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a b s t r a c t

Infectious disease outbreaks, caused by nature or bioterrorism, are unfortunately very real threats to the
general population. Planning an effective response to an infectious disease outbreak requires a coordi-
nated effort in multiple locations to best allocate the limited resources. This decision problem is further
complicated by the non-linear nature of disease propagation and the fact that outbreaks can jump urban,
even national, boundaries. In this work we present a multi-city resource allocation model to distribute a
limited amount of vaccine in order to minimize the total number of fatalities due to a smallpox outbreak.

The model decides the amount of limited supplies to deliver and which infection control measure (iso-
lation, ring, or mass vaccination) to use in each location in order to decrease the number of fatalities. The
proposed model approximates the disease propagation dynamics in order to represent the problem as a
mixed integer programming problem. Furthermore we develop an efficient heuristic to solve the result-
ing large scale mixed integer programming problem. Our results analyze the quality of the approximate
disease propagation model and the efficiency of the heuristic algorithm. We also conduct a case study
applying the multi-city model in planning an emergency response to a hypothetical national smallpox
outbreak, which shows the possibility of saving a significant number of lives compared with a prorated
allocation policy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Infectious disease outbreaks caused by nature or bioterrorism
are unfortunately very real threats to the general population. A re-
cent example of an epidemic outbreak is the swine flu (H1N1) that
spread quickly around the world in 2009. Other examples include
SARS during 2002–2003 and the appearance of avian flu events
since 2004. The SARS outbreak highlighted the massive impact of
such emergencies on society. The disease caused 8096 known in-
fected cases and 774 fatalities (a case-fatality rate of 9.6%) (World
Health Organization, 2004). These examples show that massive
infectious disease outbreaks can indeed occur naturally. An exam-
ple of infectious disease outbreak due to a deliberate exposure be-
cause of terrorism was the 2001 anthrax attacks in the United
States. In the past, terrorists have shown their willingness to select
transportation networks such as buses, trains, and airplanes as tar-
gets. These networksare a target, not only because it is possible to
harm a large number of people, but in the case of an infectious dis-
ease attack, the transportation network itself can help distribute
the infection further.

A notable bioterrorism agent is the smallpox virus. It poses a
serious threat because people are no longer routinely vaccinated

for smallpox since its global eradication about 30 years ago. Thus,
at least half of the population is now susceptible to the disease.
Smallpox can be transmitted person-to-person and is highly lethal
with a case-fatality rate of 20%, and on average the infected person
shows no symptoms for the first 2 weeks (Bozzette et al., 2003).
Currently, there is no effective treatment for smallpox. This could
lead to large numbers of fatalities if smallpox were used in a biot-
errorist attack to a highly populated site. For example, a covert
smallpox attack at an airport could spread to many cities or even
the entire nation due to the time it would take to correctly diag-
nose patients. Bozzette et al. (2003) described two airport attack
scenarios that could infect 5000–100,000 individuals nationwide.

The objective of this paper is to propose and analyze a mathe-
matical model to plan an efficient response to a nationwide small-
pox outbreak. This model should determine the best strategy to
distribute the limited resources among the different locations in
order to reduce the total number of fatalities. The effect of different
medical strategies (control measures) in controlling the outbreak
and the possibility of cross-city infections should also be taken into
account.

In particular we note that resources available to respond to a
disease outbreak emergency could be limited due to a lack of sup-
plies, or a limited delivery capacity caused by inadequate person-
nel or equipment, as was observed during SARS outbreak (Cheng
& Lu, 2003; US Government Accounting Office, 2004). Furthermore,
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possible response strategies to a smallpox outbreak include: (1)
isolation strategy alone, which is isolation of known cases and
known contacts; (2) ring strategy (vaccination of known contacts
plus isolation); and (3) mass vaccination, which is a vaccination
of a percentage of the population plus ring strategy for susceptible
individuals. The smallpox vaccine has an estimated fatality rate of
2.72 per million by summing up fatalities due to all complications
(Bozzette et al., 2003). The model should also take into account
that each location can have different transmission rates due to dif-
fering demographics and initial number of cases. This can lead to
different optimal control policies for different locations. Further-
more, the decisions at one city will influence the disease propaga-
tion in neighboring cities due to cross-city infections.

