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Oa b s t r a c t

We study an inventory-routing problem in which multiperiod inventory holding, backlogging, and vehi-
cle routing decisions are to be taken for a set of customers who receive units of a single item from a depot
with infinite supply. We consider a case in which the demand at each customer is deterministic and rel-
atively small compared to the vehicle capacity, and the customers are located closely such that a consol-
idated shipping strategy is appropriate. We develop constructive and improvement heuristics to obtain
an approximate solution for this NP-hard problem and demonstrate their effectiveness through compu-
tational experiments.

� 2008 Elsevier Ltd. All rights reserved.
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C1. Introduction

Recent decades have seen fierce competition in local and global
markets, forcing manufacturing enterprises to streamline their lo-
gistic systems, as they constitute over 30% of the cost of goods sold
for many products (Thomas & Griffin, 1996). The major compo-
nents of logistic costs are transportation costs, representing
approximately one third, and inventory costs, representing one
fifth (Buffa & Munn, 1989). The transportation and inventory cost
reduction problems have been thoroughly studied separately;
while, the integrated problem has recently attracted more interest
in the research community as new ideas of centralized supply
chain management systems, such as vendor managed inventory
(VMI), have gained acceptance in many supply chain
environments.

The integration of transportation and inventory decisions is
represented in the literature by a general class of problems re-
ferred to as dynamic routing and inventory (DRAI) problems.
As defined by Baita, Ukovich, Pesenti, and Favaretto (1998), this
class of problems is ‘‘characterized by the simultaneous vehicle
routing and inventory decisions that are present in a dynamic
framework such that earlier decisions influence later decisions.”
They classify the approaches used for DRAI problems into two
categories. The first category operates in the frequency domain
where the decision variables are replenishment frequencies, or
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headways between shipments. Examples in the literature include
the work of Blumenfeld, Burns, Diltz, and Daganzo (1985), Hall
(1985), Daganzo (1987), and Ernst and Pyke (1993) (for more
references see Daganzo, 1999). Anily and Federgruen (1990)
introduced the idea of fixed-partition policies (FPPs) for solving
the frequency-domain DRAI problems. FPPs are policies that
solve the problem by partitioning the set of customers into a
number of regions such that each region is served separately
and independently from all other regions. In addition to that,
whenever a customer in a partition is visited, all other customers
in that partition are visited by the same vehicle. The solution is
considered optimal in the set that includes all the FPPs if, with
respect to vehicle capacities, it defines regions that minimize
the average of the sum of inventory holding costs and transpor-
tation costs. Examples in the literature include Anily and Feder-
gruen (1993), Bramel and Simchi Levi (1995). However, Hall
(1992) points out that the FPPs approach can not model the case
in which deliveries are coordinated. As a consequence, the re-
sults it provides are either valid only in the case of independent
deliveries, or can be just considered as providing upper bounds
for real costs.

The second category, referred to as the time domain approach,
determines the schedule of shipments. With discrete time mod-
els, quantities and routes are decided at fixed time intervals.
Within this category the most famous problem is the inventory
routing problem (IRP), which arises in the application of the dis-
tribution of industrial gases. The main concern for this kind of
application is to maintain an adequate level of inventory for all
customers and to avoid any stockout. In the IRP, it is assumed
that each customer has a fixed demand rate and the focus is on
approaches for the inventory-routing problem with backlogging.
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minimizing the total transportation cost; while inventory costs
are mostly not of concern. Examples of this application in the
literature include Bell, Dalberto, Fisher, and Greenfield (1983),
Golden, Assad, and Dahl (1984), Dror, Ball, and Golden (1985),
Dror and Ball (1987), Campbell, Clarke, and Savelsbergh (2002)
and Adelman (2003).

In this paper, we consider a DRAI problem that addresses the
integrated inventory and vehicle routing decisions in the time
domain at the operational planning level. This problem, referred
to as the inventory-routing problem with backlogging (IRPB),
considers multiple planning periods, both inventory and trans-
portation costs, and a situation in which backorders are permit-
ted. The kind of application that permits backorders is, of
course, different from the distribution of industrial gases, where
stockout is not allowed. The proposed model is suitable to
industrial applications in which a manufacturer distributes its
product to geographically disbursed factories/retailers which
are located in cities close to its warehouse. At the operational
planning level, backorder decisions are generally justified in
two cases. The first is when there is a transportation cost sav-
ing that is higher than the incurred shortage cost by a cus-
tomer. The second case is when there is insufficient vehicle
capacity to deliver to a customer given that renting additional
vehicles is not an option due to technological or economic
constraints.

In the literature, the integration of vehicle routing and inven-
tory decisions with the consideration of inventory costs in the
time domain approaches of the DRAI problems has taken different
forms. In a few cases a single period planning problem has been
addressed as found in Federgruen and Zipkin (1984) and Chien,
Balakrishnan, and Wong (1989). In the multi-period problem,
the decisions are conducted for a specific number of planning
periods, or the problem is reduced to a single period problem
by considering the effect of the long term decisions on the short
term ones. Examples include Dror and Ball (1987), Trudeau and
Dror (1992), Viswanathan and Mathur (1997), and Herer and Levy
(1997).

Other researchers take into consideration various forms such
as distributing perishable products (Federgruen, Prastacos, &
Zipkin, 1986), and the consideration of the time value of money
for long-term planning (Dror & Trudeau, 1996). Some work fo-
cused on different structures of the distribution network such
as Bard, Huang, Jaillet, and Dror (1998) in the case of satellite
facilities, Chan and Simchi-Levi (1998) in the case where ware-
houses act as transshipment points in a 3-level distribution net-
work, and Hwang (1999and 2000) in the case of a multi-depot
problem.

Solution heuristics that have been proposed in the literature for
the different variations of the inventory routing problem are either
based on subgradient optimization of a Lagrangian relaxation (see
Bell et al., 1983 and Chien et al., 1989) or constructive and
improvement heuristics. The constructive heuristics are broadly
classified into heuristics that allocate customers to service days
and then solve a VRP to generate vehicle routes for each day (Dror
& Ball, 1987); and heuristics that allocate customers to days and
vehicles and then solve a traveling salesman problem for every
assignment (Dror et al., 1985). Improvement heuristics found in
the literature (Dror & Levy, 1986 and Federgruen & Zipkin, 1984
in the single period case) are generally considered as extensions
to the arc-exchange and node-exchange heuristics as found in
the vehicle routing literature.

In the literature of the time domain approaches of the DRAI
problems, some models in the case of multi-period planning
may include shortage or stockout costs; however, backorder
decisions are generally not explicitly considered. Instead, the
shortage or stock-out cost is treated as the penalty cost that
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
Computers & Industrial Engineering (2008), doi:10.1016/j.cie.2008.09.0
O
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is incurred due to making direct deliveries to customers whose
demand is not fulfilled in the regular delivery route in a given
period. Examples of such models in the literature include Herer
and Levy (1997) and Jaillet, Bard, Huang, and Dror (2002). In
this paper, we consider a situation in which backorder decisions
are either unavoidable or more economical, and they have to be
coordinated with other inventory holding and vehicle routing
decisions over a specific planning horizon. We introduce con-
structive and improvement heuristic approaches for solving
the problem with backorders, and benchmark it against lower
and upper bounds found by a commercial software package,
CPLEX.

The rest of this paper is organized as follows. In Section 2, we
formulate the problem as a mixed integer linear program. The
motivating ideas and search plan for the developed heuristics
are presented in Section 3. Sections 4 and 5 provide descriptions
of the constructive and improvement heuristics, respectively. In
Section 6, the experimental results are presented followed by
the conclusion and directions for future research in Section 7.
E
D

P
R2. Problem definition and mixed integer programming model

In the IRPB, we study a distribution system consisting of a
depot, denoted 0, and geographically dispersed customers, in-
dexed 1,. . .,N. Each customer i faces a different demand dit for
a single item per time period t (day/week). As traditionally con-
sidered, a single item does not restrict the problem to the case
of a single product distribution, as the word ‘item’ can refer to
a unit weight or volume of the distributed products and each
customer can be viewed as a consumption center for packages
of unit weight or volume (Daganzo, 1999). Accordingly, the pro-
posed model can be applied to the case of multiple products gi-
ven that the values of the inventory holding and shortage costs
per unit volume/weight have small variance among the differ-
ent products. We consider the case in which the demand of
each customer is relatively small compared to the vehicle
capacity, and the customers are located closely such that a con-
solidated shipping strategy is appropriate. Deliveries to custom-
ers 1,. . .,N are to be made by a capacitated heterogeneous fleet
of V vehicles, each with capacity qv starting from the depot at
the beginning of each period. Vehicles must return to the depot
at the end of the period, and no further delivery assignments
should be made in the same period. In this model, we consider
the case in which renting additional vehicles during the short
planning horizon is not an option, and it is assumed that the
fleet of vehicles remains unchanged throughout the planning
horizon.

