylor expansion, that is,

F z′ð Þ � F zð Þ þ ∇F zð ÞT z′�zð Þ;
where z;z′ 2 Z. Therefore, minimizing F(z ′) can be approximated by minimizing F(z) +∇F(z)T(z ′ - z),
where z is fixed. Hence, it is sufficient to minimize ∇F(z)Tz ′ over z′ 2 Z. The problem is simplified as a
LP.
The Frank–Wolfe algorithm for problems (6)–(10) works as follows.

Step 1. Initialization

Set δ 0ð Þ
k as the given initial demand D 0ð Þ

k , for all k 2 K. Find the initial feasible solution x(0) and y(0)

using all or nothing assignment (i.e., for each OD pair k, send all demand δ 0ð Þ
k to the least cost path,

which is calculated by free-flow times). Set z0 = (x
(0), y(0), δ(0)) and t=0.

Step 2. Finding descending direction

Solve the LP

min
z2Z

∇F ztð ÞTz (13)

The solution to Equation (13) is denoted by z	t ≜argminz2Z∇F ztð ÞTz.
Step 3. Finding step size

Apply a line search to find the step size, that is, ω	
t≜argminω2 0;1½ �F 1� ωð Þzt þ ωz	t

� �
.
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Step 4. Update solution

Let ztþ1≜ 1� ω	
t

� �
zt þ ω	

t z
	
t . Set t= t+1 and go to step 2.

The algorithm stops after a given fixed number of total steps or until the solution stays at the same
level after a certain number of iterations.

4.2. Computation settings

The goal of the computational experiments is to analyze how the parameter settings will impact the
numerical outcome so that we can choose appropriate settings to obtain a reasonable range of the
congestion level and the amount of passengers and drivers for ridesharing.
The network tested in this proposal is the classic Sioux Falls [29, 38]. The test data can

be downloaded from the website called “Transportation Network Test Problems” (http://www.bgu.
ac.il/~bargera/tntp/, accessible on April 16, 2014). All the parameter settings in this paper are listed
in Table I, where Dk is the fixed demand for each OD pair k provided in the benchmark input files.
According to the aforementioned settings, we have

pk ¼
bkgk þ dkf k=λk

bk þ f k
¼ 1

2
gk þ

dk
λk

� �
2 1

2
2 λ 0ð Þ

k ;
1
2

2 λ 0ð Þ
k þ σ

	 
� �
(14)

qk ¼
gk � dk=λk
2 bk þ f kð Þ ¼

Dk

4
gk �

dk
λk

� �
2 Dk

4
2 λ 0ð Þ

k � σ
	 


;
Dk

4
2 λ 0ð Þ

k

� �
(15)

So the range of price pk for OD pair k is determined by the free-flow time λ 0ð Þ
k and coefficients 2 and

σ; it is reasonable that the ridesharing price for each OD pair is proportional to the free-flow time and
can fluctuate in a small range because of congestion levels. Also, the range of the number of passen-
gers qk is proportional to the given demand Dk and has slight fluctuations with the congestion.

Also in Equation (15), because λk � λ 0ð Þ
k and gk � dk=λ

0ð Þ
k , it guarantees that the number of passen-

gers is always nonnegative. Furthermore, if we select parameters such that gk ¼ dk=λ
0ð Þ
k , then we shall

have qk=0 if and only if λk ¼ λ 0ð Þ
k , that is, when there is no vehicle (driver) on the road, there is no

passenger in the market. When there are few vehicles on the road (less than the road capacity ca),

we shall have (according to the Bureau of Public Roads function) λk ¼ λ 0ð Þ
k þ e, where e is very small.

Therefore, we also have very small qk, that is, the number of passengers is close to zero, meaning that
few people will take a shared ride when the congestion cost is very low.
The computation was conducted on a PC (Windows OS, CPU 3.10GHz, RAM 4GB), and all the

codes were written in C++, using an LP solver, CPLEX (IBM ILOG CPLEX Optimization Studio,
Armonk, New York, U.S.), for finding the descending direction in the Frank–Wolfe algorithm. The
program is terminated after 100 iterations. The following subsections illustrate an overall summary
of the computational results, a sensitivity analysis of congestion, price, and the number of passengers
and drivers.

