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1 Introduction 
Multistage stochastic linear programs are often intractable in practice, due to the 
presence of continuous (or also very fine discrete) uncertainty. Sometimes it is possible 
to solve them approximately via sampling methods, in a SAA-fashion, such that the 
uncertainty at each stage is discretized in a manageable size, and a scenario tree is formed. 
However, two issues are faced: 

1) It turns necessary to have an idea about the accuracy of the approximation. 
2) The approximate problem may still be computationally challenging to compute 

due to the nested structure and usually large number of scenarios. 

Shapiro (2003) discussed statistical inference of sample average approximations for 
multistage stochastic linear programs. The author concluded that: “in order to construct 
a consistent statistical lower bound one needs to employ the conditional sampling 
scheme” (to build the scenario tree of the approximate problem). On the other hand, any 
implementable and feasible policy yields a valid statistical upper bound. 

The tightness of both bounds is related to the accuracy of the approximation and the 
quality of the solution found through that approximation. Which brings us to the second 
issue: how well can we solve the approximate problem? 

A Benders decomposition type solution method for linear problems is introduced by Birge 
(1985). It decomposes the approximate problem by stages and scenarios, and the recourse 
(or cost-to-go) function at each subproblem is iteratively approximated by Benders cuts 
that yield an outer-linearization. 

Since the number of scenarios grows exponentially with the number of stages, solving the 
complete scenario tree usually becomes intractable. The Stochastic Dual Dynamic 
Programming (SDDP) algorithm, also based on Benders decomposition, incorporates 
Monte Carlo sampling to select only a subset of the total scenarios at each iteration. This 
algorithm was introduced in the context of the hydro-thermal scheduling problem 
(Pereira & Pinto, 1991) and is used to solve large-scale multistage stochastic linear 
programs. 

When the uncertainty is stagewise-independent the recourse function (at a given stage) 
does not depend on the current scenario. Hence, cuts generated for a subproblem are also 
valid for any other subproblem at the same stage. This is known as the cut-sharing 



property, which is critical for an efficient implementation of SDDP (Infanger & Morton, 
1996; Queiroz & Morton, 2013). This property ensures that every subproblem will have 
cuts even if its corresponding scenario was not sampled in previous iterations. 

Furthermore, under stagewise-independence assumption, independent random samples 
may be generated at each stage and used in a conditional sampling scheme to derive the 
approximate problem by means of a recombining scenario tree. Therefore, statistical 
properties of bounds are well-established in this case. 

Although SDDP is a popular method to solve problems with stagewise-independent 
uncertainty, two approaches have been suggested to incorporate dependence (Philpott & 
Matos, 2012; Shapiro et al., 2013; Lohndorf & Shapiro, 2019): 

• One approach is to reformulate the uncertainty as a linear-autoregressive process 
with stagewise-independent errors and treat the original uncertain parameters as 
additional state variables. To preserve linearity, this approach is restricted to the 
right-hand side parameters, and does not allow the use of non-linear 
transformations (e.g., logarithmic or Box-cox) on the autoregressive process, 
typical in the analysis of highly skewed data or non-negative random variables, 
such as demands, commodity prices or resources. As it is a reformulation where 
stagewise-independence still holds, this approach inherits the convergence 
guarantees of bounds. 

• The other approach is based on Markov Chain discretization of the uncertainty 
process using optimal quantization. It admits a representation of much richer 
stochastic models, however convergence of bounds is not guaranteed since it 
breaks with the conditional sampling scheme. 

Following the notation of Lohndorf & Shapiro (2019), we refer to both approaches as TS-
SDDP and MC-SDDP, respectively. 

In this paper we present an alternative approach to incorporate dependence, which makes 
convergence guarantees with respect to the true problem and allows the usage of a broad 
range of stochastic models. It is based on Importance Sampling to build the approximate 
problem. We refer to this approach as IS-SDDP. 

In Section 2 we introduce the proposed approach and demonstrate its convergence 
properties to approximate the real problem. In Section 3 we describe the SDDP-type 
algorithm to solve the resulting approximate problem. In Section 4 we include some 
numerical experiments on an inventory problem to test (in terms of statistical 
convergence and quality of solutions) the proposed approach. In section 5 we conclude. 

2 Proposed approach 

2.1 Problem statement 
In this paper we consider a multistage stochastic linear program of the form: 

(𝑃) min
𝐴1𝑥1=𝑏1

𝑐1𝑥1 + 𝔼𝜉2|𝜉1
[ min

𝐵2𝑥1+𝐴2𝑥2=𝑏2

𝑐2𝑥2 + 𝔼𝜉3|𝜉2
[… + 𝔼𝜉𝑇|𝜉𝑇−1

[ min
𝐵𝑇𝑥𝑇−1+𝐴𝑇𝑥𝑇=𝑏𝑇

𝑐𝑇𝑥𝑇]]] 



Where 𝜉𝑡 = (𝑐𝑡, 𝐴𝑡 , 𝐵𝑡, 𝑏𝑡), 𝑡 = 2, … , 𝑇 is a random vector, with 𝜉1 = (𝑐1, 𝐴1, 𝑏1) being 
deterministic. We assume relatively complete recourse condition. For simplicity, we 
assume that 𝜉𝑡 only depends on 𝜉𝑡−1 (i.e., lag one dependency) but can be easily extended 
with a reformulation. 