Each customer i maintains its own inventory up to capacity
Ci and incurs inventory carrying cost of hi per period per unit
and a backorder penalty (shortage cost) of pi per period per
unit on the end of period inventory position. We assume that
the depot has sufficient supply of items that can cover all cus-
tomers’ demands throughout the planning horizon. The plan-
ning horizon considers T periods. Transportation costs include
fvt a fixed usage cost for vehicle t, which depends on the period
t, and cij a direct transportation cost between i and j, which sat-
isfies the triangular inequality. The objective is to minimize the
overall transportation, inventory carrying and backlogging costs
incurred over a specific planning horizon. We consider an inte-
ger variable xv

ijt , which equals 1 if vehicle t travels from i to j in
period t, and 0 if it does not. The amount transported on that
trip is represented by yv

ijt . At customer i, the inventory and
backorder at the end of time t is Iit and Bit, respectively. The
following is a mixed integer programming formulation for the
problem.
approaches for the inventory-routing problem with backlogging.
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2.1. [IRPB] – Inventory routing problem with backlogging

min
XT

t¼1

XN

j¼1

XV

v¼1

fvtxv
0jtþ

XN

i¼0

XN

j¼0
j–i

XV

i¼0

Cijxv
ijtþ

XN

i¼1

ðhiIitþpiBitÞ

2
664

3
775 ð0Þ

subject to
XN

j¼0
j–i

xv
ijt61 i¼0; . . . ;N;t¼1; . . . ;T and v¼1; . . . ;V ð1Þ

XN

k¼0
k–i

xv
ikt�

XN

l¼0
l–i

xv
lit¼0 i¼0; . . . ;N; t¼1; . . . ;T

and v¼1; . . . ;V ð2Þ
Yv

ijt�qvxv
ijt60 i¼0; . . . ;N;j¼0; . . . ;N;i–j;t¼1; . . . ;T

and v¼1; . . . ;V ð3Þ
XN

l¼0
l–i

yv
lit�

XN

k¼0
k–i

yv
ikt�0 i¼1; . . . ;N;t¼1; . . . ;T and v¼1; . . . ;V ð4Þ

Iiy�1�Bit�1� IitþBitþ
XV

v¼1

XN

l¼0
l–i

yv
lit�

XN

k¼0
k–i

yv
ikt

0
B@

1
CA¼dþ iti¼1; . . . ;N

and t¼1; . . . ;T ð5Þ
Iit6Ci i¼1; . . . ;N and t¼1; . . . ;T ð6Þ
Iit�0 i¼1; . . . ;N and t¼1; . . . ;T ð7Þ
Bit�0 i¼1; . . . ;N and t¼1; . . . ;T ð8Þ
Yv

ijt�0 i¼0; . . . ;N;

j¼0; . . . ;N;i–j; t¼1; . . . ;T and v¼1; . . . ;V ð9Þ
Yv

ijte0;1; i¼0; . . . ;N; j¼0; . . . ;N;i–j; t¼1; . . . ;T

and v¼1; . . . ;V ð10Þ

The objective function (0) includes transportation costs and
inventory carrying and shortage costs on the end of period inventory
position. Constraints Eq. (1) make sure that a vehicle will visit a loca-
tion no more than once in a time period, and constraints Eq. (2) en-
sure route continuity. Constraints Eq. (3) serve for two purposes.
The first one is to ensure that the amount transported between
two locations will always be zero whenever there is no vehicle mov-
ing between these locations, and the second is to ensure that the
amount transported is less than or equal to the vehicle’s capacity.
Constraints Eq. (4) along with the other elements of the model en-
sure that efficient solutions will not contain subtours. We illustrate
in the Appendix A how this condition is achieved. Constraints Eq. (5)
are the inventory balance equations for the customers. Constraints
Eq. (6) limit the inventory level of the customers to the correspond-
ing storage capacity. It is assumed that the amount consumed by
each customer in a given period is not kept in the customer’s storage
location; accordingly, it is not accounted for in constraints Eq. (6).
Constraints Eqs. (7)–(10) are the domain constraints.
N 276
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289
U3. Motivating ideas and heuristic design

The IRPB is NP-hard since it includes the capacitated vehicle
routing problem (VRP) as a subproblem. In this section, we present
the key ideas in the proposed constructive and improvement heu-
ristics for this NP-hard problem.

A key decision in solving the IRPB is the amount delivered to
customer i in period t, as this quantity, let us define it by

wit ¼
PV
v¼1

PN
l¼0
l–i

yv
lit �

PN
k¼0
k–i

yv
ikt

0
B@

1
CA � 0, effectively separates the routing

and inventory problems. In fact, given delivery values wit for all
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customers and periods, the inventory and backorder values are
determined by constraints Eqs. (5)–(8). At the same time, the best
routing solution for these wit is obtained by solving T separate
capacitated vehicle routing problems. Each VRP computes the opti-
mal transportation costs to deliver Wt ¼ ðwit : i ¼ 1; . . . ;NÞ in peri-
od t by solving the following feasible problem whenever the
delivery amounts satisfy

XN

i¼1

wit 6
Xv

v¼1

qv :

TCtðWtÞ ¼min
XN

j¼1

XV

v¼1

fvtxv
0jt þ

XN

i¼0

XN

j¼0
j–i

XV

v¼1

cijxv
ijt

Subject to :

XN

j¼0
j–i

xv
ijt 6 1 i ¼ 0; . . . N and v ¼ 1; . . . V ð1’Þ

XN

k¼0
k–i

xv
ikt �

XN

l¼0
l–i

xv
lit ¼ 0 i ¼ 0; . . . N and v ¼ 1; . . . V ð2’Þ

Yv
ijt � qvxv

ijt 6 0 i; j ¼ 0; . . . N; i–j and v ¼ 1; . . . V ð3’Þ
XN

l¼0
l–i

yv
lit �

XN

k¼0
k–i

yv
ikt � 0 i ¼ 1; . . . N; and v ¼ 1; . . . V ð4’Þ

Xv

v¼1

XN

l¼0
l–i

yv
lit �

XN

k¼0
k–i

yv
ikt

0
B@

1
CA ¼ wit i ¼ 1; . . . N ð10Þ

Yv
ijt � 0 and xv

ijt ¼ 0 or 1 i; j ¼ 0; . . . N; i–j and v ¼ 1; . . . V

ð11Þ

Therefore, the key in solving IRPB is to be able to identify the
optimal delivery amounts wit since what is left is a vehicle routing
problem for which there exist several efficient algorithms. Our pro-
posed heuristics build on this observation by focusing on how to
determine the wit variables efficiently. The procedure used to
determine the wit values must take into consideration the tradeoff
existing between inventory and transportation costs.

In Section 4, we propose a constructive heuristic that sets the
delivery amounts by balancing this tradeoff. The idea of the heuristic
is to estimate a transportation cost value for each customer in each
period from an approximate routing solution. Actual delivery
amounts, wit, are then decided by comparing these transportation
cost estimates with the corresponding inventory costs. This process
is done sequentially from the first period onward and in each period
the comparison of transportation and inventory costs is done in two
phases. The first phase looks into backorder decisions that are either
imposed by insufficient vehicle capacity or preferred due to savings
in transportation costs that are higher than backordering costs. The
second phase investigates inventory decisions that would cover de-
mand requirements in future periods in the case that excess vehicle
capacity is available at the current period. The heuristic looks into
inventory decisions that provide savings in future transportation
costs that are higher than inventory carrying costs.

The improvement heuristic introduced in Section 5 investigates
possible improvements to the solutions generated by the construc-
tive heuristic by looking into modifications to the delivery quantities
that would reduce transportation and/or inventory costs and result
in overall cost savings. In particular the improvement heuristic re-
laxes the requirement made in the constructive heuristic to reduce
the search space, that is all demand satisfied in a given period must
be satisfied exactly not partially.
approaches for the inventory-routing problem with backlogging.
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A key step in this heuristic is to be able to effectively estimate
the transportation cost of each customer. Below we present a re-
sult that provides insight into the structure of the total transporta-
tion cost in period t as a function of the delivery amount Wt.

Proposition 1. TCt(Wt) is a multi-dimensional monotonic increasing
step function.

Proof. Given that the definition of TCt(Wt) is based on an MIP
model for the capacitated vehicle routing problem (VRP) in which
triangular inequality holds. Starting from an optimal solution of a
specific VRP at an initial W0

t ¼ ðw0
it : i ¼ 1; :::;NÞ, and by adding

DWþ
t ¼ ðowit : owit P 0; i ¼ 1; :::;NÞ to W0

t (i.e. increasing the
demand values for a subset of the customers) such thatPN

i¼1ðw0
it þ owitÞ 6

PV
v¼1 qv, one of two possible consequences will

occur: (1) new arc or arcs will be added to the current solution
to satisfy the vehicle capacity constraints Eq. (3), which will
increase TCtW

0
t by the corresponding cij and/or ft amounts as

needed, or 2) the current VRP solution remains optimal. Thus
TCtðWt þ DWþ

t Þ � TCtðWtÞ. Since the changes of TCt(Wt) occur at
discrete points according to the vehicle capacities, TCt(Wt) takes
the form of a multidimensional step function. h

As a result of proposition 1, the solution scheme can focus
only on those values of the continuous variables, wit, at which
changes to the transportation cost occur. We can look at this re-
sult from another perspective. Given planned delivery amounts
to customers in a period, by reducing the delivery quantity of
a specific customer, the transportation costs will be reduced at
discrete points and the maximum possible reduction will occur
when the delivery to that customer is dropped to zero. Although
proposition 1 is proven for optimal solutions to the VRP, this re-
sult can still be used for solutions generated by efficient heuris-
tics as an approximation, such as the savings algorithm (Clarke &
Wright, 1964).
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As mentioned earlier, the constructive heuristic is based on the
idea of estimating a transportation cost value for each customer in
each period, which is necessary to facilitate the comparison be-
tween transportation and inventory carrying and shortage costs.
We therefore refer to the constructive heuristic as the Estimated
Transportation Costs Heuristic (ETCH). In Subsection 4.1, we de-
scribe how the transportation cost estimates are evaluated and
continuously updated throughout the course of the heuristic. Using
these estimates, we show in Subsection 4.2 how the inventory
problem in IRPB can be decomposed into two subproblems that
are solved by the heuristic in two phases. The solution techniques
for these subproblems are illustrated in Subsection 4.3.

