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Abstract—Although extreme natural disasters have occurred
all over the world throughout history, power systems planners
do not usually recognize them within network investment method-
ologies. Moreover, planners had historically focused on reliability
approaches based on average (rather than risk) performance
indicators, undermining the effects of high impact and low
probability events on investment decisions. To move towards a
resilience centred approach, we propose a practical framework
that can be used to identify network investments that offer the
highest level of hedge against risks caused by natural hazards. In
a first level, our framework proposes network enhancements and,
in a second level, uses a simulation to evaluate the resilience level
improvements associated with the network investment proposi-
tions. The simulator includes 4 phases: threat characterization,
vulnerability of systems components, system response, and system
restoration, which are simulated in a sequential Monte Carlo
fashion. We use this modeling framework to find optimal portfolio
solutions for resilient network enhancements. Through several
case studies with applications to earthquakes, we distinguish the
fundamental differences between reliability- and resilience-driven
enhancements, and demonstrate the advantages of combining
transmission investments with installation of backup distributed
generation.

Index Terms—Resilient network planning, natural hazards,
earthquakes, resilience, resiliency, reliability.

I. INTRODUCTION
A. Motivation

Major natural hazards present severe negative impacts on
countries’ economies [1], in particular due to their effect on
critical infrastructure such as electricity networks. Indeed, the
effects of long electricity blackouts have demonstrated severe
impacts not only on economic activities but also on social
stability and security [2]. Hence, there is a growing consensus
across the globe to increase levels of power system resilience,
which is reflected in recent research and in new governmental
policies aimed at mitigating the negative effects of natural
hazards. For instance, the Chilean electricity regulator issued a
new transmission law in 2016 that requires planning electricity
transmission networks in a resilient fashion by “hedging risks
against natural disasters and extreme hydrological conditions”
[3].

Many countries are significantly exposed to various types
of natural hazards. For example, in the ring of fire region (i.e.
countries located at the edge of the pacific ocean), earthquakes
represent a significant threat, being responsible for more than
half of the economic losses and human fatalities among all
natural disasters in countries like China and Chile [4], [5].
Hence, protecting critical infrastructure and, in particular,
electricity networks against earthquakes will reduce exposure

to grave problems faced in earthquake prone areas of the
world.

B. Literature review

Power system resilience can be defined as the ability of a
power system to withstand high impact and low probability
(HILP) catastrophic phenomena (such as extreme weather
events, natural disasters and man-made attacks), recover
quickly from such disruptive events and, in the longer term,
adapt its operation and infrastructure to prevent or mitigate the
impacts of similar events in the future [6], [7]. Recently, an
IEEE task force [8] has provided the following definition of
resilience: “The ability to withstand and reduce the magnitude
and/or duration of disruptive events, which includes the capa-
bility to anticipate, absorb, adapt to, and/or rapidly recover
from such an event”.

In the context of definitions and general frameworks, in [9]
and [10] a conceptual framework of power system resilience
is presented and discussed along with the key measures that
can be undertaken to improve network resilience. In [11] four
indices or metrics are introduced to measure network resilience
from different perspectives, including fragility, survival and
restoration. In [12] the concept of the multiphase resilience
trapezoid is proposed, presenting novel metrics to quantify
resilience in each stage of the collapse-recovery process.
Additionally, [13] proposes a risk aversion framework that can
be used to operate and design networks in a more resilient
fashion, reducing exposure to adverse weather conditions and
extreme natural disasters.

In the context of resilience assessment, [14] proposed four
phases to assess power system resilience: threat characteriza-
tion, vulnerability assessment of system components, system
response and system restoration. Similarly, reference [15]
proposes a resilience assessment method divided into three
stages: hardness before disasters, resistance during disasters
and capacity of restoration after disasters. Besides this multi-
temporal perspective, in [16] a fragility model of the trans-
mission system is developed that also emphasizes the multi-
regional component within the probabilistic methodology pro-
posed for resilience assessment. In [17] a framework for
assessing resilience against seismic events is described along
with the evaluation of various mitigating investment strategies,
applied on a real electricity grid in Chile.