It is common to refer to this problem as the “real” problem in contrast to its “approximate” 
counterpart (that we will see later). The latter has the same structure as the former, 
however every expectation is discretized in a manageable size, resulting in a scenario-tree 
structure. 

Problem (𝑃) may be decomposed by stages. Then, for 𝑡 = 𝑇, … ,1 

𝑄𝑡(𝑥𝑡−1, 𝜉𝑡) = min
𝐵𝑡𝑥𝑡−1+𝐴𝑡𝑥𝑡=𝑏𝑡

𝑐𝑡𝑥𝑡 + 𝒬𝑡+1(𝑥𝑡, 𝜉𝑡) 

Where 

𝒬𝑡+1(𝑥𝑡, 𝜉𝑡) ≔ {
𝔼𝜉𝑡+1|𝜉𝑡

[𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)], 𝑡 = 𝑇 − 1, … ,1

0, 𝑡 = 𝑇
 

We refer to 𝒬𝑡+1 as the recourse function (sometimes called future value or cost-to-go 
function). Notice that 𝒬𝑡+1(⋅, 𝜉𝑡) is convex for fixed 𝜉𝑡, but the same is not necessarily true 
for 𝒬𝑡+1(⋅,⋅). 

Let 𝑝𝜉𝑡
(⋅ |𝜉𝑡−1) be the conditional density function of 𝜉𝑡 given 𝜉𝑡−1. Thus, 

𝔼𝜉𝑡+1|𝜉𝑡
[𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)] ≔ ∫ 𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)𝑝𝜉𝑡+1

(𝜉𝑡+1|𝜉𝑡)𝑑𝜉𝑡+1
𝒟𝑡+1(𝜉𝑡)

 

Hereafter, we extend with zero all density functions outside its corresponding support. 
Besides, whenever we evaluate a conditional density function at a point where it is not 
defined, we take it as zero. This happens when the density function of the conditioning 
variable is zero at the evaluated point. 

2.2 Importance sampling stochastic dual dynamic programming 
The proposed approach works approximating a reformulation of the real problem (𝑃), we 

call this problem (�̃�), which is defined as follows.  

Let 𝜉𝑡 be a stagewise-independent random vector with the same structure as 𝜉𝑡 (i.e., their 
components represent the same parameters). Let 𝑝�̃�𝑡

(⋅) be its density function. We 

consider 

𝑤𝑡(⋅ |𝜉𝑡−1) ≔
𝑝𝜉𝑡

(⋅ |𝜉𝑡−1)

𝑝�̃�𝑡
(⋅)

 

Which is the importance sampling weight (Glynn & Iglehart, 1989; Tokdar & Kass, 2010). 

Let (�̃�) be the problem 



min
𝐴1𝑥1=𝑏1

𝑐1𝑥1 + 𝔼�̃�2
[𝑤2(𝜉2|𝜉1) min

𝐵2𝑥1+𝐴2𝑥2=𝑏2

𝑐2𝑥2

+ 𝔼�̃�3
[… + 𝔼�̃�𝑇

[𝑤𝑇(𝜉𝑇|𝜉𝑇−1) min
𝐵𝑇𝑥𝑇−1+𝐴𝑇𝑥𝑇=𝑏𝑇

𝑐𝑇𝑥𝑇]]] 

Which is similar to (𝑃), but is solved for 𝜉𝑡 instead of 𝜉𝑡, and we also introduce a factor 

𝑤𝑡(⋅ |𝜉𝑡−1) at each stage. In contrast to (𝑃), the conditioning variable in the expectation 

at each stage is dropped since 𝜉𝑡 is assumed stagewise-independent. Problem (�̃�) may be 

decomposed as 

�̃�𝑡(𝑥𝑡−1, 𝜉𝑡) = min
𝐵𝑡𝑥𝑡−1+𝐴𝑡𝑥𝑡=𝑏𝑡

𝑐𝑡𝑥𝑡 + �̃�𝑡+1(𝑥𝑡 , 𝜉𝑡) 

�̃�𝑡+1(𝑥𝑡, 𝜉𝑡) ≔ {
𝔼�̃�𝑡+1

[𝑤𝑡+1(𝜉𝑡+1|𝜉𝑡)�̃�𝑡+1(𝑥𝑡, 𝜉𝑡+1)], 𝑡 = 𝑇 − 1, … ,1

0, 𝑡 = 𝑇
 

The presence of 𝑤𝑡+1, makes the recourse function �̃�𝑡+1 to explicitly depend on 𝜉𝑡, 

although 𝜉𝑡+1 is stagewise-independent. 