4.1. Estimating transportation costs

Let wPL
it be the planned delivery amount for customer i in period

t. For period s in which
PN

j¼1 wPL
js 6

PV
v¼1 qv; let Ws ¼ ðwjs : wjs ¼

wPL
js ; j ¼ 1; :::;NÞ. For customer i whose wPL

is > 0; letW ðiÞ
s ¼ ðwjs : wis

¼ 0; wjs ¼ wPL
js ; j ¼ 1; :::;N; j–iÞ. Then, the transportation cost reduc-

tion that would result from reducing customer i’s delivery in peri-

od s to zero can be calculated as TCsðWsÞ � TCsðW ðiÞ
s Þ. Since the

transportation cost function involves the solution of a VRP, which
is known to be NP-hard, it may not be possible to calculate its exact
value, especially for large problem sizes. Instead, an efficient heu-
ristic can be used to approximate it. In our implementation, the
savings algorithm is used for this purpose.
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
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Let ATCs(Ws) be an approximation for TCs(Ws) when the savings
algorithm is used to solve the associated VRP. The transportation
cost estimate for customer i in period s is calculated as

ETCiðWsÞ ¼ ATRsðWsÞ � ATRsðW ðiÞ
s Þ. However, resolving a VRP every

time the transportation cost estimate for each customer is calcu-
lated is in fact computationally inefficient. Instead, a faster approx-
imation scheme can be constructed by evaluating the
transportation cost saving that will result when a customer is re-
moved from its delivery tour assigned to it in a given VRP solution.
This means that for given delivery amounts, Ws, the associated VRP
will be solved only once and the resulting vehicle tours will be
used for generating transportation cost estimates.

ATCt(Wt) and ETCi(Wt) are functions of the planned delivery
amounts wPL

it which are determined based on the customers’ net
demand requirements in period t. However, the values of wPL

it must
be defined such that the vehicle capacity constraint,

PN
j¼1

wPL
jt 6

PV
v¼1

qv,
is satisfied. Given the inventory position at the beginning of period
t, Ii,t�1 - Bi,t�1, and the demand requirements dis for all periods
s P t, ETCH evaluates the net demand requirement for each cus-
tomer, and based on that it estimates wPL

is . If the vehicle capacity
constraint is not satisfied in a given period, the wPL

is values are ad-
justed such that customers with the lowest unit shortage costs, pi,
will have part of their demand requirements postponed to future
periods. The following list describes the steps of this approach.

Procedure PLNDLV(t)

1. Let OC = ordered set of all customers in which customers are
sorted in a non-increasing order of their pi values;

2. For every customer i e OC, let invi = Ii,t-1 � Bi,t�1;
3. For period s = t to T do
4. Let Qmax ¼

PV
v¼1

qv;
5. For every customer i e OC using the order in set OC do
6. ðwPL

is ¼minðQmax;maxðdis � invi;0ÞÞ;
7. Qmax ¼ Q max �wPL

is ;
8. Invi ¼ invi þwPL

is � dis;
9. End-Loop;

End-Loop;The resultant wPL
is values can be safely used in evalu-

ating both functions ATCs(Ws) and ETCi(Ws). During the course of
the algorithm, if a change in the delivery amounts occurs, a VRP
for the period in which the change occurred is instantiated and
solved to update the values of the transportation cost estimates.
4.2. Problem decomposition and solution scheme

In the ETCH, the comparison between the transportation cost
estimates and inventory carrying and shortage costs is sepa-
rated into two subproblems that are solved sequentially. This
comparison is conducted for every period t starting from the
first period onward. The first subproblem is concerned with
deciding whether to have backorders on period t and the sec-
ond subproblem is concerned with deciding whether to use
remaining vehicle capacity in period t, if any, to cover future
customer demand.

Backorders can be profitable for two reasons; it is either cheap-
er to pay the backorder cost than the transportation cost, or there
is insufficient capacity in the vehicles to satisfy demand. Let di,t = -
max(di,t � Ii,t�1 + Bi,t�1, 0) be the outstanding demand at customer i
at the beginning of period t, and CD be the set of customers that
have di,t > 0. The following subproblem decides whether to deliver
to customer i in period t or not (zi = 1 or 0, respectively) and the
quantity ri to deliver such that the sum of backorder cost and esti-
mated transportation cost is minimized and vehicle capacity con-
straints are satisfied.

[SUB1] – Backorder decisions subproblem
approaches for the inventory-routing problem with backlogging.
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Min ATCtðXtÞ þ
X
i2CD

piðdi;t � riÞ

Subject to :X
i2CD

ri 6
X
v¼1

qv ð12Þ

ri ¼ di;tzi 8i 2 CD ð13Þ
Xt ¼ ðxit : xit ¼ ri; i 2 CDÞ 8i 2 CD ð14Þ
zi ¼ 0 or 1 8i 2 CD ð15Þ

In SUB1, the objective function is composed of two parts, an
approximation of the transportation costs in period t and backor-
der penalty costs. Both parts are functions of the decision variables
ri. Constraint (12) ensures that we do not exceed the total vehicle
capacity, and constraints Eq. (13) enforce that we deliver the exact
amount of the outstanding demand only to customers included in
the delivery in period t. Constraint Eq. (14) defines the vector of
delivery amounts used in approximating the transportation cost
function.

The main outcome from solving SUB1 is the backorder decisions
evaluated as Bit = di,t for every customer i CD that has zi = 0, and
accordingly wit = 0, in the solution of SUB1. The delivery amounts,
wit, for customers in set CD that have zi = 1 in the solution of SUB1
are not decided yet as future demand requirements may be added.
These decisions are investigated through subproblem SUB2. For
every other customer j CD, wjt = 0, Bjt = 0 and Ijt = Ijt�1 � djt.

Let FD be the set of customers that have zi = 1 in the solution of
SUB1. Consider the integer variable uis to decide whether to deliver
customer i’s demand for period s in the current period t, where
s > t. Let Qr denote the total remaining vehicle capacity, i.e.

Q r ¼
PV
v¼1

qv �
P

i2CD
ri; andletTmax

i be the latest period where customer

i’s demand can be considered without violating its storage capacity

constraint, i.e. Tmax
i ¼min arg max

L

PL
s¼tþ1 dis 6 Ci

� �
; T

� �
�We also

define Tmax ¼maxiðTmax
i Þ.

Let wPL
is be the planned delivery amount for customer i in a fu-

ture period s > t. The values of wPL
is are initially calculated using

the PLNDLV(t + 1) procedure as described in Subsection 4.1 with
a small modification to make sure that for every customer j 2 FD,
initial values of wPL

js ¼ djt . If it is not possible to achieve this condi-
tion in a future period s for customer j 2 FD, Tmax

j is set to s � 1. The
wPL

is values for customers that do not belong to set FD are fixed;
however, the values of wPL

is for customers in set FD change with
the change of the uis decision variables. The following problem de-
cides whether to include future demand for any customer in the
current delivery by minimizing the total transportation and inven-
tory costs and satisfying capacity limits. This part is formulated as
follows:

[SUB2] – Inventory decisions subproblem

Min
XTmax

s¼tþ1

ATCðXsÞ
X
i2FD

XTmax
i

s¼tþ1

½ðs� tÞhidi;s�uis

Subject to :

X
i2FD

XTmax
i

s¼tþ1

disuis 6 Q r ð16Þ

Uis�1 � uis s ¼ t þ 1; . . . ; Tmax
i 8i 2 FD ð17Þ

WPL
is ¼ disð1� uisÞ s ¼ t þ 1; . . . ; Tmax

i 8i 2 FD ð18Þ
Xsðxis : xis ¼ wPL

is ; i ¼ 1; . . . ;NÞ s ¼ t þ 1; . . . ; Tmax ð19Þ
Uis ¼ 0 or 1 � s ¼ t þ 1; . . . ; Tmax

i 8i 2 FD ð20Þ

Constraint Eq. (16) represents the available vehicle capacity limit.
For simplification, the customers’ storage limits are represented
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
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by the time index ðTmax
i Þ, which is computed in advance as

described earlier. The precedence constraints Eq. (17) are added
to represent the fact that future demand in a certain period is to
be considered only if the customer’s preceding period demand is
fulfilled. Constraints Eq. (18) define the relationship between the
future planned delivery amounts for customers in set FD and the
decision variables uis. When the delivery amount in period t
changes, there may be changes in the transportation cost in that
period. The formulation of SUB2 neglects such changes.By solving
SUB2, the delivery amounts for customers in set FD can be calcu-

lated as wit ¼ ri þ
PTmax

i
s¼tþ1 dis uis. Accordingly, the inventory and

backorder decision variables in period t can be easily calculated. Fi-
nally, delivery routes in period t are decided by solving a VRP using
the resulting delivery amounts. The flow chart in Fig. 1 summarizes
the major steps of the proposed heuristic. The following subsection
provides the algorithmic solutions for both subproblems and their
related analyses.
E
D

P
R

O4.3. Solving subproblems

The two subproblems are resource allocation problems in
which the scarce resource is the associated available vehicle
capacity and the main decision variables, zi and uit, are binary
variables. Accordingly, both of them can be solved optimally
using dynamic programming (DP) as described in Taha (1992).
However, with the increase of the problem size, mainly due to
the number of customers and the planning horizon, the DP imple-
mentations suffer from the curse of dimensionality. In this sec-
tion, we present efficient heuristics that can be used instead.
First, we present the following result that characterizes optimal
solutions to subproblem SUB1.

Proposition 2. There is an optimal solution to SUB1 that makes
deliveries to customer i only if the quantity delivered satisfies
ri > ETCiðXtÞ=pi Also, every optimal solution to SUB1 only makes
deliveries if ri > ETCiðXtÞ=pi.

