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In many applications, the network design problem (NDP) faces significant uncertainty in transportation costs
and demand, as it can be difficult to estimate current (and future values) of these quantities. In this paper, we
present a robust optimization-based formulation for the NDP under transportation cost and demand uncertainty.
We show that solving an approximation to this robust formulation of the NDP can be done efficiently for a
network with single origin and destination per commodity and general uncertainty in transportation costs and
demand that are independent of each other. For a network with path constraints, we propose an efficient column
generation procedure to solve the linear programming relaxation. We also present computational results that
show that the approximate robust solution found provides significant savings in the worst case while incurring
only minor sub-optimality for specific instances of the uncertainty.
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Introduction

The network design problem (NDP) is an important prob-
lem in the planning and operation of many applications, such
as inventory and distribution systems. Network design makes
decisions on where to increase arc capacities to reduce the
overall network routing/transmission cost. There exists sub-
stantial research on network design (or capacity planning)
problems in different domains such as manufacturing (Eppen
et al, 1989; Barahona et al, 2004, Zhang et al, 2004), elec-
tric utilities (Murphy and Weiss, 1990; Malcolm and Zenios,
1994), telecommunications (Balakrishnan et al, 1995; La-
guna, 1998; Riis and Andersen, 2004), inventory management
(Hsu, 2002), and transportation (Magnanti and Wong, 1984;
Minoux, 1989).

In this work, we are interested in NDPs with both trans-
portation cost and demand uncertainty, a reasonable modelling
assumption in many settings as it can be difficult to estimate
current (and future) costs and demand. Most prior work on
network design under uncertainty addresses the uncertainty
through scenario-based stochastic programming (Birge and
Louveaux, 1997) or its robust optimization approach intro-
duced in Mulvey et al (1995). These scenario-based meth-
ods face the following difficulties: (1) they assume a known
discrete description of the uncertainty, which can be a crude
approximation of reality; (2) the large number of scenarios
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used in accurately representing the uncertainty can lead to
large, computationally challenging problems; and (3) the so-
lution obtained can be sensitive to possible uncertainty out-
comes, a difficulty already addressed by Mulvey et al (1995).

These drawbacks of scenario-based approaches are ad-
dressed via the Robust Optimization methodology (Ben-Tal
and Nemirovski, 1998; El-Ghaoui et al, 1998), which aims
for a solution that is robust or insensitive to the uncertainty
considered and thus is an efficient solution in practice. In
addition, this robust optimization approach can obtain ro-
bust solutions by solving a problem that is no harder than
the deterministic problem. Although initially developed for
continuous convex optimization, there are extensions of ro-
bust optimization to integer programming (Atamtürk, 2003;
Bertsimas and Sim, 2003) and in particular to the NDP
(Atamtürk and Zhang, 2004; Ordóñez and Zhao, 2004). Alter-
native robust optimization methods for integer programming
problems (such as Averbakh and Berman, 2000; Kouvelis and
Yu, 1997; Yaman et al, 2001) typically rely on combinatorial
arguments making them difficult to generalize, in addition
they can lead to problems that are significantly more difficult
to solve than the deterministic version of each problem.

In this paper, we extend the prior work on robust opti-
mization for NDPs (Atamtürk and Zhang, 2004; Ordóñez and
Zhao, 2004) by generalizing some key demand uncertainty as-
sumptions. We consider the uncertainty on demand and trans-
portation cost represented by independent closed convex sets
for network problems with single origin and destination per
commodity. We show that, for general uncertainty sets, ob-
taining an approximate robust solution is as difficult as solving
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the deterministic problem and the solution provides signifi-
cant protection against the worst case at a modest loss of op-
timality for a given scenario. We also show that for problems
with single source and sink per commodity and non-negative
costs, the tractable robust approximation corresponds exactly
to the robust counterpart (RC) of the path formulation of the
NDP. Finally, we present a column generation approach, suit-
able for network design with path constraints that efficiently
solves the linear programming (LP) relaxation of the robust
problem under polyhedral cost and demand uncertainty.

The structure of the paper is as follows: in the next sec-
tion, we present the NDP formulation, describe the robust
optimization methodology as it pertains to our problem, and
introduce the general form of the robust network design prob-
lem (RNDP). We then present the approximate RNDP that can
be solved efficiently and discuss its equivalence to RNDP for
the path formulation of the problem. In the Path Constrained
Network Design section, we introduce a column generation
method suitable for the LP relaxation of RNDP with path
constraints under polyhedral uncertainty. We present compu-
tational results for the approximate RNDP method and the
column generation method in the Computational Experiments
section. We finish the paper with some concluding remarks.

Problem formulation

In this section, we present the NDP considered in this pa-
per and its robust optimization formulation. We also discuss
related robust optimization literature.