In the context of improving system resilience, previous
literature (such as [9], [13], [17]–[23]) has proposed several
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operational and investment measures. Hence, in the optimal
planning context, there are different models of investment
planning/expansion like those introduced in [20], [24], [25].
Reference [24] proposes a transmission expansion problem
using a multi-level mixed integer programming (MIP) model
to make investment decisions under terrorist threats. Ref-
erence [20] proposes a two-stage stochastic program and
its corresponding solution algorithm to optimize investments
that improve resilience against earthquakes. Another two-
stage stochastic optimization model is also proposed in
[25], confirming that stochastic optimization approaches are
a promising tool for appropriate resilient decision making.
Hence our work presented here also proposes a two-stage
stochastic framework to identify network enhancements to
improve resilience against earthquakes, using an Optimization
via Simulation (OvS) solution approach. This allows to capture
a very high level of detail and complexity in the simulation
stage, including a comprehensive set of operational constraints
and the sequential process of disconnection and reconnection
of loads, which is key in evaluating the dynamics of resilience
and has not been properly addressed in existing relevant works
in network investment planning.

C. Contributions

This paper presents three main contributions. First, we pro-
vide a mathematical framework to identify (nearly1) optimal
resilient network investments, which are optimized by testing
the performance of a comprehensive set of system enhance-
ments against a series of outages originated by natural hazards
as illustrated in Fig. 1. Importantly, this framework is based on
an OvS approach that provides a more realistic representation
of electricity network behavior, including disconnections and
reconnections of loads and system infrastructures. Second, and
following existing literature [12], we select optimal portfolios
of network investments while attempting to improve different
aspects of system resilience represented through different
metrics. Hence, in the proposed framework, the resilience
metric being optimized can be freely chosen.

Third, through various studies we demonstrate the differ-
ences between reliable and resilient network enhancements,
where in the former we do not explicitly model the occur-
rence of high impact exogenous natural hazards, focusing on
reliability improvements across a comprehensive set of outages
(not only those driven by HILP events), generally dominated
by low impact and high probability failures2. Instead, in
resilience studies, we focus on improving performance under
HILP events. In this vein, we demonstrate that hardening

1We refer to the term “nearly optimal” throughout this paper as the
optimization is undertaken through simulations and there is no guarantee of
global optimality. As we will demonstrate later in Section III-C, though, our
results are indeed truly optimal for the analyzed cases.

2Under the reliability approach, one may argue that high impact exogenous
events can be incorporated within failure probability values, along with all
other events. Furthermore, the underlying process behind the realization of
system contingencies is traditionally modeled in reliability studies by using
marginal probabilities of failure, which can be obtained by marginalizing
(or “averaging”) probability values across a number of operating conditions
with and without the effects of exogenous events. However, as high impact
exogenous events are extremely rare, it is likely that these will present a very
limited impact on the marginal probability values used under the reliability
approach.

Optimizer (first level)
Propositions of new system 
enhancements subject to a 

budget constraint

Simulator (second level)
Simulations of system 

response and restoration 
after random natural 

hazards occur

Enhancement 
option

Resilience 
metric

Fig. 1. OvS approach for resilient network investments.

substations can significantly contribute towards enhancing
resilience to high impact exogenous natural hazards. This is in
contrast to traditional reliability approaches that favor network
redundancy, i.e. new transmission lines. We also demonstrate
the benefits of portfolio solutions containing a mixture of new
network infrastructure (e.g. lines and transformers), substation
hardenings and backup distributed generation (DG).

Finally, note that although we illustrate the proposed model-
ing framework on earthquakes, this framework can be applied
on other hazards too.

D. Paper structure

This paper is structured as follows. Section II presents the
modelling framework to determine resilient network enhance-
ments based on an OvS approach. Section III presents the case
studies and shows our results and discussions. Finally, Section
IV concludes.

II. MODELING FRAMEWORK FOR RESILIENT NETWORK
INVESTMENTS

A. General overview

We use an OvS approach to determine the (nearly) optimal
portfolio of resilient network investments. This framework ex-
ploits the bi-level structure of the network investment problem,
whereby, in a second level (namely, the simulator), network
operation is simulated over a network infrastructure that is
determined in a first level (namely, the optimizer). As the
focus of this application is on resilience, we are particularly
interested in simulating system operation under a number
of (simultaneous) system outages that are caused by natural
hazards. Hence, consequences of natural hazards are simulated
under various network enhancement solutions, proposed by
the optimizer. Optimizer and simulator iterates until a (nearly)
optimal, resilient network enhancement proposition is found,
as illustrated in Fig. 1.

For the simulator, we use a toolbox with a number of
models to simulate the hazard (including its occurrence and
spatio-temporal propagation profile) and its impacts on the
electricity network (i.e. the system response and restoration).
Following the nomenclature in [14], we formally call these
steps as follows: 1) Threat characterization, 2) Vulnerability
of system’s components, 3) System response, and 4) System
restoration. These steps 1-4 are run sequentially within the
simulator in order to obtain a full simulation of the electricity
network before, during and after the natural hazard occurs.