As we will see next, the purpose of 𝑤𝑡 is to compensate the effect of solving problem (𝑃) 

under the random vector 𝜉𝑡. This is the main idea behind Importance Sampling; 
approximate the solution of a given stochastic problem using a different distribution. To 
achieve this correctly, a strict condition must be met. 

Proposition 1: Assume that 𝑝�̃�𝑡
(𝜉𝑡) > 0 whenever 𝑝𝜉𝑡

(𝜉𝑡|𝜉𝑡−1)𝑄𝑡(𝑥𝑡−1, 𝜉𝑡) ≠ 0. Then, 

𝒬𝑡+1(𝑥𝑡, 𝜉𝑡) ≡ �̃�𝑡+1(𝑥𝑡, 𝜉𝑡), 𝑡 = 1, … , 𝑇 

Proof: By backward induction. Base case (𝑡 = 𝑇): 𝒬𝑇+1(𝑥𝑇 , 𝜉𝑇) ≡ �̃�𝑇+1(𝑥𝑇 , 𝜉𝑇) ≡ 0. 

Induction step: first notice that if 𝒬𝑡+2(𝑥𝑡+1, 𝜉𝑡+1) ≡ �̃�𝑡+2(𝑥𝑡+1, 𝜉𝑡+1) then 𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1) ≡
�̃�𝑡+1(𝑥𝑡, 𝜉𝑡+1). Using this 

�̃�𝑡+1(𝑥𝑡, 𝜉𝑡) = 𝔼�̃�𝑡+1
[𝑤𝑡+1(𝜉𝑡+1|𝜉𝑡)�̃�𝑡+1(𝑥𝑡, 𝜉𝑡+1)] 

= 𝔼�̃�𝑡+1
[𝑤𝑡+1(𝜉𝑡+1|𝜉𝑡)𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)] 

= ∫ 𝑤𝑡+1(𝜉𝑡+1|𝜉𝑡)𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)𝑝�̃�𝑡+1
(𝜉𝑡+1)𝑑𝜉𝑡+1

�̃�𝑡+1

 

= ∫
𝑝𝜉𝑡+1

(𝜉𝑡+1|𝜉𝑡)

𝑝�̃�𝑡+1
(𝜉𝑡+1)

𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)𝑝�̃�𝑡+1
(𝜉𝑡+1)𝑑𝜉𝑡+1

�̃�𝑡+1

 

= ∫ 𝑝𝜉𝑡+1
(𝜉𝑡+1|𝜉𝑡)𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)𝑑𝜉𝑡+1

𝒟𝑡+1(𝜉𝑡)

 

= 𝔼𝜉𝑡+1|𝜉𝑡
[𝑄𝑡+1(𝑥𝑡, 𝜉𝑡+1)] 

= 𝒬𝑡+1(𝑥𝑡, 𝜉𝑡) 

Notice that the assumption we made allows us to replace �̃�𝑡+1 by 𝒟𝑡+1(𝜉𝑡) in the last 
integral. We conclude the demonstration. ∎ 



Specifically, from Proposition 1 we have that 𝒬2(𝑥1, 𝜉1) ≡ �̃�2(𝑥1, 𝜉1). Therefore, both (𝑃) 

and (�̃�) have same first stage problems and have the same optimal value (recall that 𝜉1 is 

deterministic). Consequently, any known bound for one problem is valid for the other. 

To satisfy Proposition 1 assumption, we may take 𝑝�̃�𝑡
(⋅) as the marginal distribution of 𝜉𝑡. 

However, other distributions may work as well. 

Notice that we could move 𝑤𝑡(𝜉𝑡|𝜉𝑡−1) inside the min operator at each stage and the 

solution remains the same, since it is just a constant factor for the optimization problem. 

Doing that we can express (�̃�) in the same fashion as (𝑃), whose structure has been widely 

studied in terms of solution methods and convergence (Shapiro, 2003). 

In practice, solving even an approximation of (𝑃) could be quite demanding (if possible); 
the corresponding Sample Average Approximation tree, which needs to be constructed by 
conditional sampling (Shapiro, 2003), grows exponentially fast with the number of stages 
(given fineness of discretization). Under an outer linearization decomposition approach 
(like L-shaped method or SDDP) it means that every node of the tree must store its own 
set of cuts. 

On the other hand, the SAA tree of (�̃�) may be constructed by independent sampling at 

each stage (since 𝜉𝑡 is stagewise-independent); and all the nodes of a given stage may have 

the same descendents. Recall that �̃�𝑡 explicitly depends on 𝜉𝑡−1, therefore a different set 

of cuts must be stored for each 𝜉𝑡−1. Fortunately, this number does not depend on the 
number of stages but only on the fineness of discretization, which keep things tractable. 