Network design problem

We consider in this work a classic multi-commodity NDP
(Minoux, 1989). In other words, the problem decides, for a
network with n nodes and m arcs, whether or not to increase
the arc capacity y ∈ {0, 1}m and the arc flows xk ∈ Rm

+
to route k ∈ {1, . . . , K } commodities at a minimum total
transportation and investment cost. We denote by A the set of
directed arcs and by bk ∈ Rn the vector of node demands and
supplies for commodity k ∈ {1, . . . , K }. For each arc (i, j) ∈
A, we let ui j represent the existing arc capacity, ci j represent
the linear transportation cost coefficient, and fi j be the linear
investment cost of increasing the capacity of arc (i, j) ∈ A
by vi j . Hence, we formulate the NDP as the following mixed
integer programming (MIP) problem:

min
K∑

k=1

∑
(i, j)∈A

ci j x
k
i j +

∑
(i, j)∈A

fi j yi j

s.t.
∑

j :(i, j)∈A

xki j −
∑

j :( j,i)∈A

xkji = bk ∀i, k = 1, . . . , K

K∑
k=1

xki j �ui j + vi j yi j ∀(i, j) ∈ A

xki j �0 ∀(i, j) ∈ A, k = 1, . . . , K

yi j ∈ {0, 1} ∀(i, j) ∈ A (1)

The objective function equals the total transportation cost plus
the total investment cost. The first constraint ensures that all
flow demand is routed for every commodity k ∈ {1, . . . , K },
while the second constraint ensures that the total flow on every
arc is less than or equal to the available capacity at that arc.
The last two constraints ensure that flow is non-negative and
that the investment variables are integer. In matrix notation
the NDP is

min
K∑

k=1

cTxk + f Ty

s.t. Nxk = bk ∀k = 1, . . . , K

K∑
k=1

xk �u + V y

xk �0 ∀k = 1, . . . , K

y ∈ {0, 1}m

where N is the network’s node-arc incidence matrix and the
matrix V is a m × m diagonal matrix with vi j entries on the
diagonal.

Without loss of generality, we assume that the network
flow problem is always feasible, even for y=0, by introducing
uncapacitated, high cost, artificial arcs between all source and
sink nodes for each commodity. These arcs allow to route the
flow regardless of the capacity expansion solution. As in a
big M procedure, the large transportation cost on the artificial
arcs ensures they would not be part of the optimal routing
solution if the original problem is feasible, thus providing a
method to detect infeasible instances.

Robust optimization methodology

The robust optimization approach was introduced in
Ben-Tal and Nemirovski (1998) for convex optimization and
in El-Ghaoui et al (1998) for semi-definite programming.
The robust solution for an optimization problem under un-
certainty is defined as the solution that has the best objective
value in its worst case uncertainty scenario. Attractive fea-
tures of a robust solution are that while it is only close to op-
timal for any specific scenario, it behaves well over all likely
uncertainty outcomes. In addition, in many settings finding
the robust solution is no harder than solving the determin-
istic problem. Robust optimization has provided interesting
answers to applications on structural design (Ben-Tal and
Nemirovski, 1997), least-square optimization (El-Ghaoui and
Lebret, 1997), portfolio optimization problems (El-Ghaoui
et al, 2003; Goldfarb and Iyengar, 2003), supply chain
management problems (Ben-Tal et al, 2005; Bertsimas and
Thiele, 2003), and integer programming and network flows
(Bertsimas and Sim, 2003; Atamtürk and Zhang, 2004).

In particular, the work by Bertsimas and Sim (2003) con-
siders robust solutions for network flow problems with box
uncertainty in cost coefficients; also the recent work by
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Atamtürk and Zhang (2004) investigates robust solutions
for the network flow and NDPs and shows that for certain
networks and specific demand uncertainty sets the robust
problem is tractable. Finally, in Ordóñez and Zhao (2004),
we show that the RNDP is tractable for networks with sin-
gle origin and destination per commodity and under general
transportation cost uncertainty and box uncertainty in the
demand. Here, we extend these prior results by consider-
ing the NDP under more general and realistic uncertainty
assumptions. We investigate the NDP on a general network
with single origin–destination commodities and general
transportation cost and demand uncertainty sets.

To illustrate the robust optimization methodology, consider
the following optimization problem under uncertainty:

min
u,v

f (u, v, w)

s.t. g(u, v, w)�0

where the uncertainty parameter w belongs to a closed
bounded and convex uncertainty set w ∈ U. The robust
solution is obtained by solving the following RC problem:

zRC = min
u,v,�

�

s.t. f (u, v, w)�� for all w ∈ U

g(u, v, w)�0 for all w ∈ U (2)

The complexity of solving problem RC has been shown to
be the same as the complexity of solving the deterministic
problem (fixed w ∈ U) for various problems and uncertainty
sets U. For example, the RC of an LP is equivalent to an LP
when U is a polyhedron and to a quadratically constrained
convex program whenU is a bounded ellipsoidal set (Ben-Tal
and Nemirovski, 1998). In addition, the size of the resulting
RC problem is bounded by a polynomial in the deterministic
problem’s dimensions.