Table I. Constant settings.

Constant Value

αk Dk

β 1 or 10
bk, fk 1/Dk

dk σλ 0ð Þ
k ; σ ¼ 1; 2; 4

gk ϵλ 0ð Þ
k ; ϵ ¼ 1; 2; 4
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4.3. Optimality check

Before any further analysis, we first check the optimality of our computational results. Figure 5 gives
the sorted average excess cost for all OD pairs. We can see that about 60% of the OD pairs have very
low average excess cost.
Figure 6 shows the convergence of the objective functions with parameter settings β = ϵ=σ =1. It

indicates briefly that the algorithm evolves efficiently at the first few iterations and it converges well
within 100 iterations.

4.4. Overall results

Table II summarizes the outputs of all the 18 combinations of β, dk, and gk settings. Note that we
change the values of dk and gk by changing and σ, according to Table I. The fourth to the sixth columns

list the averages over all OD pairs. p≜ 1
Kj j

X
k2K pk, q≜

1
Kj j

X
k2K qk, and δ≜

1
Kj j

X
k2K δk are the average

price, the average number of passengers, and the average number of drivers, respectively. The last two
columns are the two parts of the objective function (6), where F 1 ¼

X
a2A ∫

ya

0
tta sð Þds is the sum of

the integrated congestion costs and F 2 ¼ �
X

k2K ∫
δk

0
Λk rð Þdr shows the sum of the integrated disutil-

ity (negative utility). ē is the average excess cost for the entire solution.
From Table II, we can draw the following conclusions:

(1) The base price, that is, gk or ϵ, influences the number of drivers as a higher price makes it more
attractive to become a driver.

(2) Within a certain price range, that is, fixing gk or ϵ, an increase in price (dk or σ) may reduce the
traffic congestion.

Figure 5. Optimality check.

Figure 6. Algorithm convergence.
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The following subsections provide further examination and analysis on the important system
parameters.

4.5. Congestion and disutility levels

It can be seen from Table II that the setting of β has a major impact on the congestion levels. That is,
column F 1 shows that β =1 has much higher congestion than β =10. From Figure 7 (where the
horizontal axis labels “#xy” represent the cases where ϵ= x and σ = y. For example, case “12” means
ϵ is set to 1 and σ is set to 2. This same labeling is used in the following figures.), it can also be seen

that gk ¼ λ 0ð Þ
k has a significant impact on the congestion level when β is fixed. The congestion increases

when the price parameters gk increase. This explains that when the prices go up, more people are
attracted to become drivers.
However, the impact of the parameters dk on the congestion between the different β values is quite

the opposite. At β=1 (Figure 7(a)), where the congestion scale is high, dk has a negative impact on the
congestion. When both the price and the congestion are high, a slight change in the price contributes
more to the people’s inconvenience (more congestion) than the drivers’ benefits (i.e., the prices are not
high enough to compensate for their congestion cost). Therefore, the number of drivers decreases, and
thus, the congestion level goes down. At β =10 (Figure 7(b)), where the congestion scale is not so
high, increasing dk will have a similar outcome to increasing gk. Both of these are price parameters,
and increasing the price attracts more drivers to the traffic network system.

Figure 7. Congestion levels.

Table II. Overall results.

β ϵ σ p q δ F 1 F 2 ē

1 1 1 5.55 1934.63 1790.38 1.73 × 108 �1.46 × 109 5.33
1 1 2 5.57 1930.04 1795.37 1.63 × 108 �1.46 × 109 4.42
1 1 4 5.59 1920.67 1799.67 1.59 × 108 �1.45 × 109 5.24
1 2 1 11.08 3876.44 2557.01 8.11 × 108 �3.68 × 109 12.41
1 2 2 11.09 3874.95 2621.43 7.09 × 108 �3.79 × 109 22.45
1 2 4 11.10 3872.08 2595.07 7.92 × 108 �3.69 × 109 14.18
1 4 1 22.16 7755.17 3614.55 3.11 × 109 �5.46 × 109 69.55
1 4 2 22.16 7754.56 3631.62 2.85 × 109 �5.54 × 109 66.15
1 4 4 22.17 7753.50 3607.73 2.95 × 109 �5.27 × 109 52.47