Proof. Assume that in the optimal solution to SUB1, some cus-
tomer i is delivered ri that satisfies ri > ETCiðXtÞ=pi or equivalently
piðdi;t � riÞ þ ATRtðXtÞ � pidi;t þ ATRtðXðiÞt Þ. If we consider the modi-
fied solution obtained by setting zi = ri = 0, then the previous
inequality shows that the modified solution, which is feasible, is
at least as good as the optimal solution. In the case when
ri > ETCiðXtÞ=pi then the modified solution is strictly better. Thus,
the original solution cannot be optimal. h

Proposition 2 gives a necessary condition for the optimality of
the delivery decision made for a specific customer; however, satis-
fying this condition for all customers that have planned deliveries
does not guarantee optimality for the solution of SUB1. Yet, since
backorder decisions are generally not preferable, we will consider
solutions that have this characteristic sufficiently good. We design
the following algorithm that utilizes this rule.

Let DLk = {dl: dl # CD and |dl| = |CD| � k}, where |.| denotes the
size of a set. We define fSUB1(dl) as the objective function value of
subproblem SUB1 when zi = 1 for every customer i 2 dl and zj = 0
for every customer j 2 CD � dl, where dl 2 DLk for some k. If the
vehicle capacity constraint of SUB1 associated with setting zi = 1
for all customers in a set dl is not satisfied, we define fSUB1(dl) =1
.The following list describes the steps of a breadth-first-based heu-
ristic approach that searches for efficient solutions to SUB1.

Procedure SUBALG1

1. Let k = 0 and dlmin = CD;
2. If f SUB1ðdlminÞ–1 and ri � ETCiðXtÞ=pi 8i 2 dlmin then go to 9;
3. For every dl 2 DLkevaluatef SUB1ðdlÞ;
approaches for the inventory-routing problem with backlogging.
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Instantiate and solve subproblem SUB1 to decide the delivery amounts for 
customers in day t and decide whether backorder decisions will be made. 

If t < T, instantiate and solve subproblem SUB2 to decide whether to use the 
remaining vehicle capacity to increase the deliveries decided in day t such 
that future demand requirements are covered. 

t ≤ T 
Yes 

No 

Stop 

Start 

Set day index t=1 

Is there remaining vehicle 
capacity in day t? 

t = t+1

Yes 

No 

Using customers’ decided delivery amounts for day t, wit, calculate the 
inventory and backorder variables, Iit and Bit, and solve a VRP to generate 
feasible vehicle tours. 

Fig. 1. An outline of ETCH.
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C4. Find dls from set DLk that has the minimum fSUB1(dl) selected

from the members of DLk that satisfy the following conditions
(tie-breaking is arbitrary):
a. f SUB1ðdlÞ–1 and ri � ETCiðXtÞ=pi 8i 2 dl;

5. If dls–Ø then let dlmin = dls go to 9;
6. Find dl* from set DLk that has the minimum fSUB1(dl); tie-break-

ing is arbitrary
7. If f SUB1ðdl�Þ < f SUB1ðdlminÞ then let dlmin ¼ dl�;
8. If k < |CD| then let k = k + 1, go to 3;

9. Generate a solution for SUB1 in which deliveries are only
made to customers in set dlmin;

SUBALG1 evaluates the fSUB1(dl) value for every set dl 2 DLk at
values of k = 0,. . .,|CD|. If at some level of k, the condition that
ri > ETCiðXtÞ=pi is satisfied for all i 2 dl, we find an approximate
solution and the algorithm terminates. However, if steps 2, 4 and
5 are removed, the algorithm guarantees that an optimal solution
for SUB1 has been identified.

Subproblem SUB2 can be illustrated graphically. Consider the
sample case for SUB2 illustrated in Fig. 2. The decision variables
uis are represented by directed arcs, where the cost saving associ-
ated with each arc Sis�t ¼ ETCiðXsÞ � ðs� tÞhi dis. A solid vertical
line is drawn to represent the time limit Tmax

i for customer i. Start-
ing from node 0, arcs are to be selected using the order given by
their directions, such that the total cost saving is maximized and
the vehicle capacity constraint is satisfied. We note here that if
one or more arcs in a given period are selected, the saving values
Sis�t of the unselected arcs in the same period will be changed
due to changes in the transportation cost estimates and therefore
have to be recalculated.
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
Computers & Industrial Engineering (2008), doi:10.1016/j.cie.2008.09.0
Inspired by this graphical representation, subproblem SUB2
can be dealt with as precedence constrained knapsack problem
(PCKP) in which the coefficients of the objective function, Sis�t,
are dependent on the decision variables. The PCKP is known to
be NP-hard (Garey & Johnson, 1979); however, Johnson and
Niemi (1983) provide a dynamic programming algorithm for
the PCKP that can solve the problem in a pseudo-polynomial
time, given that the underlying precedence graph is a tree,
which is fortunately a property of SUB2 as can be seen in
Fig. 2.

We present here a simpler algorithm based on a greedy search
that selects the next possible arc (see Fig. 2) that has the maximum
positive saving. This algorithm does not guarantee optimality to
the solution of SUB2; however, it can produce relatively good solu-
tions in polynomial time. The following steps describe the
algorithm.

Procedure SUBALG2

1. Let Dmax = Qr and TD = FD;
2. For every customer i in set TD, Let Dti = 1;
3. Find customer j in set TD that has the largest positive value of
ðETCjXtþDtj

Þ � Dtj hj dj;tþDtj
Þ; If none found then terminate;

4. If Dmax � dj;tþDtj
then

Let Dmax ¼ Dmax � dj;tþDtj
;

Add dj;tþDtj
to customer j’s delivery amount and

updatetransportation cost estimates in period t+Dtj;
Let Dtj = Dtj + 1;
If Dj > Tmax

j then remove customer j from set TD;
End-If
Else remove customer j from set TD;

5. If TD = Ø then terminate; Else go to step 3.
approaches for the inventory-routing problem with backlogging.
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Fig. 2. Graphical illustration of s
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There are two apparent limitations of ETCH. The first is due to
the myopic nature of the decisions conducted. This myopic nature
stems from the strategy used at each period for solving the two
subproblems, as it aims to optimize inventory allocation decisions
at the studied period without considering the impact of such deci-
sions on the optimality of the overall solution. The second limita-
tion is concerned with not allowing for partial fulfillment of
demand, that is exact demand requirements in the current and fu-
ture periods must be considered in the delivery schedule. This may
prevent ETCH from achieving further savings, especially in trans-
portation and backordering costs. To overcome these limitations,
we introduce in this section an improvement heuristic. In this heu-
ristic, transitions from a given solution to its neighborhood are
conducted using the idea of exchanging customers’ delivery
amounts between periods. These delivery exchanges are conducted
through guiding rules that tend to reduce the total cost.
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R5.1. Neighborhood search structure

First, we define in this section a neighborhood search structure
to be used in the developed improvement heuristic. The act of
reducing a customer’s delivery in a given period t and adding the
reduced amount to another period is referred to as delivery ex-
change. If a delivery exchange is made to period s < t, it is referred
to as backward delivery exchange. In this case, there may be an in-
crease in the inventory carrying cost for the customer or a reduc-
tion in backordering cost when a backorder exists in a preceding
period to which the transferred amount is added. A forward deliv-
ery exchange occurs when a delivery exchange is made to period
s > t. In this case, either a reduction in the inventory carrying cost
will be gained or a shortage cost will be incurred depending on the
amount exchanged. A forward delivery exchange may be needed to
create more capacity in period t, which could be more profitable for
other customers’ backward delivery exchanges.

Let ŵi;t!s denote the amount of delivery exchange made from
period t to period s for customer i. Let DICðŵi;t!sÞ represent the
overall change in inventory carrying and shortage costs (positive
if increased) associated with the delivery exchange ŵi;t!s. From
Proposition 1, we know that the reduction (increase) of the deliv-
ery amount made to a specific customer is associated with either
reduction (increase) in the transportation costs or the transporta-
tion costs remain unchanged. Let TCRtðŵi;t!sÞ and TCIsðŵi;t!sÞ de-
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
Computers & Industrial Engineering (2008), doi:10.1016/j.cie.2008.09.0
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Rnote, respectively, the amounts of transportation cost reduction

in period t and the transportation cost increase in period s that will
result from a delivery exchange ŵi;t ! s. By using backward and
forward delivery exchanges, a transition from an incumbent solu-
tion to its neighborhood can be achieved.

A single delivery exchange may not be profitable, yet a combi-
nation of delivery exchanges, applied in a specific sequence, can
lead to a reduction in the total cost. Generally, a better solution
can be obtained by searching for an ordered set of exchanges, DX,
that maximize the resultant cost saving

P
ŵi ;t!seDX TCRtðŵi;t!sÞ�

TCIsðŵi;t!sÞ � DICsðŵi;t!sÞ while maintaining the vehicle and cus-
tomer capacity constraints. The following subsection discusses
some of the guiding rules that can use for this purpose.

5.2. Guidelines for delivery exchanges

For a given solution, the first step in constructing useful delivery
exchanges is to look for reductions to the delivery amounts at a se-
lected period so that savings in transportation costs in that period
can be achieved, and additions of delivery amounts to customers
that have backorders at the end of that period such that their asso-
ciated shortage costs is reduced.

In Proposition 1, it is shown that the reduction in transportation
costs as a result of reducing the delivery amount to a customer oc-
curs at discrete values of the amount reduced. The reason for such
discrete changes is due to changes in the vehicle tours which are
directly related to the usage of vehicle capacities. Therefore, reduc-
tions to delivery amounts that will result in reducing transporta-
tion cost can be determined by studying the relationship
between the total delivery amount and the vehicle capacities. In
the case when there is a backorder decision for a customer in a gi-
ven period, reduction to shortage costs can be achieved by increas-
ing the delivery made to the customer. The amount of increase is
bounded by the total amount of backorder. In this case backward
delivery exchanges from future periods are needed.