The RC for a stochastic problem with recourse, dubbed the
adjusted robust counterpart problem (ARC), is introduced in
Ben-Tal et al (2004). In a problem with recourse, some of the
decision variables u are decided a priori (or here and now),
while the rest v can adjust to the outcome of the uncertainty
(or wait and see). Using variables v to accommodate to the
uncertainty outcome leads to the ARC problem:

zARC = min
u,�

�

s.t. for all w ∈ U exists v :
{
f (u, v, w)��

g(u, v, w)�0
(3)

Clearly zARC� zRC, since selecting one v that is feasible for
all w ∈ U is possible for ARC. However, we do not retain
the nice complexity results. In fact, Theorem 3.5 of Guslitser
(2002) shows that the ARC of an LP with polyhedral uncer-
tainty is NP-hard. An approximate solution for ARC (AARC)
is given by limiting the recourse variables to some linear

function of the uncertainty, say v = Qw + q . This yields the
following AARC

zAARC = min
u,�,Q,q

�

s.t. f (u, Qw + q, w)�� for all w ∈ U

g(u, Qw + q, w)�0 for all w ∈ U

(4)

This approximate problem is potentially tractable as it is of
the form of the regular RC. Note also that zARC� zAARC� zRC
since, on the one hand, we limited the possible recourse vari-
ables and, on the other, we can select Q = 0 and q = v for
some v that is feasible for all w ∈ U.

Robust Network Design Problem

The NDP has a natural separation between ‘here and now’
decisions and ‘wait and see’ decisions: investment decisions
must be made before we observe the results of the demand
and transportation cost uncertainty, while the routing deci-
sions made by the planner have to route whatever demand
occurred and under the transportation conditions that are set
forth by the realized transportation costs. Hence, if we dis-
pose of good data management tools, we can assume that the
routing decisions are made with the knowledge of the actual
traffic conditions. In conclusion, investment variables y are
decided before the uncertainty while routing variables x are
decided as a recourse to the uncertainty. Denoting the demand
uncertainty set Ub and the transportation cost uncertainty set
Uc we express the adjustable RNDP by

min
y,�

f Ty + �

s.t. y ∈ {0, 1}m ,

∀ b ∈ Ub, c ∈ Uc

there exists x s.t.




K∑
k=1

cTxk ��

Nxk = bk ∀k = 1, . . . , K
K∑

k=1
xk �u + V y

x ∈ RKm
+

(5)

It is possible that some routing decisions also have to be
made prior to the full realization of the transportation network
conditions. This can be included in this model by deciding
those routing variables jointly with the investment variables y.

Approximate adjusted RNDP

Uncertainty sets

We now briefly discuss the types of sets considered in this
work to represent the uncertainty in transportation cost and
demand. The uncertainty sets in this work are defined as de-
viations from an estimated or nominal value of the uncertain
parameter. For example, for the uncertain parameter z ∈ Rk ,
we consider sets around the estimated value z̄ ∈ Rk and
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using a scalar value � to control the confidence on the esti-
mate, of the following form:

Polyhedral: U = {z̄ + �z ∈ Rk : Lz �h, z�0} (6)

Box: U = {z ∈ Rk : |zk − z̄k |��Gk, k = 1, . . . , K } (7)

Ellipsoidal: U = {z ∈ Rk : (z − z̄)t S−1(z − z̄)��2} (8)

In particular, sets (6) and (8) are quite general and can rep-
resent arbitrary correlation structures in the uncertain param-
eter z. In this work, we present results where the uncertainty
in demand Ub and in transportation costs Uc are defined in
this form. This allows us to consider correlations between de-
mands of different commodities on the network, which is a
reasonable assumption in transportation systems. In such sys-
tems, a large demand to a specific location could be due to
morning rush hour traffic and hence be related to large de-
mands from other locations/commodities. We do not consider
at this time correlations between transportation costs and de-
mands.

The sets above can be interpreted as special cases of sets
formed by combining deviation scenarios around an estimated
value, as we show in the following proposition.

Proposition 1 The uncertainty sets (6), (7), and (8) are
special cases of uncertainty sets of the form

U =
{
z ∈ Rk : z = z̄ +

S∑
s=1

�s z
s, � ∈ �

}
(9)

where the set � is some easily characterizable closed
convex set.

Proof We only show that sets (6) and (8) are special cases
of sets of the form (9), since the box uncertainty set (7) is a
special case of (6).