2.3 Handling a special case of uncertainty 
It may happen in problem (𝑃) that a portion of the random vector does not participate 
conditioning the next-stage expectation. In that case it is convenient (in algorithmic 
terms) to handle both portions explicitly. Notice that the above results remain valid. 

We denote by 𝜂𝑡 and 𝜔𝑡 the portions that do and do not condition the expectation at t+1, 
respectively, such that 

𝜉𝑡 = (𝜂𝑡 , 𝜔𝑡) 

We say that 𝜂𝑡 follows a Markovian process, and 𝜔𝑡 is a stagewise-independent process. 
Nevertheless, we admit 𝜔𝑡 to depend on the Markovian process but not to influence it.  

Under this scheme, the expectation operator at each stage turns 

𝔼𝜉𝑡|𝜉𝑡−1
[⋅] = 𝔼𝜂𝑡,𝜔𝑡|𝜂𝑡−1

[⋅] 

Which, by virtue of the Law of Total Expectation, we accommodate as 

𝔼𝜂𝑡,𝜔𝑡|𝜂𝑡−1
[⋅] = 𝔼𝜂𝑡|𝜂𝑡−1

[𝔼𝜔𝑡|𝜂𝑡,𝜂𝑡−1
[⋅]] 

And, we let 𝑝𝜂𝑡
(⋅ |𝜂𝑡−1) and 𝑝𝜔𝑡

(⋅ |𝜂𝑡, 𝜂𝑡−1) be the conditional density functions associated 

to each of the right-hand side conditional expectations. 



On the other hand, we express 𝜉𝑡 = (�̃�𝑡 , �̃�𝑡), with �̃�𝑡 and �̃�𝑡 stagewise-independent 
random vectors with density functions 𝑝�̃�𝑡

(⋅) and 𝑝�̃�𝑡
(⋅ |�̃�𝑡), respectively, such that 

𝑝�̃�𝑡
((�̃�𝑡, �̃�𝑡)) = 𝑝�̃�𝑡

(�̃�𝑡)𝑝�̃�𝑡
(�̃�𝑡|�̃�𝑡) 

And we redefine 𝑤𝑡 accordingly, as 

𝑤𝑡(𝜉𝑡|𝜉𝑡−1) = 𝑤𝑡(�̃�𝑡, �̃�𝑡|�̃�𝑡−1) 

=
𝑝𝜂𝑡

(�̃�𝑡|�̃�𝑡−1)

𝑝�̃�𝑡
(�̃�𝑡)

𝑝𝜔𝑡
(�̃�𝑡|�̃�𝑡, �̃�𝑡−1)

𝑝�̃�𝑡
(�̃�𝑡|�̃�𝑡)

 

Where we denote 

𝑢𝑡(�̃�𝑡|�̃�𝑡−1) ≔
𝑝𝜂𝑡

(�̃�𝑡|�̃�𝑡−1)

𝑝�̃�𝑡
(�̃�𝑡)

 

𝑣𝑡(�̃�𝑡|�̃�𝑡, �̃�𝑡−1) ≔
𝑝𝜔𝑡

(�̃�𝑡|�̃�𝑡, �̃�𝑡−1)

𝑝�̃�𝑡
(�̃�𝑡|�̃�𝑡)

 

We proceed defining problem (�̃�) the same as before, but accommodating the conditional 

expectations as mentioned 

min
𝐴1𝑥1=𝑏1

𝑐1𝑥1 + 𝔼�̃�2
[ 𝔼�̃�2|�̃�2

[𝑢2(�̃�2|�̃�1)𝑣2(�̃�2|�̃�2, �̃�1) min
𝐵2𝑥1+𝐴2𝑥2=𝑏2

𝑐2𝑥2

+ 𝔼�̃�3
[𝔼�̃�3|�̃�3

[…

+ 𝔼�̃�𝑇
[ 𝔼�̃�𝑇|�̃�𝑇

[𝑢𝑇(�̃�𝑇|�̃�𝑇−1)𝑣𝑇(�̃�𝑇|�̃�𝑇 , �̃�𝑇−1) min
𝐵𝑇𝑥𝑇−1+𝐴𝑇𝑥𝑇=𝑏𝑇

𝑐𝑇𝑥𝑇]]]]]] 

Which may be decomposed as 

�̃�𝑡(𝑥𝑡−1, �̃�𝑡, �̃�𝑡) = min
𝐵𝑡𝑥𝑡−1+𝐴𝑡𝑥𝑡=𝑏𝑡

𝑐𝑡𝑥𝑡 + �̃�𝑡+1(𝑥𝑡, �̃�𝑡) 

Where 

�̃�𝑡+1(𝑥𝑡, �̃�𝑡) ≔ {
𝔼�̃�𝑡+1

[𝑢𝑡+1(�̃�𝑡+1|�̃�𝑡) �̃�𝑡+1(𝑥𝑡, �̃�𝑡+1, �̃�𝑡)], 𝑡 = 𝑇 − 1, … ,1

0, 𝑡 = 𝑇
 

�̃�𝑡+1(𝑥𝑡, �̃�𝑡+1, �̃�𝑡) ≔ 𝔼�̃�𝑡+1|�̃�𝑡+1
[𝑣𝑡+1(�̃�𝑡+1|�̃�𝑡+1, �̃�𝑡) �̃�𝑡+1(𝑥𝑡, �̃�𝑡+1, �̃�𝑡+1)], 𝑡 = 𝑇 − 1, … ,1 

This explicit handling of both random portions will be useful when evaluating the solution 

of the approximate counterpart of (�̃�). 