Even in a single city, the optimal decision of how to control an
outbreak is complicated by the disease propagation dynamics. For
example, if the number of infected individuals or the transmission
rate is sufficiently low, then it might be preferable to isolate iden-
tified cases and contacts rather than vaccinate the entire popula-
tion. These dynamics, typically represented by differential
equations, are difficult to incorporate precisely in large integer
optimization problems. Thus, it is fundamental to have a simple
but accurate representation of these disease dynamics to build a
multi-city resource allocation model.

The main contributions of this work are:

� We develop a constant rate approximate disease propagation
model with an analysis of the conditions where it approximates
well the total number of fatalities. Our results show that updat-
ing the constant rate every 4 periods (corresponding to
2 months) estimates the total fatalities well. The average devia-
tion from the fatality estimate of a micro-simulation model is
less than 2% (a maximum of 11%).
� Based on the approximate disease propagation model, a mixed

integer mathematical programming formulation is developed
to decide the optimal resource allocation to mitigate a disease
outbreak. Since past vaccination strategies modify the transmis-
sion rates for subsequent stages, the proposed model includes
integer variables to represent disjunctive constraints character-
izing the different possible future transmission rate scenarios.
� We develop a heuristic algorithm to efficiently solve this large-

scale multi-city resource allocation model. Due to the size of the
problem to represent a nationwide outbreak, the computation
time to obtain exact solutions (an average of 1.2 h.) can make
it difficult to use this model in practice. We developed a heuris-
tic solution method, based on ideas from heuristics for the
knapsack problem. Our computational experiments show that
the heuristic was able to obtain solutions within 0.5% of the
optimal solution in less than 1 s. It provides valuable insights
on how to prioritize the affected cities when allocating
resources. In addition, it could help a lot when we solve a
two-stage stochastic programming problem because we need
to consider a large number of scenarios, and the time to solve
the second stage sub-problem is very important.

We point out that although the approximate disease propaga-
tion model presented here is based on specifics of smallpox, the
modeling and optimization methodology used is generic and appli-
cable to other infectious diseases. In particular, the approach pre-
sented here would directly apply for diseases which have an
incubation period and an infectious period of roughly the same
length. The key step is developing a simple approximate disease
propagation model and making sure it is used only when it pro-
vides good estimation of how the disease outbreak evolves.

The structure of the paper is as follows: we provide a review of
relevant literature in Section 2. In Section 3, we analyze disease
propagation models and present the constant rate approximation

model used in the optimal resource allocation models. In Section 4,
we present a single city disease propagation model and introduce a
model for different control measures under limited resources. In
Section 5, we extend the single city model to a multi-city model
with cross-city infection and a constraint on total resources and
provide a heuristic for its solution. In Section 6, we present compu-
tational results that study the fitness of the disease propagation
model, present a solution to an illustrative multi-city scenario with
sensitivity analysis, and show the efficiency of the proposed heu-
ristic. We conclude the paper and provide directions for future
work in Section 7.

2. Literature review

2.1. Single-city model for smallpox control policy

Traditional epidemiological models characterize the rate at
which susceptible individuals become infected, the rate at which
infected individuals recover or die, the length of the infection, birth
rate and death rate, etc. (see Bailey, 1975; Frauenthal, 1980). For
example, the Susceptible, Infected, Recovered (SIR) model and its
variations have been widely used to model the spread of epidemics
and to study immunization strategies (Anderson & May, 1992).
Ferguson et al. (2003) reviewed the use of models in smallpox
planning within the broader epidemiological context set by recent
outbreaks of both novel and re-emerging pathogens. Previous deci-
sion models for smallpox outbreaks involve stochastic simulation
models (Bozzette et al., 2003; Eichner, 2003; Eubank et al., 2004;
Kretzschmar, Hof, Wallinga, & van Wijngaarden, 2004; Legrand, Vi-
boud, Boelle, Valleron, & Flahault, 2004; Longini et al., 2007; Melt-
zer, Damon, LeDunc, & Millar, 2001) and differential equations
(Kaplan, Craft, & Wein, 2002, 2003).

Detailed stochastic simulation models have been used to evalu-
ate the performance of different control measures. Meltzer et al.
(2001) found that a combined contact vaccination and isolation
campaign is more effective in containing the disease than imple-
menting either one alone. Eichner demonstrated that contact vac-
cination with surveillance and case isolation could extinguish
smallpox outbreaks in highly susceptible populations within half
a year (Eichner, 2003). Legrand et al. (2004) and Kretzschmar
et al. (2004) showed that a smallpox outbreak can be controlled
by ring vaccination and case isolation. A ring strategy was also
shown to be successful if infectious cases are rapidly diagnosed.
However, because of the inherent stochastic nature of epidemic
outbreaks, both the size and duration of contained outbreaks were
highly variable. Eubank et al. (2004) explored the use of dynamic
bipartite graphs to model the physical contact patterns that result
from movements of individuals between specific locations. Their
simulation results suggested that outbreaks could be contained
by a strategy of traced vaccination combined with early detection
without resorting to mass vaccination of a population.