First, let S=k and consider zs=�es , for s=1, . . . , k, where
es is the vector with a one in the s coordinate and zero in the
rest. Setting �={� ∈ Rk : L��h, ��0} makes (9) equivalent
to (6). Now, to express an ellipsoidal set (8) using scenarios,
simply let � = {� ∈ Rk : �T���2} and z = z̄ + S1/2�, that is
let zs be the sth column of S1/2. �

Tractable approximate adjusted RNDP

As the adjusted problem is hard to solve in general, the so-
lution approach introduced in Ben-Tal et al (2004) approxi-
mates this problem by limiting the second stage variable to
be some linear function of the uncertainty. It is natural to de-
fine this function for the flow of the kth commodity only in
terms of bk as follows:

xk = Qkbk, k = 1, . . . , K (10)

This linear relationship between the uncertain demand
and arc flows leads to the following routing constraints in

matrix form

(NQk − I )bk = 0 ∀k = 1, . . . , K ∀b ∈ Ub

This condition constraints Qk to be such that all rows of
(NQk − I ) are orthogonal to the projection ofUb onto the kth
commodity demand bk . Handling this type of constraints for
arbitrary uncertainty sets in general networks can be difficult;
therefore, we assume that each commodity has a single source
and sink which leads to an important simplification. A single
origin–destination assumption is fairly realistic for many ap-
plied problems, such as in transportation or communications
where the origin and destination classify the network flow. If
each commodity k sends dk flow from an origin sk to a des-
tination tk and if we let ei ∈ Rn be the vector of all zeros
except a 1 in the i th position, we have that bk = (esk − etk )dk .
This simplifies expression (10) to:

xki j = qk
i j dk ∀(i, j) ∈ A, k = 1, . . . , K

and the network flow constraints to Nqk = esk − etk .
Representing the second stage flow variables of the ad-

justed RNDP with this affine function leads to the following
problem:

min
y,�,q

f Ty + �

s.t. y ∈ {0, 1}m
Nqk = esk − etk ∀k = 1, . . . , K

K∑
k=1

cTqkdk �� ∀d ∈ Ub, c ∈ Uc

K∑
k=1

qkdk �u + V y ∀d ∈ Ub

qk
i j dk �0 ∀(i, j) ∈ A, k = 1, . . . , K ,

d ∈ Ub. (11)

Here and in the remainder of the paper, we incur the
slight abuse of notation d ∈ Ub. In the case of single
origin–destination per commodity, the demand of the system
is described by the vector d ∈ RK . It is this vector over
which we define the demand uncertainty set, but keep the
notation Ub for consistency with the prior discussion.

In Guslitser (2002), it is shown that the AARC can be NP-
hard when the recourse matrix is stochastic, which is the case
in the problem above. However our selection of the linear
function of the second stage variables guarantees that we are
still able to solve the approximate problem efficiently, as we
prove in the next theorem. Here, and in the remainder of the
paper, we refer to the kth column and j th row of a matrix
A ∈ RJ×K as A•,k ∈ RJ and A j,• ∈ RK , respectively.

Theorem 1 The approximate adjusted RNDP with uncer-
tain demand and transportation costs given by polyhedral
sets Ub = {d̄ + �bd ∈ RK : Ld�h, d�0}, with h ∈ Rlb ,
and Uc = {c̄ + �cc ∈ Rm : Mc�g, c�0}, with g ∈ Rlc ,
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is equivalent to the following MIP problem:

min
y,�,q,�,�,�,�

f Ty + gT� + �

s.t. Nqk = esk − etk , k = 1, . . . , K
K∑

k=1

c̄Tqkd̄k + �b�
Th��

LT
•,k�� c̄Tqk, k = 1, . . . , K
K∑

k=1

qk
i j d̄k + �b�

T
i j h�ui j + vi j yi j , (i, j) ∈ A

LT
•,k�i j �qk

i j , (i, j) ∈ A, k = 1, . . . , K
K∑

k=1

�cq
k
i j d̄k + �c�b�

T
i j h(MT�)i j , (i, j) ∈ A

LT
•,k�i j �qk

i j , (i, j) ∈ A, k = 1, . . . , K

q ∈ RKm
+ , � ∈ Rlb+,� ∈ Rmlb+ , � ∈ Rmlb+ ,

� ∈ Rlc+, y ∈ {0, 1}m (12)

Proof The proof of this theorem is based on the fact that
from duality theory we have that the following are equivalent
for a polyhedral uncertainty set:

max
z

mT z̄ + �mTz�� min
�

mT z̄ + �hT���

s.t. Lz�h ⇔ s.t. LT ��m
z�0 ��0

Therefore, this constraint on the optimal objective function
value of a linear program is equivalent to having a feasible
dual variable, ��0, LT��m such that mT z̄+�hT���. If we
apply this property to find the most restrictive linear constraint
involving c ∈ Uc in problem (11) we obtain

min
y,�,q

∑
(i, j)∈A

fi j yi j + �

s.t. Nqk = esk − etk , k = 1, . . . , K
K∑

k=1
c̄Tqkd̄k + �cg

T���

MT��
K∑

k=1
qkdk


 ∀d ∈ Ub

K∑
k=1

qkdk �u + V y ∀d ∈ Ub

qkdk �0 ∀k = 1, . . . , K , d ∈ Ub

y ∈ {0, 1}m, � ∈ Rlc+

Using a change of variables and considering the more con-
strained problem where the second and third constraints have
to satisfy the bounds for independent d ∈ Ub, we can replace
the objective function in the problem above by f T y+gT�+�,
the second constraint by