10 1 1 5.96 1790.77 302.56 1.87 × 106 �1.98 × 108 37.38
10 1 2 6.37 1649.38 315.08 1.93 × 106 �1.98 × 108 27.29
10 1 4 7.18 1365.41 321.57 1.97 × 106 �1.98 × 108 32.34
10 2 1 11.33 3791.73 602.27 5.55 × 106 �7.92 × 108 146.81
10 2 2 11.53 3718.84 603.07 5.29 × 106 �7.92 × 108 155.22
10 2 4 11.96 3568.80 593.07 5.17 × 106 �7.92 × 108 829.07
10 4 1 22.20 7739.90 1151.04 3.65 × 107 �3.16 × 109 290.44
10 4 2 22.24 7725.99 1150.35 3.72 × 107 �3.16 × 109 394.31
10 4 4 22.32 7699.12 1150.81 3.88 × 107 �3.16 × 109 304.10
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The aforementioned analysis can also be verified when observing the changes to the disutility level.
In Figure 8, it can be concluded that both β and gk have a significant impact on the disutility levels. At
β=1, when the congestion scale is high, the disutility levels are lower than for β =10, when the con-
gestion scale is much smaller. In other words, the utility levels (negative values of disutility values) are
higher when the congestion levels are higher because the traffic equilibrium is a balance between the
congestion and the utility functions. Consequently, there must be enough of a benefit to attract
travelers using this mode of transportation; otherwise, people will choose alternative modes because
of high congestion.
Similarly, a higher gk leads to smaller disutility levels (or higher utility levels), because gk dominates

the price values (see the next section) and a higher price gives larger utility values. dk has little impact on
the disutility levels, especially when β=10 and the congestion scale is low. Increasing prices in a small
range is not enough to draw people out under low congestion because of lack of passengers. When the
congestion scale is high, increasing prices a little bit, especially when the price base is high (a larger gk),
does not show enough of an attraction to the drivers but causes more inconvenience. Therefore, the dis-
utility levels would increase as dk increases. It is consistent with the impact on congestion levels.
In summary, (i) β mainly decides the scale of the congestion levels and a smaller β leads to higher

congestion levels and lower disutility levels, (ii) gk (base price parameters) has a significant influence
on congestion and disutility levels and a larger gk results in higher congestion levels and lower disutil-
ity levels, and (iii) dk has a small impact on the congestion and disutility levels.

4.6. Ridesharing prices

From Equation (A1) (APPENDIX B), it is known that the ridesharing price pk is mainly determined by
the parameters in the economic equilibrium model, which can be influenced by the government
agencies or the marketplace. Furthermore, the price may decrease in a reasonable range when the
congestion goes up so as to encourage people to share their vehicles.
Figure 9 shows one example of the distribution of price among all the 528 OD pairs and

their corresponding free-flow time, where β =10, dk ¼ 4λ 0ð Þ
k , and gk ¼ λ 0ð Þ

k . According to Equation

(14), pk ¼ 1
2 gk þ dk

λk

	 

¼ 1

2 λ 0ð Þ
k þ 4λ 0ð Þ

k
λk

� �
, that is, the ridesharing price is slightly above half the free-

flow time. It can be seen in Figure 9 that the ridesharing price is close to half of the free-flow time
for each OD pair. Although the free-flow times are sorted in ascending order, the price is not strictly in-
creasing with them. This serves to illustrate the impact of congestion on the prices. The closer the con-

gestion λk is to the free-flow time λ 0ð Þ
k , the more difference the price pk is above the half free-flow time.

Figure 10 compares the average prices of all the 18 combinations of β, dk, and gk. From Figure 10, it
can be seen that there is not as much as a difference between cases β =1 and β =10 because β does not
have a direct impact on prices but mainly on the congestion. Figure 10 shows that prices are mainly
determined by gk, with slight changes in prices by varying dk. Also from Section 4.5, we know that
β=1 has much higher congestion than β=10, making it hard to have an impact on prices.