After deciding the suitable amounts of delivery reduction and
addition, the next step is to select the mechanism by which the
reduced or added amount can be exchanged to or from another
period (the ordered set of delivery exchanges) such that reduc-
tion in the total cost can be achieved. Abdelmaguid and Dess-
ouky (2006) list a set of different delivery exchange rules that
can be used to effectively guide a neighborhood search algo-
rithm. These rules are adopted here for the developed improve-
ment heuristic.
approaches for the inventory-routing problem with backlogging.
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5.3. The improvement heuristic

The developed improvement heuristic can be considered as a
complementary phase to ETCH in which partial fulfillments of
demand and their associated cost reductions are investigated. Con-
trary to ETCH, the improvement heuristic conducts its iterations
starting from period T backward to period 1. The reasons for such
backward movement is to provide a remedy for the myopic deci-
sions of ETCH. In its search for the best ordered set of delivery
exchanges, the improvement heuristic employs the previously
described delivery exchange rules repeatedly at a given period in
a systematic fashion. We refer to the improvement heuristic as
the Backward Delivery Exchanges Heuristic (BDXH). The following
list describes its main steps.

Procedure BDXH

1. Let s* be the initial solution obtained by ETCH;
2. Let t = T;
3. Let set S1 = {s*} and set S2 = Ø;
4. For every solution in set S1 do

4.1. Let R represent the set of customers that either have
scheduled deliveries or backorders in period t.

4.2. For each customer i in set R find all possible reductions/
additions (Dwit) to the delivery amount of customer i in
which either a transportation cost saving or a reduction
in the shortage cost can be achieved.

4.3. For every possible Dwit found in step 4.2, generate suit-
able delivery exchanges for that amount in period t using
the delivery exchange rules described earlier

4.4. Generate all the resulting neighborhood solutions for the
delivery exchanges found in step 4.3, and add them to set
S2 such that solutions are stored in an increasing order of
their costs and solutions are not repeated. If the allowed
maximum size of set S2 is exceeded, solutions with the
worst costs are eliminated

5. If the cost of the best solution in set S2 is less than the cost of s*,
then let s* be that solution

6. Let S1 = S2, repeat step 4 until there is no further delivery
exchanges in period t that can be made
7.Let t = t – 1, if t > 0 then go to step 3, otherwise STOP. The best
solution found is s*.

The most time consuming part of the BDXH is the generation of
the neighborhood solutions in step 4.4, as a vehicle routing problem
has to be solved for every period in the planning horizon in which a
change in the delivery schedule occurs. The loop conducted in step
4 has a polynomial time complexity that is a function of the maxi-
mum size allowed for set S2. In the conducted experiments this
maximum size is selected to be twice the number of customers.
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6. Experimentation and results

Two versions of ETCH have been implemented. In the first one,
optimal solutions for the two subproblems are generated using a
complete breadth-first search for SUB1 and a dynamic programming
algorithm for SUB2. We refer to this implementation as ETCH-O. The
second version uses the provided breadth-first heuristic for SUB1
and the greedy-search algorithm for SUB2, and is referred to as
ETCH-H. The improvement heuristic is then applied using the initial
solutions generated by each version of ETCH. Accordingly, we refer
to the results obtained by the improvement heuristic as BDXH-O
and BDXH-H depending on the initial solution used. These heuristics
are programmed and compiled using Borland C++ Builder version 3
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and benchmarked against the lower and upper bounds obtained by
AMPL-CPLEX 8.1 running under an Intel Pentium 4 processor run-
ning with a clock speed of 2.40 GHz with 1GB RAM.

6.1. Experimental design

First, we consider two different scenarios to examine the effec-
tiveness of the developed heuristics under different circumstances.
These scenarios simulate the integrated inventory-distribution
decisions faced by manufacturing companies that deal with small
number of customers, each located in a different major city. An
example for similar cases in the literature can be found in Fumero
and Vercellis (1999).

The first scenario is designed to test the quality of the inventory
holding decisions of ETCH; while, in the second one, some param-
eters are tuned to provide conditions in which backorder decisions
are economical, so that the backorder decisions of the ETCH are as-
sessed. The main factors that are controlled to produce such cases
are the ratio of the available vehicle capacity to the average daily
demand by customers, the average unit shortage cost and the
transportation cost per unit distance.

In both scenarios, customers are allocated in a square of 20 � 20
distance units and their coordinates are generated using a uniform
distribution within these limits. The depot is located in the middle
of the square. Customers’ unit holding costs are generated using a
normal distribution with a mean of 0.1 and a standard deviation of
0.02, and each customer has a storage capacity of 120 items. A con-
stant value of 10 for the vehicle usage cost (fvt) is used.

In the first scenario, the transportation cost per unit distance is
set to 1, the customers’ unit shortage costs are generated using a
normal distribution with a mean of 5 and a standard deviation of
0.5, and the customers’ demands are generated using a uniform
distribution from 25 to 50 items per day. In the second scenario,
we set the parameter values so it is optimal to carry backorders.
In this scenario, the transportation cost per unit distance is set to
2, the customers’ unit shortage costs are generated using a normal
distribution with a mean of 3 and a standard deviation of 0.5, and
the customers’ demands are generated using a uniform distribu-
tion from 5 to 50 items per day.

For each scenario, sixty problems have been generated by vary-
ing the number of customers (N), the number of planning periods
(T) and the number of homogenous vehicles (V). We generate three
levels of N (5), (10), and (15), two levels of T (5) and (7), and two lev-
els of V (1) and (2). For each problem setting defined by a combina-
tion of N, T, and V, we randomly generate five problems. The total
vehicle capacity in the first scenario is selected to be fixed at 500,
1000, and 1500 for each level of N, respectively. In the second sce-
nario, the selected total vehicle capacities are 150, 300, and 450.

The naming convention used for the test problems starts with a
number that refers to the scenario. After a hyphen, two digits are
assigned for the number of customers, followed by a digit repre-
senting the length of the planning horizon. The next digit repre-
sents the number of vehicles. Finally, the replicate number is
given at the last digit after a hyphen. Thus, the problem 1-0551-
1 represents the first replicate of the first scenario with 5 custom-
ers, a planning horizon of 5 periods and 1 vehicle.

6.2. Results and discussion

The detailed experimental results are listed in Tables 3 and 4
in the Appendix A. These tables list the cost components of solu-
tions obtained by each version of the constructive and improve-
ment heuristics along with the CPLEX lower and upper bounds.
An * next to the lower bound in the tables indicates that CPLEX
was able to find the optimal solution within the one hour time
limit.
approaches for the inventory-routing problem with backlogging.
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Table 1
Average computational times (in minutes) for the developed heuristics

N T V # Binary variables First scenario Second scenario

ETCH-O BDXH-O ETCH-H BDXH-H ETCH-O BDXH-O ETCH-H BDXH-H

5 5 1 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 7 1 210 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
5 5 2 300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 7 2 420 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 1 550 0.00 0.15 0.00 0.18 0.01 0.00 0.00 0.00
10 7 1 770 0.00 0.25 0.00 0.22 0.01 0.01 0.00 0.01
10 5 2 1100 0.00 0.05 0.00 0.07 0.00 0.00 0.00 0.00
10 7 2 1540 0.05 0.35 0.00 0.64 0.18 0.02 0.00 0.02
15 5 1 1200 0.26 1.85 0.00 2.38 0.20 0.04 0.00 0.05
15 7 1 1680 0.65 5.48 0.00 7.35 0.14 0.16 0.00 0.12
15 5 2 2400 0.22 0.75 0.00 0.94 0.10 0.08 0.00 0.05
15 7 2 3360 0.56 1.95 0.00 2.51 0.21 0.09 0.00 0.07

Table 2
Average results for the third scenario problems

N T V # Binary
variables

CPLEX UB LB
diff%

ETCH-H BDXH-H

LB
diff%

Time
(min)

LB
diff%

Time
(min)

20 7 2 5880 75.91 34.16 0.00 28.87 0.54
25 7 2 9100 126.39 37.10 0.00 31.26 1.31
30 7 2 13020 200.84 39.83 0.01 34.47 3.33
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The percentage differences between the total cost obtained by
each heuristic and the lower bound are used as performance indi-
cators. The percentage difference, also referred to as optimality
gap, is calculated by taking the ratio of the difference between
the heuristic’s total cost and the lower bound to the lower bound.
A comparison against the lower bound provides a measure of
deviation from optimality. The CPLEX upper bound in a maximum
of one-hour running time is used as an alternate heuristic and its
percentage difference against the lower bound is similarly
calculated.

For each problem setting, the average of the percentage differ-
ences of the 5 replicates is calculated and plotted against the num-
ber of binary variables of that setting as shown in Fig. 3 and 6.
Table 1 summarizes the average computational time of the devel-
oped heuristics for each problem set in both scenarios.

As shown in Figs. 3 and 4, the combined constructive and
improvement heuristics outperform the CPLEX upper bound for in-
stances with ten customers and more in the first scenario and 15
customers in the second scenario. While the growth of the CPLEX
optimality gap seems to be exponential with the increase of the
number of binary variables, the optimality gap for the developed
heuristics is below 30% on average and remains almost level with
the increase of the number of binary variables.