∑K
k=1c̄

Tqkdk �� for all d ∈ Ub and
the third constraint by �c

∑K
k=1q

kdk �MT� for all d ∈ Ub. We
note that since d ∈ Ub implies d�0, the constraint qk

i j dk �0
is equivalent to qi j �0. The proof concludes by applying the

duality property for the polyhedral uncertainty sets to identify
the d ∈ Ub that make the second, third, and fourth constraints
most restrictive. �

Below we present similar results for box and ellipsoid un-
certainty sets. We omit the proofs of these results as they are
analogous to the previous one, relying on the closed form so-
lutions to the optimization of a linear objective over a box

z̄ + sign (m)� = argmax mT z

s.t. |z − z̄|��
and over an ellipse

z̄ + �√
mT Sm

Sm = argmax mT z

s.t. (z − z̄)S−1(z − z̄)��2

Theorem 2 The approximate adjusted RNDP with ellip-
soidal set demand uncertainty Ub = {d ∈ Rk : (d − d̄)TS−1

(d − d̄)��2
b}, such that Ub ⊂ RK

+ , and polyhedral set
transportation costs uncertainty Uc = {c̄ + �cc ∈ Rm :
Mc�g, c�0}, with g ∈ Rlc , is equivalent to the following
MIP problem with quadratic constraints.

min
y,�,q,�

f Ty + gT� + �

s.t. Nqk = esk − etk , k = 1, . . . , K
K∑

k=1

c̄Tqkd̄k + �b

√
c̄TqSqTc̄��

K∑
k=1

qk
i j d̄k + �b

√
qT
i j Sqi j �ui j + vi j yi j , (i, j) ∈ A

K∑
k=1

�cq
k
i j d̄k + �c�b

√
qT
i j Sqi j �(MT�)i j , (i, j) ∈ A

q ∈ RKm
+ , k ∈ Rlc+, y ∈ {0, 1}m (13)

We note that the alternate combination of a polyhedral uncer-
tainty set in b and an ellipsoidal uncertainty set in c is similar
and leads to the same type of problem. The solution to an in-
teger program with quadratic constraints requires specialized
solution procedures which are not pursued in this paper.

Theorem 3 The approximate adjusted RNDPwith uncertain
demand and transportation costs given by polyhedral sets
Ub = {d ∈ RK : |dk − d̄k |��bHk, k = 1, . . . , K }, such that
Ub ⊂ RK

+ , and Uc = {c ∈ Rm : |ci j − c̄i j |��cGi j , (i, j) ∈
A} is equivalent to the following MIP problem

min
y,�,q

f Ty + �

s.t. Nqk = esk − etk k = 1, . . . , K
K∑

k=1

(c̄ + �cG)Tqk(d̄k + �bHk)��

K∑
k=1

qk(d̄k + �bHk)�u + V y

q ∈ RKm
+ , y ∈ {0, 1}m (14)
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Quality of robust approximation

We now explore the efficiency of the approximation to the
ARC problem obtained by limiting the recourse variables to
xki j = qk

i j dk . Recall that for affine functions of the uncertainty,
we have that zRC� zAARC� zARC. In this subsection, we show
that the approximate adjusted RNDP can be seen as the RC
of the path formulation of the NDP, as such it seems it would
be a conservative solution.

We begin by introducing the path formulation of the mul-
ticommodity NDP with single source and single sink. Let
Pk be the set of all paths from a source to a sink that carry
an amount dk of commodity k, let wk

P be the amount of
flow of commodity k that use path Pk , and let 	ki j = {P ∈
Pk |(i, j) ∈ P} represent the set of paths P carrying com-
modity k that cross arc (i, j), and define cP =∑

(i, j)∈P ci j the
transportation cost of path P . Then the path formulation of the
NDP is

min
K∑

k=1

∑
P∈Pk

cPwk
P +

∑
(i, j)∈A

fi j yi j

s.t.
∑
P∈Pk

wk
P = dk k = 1, . . . , K

K∑
k=1

∑
P∈	k

i j

wk
P �ui j + vi j yi j (i, j) ∈ A

w�0

yi j ∈ {0, 1} (i, j) ∈ A (15)

Proposition 2 For the NDP with single sink and single
source for each commodity and non-negative cost for each
arc, the AARC of the arc-flow formulation is equivalent to the
RC of the path-flow formulation.