3 Solution algorithm 
In this section we derive the approximate problem (�̃�) and we show an algorithm to solve 

it. This algorithm has been used in previous works, such as Philpott & Matos (2012) and 
Lohndorf & Shapiro (2019), to solve the approximate problem under the MC-SDDP 
approach. In this sense, the novelty of our work is not to propose a new solution algorithm 
but rather a new approximation scheme with convergence guarantees. 

3.1 Approximate problem 
To approximate problem (�̃�) we need to discretize every expectation. As the uncertainty 

is stagewise-independent we derive a recombining scenario tree. To do so, at each stage, 

we generate samples Η𝑡 = {�̃�𝑡
𝑖}

𝑖=1

𝑀
 taken from 𝑝�̃�𝑡

(⋅), that we call Markov states, and for 

each of them we generate samples Ω𝑡
𝑖 = {�̃�𝑡

𝑖𝑗
}

𝑗=1

𝑁
 from 𝑝�̃�𝑡

(⋅ |�̃�𝑡
𝑖). Next, we compute 𝑢𝑡

𝑖𝑘 ≔

𝑢𝑡(�̃�𝑡
𝑖|�̃�𝑡−1

𝑘 ) and 𝑣𝑡
𝑖𝑗𝑘

≔ 𝑣𝑡(�̃�𝑡
𝑗
|�̃�𝑡

𝑖 , �̃�𝑡−1
𝑘 ). This way, the approximate problem (�̃�) is 

decomposed into subproblems as follows  

�̃�𝑡(𝑥𝑡−1, �̃�𝑡
𝑘, �̃�𝑡

𝑘𝑙) = min
𝐵𝑡𝑥𝑡−1+𝐴𝑡𝑥𝑡=𝑏𝑡

𝑐𝑡𝑥𝑡 + �̃�𝑡+1(𝑥𝑡, �̃�𝑡
𝑘) 

For 𝑘 = 1, … , 𝑀, 𝑙 = 1, … , 𝑁 and 𝑡 = 2, … , 𝑇. Where  

�̃�𝑡+1(𝑥𝑡, �̃�𝑡
𝑘) ≔ {

1

𝑀
∑ 𝑢𝑡+1

𝑖𝑘  �̃�𝑡+1(𝑥𝑡, �̃�𝑡+1
𝑖 , �̃�𝑡

𝑘)

𝑖

, 𝑡 = 𝑇 − 1, … ,1

0, 𝑡 = 𝑇

  

�̃�𝑡+1(𝑥𝑡, �̃�𝑡+1
𝑖 , �̃�𝑡

𝑘) ≔
1

𝑁
∑ 𝑣𝑡+1

𝑖𝑗𝑘

𝑗

�̃�𝑡+1(𝑥𝑡, �̃�𝑡+1
𝑖 , �̃�𝑡+1

𝑖𝑗
), 𝑡 = 𝑇 − 1, … ,1 

Notice that 𝑢𝑡/𝑀 and 𝑣𝑡/𝑁 are not probabilities, instead they are weighting factors that 
do not necessarily sum up to one (although it can be shown that they tend to, as the sample 
size increases). However, the solution algorithm proceeds the same way as if they were 
probabilities. Therefore, from this point on, the approximate problem is solved as in the 
MC-SDDP approach. 

3.2 Solution algorithm 
We implement a SDDP-type solution algorithm, and as such, �̃�𝑡+1 is progressively (outer) 
approximated by means of Benders cuts. As we mentioned before, since the uncertainty 
process is not stagewise-independent we need to store different sets of cuts for each 

Markov state �̃�𝑡
𝑘. On the other hand, �̃�𝑡+1 does not depend on �̃�𝑡, hence the cuts are valid 

for any realization of it. 

It is interesting to note that a multi-cut approach (Birge, 1988) might be implemented, 

which explicitly approximates �̃�𝑡+1. However, we will only deal with the single-cut 
approach in this work. 

The following pseudo-code describes the solution algorithm. To simplify the cut 
generation procedure, at each stage we introduce local copies (𝑦𝑡) of the state variables 



(𝑥𝑡−1), and we replace each occurrence of the later with the former. We also introduce 
linking constraints (𝑦𝑡 = 𝑥𝑡−1), which become the state equations. We denote by 𝜋𝑡 the 
duals of this constraints, and 𝑧𝑡 the optimal value of the subproblem. 