In the first scenario, the ETCH-O version of the constructive
heuristic is on average 2% closer to the lower bound than ETCH-
H. However, after applying the improvement heuristic on both ver-
sions this difference reduces to only 0.4%. In the second scenario,
this difference is 1% and slightly increases with the application of
the improvement heuristic to 1.25%.

Reductions to the total cost as a result of applying the improve-
ment heuristic are evident. In the first scenario the improvement
heuristic provides reductions in the optimality gap of 6.1% and
7.7% on average over solutions generated by ETCH-O and ETCH-
H, respectively. While in the second scenario, these figures are
4% and 3.8%, respectively.

In the case of small problem instances of 150 and 210 binary
variables, for which CPLEX was able to find optimal solutions
within the one-hour time limit, we can see that the improvement
Please cite this article in press as: Abdelmaguid, T. F., et al., Heuristic
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Oheuristic can reach a relatively good optimality gap of less than
1% in the case of 150 binary variables and less than 5% for the
case of 210 binary variables for the first scenario problems. These
figures are higher in the case of the second scenario problems.
However for larger problem instances, it is hard to judge the
quality of the lower bounds obtained by CPLEX, and so the opti-
mality gaps obtained can not give a clear cut measure of how far
the results obtained by the developed heuristics are from the
optimal solutions.

The computational time for ETCH-H is found to be less than one
second in all the cases tested. For ETCH-O, due to the dynamic pro-
gramming part of the algorithm, the computational time increases
with the increase of the problem size; however on average, it has
not reached the 90 seconds limit in all problem sets. The increase
of computational time of ETCH-O is mostly attributed to the in-
crease in both N and T; while, the number of vehicles, V, does
not seem to have a significant effect on computational time. The
computational time of the improvement heuristic seems to in-
crease at a higher rate with the increase of the problem size in
the first scenario as compared to the second one. We attribute this
to the increase of the ratio of the total vehicle capacity to the aver-
age daily customers’ demand, which increases the number of pos-
sible delivery exchanges and neighborhood solutions generated at
each iteration of BDXH.

From the previous results we conclude the following. The ETCH-
O version of the constructive heuristic is capable of generating
slightly better solutions compared to ETCH-H with up to 2% differ-
ence on average in the optimality gap. However, with the increase
of the problem size, especially the number of customers and the
number of planning periods, the computational time of ETCH-O
will be significantly higher than the computational time of ETCH-
H. The consideration of partial fulfillment of demand and the
mechanism of delivery exchanges implemented by the improve-
ment heuristic seem to offer improvements to the optimality gap
that can reach more than 3.8% on average. However, the computa-
tional time of BDXH will be considerably higher with the increase
of the ratio between vehicle capacity and the average customers
demand per period.

6.3. Experimental results for larger problem instances

To investigate the performance of the developed heuristics with
larger problem sizes, we construct an additional experimental set
based on a third scenario. In this scenario, medium vehicle capacity
to average daily demand ratio is used such that a situation in the
middle of the first two extreme scenarios is addressed. This sce-
nario considers similar parameters as in the second one with some
modifications to reduce the frequency in which backorder deci-
sions are needed. The main difference between the parameters
approaches for the inventory-routing problem with backlogging.
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Table 3
Detailed costs for the first scenario problems

Problem CPLEX bounds ETCH-O BDXH starting with ETCH-O ETCH-H BDXH starting with ETCH-H

UB LB Hold Short Transp Total Hold Short Transp Total Hold. Short. Transp Total Hold Short Transp Total

1-0551-1 205.84 205.84* 71.84 0 134 205.84 71.84 0 134 205.84 64.6 0 146 210.6 79.54 0 128 207.54
1-0551-2 150.74 150.74* 45.74 0 105 150.74 45.74 0 105 150.74 54.94 0 98 152.94 54.94 0 98 152.94
1-0551-3 186.6 186.6* 47.64 0 154 201.64 48.6 0 138 186.6 54.36 0 151 205.36 48.6 0 138 186.6
1-0551-4 200.8 200.8* 59.18 0 146 205.18 58.3 0 146 204.3 59.34 0 165 224.34 58.3 0 146 204.3
1-0551-5 184.8 184.8* 53.85 0 136 189.85 49.35 0 136 185.35 58.89 0 132 190.89 49.35 0 136 185.35

1-0571-1 278.96 278.96* 64.59 0 238 302.59 70.81 0 211 281.81 83.55 0 220 303.55 79.14 0 203 282.14
1-0571-2 268.68 268.68* 84.04 0 219 303.04 70.98 0 202 272.98 103.1 0 215 318.1 101.1 0 181 282.1
1-0571-3 273.07 273.07* 85.8 0 225 310.8 76.4 0 198 274.4 93.29 0 220 313.29 75.07 0 198 273.07
1-0571-4 312.25 312.25* 80.49 0 269 349.49 80.49 0 269 349.49 80.49 0 269 349.49 80.49 0 269 349.49
1-0571-5 310.98 310.98* 77.76 0 266 343.76 86.04 0 228 314.04 111.85 0 237 348.85 96.4 0 222 318.4

1-0552-1 212.41 205.11 50.99 0 194 244.99 43.69 0 178 221.69 50.99 0 194 244.99 43.69 0 178 221.69
1-0552-2 254.28 254.28* 56.94 0 231 287.94 69.28 0 185 254.28 63.98 0 205 268.98 69.28 0 185 254.28
1-0552-3 220.86 220.86* 87.56 0 178 265.56 59.98 0 164 223.98 64.83 0 189 253.83 50.26 0 178 228.26
1-0552-4 250.35 250.35* 72.83 0 182 254.83 72.83 0 182 254.83 72.83 0 182 254.83 72.83 0 182 254.83
1-0552-5 235.09 233.33 59.92 0 186 245.92 59.92 0 186 245.92 59.92 0 186 245.92 59.92 0 186 245.92

1-0572-1 319.22 302.88 88.47 0 282 370.47 102.24 0 246 348.24 106.61 0 273 379.61 87.38 0 249 336.38
1-0572-2 289.15 274.02 84.54 0 234 318.54 85.33 0 205 290.33 111.25 0 213 324.25 91.67 0 218 309.67
1-0572-3 270.66 253.78 77.79 0 258 335.79 59.71 0 212 271.71 70.85 0 229 299.85 70.85 0 229 299.85
1-0572-4 278.68 258.79 84.27 0 212 296.27 76.57 0 214 290.57 79.25 0 220 299.25 72.79 0 214 286.79
1-0572-5 292.03 271.68 81.6 0 227 308.6 81.6 0 227 308.6 80.44 0 234 314.44 68.91 0 239 307.91

1-1051-1 327.09 306.82 111.09 0 233 344.09 108.97 0 218 326.97 111.09 0 233 344.09 108.97 0 218 326.97
1-1051-2 286.17 251.17 82.76 0 203 285.76 93.41 0 183 276.41 69 0 223 292 81.6 0 196 277.6
1-1051-3 300.69 295.9 91.18 0 210 301.18 90.69 0 210 300.69 27.94 0 322 349.94 90.69 0 210 300.69
1-1051-4 291.13 260.2 80.72 0 222 302.72 90.09 0 192 282.09 93.32 0 208 301.32 88.13 0 192 280.13
1-1051-5 269.47 218.9 76.31 0 180 256.31 69.63 0 180 249.63 19.73 0 272 291.73 69.63 0 180 249.63

1-1071-1 451.45 413.73 149.91 0 350 499.91 142.84 0 309 451.84 169.67 0 318 487.67 139.26 0 316 455.26
1-1071-2 454.86 374.32 128.26 0 327 455.26 132.2 0 288 420.2 151.68 0 296 447.68 124.21 0 312 436.21
1-1071-3 495.2 410.98 159.74 0 360 519.74 130.65 0 337 467.65 168.99 0 345 513.99 169.01 0 299 468.01
1-1071-4 489.67 428.21 134.76 0 352 486.76 142.4 0 319 461.4 123.09 0 383 506.09 149.44 0 313 462.44
1-1071-5 399.07 370.35 142.91 0 258 400.91 142.91 0 258 400.91 128.7 0 282 410.7 130.96 0 267 397.96

1-1052-1 325.57 268.63 67.56 0 255 322.56 67.56 0 255 322.56 72.96 0 251 323.96 67.56 0 255 322.56
1-1052-2 376.66 296.12 94.05 0 241 335.05 94.05 0 241 335.05 88.35 0 269 357.35 90.95 0 250 340.95
1-1052-3 326.41 268.99 83.89 0 255 338.89 105.27 0 205 310.27 49.51 0 335 384.51 56.93 0 259 315.93
1-1052-4 367.04 295.17 85.23 0 289 374.23 84.05 0 262 346.05 63.42 0 290 353.42 73.25 0 273 346.25
1-1052-5 342.21 264.07 104.29 0 206 310.29 125.73 0 183 308.73 72.61 0 253 325.61 110.97 0 199 309.97

1-1072-1 637.37 401.1 154.82 0 312 466.82 135.28 0 328 463.28 149.97 0 351 500.97 152.77 0 319 471.77
1-1072-2 690.6 466.94 159.73 0 413 572.73 178.22 0 351 529.22 126.52 0 436 562.52 137.73 0 404 541.73
1-1072-3 508.91 367.88 145.7 0 325 470.7 91.5 0 340 431.5 114.39 0 342 456.39 137.14 0 294 431.14
1-1072-4 551.38 413.52 130.69 0 400 530.69 125.02 0 366 491.02 74.34 0 453 527.34 104.77 0 396 500.77
1-1072-5 531.64 392.88 117.72 0 358 475.72 137.84 0 317 454.84 103.68 0 441 544.68 128.6 0 327 455.6