Proof First, we note that in the case of a single ori-
gin and destination with a demand of dk per commodity,
we can formulate the path-based NDP in terms variables
that quantify the fraction of the total flow on each path
by the change of variables wk

P = wk
P/dk . The NDP now

becomes:

min
y,


K∑
k=1

∑
P∈Pk

cPwk
Pdk +

∑
(i, j)∈A

fi j yi j

s.t.
∑
P∈Pk

wk
P = 1, k = 1, . . . , K

K∑
k=1

∑
P∈	k

i j

wk
Pdk �ui j + vi j yi j , (i, j) ∈ A


�0, y ∈ {0, 1}m

whose RC is

min
y,
,�

∑
(i, j)∈A

fi j yi j + �

s.t.
∑
P∈Pk

wk
P = 1, k = 1, . . . , K

K∑
k=1

∑
P∈Pk

cP
k
Pdk �� ∀c ∈ Uc, b ∈ Ub

K∑
k=1

∑
P∈	k

i j

wk
Pdk �ui j+vi j yi j , (i, j) ∈ A, ∀b∈Ub


�0, y ∈ {0, 1}m

The problem above is equivalent to the AARC in Problem
(11) via the change of variables qk

i j = ∑
P∈	k

i j
wk

P . �

Path constrained network design

A number of different applications can involve path-based
constraints on the solutions of NDPs. For example, in infras-
tructure investment political considerations might require an
even distribution of capacity resources among different routes;
or when transporting hazardous material we should design
routes where the total population exposed to the material does
not exceed a given threshold. These constraints are naturally
expressed in a path-based formulation, such as Problem (15),
with additional constraints of the form

akPwk
P �Tk P ∈ Pk, k = 1, . . . , K (16)

The natural solution algorithms for problems with path con-
straints are column generation methods. In addition, large
multicommodity network flow problems can be efficiently
solved using column generation algorithms on path formula-
tions of the problem.

In this section, we present a column generation proce-
dure that is appropriate for the linear relaxation of a path
constrained, or large, RNDP. Being able to solve the lin-
ear relaxation effectively is the first step toward lower
bounds and algorithms for the integer RNDP. A column
generation algorithm can solve the LP relaxation of robust
path-based NDPs with polyhedral uncertainty. For simplic-
ity, we outline below the column generation algorithm for
an NDP with path constraints (16) and polyhedral trans-
portation cost uncertainty, Uc = {c̄ + �cc : Md�g, d�0}.
The algorithm for problems with demand polyhedral uncer-
tainty or additional path constraints is analogous but more
involved.

Column generation is an iterative procedure that gradually
incorporates profitable variables (or columns) to a reduced
master problem. As such, the procedure for the RNDP main-
tains only a subset J k ⊂ Pk of the path flow variables 
k

P ,
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giving a reduced master problem of the form:

min
y,
,�

∑
(i, j)∈A

fi j yi j+
K∑

k=1

∑
P∈J k

c̄P
k
Pdk+�cg

T� (17a)

s.t.
K∑

k=1

∑
P∈	k

i j∩J k


k
Pdk �(MT�)i j , (i, j) ∈ A (17b)

K∑
k=1

∑
P∈	k

i j∩J k


k
Pdk �ui j+vi j yi j , (i, j)∈A (17c)

∑
P∈J k


k
P = 1, k = 1, . . . , K (17d)


�0, ��0, y ∈ [0, 1]m (17e)

Since the path constraints (16) do not relate to different paths,
they are not included in the overall master problem, but
rather appear as conditions that valid path variables wk

P must
satisfy.

With an optimal primal and dual solution to the reduced
master problem above, we can express the reduced cost for
any path flow variable 
k

P . Let �i j �0, �i j �0, and �k be
the optimal dual variables for constraints (17b–17d), re-
spectively. The reduced cost of a path flow variable 
k

P is
given by

c̄Pdk − dk
∑

(i, j)∈P

�i j − dk
∑

(i, j)∈P

�i j − �k (18)

Path flow variables that have a negative reduced cost are
likely to improve the solution if brought into the basis. In
fact, an optimal solution has all reduced costs non-negative.
Therefore, to generate profitable columns to bring into the
reduced master, we find the path flow variable with minimum
reduced cost. We achieve this by solving a shortest path prob-
lem on the same network for all single origin–destination
commodities, but with non-negative arc costs given by
−�i j − �i j . If the optimal path for commodity k is P ,
then if

−
∑

(i, j)∈P

�i j −
∑

(i, j)∈P

�i j �
�k
dk

− c̄P

we have that all path flow variables for commodity k have
non-negative reduced costs, should not be brought into the
reduced master, and the current solution is in fact optimal
for the whole problem. If the opposite strict inequality holds,
we know that wk

P should be added to the reduced master. We
summarize below the main steps in the column generation
algorithm for the NDP with polyhedral transportation cost
uncertainty.

Column Generation Algorithm

Step 1: Initialization. For each k = 1, . . . , K define J k

with paths formed by artificial arcs between
source and sink.

Step 2: Solve reduced master problem. Let �i j , �i j , and
�k be the optimal dual variables of constraints
(17b–17d), respectively.

Step 3: For each k = 1, . . . , K
3.1:Solve the constrained shortest path problem
on same network, with arc costs −�i j − �i j �0.
Let P be the path of the optimal solution.
3.2:If (−∑

(i, j)∈P �i j − ∑
(i, j)∈P �i j ) < �k

dk
− c̄P

then
Add P to J k . Goto 2.