The simulator features three layers of uncertainty modelling.
The first one within the threat characterization stage, where
we need to consider various scenarios of natural hazards,
attempting to capture their varieties in terms of locations,
magnitudes, etc. The second layer is related to the vulnerability
of system components, which is parameterized in a set of
failure rates through component fragility curves [26], which
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are hazard dependent. Given these failure rates (i.e. outage
probabilities), we determine a number of scenarios repre-
senting different network outages originated by each natural
hazard. Finally, the third layer of uncertainty corresponds
to the repair rate of network components, whose times are
assumed to be exponentially distributed, following [27]. For
the three uncertainty layers we use a Monte Carlo method to
simulate different scenarios of hazards, corresponding network
outages, and repairs.

For the optimization part, we use OvS techniques, in partic-
ular an algorithm named Industrial Strength Compass (ISC),
originally published in [28], which determines the (nearly)
optimal portfolio of network enhancements based on a series
of simulations. Such enhancements may include new network
equipment (lines, transformers, etc.), substation hardenings
and reinforcements, etc. A key point to highlight is that
some of the uncertainty is decision dependant, making the
objective function to be optimized non-linear. For instance, if
a substation is hardened, its failure rates become smaller (note
that in traditional optimization models used to plan network
investments with probabilistic outages like in [13], [29], the
values of outage probabilities are constant, representing a set
of parameters for the optimization model and thus allowing us
to formulate a fully linear model). While stochastic mathemat-
ical programs have difficulty considering decision dependent
probabilities, OvS techniques represent a pragmatic method to
address this problem.
B. The simulator

1) Threat characterization: We use a probabilistic approach
to model the magnitude and the spatio-temporal profile of the
hazard, specifically earthquakes, in our case studies. Partic-
ularly, we run a Monte Carlo model that generates different
scenarios for a chosen hazard. In the case of earthquakes, we
need to model, firstly, their magnitudes and locations and,
secondly, their (spatial) attenuation profile. For the magni-
tudes, we use the Gutenberg-Richter number-size exponential
distribution of earthquake magnitudes [30]. For the locations,
we could use either historical data or more advanced plate-
based modeling to identify those locations that are more likely
to be affected by an earthquake [31]. For the attenuation, we
use the model proposed by Boroschek [32] (suitable for Chile),
but this can be changed according to the specific application of
the model. Boroschek proposes that peak ground acceleration
(PGA) attenuation at any position r from the earthquake’s
epicenter follows (1).

log10(PGA(r, h,M)) = −1.55 + 0.26M

+0.01h− 0.01R− (1.52− 0.10M) log10(R) (1)

Where M is the earthquake’s magnitude in the Gutenberg-
Richter scale. Given the hypocenter (ex, ey, h), then r =√

(ex− x)2 + (ey − y)2 and R is
√
r2 + (0.07 · 100.36·M )2.

The results is on units of [g], the gravity acceleration constant.
2) Vulnerability of systems components: Here, we deter-

mine the failure rates or probabilities of outages of system
components, conditional to the occurrence of a natural haz-
ard. To do so, we use the so-called fragility curves [26] in
order to determine the failure probability of a given network

component, which is subject to a given PGA at its location.
We use fragility curves for the following infrastructure:

Transmission towers: that can present only two states after
an earthquake occurs: (i) fully functioning or (ii) outaged.
In this case, we need a single fragility curve to represent
the on/off states as explained in [26]. We consider that a
transmission line fails if, at least, one of its carrying towers
fails.

Generating units: that can present various states after an
earthquake occurs. We use the approach in [26] with 5 states:
(i) fully functioning (no damage), (ii) minor, (iii) moderate,
(iv) extensive, and (v) complete damage. In this case, we need
4 fragility curves to represent 5 states. The generation available
capacities associated with the (i)-(v) states are 100%, 90%,
60%, 30%, and 0%, respectively.

Substations: that can present various states after an earth-
quake occurs. We use the approach in [26] with 5 states: (i)
fully functioning (no damage), (ii) minor, (iii) moderate, (iv)
extensive, and (v) complete damage. In this case, we need
4 fragility curves to represent 5 states. In [26], there are
two sets of fragility curves, one to represent substations that
have been hardened and another set to represent substations
that have not. We use both sets as hardening is a decision
variable. The substation available capacities associated with
the (i)-(v) states are 100%, 90%, 60%, 30%, and 0%. As in
dispatch models (needed to determine the system response and
restoration and explained in the next subsection) substations
do not explicitly feature a capacity value, the aforementioned
derate on a substation capacity is translated into a derate
applied on the capacity value of all elements connected to
that substation (lines, generating units, etc.).