1-1551-1 458.73 337.92 140.23 0 264 404.23 133.05 0 271 404.05 99.2 0 324 423.2 153.54 0 249 402.54
1-1551-2 414.62 294.14 115.54 0 237 352.54 131.76 0 218 349.76 57.97 0 317 374.97 113.54 0 237 350.54
1-1551-3 430.06 319.32 94.82 0 296 390.82 130.4 0 254 384.4 77.23 0 321 398.23 130.4 0 254 384.4
1-1551-4 420.33 314.08 111.04 0 258 369.04 109.88 0 258 367.88 86.94 0 300 386.94 109.88 0 258 367.88
1-1551-5 425.91 315.85 96.84 0 280 376.84 121.22 0 248 369.22 58.79 0 340 398.79 140.36 0 234 374.36

1-1571-1 733.36 452.81 159.71 0 414 573.71 180.57 0 343 523.57 43.7 0 551 594.7 180.57 0 343 523.57
1-1571-2 654.56 454.07 139.81 0 417 556.81 194.99 0 332 526.99 125.1 0 453 578.1 194.99 0 332 526.99
1-1571-3 553.61 405.71 179.02 0 304 483.02 179.02 0 304 483.02 18.59 0 511 529.59 179.02 0 304 483.02
1-1571-4 649.16 469.47 200.88 0 365 565.88 196.69 0 345 541.69 158.27 0 425 583.27 203.57 0 345 548.57
1-1571-5 666.62 440.91 182.4 0 378 560.4 176.48 0 336 512.48 116.19 0 440 556.19 176.48 0 336 512.48

1-1552-1 667.69 357.51 174.33 0 297 471.33 130.58 0 309 439.58 91.42 0 344 435.42 112 0 316 428
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used in the third scenario as compared to the second one is that
the travel cost per unit distance is set to 1 and customers daily de-
mand is generated using a uniform distribution between 0 and 25.
We consider three different levels of the number of customers, N:
20, 25, and 30, and a total vehicle capacity of 300, 350, and 400 at
each level of N, respectively. We only consider one level for both T
and V at 7 and 2, respectively. Five random replicates are gener-
ated at each level of N. We use the previously defined naming con-
vention for the third scenario problems.

The detailed cost results for the third scenario problems are
shown in Table 5 in the Appendix A. CPLEX lower and upper
bounds are obtained after a running time of three hours. Due to
the inability of the optimization routines to find solutions for the
two subproblems for these large problem instances, we only ran
the heuristic versions, ETCH-H and BDXH-H. The average cost
and time results for the ETCH-H version and the improvement
heuristic BDXH-H are shown in Table 2.

We can see that the rate of increase of the heuristics optimality
gaps is almost constant with the increase of the number of cus-
tomers. When we compare this with the exponential rate of in-
crease for the CPLEX upper bound percentage difference, we can
see the potential benefit of the developed constructive and
improvement heuristics for larger problem sizes. In terms of com-
putational time, the ETCH-H version of the constructive heuristic
remains below one second for larger problems with up to 30 cus-
tomers; while, the improvement heuristic has an increasing com-
putational time.

7. Conclusion and future work

This article addressed the inventory routing problem with
backlogging in which multiperiod vehicle routing and inventory
holding and backlogging decisions for a set of customers are to
be made. We considered an environment in which the demand
at each customer is relatively small compared to the vehicle
capacity, and the customers are closely located such that a con-
solidated shipping strategy is appropriate. We presented a con-
structive heuristic based on the idea of allocating single
transportation cost estimates for each customer. Two subprob-
lems, comparing inventory holding and backlogging decisions
with these transportation cost estimates, are formulated and
their solution methods are incorporated in the developed heuris-
tic. The main idea behind the constructive heuristic as seen in the
formulation of the two subproblems is to consider only delivery
plans in which fulfillment of part of the current or the future de-
mand requirements in a currently studied period is not allowed.
An improvement heuristic is developed to overcome some of the
limitations of the constructive heuristic. This improvement heu-
ristic is based on the idea of exchanging delivery amounts be-
tween periods to allow for partial fulfillments of demands and
exploit associated reductions in costs. A mixed integer program-
ming formulation is provided and used to obtain lower and upper
bounds using AMPL-CPLEX to assess the performance of the
developed heuristics.

For small sized problems with up to 15 customers, the experi-
mental results show that the developed constructive heuristic
can achieve solutions that are on average not farther than 30%
from the optimal in a few minutes. This figure can be reduced to
25% by applying the improvement heuristic which shows the sig-
nificance of allowing partial fulfillment of demand. With the in-
crease of problem size, the optimality gap of the developed
heuristics increases with almost a constant rate and results can
be obtained in a few minutes. This shows the potential benefit of
the developed heuristics for larger problem sizes.

The studied problem and the developed heuristic approaches
can give insights for solving other problems in the manufacturing
approaches for the inventory-routing problem with backlogging.
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Table 4
Detailed costs for the second scenario problems

Problem CPLEX bounds ETCH-O BDXH starting with ETCH-O ETCH-H BDXH starting with ETCH-H

UB LB Hold Short Transp Total Hold Short Transp Total Hold. Short. Transp Total Hold Short Transp Total

2-0551-1 649.8 649.8* 4.44 430.44 387 821.88 12.54 310.7 387 710.24 8.34 350.82 387 746.16 12.66 300.62 387 700.28
2-0551-2 468 468* 5.46 54.81 477 537.27 10.86 0 489 499.86 5.46 54.81 477 537.27 10.86 0 489 499.86
2-0551-3 400 400* 7.56 79.3 377 463.86 4.74 42.7 388 435.44 7.56 79.3 377 463.86 4.74 42.7 388 435.44
2-0551-4 475.29 475.29* 5.11 19.84 451 475.95 5.11 19.84 451 475.95 5.11 19.84 451 475.95 5.11 19.84 451 475.95
2-0551-5 426.01 426.01* 6.75 132.06 394 532.81 8.35 33.66 408 450.01 8.43 132.06 394 534.49 8.55 33.66 408 450.21

2-0571-1 522.97 522.97* 19.65 0 621 640.65 20.55 0 615 635.55 26.2 22.8 609 658 26.2 22.8 609 658
2-0571-2 557.89 557.89* 7.91 198.69 439 645.6 8.63 169.19 442 619.82 7.91 198.69 439 645.6 8.63 169.19 442 619.82
2-0571-3 434.86 434.86* 12.86 43.6 458 514.46 17.32 37.06 444 498.38 12.86 43.6 458 514.46 17.32 37.06 444 498.38
2-0571-4 536.42 536.42* 22.7 67.15 567 656.85 24 41.25 567 632.25 26.32 48.75 571 646.07 30.74 48.75 562 641.49
2-0571-5 498.08 498.08* 12.62 33.6 536 582.22 12.62 33.6 536 582.22 13.72 33.6 536 583.32 12.62 33.6 536 582.22

2-0552-1 522.82 509 11.53 0 553 564.53 11.53 0 553 564.53 11.53 0 553 564.53 11.53 0 553 564.53
2-0552-2 940.47 933.76 0 545.04 495 1040.04 0.2 533.94 496 1030.14 1.2 569.23 482 1052.43 1.2 564.93 485 1051.13
2-0552-3 512.44 497.98 20.54 54.36 550 624.9 21.53 14.52 574 610.05 20.54 54.36 550 624.9 21.53 14.52 574 610.05
2-0552-4 537.37 519.91 9.99 137.86 545 692.85 7.02 135.4 501 643.42 9.99 137.86 545 692.85 7.02 135.4 501 643.42
2-0552-5 553.2 536.52 5.7 0 614 619.7 5.7 0 614 619.7 5.7 0 614 619.7 5.7 0 614 619.7

2-0572-1 828.6 789.04 5.81 50.58 914 970.39 6.2 0 902 908.2 5.81 50.58 914 970.39 6.2 0 902 908.2
2-0572-2 988.31 943.43 11.4 108.64 939 1059.04 7.88 69.84 949 1026.72 11.4 108.64 939 1059.04 7.88 69.84 949 1026.72
2-0572-3 864.23 793.38 6.63 52.5 872 931.13 6.51 7.5 883 897.01 6.63 52.5 872 931.13 6.51 7.5 883 897.01
2-0572-4 786.53 738.55 12.92 119 845 976.92 11.96 119 806 936.96 12.92 119 845 976.92 11.96 119 806 936.96
2-0572-5 771.35 728.76 12.06 163.6 812 987.66 11.09 61.8 844 916.89 31.15 91.08 837 959.23 21.51 61.8 848 931.31

2-1051-1 528.69 509.59 24.93 0 549 573.93 24.11 0 546 570.11 24.67 0 554 578.67 26.51 0 541 567.51
2-1051-2 487.7 423.78 47.26 0 448 495.26 47.26 0 448 495.26 47.26 0 448 495.26 47.26 0 448 495.26
2-1051-3 724.13 660.23 2.8 238.36 548 789.16 3.55 196.5 550 750.05 2.25 240.18 550 792.43 3.55 215.19 550 768.74
2-1051-4 456 445.86 21.22 0 442 463.22 21.22 0 442 463.22 19.12 0 452 471.12 19.12 0 452 471.12
2-1051-5 591.03 546.62 26.37 42.42 560 628.79 27.72 39.39 544 611.11 19.26 42.42 576 637.68 19.26 39.39 579 637.65