Figure 8. Sensitivity analysis of disutilities.
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4.7. Number of travelers

Figure 11 plots the number of drivers for all 18 cases. The number of drivers is consistent with the con-
gestion levels discussed in Section 5, because the congestion is a quartic function of arc flows, which
are linear combinations of the number of drivers. From Figure 11, β mainly decides the scale of the
number of drivers. A smaller β corresponds to more drivers, and a larger gk also increases the number
of drivers. dk has little impact on the number of drivers.
Figure 12 plots the number of passengers for all 18 cases. The number of passengers behaves

similarly to the ridesharing prices, because both of them are primarily determined by the economic

Figure 10. Sensitivity analysis of average prices.

Figure 11. Sensitivity analysis of the number of drivers.

Figure 9. Price distribution.
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equilibrium model. From Figure 12, it can be concluded that there is no significant difference between
β=1 and β=10. As we can also see from Equation (17) (APPENDIX B), the number of passengers
increases with gk but decreases with dk. When the congestion cost λk is high (β =1), the impact of dk
can be neglected.

5. CONCLUSIONS

This paper proposes an integrated model that solves the traffic assignment problem with ridesharing.
The model determines (i) the most appropriate price for ridesharing, (ii) how ridesharing impacts the
traffic congestion, (iii) how many people are encouraged to take or provide ridesharing offers, and
(iv) how traffic circumstances influence the ridesharing activities. By introducing two common
variables, the ridesharing price and the congestion cost, the economic and traffic equilibrium models
interact with each other and reach a common equilibrium of the entire system. The combined model
is formulated as a convex optimization problem, and thus, the Frank–Wolfe algorithm is applied to
solve this problem. The computational analysis shows the changing patterns of the ridesharing price,
congestion levels, and the degree of adoption of ridesharing under various system parameters. The
sensitivity analysis can be used to guide transit planners on how to encourage people to take shared
rides so as to reduce the increasing traffic pressure.
The analysis of the model and its results shows that the ridesharing price can either decrease or

increase as the congestion cost increases because of a number of factors. On one hand, a decrease
in price occurs directly from our definition of price (Equation (13)). This price is defined for each
passenger. Hence, this does not mean that each driver will earn less (a driver’s income equals to the
price times the number of passengers in the vehicle). The rationale is with more congestion, the more
a driver wants to take on passengers to further compensate his or her loss because of congestion.
Hence, a lower price would attract more passengers, whereby perhaps increasing the compensation
to the driver. The latter situation cannot be easily seen from any definition of our model but from some
of the computational results. In this case, travel is more expensive, and the ridesharing market does
not have enough volume to decrease the price (other factors/parameters may impact the willingness
to participate in ridesharing).
An important challenge for future work is to enhance the current model by removing some of the

less realistic assumptions made. For example, in this model, we focused more on an aggregate level
for each OD pair and did not treat each traveler as an individual agent. Only the drivers’ congestion
cost and utility are considered in the objective function. In future work, we will move our focus to
the individual level and take into account each traveler’s decision. Also, it would be interesting yet
challenging to include the fact that ridesharing may not necessarily take place between travelers of
the same OD pair. Drivers may pick up or drop off a passenger at any time and even detour from their
original routes. In this case, more variables are needed to capture such diversity, making the scale of
the problem significantly larger. Also, constraints can be added to represent vehicle capacity.

Figure 12. Sensitivity analysis of the number of passengers.
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6. LIST OF ABBREVIATIONS

ACCPM Analytic Center Cutting Plane Method
HOV High-Occupancy Vehicle
KKT Karush-Kuhn-Tucker
OD Origin-Destination
TAP Traffic Assignment Problem
UE User Equilibrium
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APPENDIX A

UNIFIED DRIVER UTILITY FUNCTION

Claim. Suppose there are two different utility functions for solo and ridesharing drivers. We claim that
the two can be combined as one generalized function.