Markov chain SDDP 
0 Initialize: 

completed iterations: 𝑖𝑡 = 0 

sets of cuts: 𝒞𝑡
𝑖 = ∅, ∀𝑡 = 1, … , 𝑇 − 1, ∀𝑖 = 1, … , 𝑀  

1 Forward pass: 
solve first stage subproblem → 𝑧1, �̅�1 
𝑘 = 1 
for 𝑡 = 2, . . , 𝑇 

     draw a Markov state �̃�𝑡
𝑖  from Η𝑡, with probabilities proportional to 𝑢𝑡

𝑖𝑘, given k 

     draw a sample �̃�𝑡
𝑖𝑗

 from Ω𝑡
𝑖 , with probabilities proportional to 𝑣𝑡

𝑖𝑗𝑘
, given (𝑘, 𝑖) 

     update subproblem at stage t with (�̅�𝑡−1, �̃�𝑡
𝑖 , �̃�𝑡

𝑖𝑗
) and solve → 𝑧𝑡, �̅�𝑡 

     (set of cuts to use depend on index i) 
     𝑘 = 𝑖 
end 
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑧1; 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝑧𝑡𝑡  

2 Backward pass: 
for 𝑡 = 𝑇, … ,2 

     for �̃�𝑡
𝑖 ∈ Η𝑡 

          for �̃�𝑡
𝑖𝑗

∈ Ω𝑡
𝑖  

               update subproblem at stage t with (�̅�𝑡−1, �̃�𝑡
𝑖 , �̃�𝑡

𝑖𝑗
) and solve → 𝑧𝑡

𝑖𝑗
, 𝜋𝑡

𝑖𝑗
 

               (set of cuts to use depend on index i) 
          end 
     end 

     for �̃�𝑡−1
𝑘 ∈ Η𝑡−1 

          𝑧�̅�
𝑘 =

1

𝑀
∑ 𝑢𝑡

𝑖𝑘 (
1

𝑁
∑ 𝑣𝑡

𝑖𝑗𝑘
𝑗 𝑧𝑡

𝑖𝑗
)𝑖  

          �̅�𝑡
𝑘 =

1

𝑀
∑ 𝑢𝑡

𝑖𝑘 (
1

𝑁
∑ 𝑣𝑡

𝑖𝑗𝑘
𝑗 𝜋𝑡

𝑖𝑗
)𝑖  

          append cut �̃�𝑡(𝑥𝑡−1, �̃�𝑡−1
𝑘 ) ≥ 𝑧�̅�

𝑘 + �̅�𝑡
𝑘(𝑥𝑡−1 − �̅�𝑡−1) to set 𝒞𝑡−1

𝑘  

     end 
end 
𝑖𝑡 = 𝑖𝑡 + 1 

3 Check stopping criterion:  
if stopping criterion is not met: 
     go to 1 
end 

  

The proof of convergence for this algorithm relies on the finiteness of samples across 
stages. This is similar for a broad class of sampling algorithms, refer to Philpott & Guan 
(2008) for details. Despite the above, convergence may take too long in practice. In that 
sense, we did not specify the stopping criterion, but many optional setups may be 



considered. However, is out of the scope of this work to analyze them. Just to mention a 
few: time limit, maximum iterations, lower bound stagnation, and convergence of bounds 
(see below). 

For simplicity we considered a single sample-path in each forward pass. However, this 
can be easily extended to many. In that case, we can derive a confidence interval for the 
total cost (upper bound) and evaluate convergence as a hypothesis test (Homem-de-Mello 
et al., 2011; Matos et al., 2017). Besides, alternative path-sampling strategies may be 
employed, thus enhancing the performance of the algorithm (e.g., convergence, speed-
up, and quality of solutions). Such modifications may be easily implemented without 
altering the main structure of the algorithm. Both topics above remain active fields of 
research (Philpott & Guan, 2008; Homem-de-Mello et al., 2011; Shapiro, 2011; de Matos 
et al., 2015; de Matos et al., 2017). 

3.3 Bounds on the true problem 
In the previous subsection, we briefly refer to “convergence of bounds”. However, this 
does not necessarily imply convergence to the optimal value of the true problem. For 
instance, coarse discretization in the approximate problem may lead to fast SDDP-
convergence, nonetheless the obtained solution may be far from optimal for the true 
problem. 

To derive a statistical lower bound for the true problem (𝑃), we may solve many different 

replications of the approximate of (�̃�), compute a confidence interval using the resulting 

collection of lower bounds and take its lower end. 