The above simulation models did not consider pre-attack con-
trol measures, e.g., pre-attack vaccination of health care workers.
In Bozzette et al. (2003) the authors developed scenarios of small-
pox attacks and built a stochastic model to simulate the outcomes
under various control policies: contact vaccination and isolation,
pre- or post-attack vaccination of 60% of the population and 90%
of the health care workers, or both. Their analysis favored prior
vaccination of health care workers unless the likelihood of a small-
pox attack is sufficiently small. Vaccination of the public would
only be recommended when the likelihood of a national attack or
of multiple attacks is high. Longini et al. (2007) found that ring
strategy would be sufficient to effectively contain a large inten-
tional smallpox release. Given a ring strategy, a preemptive vacci-
nation of hospital workers would further reduce the number of
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smallpox cases and fatalities but would require large numbers of
pre-vaccinations. Post-attack mass vaccination would further re-
duce smallpox cases and fatalities, but requires an even larger
number of vaccinations.

Deterministic differential equation models are relatively easy to
parameterize, rapid to use, and can accurately represent the aver-
age epidemic behavior. Kaplan et al. (2002) compared a traced vac-
cination and mass vaccination strategies in a smallpox attack, and
found that mass vaccination would result in both far fewer fatali-
ties and much faster epidemic eradication over a wide range of dis-
ease and infection control policy parameters. Mass vaccination
could also outperform the existing Center for Disease Control and
Prevention (CDC) policy of starting with traced vaccination and
switching to mass vaccination only if deemed necessary by federal
authorities (Centers for Disease Control, 2001). Kaplan et al. (2003)
provided approximate closed form estimates for the total number
of fatalities and the maximum vaccination queue length by
approximately solving a system of ordinary differential equations
(ODEs). This work explicitly incorporated a tracing/vaccination
queue. A survey of previous models with age structure, heteroge-
neity, and spatial structure appears in Hethcote (2000). The author
obtained expressions for the initial rate of transmission for some
variants of SIR endemic models with either continuous age or
age groups, and the minimum immune fractions for herd immu-
nity for smallpox and other infectious diseases.

We notice that these previous works make different recommen-
dations. This is due to different assumptions. For example, the ini-
tial number of infected individuals, the rate of transmission, and
the time to detect the outbreak are all different. They could be
all valid, because we find out that one policy does not fit for all sit-
uations. With different parameters’ values, different control policy
should be implemented to minimize the number of fatalities.

2.2. Resource allocation in an infectious disease outbreak

Large-scale emergencies are faced with substantial uncertain-
ties. For instance, the number of cases, rates of transmission, and
number of contacts in different cities are quite uncertain and usu-
ally difficult to estimate (Gani & Leach, 2001; Henderson et al.,
1999; Kretzschmar et al., 2004; Rao, 1972). In Tanner, Sattenspiel,
and Ntaimo (2008), a stochastic programming framework was
used to find the optimal vaccination policy for controlling infec-
tious disease epidemics under parameter uncertainty. The objec-
tive was to minimize total cost of the control policy to reduce
the basic reproductive number to below one. A numerical example
showed that including uncertain parameters could improve the
robustness of the optimal strategy at the cost of higher coverage
of the population. Tanner and Ntaimo (2010) then developed an
irreducibly infeasible subsystems branch-and-cut algorithm to find
the optimal vaccine allocation for joint chance-constrained sto-
chastic programs. Our approach differs from their work because
we consider an objective that minimizes the number of fatalities,
and we also consider a mass vaccination strategy.

Dynamic resource allocation for epidemic control in multiple
populations was studied in Zaric and Brandeau (2002). However,
they considered multiple independent populations, and a linear
relationship between investment and benefit. In our model we
consider cross-city infection between different populations and
the benefit/cost ratio is not linear, which is more realistic.