2-1071-1 784.36 728.48 32.39 64.25 729 825.64 32.39 64.25 729 825.64 28.49 64.25 738 830.74 27.29 64.25 739 830.54
2-1071-2 842.4 730.1 35.37 37.68 752 825.05 35.37 37.68 752 825.05 37.67 37.68 744 819.35 37.67 37.68 744 819.35
2-1071-3 748.65 668.8 24.75 0 778 802.75 33.39 0 763 796.39 46.51 0 699 745.51 52.39 0 691 743.39
2-1071-4 897.24 799.72 37.7 45.23 889 971.93 44 45.23 874 963.23 43.42 45.23 877 965.65 49.52 45.23 858 952.75
2-1071-5 763.69 712.32 28.72 139.52 730 898.24 29.57 72.67 754 856.24 37.45 139.52 721 897.97 30.61 139.52 726 896.13

2-1052-1 829.24 758.39 8.42 117.65 748 874.07 6.62 117.65 730 854.27 11.97 157.45 745 914.42 7.92 157.45 736 901.37
2-1052-2 676.22 566.94 35.34 0 662 697.34 33.14 0 641 674.14 36.24 0 704 740.24 34.56 0 640 674.56
2-1052-3 759.4 659.22 19.84 60.68 727 807.52 21.14 47.6 727 795.74 21.14 60.68 715 796.82 21.14 47.6 727 795.74
2-1052-4 630.89 509.46 26.17 0 669 695.17 23.28 0 658 681.28 26.8 0 667 693.8 23.28 0 658 681.28
2-1052-5 799.24 718.07 3 140.88 727 870.88 4.56 81.55 741 827.11 3 140.88 727 870.88 4.56 81.55 741 827.11

2-1072-1 955.63 808.46 37.19 47.79 934 1018.98 35.94 37.24 893 966.18 43.3 105.63 862 1010.93 33.42 53.26 902 988.68
2-1072-2 1266.9 1029.21 31.53 137.62 1135 1304.15 31.74 131.92 1107 1270.66 31.53 137.62 1135 1304.15 31.74 131.92 1107 1270.66
2-1072-3 1037.6 857.06 45.14 48.06 1015 1108.2 51.35 48.06 948 1047.41 54.36 35.49 1028 1117.85 53.49 24.03 1001 1078.52
2-1072-4 1135.9 896.78 39.79 76.06 1062 1177.85 36.1 63.9 1056 1156 50.18 100.64 1012 1162.82 42.62 97.92 962 1102.54
2-1072-5 938.11 750.97 27.41 65.36 877 969.77 30.66 24.08 864 918.74 20.89 73.6 922 1016.49 25.13 12.88 923 961.01

2-1551-1 823.1 736.42 22.01 66.91 716 804.92 63.86 22.1 716 801.96 22.29 66.91 738 827.2 63.86 19.98 738 821.84
2-1551-2 781.1 725.42 6.8 0 779 785.8 6.8 0 779 785.8 12.67 0 767 779.67 12.02 0 763 775.02
2-1551-3 800.63 666.94 20.19 115.65 623 758.84 20.74 95.09 628 743.83 21.34 115.65 675 811.99 18.67 110.51 673 802.18
2-1551-4 739.67 608.49 39.51 0 672 711.51 39.51 0 672 711.51 38.72 0 690 728.72 34.32 0 693 727.32
2-1551-5 1012.9 971.66 3.8 273.47 809 1086.27 6.52 223.09 810 1039.61 2.24 338.2 822 1162.44 2.24 338.2 822 1162.44

2-1571-1 1095.1 747.3 114.14 0 756 870.14 114.14 0 756 870.14 100.39 0 882 982.39 87.69 0 879 966.69
2-1571-2 1097.7 660.8 38.31 0 857 895.31 51.67 0 824 875.67 81.34 0 819 900.34 91.32 0 776 867.32
2-1571-3 1217.2 800.45 94.91 0 929 1023.91 99.49 0 908 1007.49 112.1 26.59 919 1057.69 105.27 6.88 923 1035.15
2-1571-4 1095.3 803.99 81.7 0 930 1011.7 80.01 0 928 1008.01 77.02 0 971 1048.02 74.07 0 950 1024.07
2-1571-5 1383.8 1130.8 27.74 267.13 990 1284.87 27.92 260.69 990 1278.61 30.25 281.01 1014 1325.26 26.23 263.72 1024 1313.95

2-1552-1 924.1 620.96 39.04 14.6 804 857.64 41.15 14.6 747 802.75 56.44 14.6 751 822.04 53.81 14.6 739 807.41
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industry that have wider scope. The integration of manufacturing
and logistic decisions at the operational planning level, as found
in Chandra and Fisher (1994), Fumero and Vercellis (1999) and
Lei, Liu, Ruszczynski, and Park (2006), is a good example of one
such problem.
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Appendix A. Appendix

A.1. An illustration of the subtour elimination mechanism in the
developed MILP model

To illustrate the role of constraints Eq. (4) in eliminating sub-
tours in the proposed MILP model, let us start with an MILP model
for the IRPB that does not contain constraints Eq. (4) and call it
IRPB-(4). Consider a case in which there is only one vehicle and
three customers. Then, constraint Eq. (5) can be rewritten as
follows:

X3

l¼0
l–i

y1
lit �

X3

k¼0
k–i

y1
ikt ¼ dit � Iit�1 þ Bit�1 þ Iit � Bit

i ¼ 1; . . . ;3 and t ¼ 1; . . . ; T ð21Þ

The right-hand-side of the above equation represents the
amount that will be delivered to customer i in period t. Let us de-
note this quantity by 1it . Notice that 1it is unrestricted in sign since
constraints Eq. (4) are excluded. Let us consider one time period
and let us drop the indexes for both the time period and the vehicle
for brevity. Then, the above equation is reduced to:

X3

l¼0
1–i

yli �
X3

k¼0
k–i

yik ¼ 1i i ¼ 1; . . . ;3 ð22Þ

The above equation is quite familiar in network flow models as
it is equivalent to saying that the difference between the amount of
inflow and the amount of outflow to and out of node i equals the
quantity delivered to that node. Now, let us consider a simple
numerical example in which 11 = 2, 12 = �5 and 13 = 3. Fig 5(a)
illustrates one feasible vehicle tour for this case that satisfies all
the vehicle routing constraints of IRPB-(4), yet it contains the sub-
tour 1-2-3-1.

Notice that constraints Eq. (4) are non-negativity constraints for
the delivery quantities 1i which when added to the MILP model we
would not obtain a negative value for 12. The two feasible vehicle
tours illustrated in Fig. 5(b) and (c) represent two different feasible
solutions when the value of 12 equals zero and greater than zero,
respectively. Based on the required delivery quantities 11, 12, and
13, the values for the continuous variables yij will be determined
as required by constraints Eq. (5), which in turn will force the bin-
ary decision variables xij to take the value of one as necessitated by
constraints Eq. (3). Accordingly, new arcs will be added to the vehi-
cle tour, which in turn must satisfy constraints Eq. (1) and (2). It
can be easily shown that the subtour 1-2-3-1 in both cases shown
in Fig. 5(b) and (c) can not occur, for otherwise constraints Eq. (1)
and (2) will be violated. This logic can be easily extended for the
case of more than one vehicle.

Furthermore, for the cases in which nodes (o1, o2,. . ., oN)
have zero delivery quantities, subtours that come in the form
o1�ox�. . .�o1 would not be efficient since an additional unnec-
essary transportation cost associated with the their arcs will be
added.

From the above analysis, It is evident that constraints Eq.
(4) which mandates that the quantity delivered to any node
by a given vehicle should be greater than or equal to zero is
necessary for eliminating subtours in the developed MILP
model.
approaches for the inventory-routing problem with backlogging.
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Fig. 3. Average percentage differences against lower bounds for the first scenario problems.
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Fig. 4. Average percentage differences against lower bounds for the second scenario problems.

Table 5
Detailed costs for the third scenario problems

Problem CPLEX bounds ETCH-H BDXH starting with ETCH-H

UB LB Hold Short Transp Total Hold Short Transp Total

3-2072-1 892.42 510.34 64.76 26.88 605 696.64 61.52 5.34 605 671.86
3-2072-2 811.23 467.85 73.5 6.1 580 659.6 66.73 6.1 552 624.83
3-2072-3 802.6 495.58 75 10.63 597 682.63 55.62 0 593 648.62
3-2072-4 890.79 473.97 80.73 3.08 556 639.81 78.41 3.08 531 612.49
3-2072-5 1175.38 647.95 14.3 2.95 764 781.25 13.51 2.95 755 771.46

3-2572-1 1265.5 570.43 58.96 6.26 684 749.22 51.28 0 668 719.28
3-2572-2 1295.92 613.47 72.77 17.14 743 832.91 77.42 17.14 701 795.56
3-2572-3 1347.05 608.41 52.53 8.78 760 821.31 52.97 6.24 738 797.21
3-2572-4 1411.5 566.68 69.38 17.46 701 787.84 69.19 7.68 695 771.87
3-2572-5 1280.35 560.61 71.9 3.47 734 809.37 73.33 0 674 747.33

3-3072-1 1823 570.69 51.05 16.25 781 848.3 48.52 16.25 743 807.77
3-3072-2 1739.72 596.14 55.4 6.18 766 827.58 53.77 6.18 729 788.95
3-3072-3 1981.65 653.8 51.16 0 883 934.16 42.61 0 851 893.61
3-3072-4 1794.65 653.37 50.61 10.47 827 888.08 43.48 0 814 857.48
3-3072-5 2138.36 678.46 31.59 0 870 901.59 29.75 0 856 885.75
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(a)  A subtour satisfying all constraints except 
constraint (4) 
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(b)  The effect of constraint (4) in eliminating the 
subtour when 2ς  = 0 
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(c)  The effect of constraint (4) in eliminating the 
subtour when 2ς  > 0 

y03 = 9 

y20 = 0 

y23 = 0 

Fig. 5. Illustration of subtour elimination by constraints Eq. (4).
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