Proof. Suppose for each OD pair k, the number of ridesharing drivers is denoted by δ1k and the number
of solo drivers is denoted by δ2k . The utility function of ridesharing drivers is given by

Λ1
k δk; pkð Þ ¼ α1pk � β1δ

1
k

and the utility function of solo drivers is given by

Λ2
k δkð Þ ¼ α2 � β2δ

2
k

The utility functions depict that given the number of drivers (either solo or ridesharing drivers), how
much congestion cost can they endure. The inverse with respect to the number of drivers indicates that
under some certain traffic congestion, how many drivers are willing to travel, that is,
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δ1k ¼
α1
β1
pk �

Λ1
k

β1
;

δ2k ¼
α2
β2

� Λ2
k

β2

Therefore, under the same traffic congestion Λ1
k ¼ Λ2

k ¼ Λk, the total number of drivers will be

δk≜δ1k þ δ2k ¼
α1
β1

pk þ
α2
β2

� �
� 1

β1
þ 1
β2

� �
Λk

Note that there is only one constant term different from the utility function of ridesharing drivers.
Therefore, without loss of generality, we may use one unified function to describe the utilities of both
solo and ridesharing drivers.

B. PROOF OF PROPOSITION 1.

Proposition 1. Models (6)–(10) are generated from models (1) to (5), substituting pk (and its
corresponding constraint (4)) by δk from the result of the economic equilibrium.

Proof. According to the definition, the driver’s ridesharing utility function, that is, the driver’s profit by
taking on passengers, is given by U(pk, qk, λk) = pkqk�W(qk, λk). First-order optimality condition gives
us pk ¼ Sk qk; λkð Þ ¼ ∂W

∂qk
qk; λkð Þ ¼ 2bkqk þ dk

λk
. Hence, qk ¼ 1

2bk
pk � dk

λk

� �
.

Similarly, by optimizing the passenger’s profit u(qk)� pkqk, we have pk ¼ D qkð Þ ¼ du
dqk

qkð Þ ¼
�2f kqk þ gk. Hence, qk ¼ 1

2f k
gk � pkð Þ. According to constraint (4), we have the system

pk ¼ 2bkqk þ
dk
λk

¼ �2f kqk þ gk;

qk ¼
1
2bk

pk �
dk
λk

� �
¼ 1

2f k
gk � pkð Þ

we have
pk ¼

bkgk þ dkf k=λk
bk þ f k

(A1)

qk ¼
gk � dk=λk
2 bk þ f kð Þ (A2)

According to the result at the equilibrium of an elastic demand TAP, the congestion cost equals the
utility function of drivers. We define the parameter λk=Λk(δk,pk) =αkpk� βkδk. It can then be
substituted into Equation (A1), and thus

pk ¼
bkgk þ dkf k=λk

bk þ f k
¼ bkgk þ dkf k= akpk � βkδkð Þ

bk þ f k
;

⇒ αk bk þ f kð Þp2k � βk bk þ f kð Þδk þ αkbkgk½ �pk þ βkbkgkδk � dkf kð Þ ¼ 0

Therefore, by solving the aforementioned quadratic equation in terms of pk, we have

Π δkð Þ≜pk ¼
βk
2αk

δk þ bkgk
2 bk þ f kð Þ ±

Γ δkð Þ
2αk bk þ f kð Þ (A3)

where
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Γ δkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βk bk þ f kð Þ½ �2δ2k � 2αkβkbkgk bk þ f kð Þδk þ 4αkdkf k bk þ f kð Þ þ αkbkgkð Þ2

h ir

Thus, pk can be expressed as a function of δk.
Moreover, the negative root can be discarded. The plus sign is chosen to guarantee the convex-

ity of the objective function, that is, making Λk(δk) a decreasing function (Proposition 2). In sum,
we have

pk ¼
βk
2αk

δk þ bkgk
2 bk þ f kð Þ þ

Γ δkð Þ
2αk bk þ f kð Þ

Substituting the aforementioned utility function Λk(δk,pk), we have

Λk δkð Þ ¼ � βk
2
δk þ αkbkgk

2 bk þ f kð Þ þ
Γ δkð Þ

2 bk þ f kð Þ

C. PROOF OF PROPOSITION 2.

Proposition 2. If the parameters satisfy the following,

• bk, fk>0 and dk�0,

• gk � dk=λ
0ð Þ
k ; ∀k 2 K,

• αkdkf k
bk þ f k

� λ 0ð Þ
k

h i2
; ∀k 2 K

then models (6)–(10) are convex optimization problems.