Step 4: END. The optimal solution to the reduced master
solves the problem. All 
k

P have a non-negative
reduced cost.

The column generation approach is similar in the cases with
only polyhedral uncertainty in b or in the case with polyhedral
uncertainty in both b and c. The differences arise because the
initial robust path-based NDP considers different constraints
involving variables wk

P in these alternative uncertainty cases.
For example, the arc capacity constraints under polyhedral
demand uncertainty yield the following RC constraints

K∑
k=1

∑
P∈	k

i j∩J k


k
P d̄k + �b�

T
i j h�ui j + vi j yi j , (i, j) ∈ A

LT
•,k�i j �

K∑
k=1

∑
P∈	k

i j∩J k


k
P , (i, j) ∈ A, k = 1, . . . , K

These constraints require that not only we consider a dual
variable �i j associated to the first set of constraints, but also
a dual variable k

i j �0 associated to the second set of con-
straints, which would then also participate in the computation
of the reduced cost.

Computational experiments

We now present computational experiments that investigate
the relative merit of the robust solution when compared to
the deterministic solution. The experiments conducted show
both the trade-off limits between these solutions and their
performance under simulated uncertainty scenarios.

We present results on three different networks, including a
path-constrained problem, for polyhedral and ellipsoidal sets.
For each experiment, we compute and contrast the NDP so-
lution and the approximate adjusted RNDP solution, or its
linear relaxation when considering ellipsoidal sets or path-
constraints on different uncertainty levels. We present re-
sults for different uncertainty levels, obtained by varying the
value of � in the definition of the uncertainty sets (6) or (8).
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Commodity 1: S=1, T=6

Commodity 2: S=2, T=7

Commodity 3: S=3, T=5

Figure 1 Graph of Network 1, used for Experiments 1 and 2.

Polyhedral uncertainty sets on demand are constructed from
independent upper bounds on each dk � d̄k and an additional
overall constraint on the sum

∑K
k=1 dk � D̄. The polyhedral

uncertainty set on c is constructed analogously. The ellip-
soidal uncertainty set on demand considers a diagonal ma-
trix,

∑K
k=1(dk − d̄k)

2/sk ��2
b. These experiments were coded

in AMPL and use either CPLEX 8.1 or LOQO to solve the
problem. The models and data used for these experiments are
available at http://www-rcf.usc.edu/∼fordon/RNDdata.html.

To study the trade-off limits of the robust solution, we
compute the following values:

ZD the optimal value of the deterministic solution
ZR the optimal value of the robust solution
ZWC the objective value of the deterministic solution under

its worst case scenario
ZAC the objective value of the robust solution under the

deterministic scenario

For each network problem below, we present the relative
increase of the deterministic solution in its worst case rWC =
(ZWC−ZR)/ZR and the relative increase of the robust solution
in the deterministic case rAC = (ZAC − ZD)/ZD.

For each experiment, the simulation study generates 100
random scenarios uniformly from the appropriate uncertainty
sets for the problem. For every simulated value of demand and
transportation costs, we compute the minimum cost routing of
the demand for the deterministic and robust network design
strategies. We report the mean and standard deviations of this
minimum total transportation cost for both strategies.

Small network examples

Our first set of experiments consider the network in Figure 1,
which consists of seven nodes, 12 arcs, and three commodities
which contribute an additional artificial arc to the network
each. The parameters of the problem are the design cost, fi j ,
the existing capacity, ui j , and the additional capacity after the
design, vi j . The outside arcs (on the edge of the network) have
relatively high transportation cost and existing capacities. The
design cost and the additional capacity after design are equal
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Figure 2 Relative improvement of solutions as a function of the
uncertainty level �, Network 1, Ub and Uc polyhedral.
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Figure 3 Simulated transportation cost mean and standard devi-
ation as a function of the uncertainty level �, Network 1, Ub and
Uc polyhedral.

to 300 and 700, respectively, for every arc. The deterministic
demands for the commodities 1, 2, and 3 are 100, 150, and
120, respectively.

Experiment 1: Consider Network 1 and suppose both de-
mand and transportation cost are under polyhedral uncertainty
sets. The comparison of the approximate adjusted RNDP and
NDP solutions are shown in Figures 2 and 3.

Experiment 2: Consider Network 1 and an ellipsoidal un-
certainty set on demand and polyhedral uncertainty set on
transportation cost. Because of the ellipsoidal uncertainty, we
solve for the LP relaxation of the approximate adjusted RNDP.
The comparisons between the robust and NDP solutions are
shown in Figures 4 and 5.
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Figure 4 Relative improvement of solutions as a function of the
uncertainty level �, Network 1,Ub ellipsoidal andUc polyhedral.
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Figure 5 Simulated transportation cost mean and standard de-
viation as a function of the uncertainty level �, Network 1, Ub
ellipsoidal and Uc polyhedral.