After we have determined the outage/state probability of
every network component, we run a Monte Carlo simulation
to determine various scenarios where network components are
outaged/derated. For these network conditions (where each
may present several simultaneous outages), we model the
system response as explained next.

3) System response and restoration: We determine the
system response and restoration through two well-established
power system models: a (deterministic) unit commitment (UC)
and a post-contingency dispatch (PCD), where the latter is
subject to the results obtained by the former. We model
system operation during a time horizon that is meaningful
for the particular hazard being studied (e.g. experience in
Chile suggests five days for large earthquakes). Within the
targeted time horizon, we firstly run the unit commitment
model (in particular, we use the formulation in [33]) in order
to define the intact system condition, i.e. scheduled/planned
unit commitment. After such intact system operation has been
determined, we then generate scenarios of natural hazards with
their corresponding system outages, and model the system
response considering optimal corrective actions by means of
the post-contingency dispatch model. In effect, this dispatch
model is used for undertaking corrective actions right after
the outages occur (by using available reserves and respecting
all units’ constraints, e.g. ramp rate limits, minimum output
limits, etc.) and optimize the operation during the remaining
period (e.g. a week after the earthquake occurs in an hourly
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fashion). This dispatch model can switch on additional units
that were not affected by the earthquake and were not ini-
tially participating in the scheduled/planned commitment. This
model also determines the volumes and locations of energy
not supplied (ENS), which (due to its high cost) represent
the last resort measure to balance the system after an outage
occurs. Meanwhile, outaged system infrastructure is being
repaired following an exponential distribution with a particular
repair rate per network component. Of particular interest is
the energy balance equation (2) of the dispatch model where
corrective actions, in particular ENS, is determined for all
simulated scenarios.∑
e∈i+

f te −
∑
e∈i−

f te +
∑
g∈G(i)

P tg = dti +ENSti , ∀i ∈ V, ∀t ∈ T

(2)
According to (2), every node i ∈ V should satisfy for all

hours t ∈ T a power balance equation, where the sum of
the demand, −dti, the generation,

∑
g∈G(i) P

t
g , and the flows,∑

e∈i+ f
t
e −

∑
e∈i− f

t
e should be equal to zero, unless the

(slack variable) ENSti is positive. The two aforementioned
operation models present the objective function shown in (3).∑
t∈T

∑
g∈G

(P tgcpg + vutgcug + vdtgcdg) +
∑
i∈V

ENSticens (3)

The objective function (3) is divided into the cost of
operation and the cost of unsupplied energy, where cpg , cug ,
and cdg are the production, start-up, and shut-down costs,
respectively (P tg are continuous variables and vutg , vdtg are
binary variables). ENSti is the unsupplied energy of node
i ∈ V , and cens is the unit cost of the energy not supplied,
i.e. the value of lost load (VoLL). The ENSti variables are
relevant in the post-contingency dispatch model (ENSti = 0
in the unit commitment model).

It is important to mention that the previous models are run
within a sequential Monte Carlo framework where the natural
hazard occurred originates a set of outage scenarios whose
consequences are determined via sequential Monte Carlo sim-
ulations to capture the detailed (e.g. hourly) system response
and restoration. Within this Monte Carlo simulation, not only
realizations of outages are determined, but also the repair times
of outaged network components, whose distribution function
is exponential with a known rate. In those hours without an
earthquake, outage rates are those under normal conditions
and thus (further) network contingencies may still occur. Fig.
2 shows how the UC and the PCD models are run in a case
in which there are outages at two different times, where the
first one is caused by a major earthquake.

C. The optimizer

We propose an optimization procedure that considers the
output of the simulation as a general function µ(x) with
unknown structure that, in our case, quantifies the resilience
level (or its inverse) of a given power network that we want
to optimize. A general OvS formulation is shown in (4).

min
x∈Θ

µ(x). (4)

The set Θ has a finite number of feasible solutions, and
µ(x) is a black-box function, i.e. we can only estimate µ(x)

0 Earthquake 
occurs

Endogenous 
network fault occurs

UC problem: 
optimizes system 
operation in intact 
system

0 End of time 
horizon

Earthquake occurs 
(generated randomly)

PCD problem 1:     
re-dispatches system 
operation after the 
earthquake occurs

Endogenous network fault 
occurs (generated randomly)

PCD problem 2:         
re-dispatches system 
operation after 
another fault occurs 
(this may not happen or may 
happen more than once)

Final results are 
composed of the 
pieces of the 
above results

UC 
operation

PCD 1 
operation

PCD 2 
operation

Optimization horizon

Optimization horizon

Optimization horizon

End of time 
horizon

End of time 
horizon

End of time 
horizon

Fig. 2. Interactions between UC and PCD models and their respective
optimization time horizons. Resulting generation outputs in a model define
the initial conditions for the consecutive model.

numerically via sampling. For a brief introduction to OvS see
[34].