On the other hand, for each replication, the approximations obtained for the recourse 

functions {𝒞𝑡
𝑖}

𝑡,𝑖
 can be used to derive an implementable policy for the true problem (𝑃) 

as follows: for any state (𝑥𝑡−1, 𝜂𝑡, 𝜔𝑡) find the closest Markov state �̃�𝑡
𝑖 ∈ Η𝑡 (we consider 

the Mahalanobis distance; a unitless and scale-invariant measure, that considers the 

correlations in the feature space) and use the corresponding set of cuts 𝒞𝑡
𝑖 to approximate 

𝒬𝑡+1(𝑥𝑡, 𝜂𝑡); that is identical to �̃�𝑡+1, as we saw in Proposition 1. This way, we can evaluate 
the policy across many different paths drawn from the true process, compute a confidence 
interval for the total cost and take its upper end. Finally, the statistical upper bound is 
defined as the smallest upper end across replications; and the corresponding policy is 
established as the best-found solution. 

4 Numerical experiments 
In this section we demonstrate numerically the effect of different sampling approaches in 
the quality of solutions and evaluate the convergence of bounds for the true problem. We 
consider a multi-stage inventory problem with stochastic demand for our experiments. 

First, we start by looking at the two-stage version of the problem, which corresponds to 
the well-known Newsvendor problem, whose solution is available analytically. We 
compare the solutions (and their performance) obtained from different approximations 
of the demand distribution. These approximate models are motivated by the 
mathematical assumptions necessary to efficiently extend to the multi-stage setting. 



Next, we apply the proposed approach (IS-SDDP) to the multi-stage version of the 
problem. We evaluate the convergence of bounds for the true problem, and we compare 
the obtained solution against the TS approach. 

4.1 Inventory problem 
We consider the model described by Shapiro et al. (2014). Under a planning horizon of 
length T, at the beginning of each stage the inventory is observed, and an order is placed 
to raise its level to a desired point, incurring in an ordering cost. The demand is then 
revealed, and the planner incurs backordering or holding costs whenever the inventory 
level does not exactly meet the demand. The inventory is observed again, and the cycle 
repeats all over the planning horizon. The following costs are assumed: 

Cost Value (per unit) 
Ordering 1.0 

Backordering 9.0 
Holding 3.0 

 

4.2 Demand distribution 
First, we present the (true) model governing the dynamics of the demand. Next, we show 
some approximate models that mimic the true dynamics. These are motivated by the 
stagewise-independency assumption necessary for SDDP-type algorithms.   

4.2.1 Mixture model 
The product demand distributes according to a gaussian mixture model of two 
components, where the mixture-weight distributes uniformly and is revealed one stage 
before the demand does. Each gaussian is truncated at zero to guarantee non-negative 
demand. 

𝑑𝑡~(1 − 𝑤𝑡−1) 𝑇𝑁(𝜇1, 𝜎1) + 𝑤𝑡−1 𝑇𝑁(𝜇2, 𝜎2) 

𝑤𝑡−1~𝑈(0,1) 

Notice that the first is a sum of densities, and not of random variables. Therefore, the 
demand has a bi-modal distribution. 

The stochastic process is as follows: at each stage are revealed both the demand 𝑑𝑡 and 
the mixture-weight 𝑤𝑡, which in turn determines the next-stage demand 𝑑𝑡+1 distribution. 
Figure 1 shows two (truncated) gaussians densities and the corresponding demand 
distribution functions for some values of the mixture-weight ranging between 0 and 1. We 
also refer to this model as the “real” model. 

This model represents a demand with a (continuous) changing regime, which may arise 
in situations where consumers preferences depend on some external factor (e.g., weather 
or fashion trends). Going back to the origins of SDDP, similar phenomena may be 
observed in hydro-thermal scheduling if water-inflows follow a Hidden Markov model 
depending on some climate index; see Philpott & Matos (2012) for a related example. 



 

Figure 1: Mixture-demand components and linear approximation.  

4.2.2 Linear model 
The model described above does not meet the stagewise-independent assumption nor can 
be linearly reformulated exactly, because of the non-linear stagewise-dependency of 𝑑𝑡 on 
𝑤𝑡−1. However, this relationship can be linearly approximated as follows: 

𝑑𝑡 = 𝑎 𝑤𝑡−1 + 𝑏 + 𝜉𝑡 

𝜉𝑡~𝑁(0, 𝜎) 

Where a, b and 𝜎 are calibrated statistically using samples (𝑑𝑡, 𝑤𝑡−1) drawn from the real 
model. 

4.2.3 Marginal model 
A different approach might be to drop the stagewise-dependency and rely on a purely 
stagewise-independent model. To do that we can marginalize-out the mixture weight in 
the demand distribution as: 

𝑓(𝑑𝑡) = ∫ 𝑓(𝑑𝑡|𝑤𝑡−1)𝑓(𝑤𝑡−1)𝑑𝑤𝑡−1 

Where 𝑓 denotes the corresponding density function. In this way, the resulting model is: 

𝑑𝑡~
1

2
( 𝑇𝑁(𝜇1, 𝜎1) + 𝑇𝑁(𝜇2, 𝜎2)) 

Which is equivalent to the real model with a fixed value of 0.5 for the mixture-weight. 