Proof. Constraints (7)–(10) are all linear. It is sufficient to show that the objective function (6) is a con-
vex function.

The first part of the objective function is convex because it is an increasing function with respect to
ya (or equivalently δk). To show the convexity of the second part, it is sufficient to prove that Λk(δk) is a
decreasing function of δk.

First of all, consider the fact that Λk(δk, pk) can never be negative (it is treated as the congestion
cost that δk drivers could bear and thus should always be positive; see [29]). Hence, we must have

ak ¼ max 0; 1
βk

αkpk � λkð Þ
n o

. Substituting Equation (A1),

0 � δk � αk
βk

bkgk þ dkf k=λk
bk þ f k

� λk
βk

¼ αkbkgk
βk bk þ f kð Þ þ

αkdkf k
βk bk þ f kð Þ

1
λk

� λk
βk

� αkbkgk
βk bk þ f kð Þ þ

αkdkf k
βk bk þ f kð Þ

1

λ 0ð Þ
k

� λ 0ð Þ
k

βk

that is, constraint (9). The last inequality holds because λk � λ 0ð Þ
k , for all k 2 K.
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On the other hand, substituting Equation (A3) into Λk(δk,pk), we have

Λk δkð Þ≜Λk δk; pkð Þ ¼ αkΠ δkð Þ � βkδk ¼ � βk
2
δk þ αkbkgk

2 bk þ f kð Þ±
Γ δkð Þ

2 bk þ f kð Þ

Note that the symmetric axis of Γ(δk) is δk ¼ αkbkgk
βk bkþf kð Þ. Therefore, Λk(δk) is decreasing only when

að Þ Λk δkð Þ ¼ �βk
2
δk þ αkbkgk

2 bk þ f kð Þ þ
Γ δkð Þ

2 bk þ f kð Þ and δk � αkbkgk
βk bk þ f kð Þ; or

bð Þ Λk δkð Þ ¼ �βk
2
δk þ αkbkgk

2 bk þ f kð Þ �
Γ δkð Þ

2 bk þ f kð Þ and δk � αkbkgk
βk bk þ f kð Þ

Combining constraint (9), we must have

αkbkgk
βk bk þ f kð Þ þ

αkdkf k
βk bk þ f kð Þ

1

λ 0ð Þ
k

� λ 0ð Þ
k

βk
� αkbkgk

βk bk þ f kð Þ ; or
αkbkgk

βk bk þ f kð Þ � 0

Because all the parameters are nonnegative and some are strictly positive, the latter will never hold. There-

fore, we must have Λk δkð Þ ¼ � βk
2 δk þ αkbkgk

2 bkþf kð Þ þ Γ δkð Þ
2 bkþf kð Þ and

αkbkgk
βk bkþf kð Þ þ αkdkf k

βk bkþf kð Þ
1
λ 0ð Þ
k

� λ 0ð Þ
k
βk

� αkbkgk
βk bkþf kð Þ, that

is, αkdkf kbkþf k
� λ 0ð Þ

k

h i2
for all OD pair k 2 K.

Moreover, to assure the nonnegativity of the number of passengers in Equation (A2), we must have
gk � dk=λ

0ð Þ
k , for all k 2 K.

In sum, given the aforementioned conditions for parameter settings, Λk(δk) is a decreasing function
of δk in domain (9). And thus models (6)–(10) are convex optimization problems.

D. PROOF OF PROPOSITION 3.

Proposition 3. Under the assumptions of Proposition 2, there exists an optimal solution to
problems (6)–(10) because of convexity. Moreover, the optimal solution is a UE.