The results from both experiments show that the robust so-
lution is only modestly suboptimal for the deterministic data
parameters while significantly reducing the worst case cost,
in particular as the uncertainty increases. In the simulation
study, however, the robust solution does not seem to provide
any benefit. It is practically indistinguishable from the de-
terministic solution for Experiment 1 and has a slightly im-
proved mean cost in Experiment 2 as the uncertainty increases
but with no observable reduction in standard deviation. Our
next experiment shows whether these observations hold for
slightly larger networks.

Figure 6 Graph of Network 2, used for Experiment 3.
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Figure 7 Relative improvement of solutions as a function of the
uncertainty level �, Network 2, Ub and Uc polyhedral.

Increasing the size of the network

To increase the size of our problem, we considered prob-
lem cexb2 of the Gunluk suite of problems (available from
http://www.di.unipi.it/∼frangio/). This problem has 43 nodes,
10 commodities and 330 arcs and is shown in Figure 6. We
modified the problem slightly: for every commodity, we add
an artificial arc from the source to the sink with large exist-
ing capacity and transportation cost. We do not allow design
decisions on these additional arcs.

Experiment 3: We consider a larger network to study
whether the observations of Experiments 1 and 2 hold. For
this, we solve the problem approximate adjusted RNDP with
polyhedral uncertainty set on both demand and transportation
costs. We show the comparison of the approximate adjusted
RNDP and NDP in Figures 7 and 8.
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Figure 8 Simulated transportation cost mean and standard devi-
ation as a function of the uncertainty level �, Network 2, Ub and
Uc polyhedral.

Notice that when the uncertainty level is high, the design
plan obtained from the deterministic problem is infeasible if
the worst case happens, because capacity of the network is
not enough to accommodate the flows. We observe that the
robust solution again provides protection in the worst case at a
modest sub-optimality for the deterministic case; however in
this Experiment, the robust solution also has a much smaller
simulated mean and standard deviation.

Sioux falls experiment

We compute and compare the robust and deterministic so-
lutions for a path constrained problem based on the classi-
cal Sioux Falls multicommodity flow problem, available from
http://www.bgu.ac.il/∼bargera/tntp/. The Sioux Falls network
has 24 nodes, 76 arcs, and 528 commodities, to which we
added one artificial node and 48 artificial arcs connecting
each node to the artificial node and back to ensure feasibility.
We adapted the problem to our current setting by setting the
transportation cost equal to the Free Flow Time and the exist-
ing capacity ui j equal to the Capacity in the data. The design
cost per arc is set to fi j = 1000 and if an arc is expanded
the capacity is increased by vi j = 500 000. This experiment
considers polyhedral uncertainty sets for demand and trans-
portation cost. This problem also includes a path constraint to
ensure that a feasible path P satisfies |P|�Tk , where Tk is a
commodity dependent limit on the number of arcs that can be
considered in each path. Note that this constraint is enforced
by adding the constraint

∑
(i, j)∈A x

k
i j �Tk to the column gen-

eration shortest path problem with integer xki j .
Experiment 4: Consider the Sioux Falls network with poly-

hedral demand and transportation cost uncertainty and a path
constraint on routes. Because of this path constraint, we solve
for the LP relaxation of the approximate adjusted RNDP us-
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Figure 9 Relative improvement of solutions as a function of the
uncertainty level �, Sioux Falls Network, Ub and Uc polyhedral,
path constraints.

ing the column generation method. We present the trade-off
limit comparison between the robust and NDP solutions in
Figure 9. We did not compute the simulation results for this
experiment because it requires for each simulated scenario
the solution to a difficult constrained shortest path problem
which leads to excessive computation time.

Conclusions

In this paper, we consider the NDP where the demand and
the transportation costs are uncertain. We use the robust op-
timization methodology to find a solution which has a small
worst case value, and hence behaves efficiently for all uncer-
tain parameter scenarios. Because of the nature of the NDP,
it is natural to consider a problem with recourse, where the
investment variables are decided prior to the uncertainty and
the routing variables adjust to it. We formulate for general
uncertainty sets a tractable problem that computes an approx-
imation to the robust solution for this recourse problem. We
also show that this approximate solution is in fact the robust
solution without recourse for the path-based formulation of
the NDP, which suggests that it might be a conservative solu-
tion as it does not adapt to the outcome of the uncertainty. In
addition, for path-based and path-constrained NDP, we intro-
duce a column generation approach which can solve the LP
relaxation of the RNDP with polyhedral uncertainty sets.

Our computational results show that the approximate ro-
bust solution, and even its LP relaxation, have modest sub-
optimality on any specific deterministic scenario while signif-
icantly reducing the worst case cost, in particular as the un-
certainty increases. In addition, the simulation studies show
that the approximate robust solution reduces the mean and
standard deviation of the total cost, in particular for large
problems.
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