4.2.4 Importance-sampling model 
In the context of IS-SDDP we use samples drawn from the marginal model but re-
weighted according to the density of the real model (which incorporates the effect of the 
observed mixture-weight). 

We consider normalized importance-sampling (i.e., ordinary weights are normalized to 
sum one). This introduces some bias (although it converges asymptotically to zero) 
compared to ordinary importance-sampling, but the variance is generally reduced. In this 
case, the resulting weights may be interpreted as probabilities. 

4.3 Two-stage setting 
The optimal solution for the two-stage setting is obtained as (Shapiro et al., 2014): 

�̅� = 𝐻−1(𝜅), 𝜅 =
𝑏 − 𝑐

𝑏 + ℎ
 

Where b, c and h denote the backordering, ordering, and holding costs; and 𝐻(⋅) denotes 
the demand cdf. We refer to 𝜅 as the optimal quantile and �̅� the optimal solution. This 
solution holds for both the continuous and discrete cases. 

In Figure 2 we compare the solutions obtained by the above models under different values 
for the mixture-weight. To do so, we rely on the empirical (discrete) cdf obtained by 
extensive sampling in each case. Then, the performance of solutions is evaluated under 
the true model. 



 

Figure 2: Two-stage setting solution. 

We notice the importance-sampling model sticks to the correct solution (recall the 
mixture model is the true model) in every case, whereas the linear and marginal models 
present a suboptimal behavior which varies depending on the mixture-weight. As 
expected, the same occurs for the solution’s values, where the relative performance can 
be worse than 10 or 20% of the optimal values in some cases. This illustrates the (negative) 
effect of approximate models to represent the demand distribution. 

4.4 Multi-stage setting  
Now we move to the multi-stage case of the Inventory problem and perform similar 
analysis, however we only focus on the linear and importance sampling demand models 
since they allow us to incorporate stagewise-dependency efficiently in this case. The 
former model leads to the TS-SDDP, while the latter leads to IS-SDDP. We compare both 
approaches in terms of quality of solutions and evaluate the convergence to the optimal 
value. 



Contrary to the two-stage setting, the exact solution in this case is not known, hence we 
solve in a SAA-fashion through replications-analysis (see Section 3.3). Theoretically, only 
IS-SDDP correctly approximates the true problem, therefore we use its corresponding 
statistical lower bound to evaluate convergence to optimality. 

We solve for a 4-stage horizon and consider 5 replications for each approach. Notice 
under IS-SDDP, the uncertainty has the structure described in Section 2.3; we consider 
𝑀 = 10 and 𝑁 = 100. Under TS-SDDP, the uncertainty is purely stagewise-independent; 
we consider 𝑁 = 1,000. We run each SDDP instance for a maximum of 200 iterations, 
evaluating (in-sample) every 50 iterations under 5,000 scenarios. The purpose of 
evaluating in between the optimization process is two-fold: (i) keep track of the value of 
the best solution found so far since the process of deriving cuts does not produce solutions 
of decreasing value necessarily, and (ii) evaluate SDDP convergence gap, which we set to 
0.1%. When optimization ends, the best solution is evaluated under 10,000 (out-of-
sample) scenarios. 

 

Figure 3: Multi-stage setting solution. (“importance” refers to IS-SDDP, “linear” refers to TS-SDDP) 



Figure 3 shows the results under both SDDP approaches. As in the two-stage setting, the 
problem is solved for different initial values for the mixture-weight; each run considers 
the above configuration. We compare the first stage optimal solution reported by both 
approaches and the value of the corresponding policy when evaluated under the true 
demand process on the planification horizon. It is observed that IS-SDDP consistently 
outperforms TS-SDDP in terms of solution value. The relative performance (to the 
statistical lower bound) ranges between 5%-10% for TS-SDDP, while it is less than 3% for 
IS-SDDP. 

5 Discussion 
We presented IS-SDDP, an alternative SDDP approach based on Importance Sampling to 
incorporate stagewise-dependence for a broad range of stochastic models compared to 
TS-SDDP. It makes convergence guarantees with respect to the true problem. Moreover, 
it provides a statistical lower bound on the true problem optimal value, which is extremely 
useful to determine quality of solutions since multi-stage programs are known to be 
solvable only approximately in practice.  

We tested the underlying sampling scheme on a two-stage problem with theoretically 
known solution. We observed that it satisfactorily approaches the optimum, whereas 
other sampling strategies used in TS-SDDP does not. 

Under the multi-stage setting we observed similar behavior, which is expected since IS-
SDDP correctly approximates the true problem. However, care must be taken in practice, 
since coarse levels of discretization may lead to poor results and misleading comparisons 
despite theoretical guarantees, since these apply for increasing levels of discretization. 

Future work should evaluate the quality of solutions and convergence as a function of 
discretization level on a broad range of problems. 
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