Various metrics have been introduced lately to quantify
power system resilience [12], [13]. Here, we follow the general
principles in [13], which explains that resilient improvements
can be understood as limiting exposure to HILP events that
are usually placed in the (right) “tail” of the probability
density function of ENS, where ENS values are highest. To
mathematically represent that tail, we could use various risk
metrics such as Conditional Value at Risk (CVaR) or any
conditional expectation value of ENS over those scenarios
composing the tail. In this context, we assume that increasing
network resilience against earthquakes can be directly trans-
lated into a minimization of the conditional expectation of
the energy not supplied resulting as a consequence of major
earthquakes. Such minimization problem will need to feature
a budget constraint that contributes to reflecting planner’s risk
aversion (i.e. the higher the budget, the higher the aversion and
willingness to invest in resilient enhancements against HILP3).
Consequently, the model can be written as shown in (5).

minx {Eξ[ENS(x, ξ)]}
s.t.

∑
i∈Q aixi ≤ b,

xi ∈ {0, 1}, ∀i ∈ Q.
(5)

Here binary variables xi represent all network enhancement
decisions, such as adding new lines, anchoring/hardening
substations, etc. Parameters ai represent costs associated with
implementation of xi and b is the total budget allowed to be
spent in improving system resilience. The set Q contains all
possible network enhancement propositions and ξ corresponds
to the realization of uncertainty, in this case, system failures
due to earthquakes. As failures are originated by the simulated
earthquakes, we use the conditional values of failure probabili-
ties obtained from fragility curves. Consequently, a key feature

3Note that as HILP events are extremely rare, these might not present a
significant impact on marginal outage probabilities or on the average/expected
value of ENS across all system conditions. Consequently, we need to optimize
a risk rather than an average metric and thus a level of risk aversion has to be
defined to invest in resilience (for a more comprehensive discussion on this
topic, please see [13]), which, in this paper, is represented through a budget
constraint.



5

of this approach is that the allowed budget b will be used in
those network enhancements that feature the largest impacts
on minimizing ENS caused by natural hazards. In [35], we
provide details of the ISC algorithm implemented.

We also illustrate the use of other metrics such as those
proposed in [12] within our framework in order to improve a
specific aspect of resilience, e.g. system restoration rapidity or
recovery rate. In our framework, we adopt a probabilistic view
of such metrics in order to improve a specific aspect of re-
silience in terms of the corresponding conditional expectation
value calculated over all simulated cases (e.g. the conditional
expectation of system recovery rate across HILP scenarios).

Importantly, the ISC is essentially a heuristic method whose
result may change in every run due to its probabilistic nature.
To deal with this, we propose a two-step strategy to finally
determine the best network enhancement proposition. This
strategy, firstly, builds a set of good candidate solutions, which
can be obtained by running the ISC approach a number of
times (e.g. 10). Then, in a second step, we identify the best
solution among the aforementioned set of good candidates
by performing a large number of evaluations/simulations (e.g.
10,000) on each of them.

III. CASE STUDY APPLICATIONS

A. Input Data

We modified the IEEE 14 bus case study described in [36]
by changing the vector of generation installed capacities as
described in Table I, where we also show the peak demand
condition and the number of lines connecting to each bus. For
planning purposes, we consider the following 14 candidate
network enhancements:

1) New lines: 1-12, 7-9, 2-3, 11-14, 6-13, each of 100 MW
capacity;

2) Hardening buses: 3, 4, 5, 6, 8;
3) New backup distributed generation (DG) (e.g. diesel

plants) in buses 3, 4, 5, 6.
While new lines and backup generation correspond to extra
assets that can be added/installed, hardening buses is a decision
for strengthening existing infrastructure (in this example, we
assume that a bus is actually a substation). Installed capacity
of each backup unit is equal to 5 [MW]. Generation (fuel) vari-
able costs are 50, 80, 150, 30, and 100$/MWh for generators
in nodes 1, 2, 3, 6 and 8, respectively. For illustration purposes,
we consider that the cost of any network enhancement is the
same, which is equivalent to have ai = 1 for all i. The VoLL
is equal to 10 k$/MWh. We constrain the total volume of
generation reserves to be the size of the largest unit dispatched
in every hour. The total simulation time horizon is 5 days
equivalent to 120 hours. Outage rates and restoration times
of network and generation equipment are those presented in
Table II (restoration times under natural hazard conditions are
doubled to illustrate the effects of a higher number of requests
that the repair crew may face).