Proof. Here, we show that the optimal solution to models (6)–(10), which exists because the
problem is convex, is a UE.

We do so by showing that the cost of any path between the origin and destination of an OD pair that
has positive flow equals the minimum path cost for that OD pair. Consider the Karush–Kuhn–Tucke
conditions for problems (6)–(10). Here, μk, λa, γk�0, πk�0, and θka � 0 are the multipliers to con-
straints (7)–(10), and μk is a vector, that is, μk ¼ uki

� �
i2N 2 ℝ Nj j.

tta yað Þ � λa ¼ 0; ∀a 2 A (A4)

μk
j � μk

i þ λa � θka ¼ 0; ∀a 2 A; ∀k 2 K (A5)

�Λk δkð Þ þ μk
ok
� μk

dk
� γk þ πk ¼ 0; ∀k 2 K (A6)

γkδk ¼ 0; ∀k 2 K (A7)

815TRAFFIC ASSIGNMENT MODEL FOR RIDESHARING

Copyright © 2014 John Wiley & Sons, Ltd. J. Adv. Transp. 2015; 49:793–816
DOI: 10.1002/atr



πk δk � αkbkgk
βk bk þ f kð Þ þ

αkdkf k
βk bk þ f kð Þ

1

λ 0ð Þ
k

� λ 0ð Þ
k

βk

 !
¼ 0; ∀k 2 K (A8)

θkax
k
a ¼ 0; ∀a 2 A; ∀k 2 K (A9)

plus primal constraints (7)–(10) and all nonnegativities.
In Equation (A5), i and j correspond to arc a, that is, a= (i, j); similarly in Equation (A6), ok and dk

correspond to the origin and the destination of k, that is, k= (ok, dk). Also note that Equation (A4)
and (A5) gives us

tta yað Þ ¼ μk
i � μk

j þ θka

Consider now any path l of a given OD pair k, (where l consists of a sequence of consecutive arcs
that starts at ok and ends at dk) the travel time (congestion cost) on the path is the summation of costs on
consecutive arcs that consist of path l, that is,

X
a2l

tta yað Þ ¼
X
a2l

μk
i � μk

j þ θka
	 


¼ μk
ok
� μk

dk
þ
X
a2l

θka

� Λk δkð Þ þ γk � πk

The second equality holds because the arcs are consecutive, and thus, μk
i ’s are canceled out except

for the origin and the destination. The third inequality holds because of Equation (A6) and the fact that
θka � 0. Therefore, the quantity Λk(δk) + γk�πk is a lower bound on the cost of any path of OD pair k.

Note that if path l has positive flow, which means that xka > 0 for any a2 l, from Equation (A9) we
have that θka ¼ 0 for all a2 l, and thus

X
a2l θ

k
a ¼ 0. This shows that the cost of any path of OD pair k

with positive flow is the same, and it equals Λk(δk) + γk�πk.
Note that Λk(δk) represents the least travel congestion cost a driver could bear given δk vehicles on

the road.

• If Equation (9) strictly holds, that is, 0 < δk <
αkbkgk

βk bkþf kð Þ þ αkdkf k
βk bkþf kð Þ

1
λ 0ð Þ
k

� λ 0ð Þ
k
βk
, we must have γk= πk=0,

because of the complementary slackness (A7) and (A8). This indicates that all vehicles (drivers)
are traveling with the same congestion cost, that is,

λk ¼
X
a2l

tta yað Þ ¼ Λk δkð Þ; ∀l (A10)

• If δk=0, we must have πk=0 and γk�0. Therefore,
P

a 2 ltta( ya)�Λk(δk), indicating that the con-
gestion cost is larger than what drivers could bear, and thus, there is no driver for OD pair k, that
is, δk=0.

• If δk ¼ αkbkgk
βk bkþf kð Þ þ αkdk f k

βk bkþf kð Þ
1
λ 0ð Þ
k

� λ 0ð Þ
k
βk
, we shall have γk=0 and πk� 0. This illustrates the congestion

cost is less than drivers could bear, and thus, all potential drivers are traveling on the road.
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