For the resilience assessment, we use the approach in-
troduced in Section II-B2 including PGA fragility curves
from the Hazus report [26] and PGA attenuation model from
[32], following equation (1). For the scenario generation, we
use the Gutemberg-Richter exponential distribution, ignoring

TABLE I
DEMAND, GENERATION AND NETWORK DATA.

Bus Demand [MW] Generation [MW] No. of connections
1 0 100 2
2 21.7 100 4
3 94.2 100 2
4 47.8 0 5
5 7.6 0 4
6 11.2 100 4
7 0 0 3
8 0 100 1
9 29.5 0 4
10 9 0 2
11 3.5 0 2
12 6.1 0 2
13 13.5 0 3
14 14.9 0 2

TABLE II
OUTAGE RATES AND RESTORATION TIMES

Component
Failure rate
(marginal)
[occ/yr]

Restoration time
(normal) [h]

Restoration time
(hazard) [h]

100-km line 2.62 28 56
Substation 0.1 21 42
Generator 5 58 116

magnitudes below 7.5 Mw. For the earthquakes’ location, we
use random generation uniformly distributed in the 500x500-
km2 area illustrated in Fig. 3, which also shows the location
of network components and PGA attenuation for a particular
earthquake realization.

Next, we provide analyses to differentiate the best single
network enhancement under two criteria: a reliability criterion
and the resilience criterion. Here, we assume that the reliability
criterion attempts to minimize ENS as an average value across
all outage scenarios that are simulated by using marginal
probability values. Under the resilience criterion, instead, the
model attempts to minimize ENS as an average value across
all outage scenarios originated by earthquakes, simulated by

Fig. 3. Network spatial configuration and PGA logarithmic attenuation for
an illustrative earthquake with an epicenter at (100,100) km. PGA values (i.e.
contours) are shown in [g].
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using conditional probability values. In other words, while in
reliability we attempt to identify the best investment solution
in “average”, in resilience we attempt to identify the best
investment solution for outages originated by natural hazards,
limiting the risk exposure to high impact exogenous events.
Next, we also validate the proposed modeling framework
to identify resilient network investments by comparing its
results against those obtained through complete evaluation of
the entire set of network enhancement propositions, which is
significantly more costly in computational terms. Finally, we
illustrate the results of the framework for identifying (nearly)
optimal portfolios of resilient network enhancements among
installation of new lines, backup generation and hardened
buses by optimizing various resilience metrics.

B. Resilience versus reliability

Table III shows our results, ranking (at the top) the best
network enhancement propositions in terms of both reliability
(left) and resilience (right) approaches. In this particular case,
we study enhancement propositions that correspond to a single
action (i.e. b = 1). Hence, Table III presents, from left to
right, the ranked enhancement proposition and its associated
EENS and CEENS (the objective function used for reliability
is the expected value of ENS (EENS) since we use marginal
probability values, and for resilience is the conditional ex-
pectation of ENS under HILP events (CEENS); evidently
EENS < CEENS). In both cases, reliability and resilience, all
network enhancement alternatives of new lines and hardening
buses/substations are assessed through 10,000 scenarios, where
each represents a random realization of a hazard → network
outage → network repair sequence. In this section, we do
not use the ISC model and we do not evaluate the effect of
DG. In this case, the proposed assessment is simple since the
complete set of feasible solutions presents only 10 elements
(5 substation hardening propositions and 5 line propositions),
plus the base case with no enhancement.

The first noticeable insight from these results is the bias
towards hardening substations under the resilience approach,
in contrast to installation of new transmission lines under the
reliability approach. In fact, it is possible to observe from the
input data that, in marginal terms, failure rates of lines are
significantly larger than failure rates of substation equipment
(see Table II). However, given the occurrence of a strong
earthquake, this relation switches, due to a disproportional
increase in the failure rates of substation equipment with
respect to those of transmission towers (due to the fragility
curves explained in Section II-B2; derivative of the fragility
curve with respect to PGA is much larger for substations
than for towers). Interestingly and encouragingly from the
perspective of validating the proposed methodology, this is
in line with empirical evidence observed in Chile where, for
instance, in the 2010 earthquake (of 8.6Mw of intensity), only
2 km of transmission lines failed while 25% of the substations
at the transmission level presented some level of damage. It is
therefore more efficient to minimize CEENS (conditional to
the occurrence of earthquakes) via hardening substations.

In this very particular case, the model identifies that hard-
ening substation 3 (B3) is the most efficient proposition under

TABLE III
RESILIENCE AND RELIABILITY RANKINGS OF SINGLE NETWORK

ENHANCEMENT PROPOSITIONS.

Reliability Resilience

Solution EENS*
[MWh]

Solution CEENS*
[MWh]

L1,12 7.6 B3 739.1
L6,13 7.9 B4 785.2

L11,14 9.5 B6 803.7
L2,3 12.7 L1,12 823
L7,9 14.3 L7,9 823.1
B3 14.6 B8 830.3
B5 14.8 B5 836.6
B8 15.2 L2,3 841
B4 15.2 L11,14 845.6
B6 15.5 L6,13 847.4

Base case 15.6 Base case 872.1
*10,000 evaluations; 95% confidence intervals
equal to ±0.42 [MWh] for resilience and
±0.03 [MWh] for reliability.

the resilience approach since it causes the largest decrease
in CEENS (from 872.1 to 739.1 MWh), which is explained
because bus 3 is that with the largest energy consumption.
Under the reliability approach, instead, the best enhancement
proposition corresponds to the installation of line (1,12), which
offers a direct connection between generation in bus 1 and a
vast consumption area with no generating units in it (buses
9 to 14). Interestingly, the second best alternative under the
resilience approach is hardening bus 4 which presents the
second largest demand levels along with the highest number
of connections with the rest of the system. Clearly, hardening
this bus supports both a more resilient supply in bus 4 and in
the rest of the system, facilitating transfers in case a natural
hazard strikes.

It is important to highlight that this example demonstrates
the fundamental differences between investment propositions
that aim to hedge against average and more risky scenarios.
C. Validation of OvS model for resilience studies

In the previous section, our analysis is based on the idea
of testing all single network enhancement propositions (i.e.
b = 1) and calculate, through 10,000 simulations each, their
impacts on CEENS. In that case, the exercise is simple since
the complete set of feasible solutions is small. In the context of
solutions for larger portfolios, though, the idea of calculating
CEENS for all possible combinations could be very costly in
computational terms. In this particular network, for example,
we will need to test 56, 176, 386, 638, 848, and 968 feasible
solutions for b = 2, 3, 4, 5, 6 and 7, respectively, considering
that for each of them thousands of simulations (e.g. 10,000)
are needed to assess their corresponding CEENS. Hence, here
we seek to validate our ISC model so as to avoid testing all
network enhancement propositions.

In this context, Table IV shows the results of our ISC
against those obtained through testing all possible network en-
hancement propositions, namely, complete enumeration (CE)
approach, which runs 10,000 simulations to determine the
CEENS associated with each network enhancement proposi-
tion. We analyze 3 cases with b = 1, 2 and 3. Our results
demonstrated that CE and ICS results are the same for the
three budgets. Importantly, while the number of simulations
growth significantly under the CE approach (as expected),
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TABLE IV
OVS VS CE.

b = 1 b = 2 b = 3
Solution B3 B3 B4 B3 B4 B6
CEENS* [MWh] 739.1 683.6 651.1
No. of feasible solutions 11 56 176
No. of CE evaluations 110,000 560,000 1,760,000
No. of ISC evaluations 10,557 20,093 50,078
Robustness 0.6 0.9 1
*10,000 evaluations; 95% confidence interval equal to ±0.33 [MWh]

the ICS needs a much smaller number of iterations to find
the (nearly) optimal solution. For example, for b = 3, we
need 1,760,000 evaluations under the CE approach while only
50,078 evaluation under the ISC (this is the total number of
evaluations when ISC is run 10 times). Additionally, we define
robustness as the number of times that an ICS solution hits the
optimal value (or is, at most, 10% different from it). Table IV
shows that the robustness of the ISC algorithm is very high
and, interestingly, increasing with the budget value. In the case
b = 3, for example, 10 out of 10 solutions obtained from the
ISC algorithm hit this optimal region. As we always select the
best solution out of the best 10 ISC runs, we are able to find
the optimal solution for the 3 analyzed budgets. All of the
above suggest that ISC offers a robust and practical method
to identify resilient network enhancements.

D. OvS results for larger budgets

Here we analyze network enhancement solutions with dif-
ferent budgets, in particular, b = 1, 2, 3, 5 and 7. Following
[13], we also consider the possibility to add backup, distributed
generation in specific nodes. This backup generation can only
react and generate power in an outage condition and thus
cannot interfere in energy trading in the intact system, when
no failure occurs.

Table V shows the results for each budget value, while Fig.
4 emphasizes the difference in terms of CEENS improvements
between solutions with and without distributed generation.

Interestingly, the patterns to harden buses follows a two-
fold rationale: (i) securing those buses with large energy
consumptions (buses 3 and 4) and (ii) those with a large
number of interconnections with other buses (bus 4 and 6).
Furthermore, distributed backup generation is placed in order
to secure supply for large energy demand volumes (in bus
3) in case the main system collapses. Remarkably, if the
model is prevented to install backup generation, the effects
on CEENS of alternative network enhancement propositions
are very limited compared with the improvements driven by
backup generation. This suggests that distributed generation
(and, in general, distributed energy resources that may be
vastly available in the future), may be a more efficient way to
improve system-level resilience.

E. Optimizing other resilience metrics

In this section, we show how optimal investment decisions
may change if we choose to optimize a different resilience
metric. To do so, we still focus on minimizing risks (i.e.
minimizing the conditional expectation of a certain metric
given a series of earthquakes), but rather than focusing on ENS
we select 2 other alternatives. Following the FLEP metrics
introduced in [12], we choose:

TABLE V
OPTIMAL INVESTMENT PORTFOLIOS FOR budget = 0, 1, 2, 3, 5, 7.

Without DG With DG

Budget Solution CEENS*
[MWh]

Solution CEENS*
[MWh]

0 Base case 872.1 Base case 872.1
1 B3 739.1 B3 739.1
2 B3 B4 683.6 B3 B4 683.6

3 B3 B4 B6 651.1 B3 B4
1xDG3 643.6

5
B3 B4
B5 B6
L1,12

623.2 B3 B4 B6
2xDG3 598.0

7
B3 B4

B5 B6 B8
L11,14 L6,13

616.7
B3 B4 B6

2xDG3 1xDG4
2xDG6

575.9

*95% confidence interval equal to ±0.42 [MWh].
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Fig. 4. Conditional expectation of ENS as a function of the budget (with and
without DG).

• To minimize how low supply drops right after the earth-
quake occurs, so we seek solutions with the minimum
demand curtailment (in conditional expected terms) in
the first period after the earthquake happens.

• To maximize how promply demand is reconnected, so we
seek solutions with the maximum rate of demand change
(in conditional expected terms) between the first and the
last hour of the simulated horizon.

Table VI illustrates how the ranking of the best three
investment decisions changes due to the selected resilience
metric. While minimizing how low demand drops drives
similar solutions to those in Table III, maximizing the demand
reconnection rate is biased toward investments in transmission
lines. This is so because hardening substations is an attractive
solution to avoid disconnections of major demand centers that
are directly connected to the hardened substations. This is the
case of buses 3 and 4. In the case of bus 8, instead, this does
not present demand. On the contrary, bus 8 connects one of
the five generators to the rest of the system, being an attractive
alternative to support a fast system recovery.

IV. CONCLUSIONS

We propose a framework to determine resilient network
enhancements based on a hierarchical approach that, in a first
level, proposes network investments and, in a second level,
evaluates the improvement in the resilience level associated
with the network investment propositions. To do so, we use
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TABLE VI
RANKING OF SINGLE NETWORK ENHANCEMENT PROPOSITIONS OBTAINED

BY OPTIMIZING TWO DIFFERENT RESILIENCE METRICS.

Minimizing drop Maximizing recovery rate

Solution Drop*
[MW ]

Solution Rate*
[MW/120h]

B3 10.2 L7,9 8.76
B4 10.92 L2,3 8.71
B5 11.23 B8 8.66

*10,000 evaluations; 95% confidence intervals equal to
±0.01 [MW] and ±0.01 [MW/120h].

an OvS approach that is able to deal with a great deal of
complexity in the assessment of resilience, including 4 phases:
threat characterization, vulnerability of systems components,
system response, and system restoration, which are simulated
in a sequential Monte Carlo fashion. Further, our approach
is able to determine (sequential) evolution of system response
and restoration after a hazard occurs considering also decision
dependent uncertainty/probabilities.

By using our framework, we distinguished the fundamen-
tal differences between reliability- and resilience-driven in-
vestments, highlighting the importance of substation-based
enhancements in order to successfully face high-impacting
earthquakes. This is also in line with empirical evidence. Our
results also suggest that there is a significant potential support
from distributed energy resources in distribution networks, for
example, DG that can provide services that increase system-
level resilience.
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