2.3. Research gap

Generally speaking the previous work has concentrated on the
spread of the disease in a single city with unlimited resources.
However, as seen with the spread of the 2009 H1N1 flu, an infec-
tious disease today could spread through several cities or even

across several countries. This could easily make existing resources
to fight the epidemic scarce, and make a multi-city model neces-
sary to allocate resources efficiently. Furthermore, most prior work
proposes stochastic simulation models or differential equations
which are difficult to include in an optimization model with inte-
ger decisions. Recent work on stochastic optimization models
(Tanner & Ntaimo, 2010; Tanner et al., 2008) focus on making
the basic reproductive number less than one, which might not be
possible with limited resources. In addition they do not consider
mass vaccination strategies.

Our work addresses this gap by investigating whether an opti-
mization based model is appropriate to help decide how to distrib-
ute scarce resources. A central question is whether a tractable
optimization framework can produce an accurate enough disease
propagation model. In particular, we aim to develop optimization
models that include the effect of limited resources, and the
different characteristics of locations that contain the infection
and susceptible population. Our approach is based on developing
approximate representations of disease propagation that are rea-
sonable in known parameter ranges. These representations are
then used to build tractable optimization problems that represent
the large scale multi-city problem.

A central goal of these models is to help give practical
recommendations on how to distribute limited resources. Due to
differing assumptions, previous work can make conflicting recom-
mendations. Our work gives decision rules on when to execute
each of the different control measures and compares it to previous
results. In addition we study whether there is any benefit to
allocate the resources optimally over an equitable distribution of
resources in proportion to a city’s population.

3. Approximate disease propagation models

Key in the development of good decision support models is the
ability to accurately represent the evolution of the disease out-
break. In this section we present the classic disease propagation
differential equation model (the Susceptible, Infected, Recovered
SIR model), and discuss how it can be approximated to obtain
closed form estimates of the total number of infected individuals.
We also present the constant infection rate approximate model
that will be used in this paper.

These models will concentrate on approximating the spread of
smallpox. The exposure to smallpox first leads to an incubation
period, which lasts approximately 12 days. The incubation period
is followed by 2–4 days of fever (the prodromal stage), and a severe
rash stage of about 9 days. Finally there is a scab stage which lasts
about 9 days before causing death or recovery (Centers for Disease
Control, 2004; Fenner, Henderson, Arita, Jezek, & Ladnyi, 1988;
Mack, 1972). Smallpox is most contagious during the first 7–
10 days following rash onset (Centers for Disease Control & Preven-
tion, 2004). Once the infected individuals begin to manifest symp-
toms of infection, people might be misdiagnosed as having other
similar diseases for 2–3 days, further delaying initiation of disease
control measures.

3.1. The Susceptible, Infected, Recovered (SIR) model

The SIR model described below is based on the work by Ker-
mack and McKendrick (1927) and Getz and Lloyd-Smith (2006).
This model classifies the total population Q into three groups:
susceptible (S), infected (I), recovered (R). It represents the evo-
lution of a disease with the following set of differential
equations:

dS
dt
¼ �bSI

dI
dt
¼ ðbS� kÞI dR

dt
¼ kI: ð1Þ
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Following Kermack and McKendrick (1927), let b represent the
average number of infections per patient, per unit time, and per
person in the population. The parameter k is the fraction of the in-
fected people that cease to be infected per unit time. Depending on
the mortality rate of the disease, a certain percentage of the recov-
ered persons are fatalities. The basic reproduction number, q, is de-
fined as the expected number of secondary cases of a typical single
infected case in a completely susceptible population. A single case
in that situation would infect on average bQ people per unit time,
and remain on average 1/k in the infectious stage. Therefore, we
can express q as q = bQ/k (Bailey, 1975; Nunn & Altizer, 2006). A
numerical solution to this system can be obtained by the Euler’s
method of finite differences.

Let St, It, and Rt (or st = St/Q, it = It/Q, and rt = Rt/Q) represent the
total number (percentage) of susceptible, infected and recovered
individuals in a population at time t. The system of differential
equations in (1) can be used to provide a global estimate on the to-
tal percentage of individuals that were infected by a disease out-
break, which is defined as limt!1

Rt
Q ¼ limt!1 rt ¼ r1. Combining

the first two equations in (1) we have dI
dt ¼ k

bS� 1
� �

dS
dt, which by

integration implies

It � I0 ¼
k
b

lnðSt=S0Þ � ðSt � S0Þ:

Since limt!1 It ¼ 0 and S0 = Q � I0 this last equation implies
ðS1 � QÞ � k

b lnðS1=S0Þ ¼ 0. Dividing by Q we obtain the equivalent
expression in terms of percentages of population q(s1
� 1) = ln(s1) � ln(s0), where q = bQ/k. Finally, the change of variable
r1 = 1 � s1, gives

r1 ¼ 1� s0e�qr1 : ð2Þ

This equation has no closed form solution but can be solved
numerically. We can approximate r1 by replacing the function
f ðqÞ ¼ s0e�qr1 by its second order Taylor expansion and solving
the quadratic equation for r1. Below we present approximations
considering Taylor expansions around q = 0 and q = 1/r1. For large
values of q we have that r1 will be close to 1, and therefore we can
approximate Eq. (2) by r1 ¼ 1� s0e�qr1 � 1� s0e�q. The following
table summarizes these approximations. The ranges for q indicate
when each approximation can obtain the best absolute relative
error, based on s0 = 0.9999.

In Fig. 1 we present the exact solution of (2) and the approxima-
tions described above for different values of q.

3.2. Constant transmission rate approximation of SIR model

We now present a constant transmission rate approximation of
an SIR model for smallpox. The quality of this approximate model
will be explored computationally by comparing its total infection
estimates to what is obtained from the SIR model in Section 6.

This proposed model is specific to smallpox as it takes into ac-
count the unique characteristics of how smallpox spreads. We sim-
plify the progression of the disease representing it with two major
periods. Period one is a 15-day non-infectious phase that corre-
sponds to the incubation and prodromal stages, and period two
is a 15-day infectious stage, corresponding roughly to the rash
and scab stages of smallpox. Although this second phase takes on
average around 18 days, smallpox is most contagious within the
first 7–10 days following rash onset (Centers for Disease Control
& Prevention, 2004). Therefore this simplification is reasonable.
Similar assumptions were made by Meltzer et al. (2001) and Kap-
lan et al., 2002.

The constant transmission rate model considers fixed time peri-
ods (DT = 15 days), a constant transmission rate q, a fatality rate a,
and assumes all infections occur at the beginning of the period. In
other words, at the start of period t, every newly infectious patient
infects q individuals who will become infectious at the beginning
of period t + 1. This is a reasonable approximation as a study of
60 smallpox patients indicated that 70% of infections would have
occurred by day 4 of the rash stage (Rao, 1972). The newly infec-
tious patients of period t will recover (in SIR parlance) from the dis-
ease during period t, with a fraction a of them dying. With these
assumptions we can track the total number of infected, susceptible
and recovered individuals in every time period. Given an initial
number of infected cases, I0, at the start of period 1 (period t goes
from (t � 1)DT to tDT), at the start of period 2 there are I0 newly
infectious cases. At the start of period 3 there are qI0, and so on.
In general, at the start of period t P 2 there are qt�2I0 newly infec-
tious cases. Including the non-infectious patients, the total number
of infected patients is

I ¼ qt�2I0 þ qt�1I0:

The number of recovered patients at the start of period t is

R ¼
Xt�1

i¼2

qi�2I0 ¼ I0
1� qt�2

1� q
:

The number of susceptible individuals can be obtained from
S = Q � I � R. As a of the recovered patients have died, the number
of fatalities at the start of period t is

aI0
1� qt�2

1� q
: ð3Þ

The constant transmission rate model is a bad approximation
when the transmission rate q is larger than one. In that case, the
number of newly infectious people increases from period to period
and the total number of infected people at the start of period t is
I0(1 � qt�1)/(1 � q), which diverges with t. Going back to Fig. 1, a
line representing the total recovered of a constant transmission
rate model would be close to the SIR curve for values of q < 1 but
would have a vertical asymptote at q = 1. This is unreasonable as
the total number of people that could be infected is bounded by
the population Q. In practice, when the number of infected people
is small relative to Q the disease propagates at close to constant
rate until a significant portion of the population is affected, which
reduces the actual transmission rate due to the lack of susceptible
individuals. This process eventually controls the propagation of the
disease. This is a fundamental limitation of the constant transmis-
sion rate model. It remains possible that for a few periods (while
the amount of susceptible individuals is still large with respect to
the infected and recovered) the estimation is reasonable. Our com-
putational comparisons in Section 6 explore the suitability of a
constant rate model as we vary q and the number of periods.

1.22 2.24

Fig. 1. Comparison of exact and approximate r1 solutions.
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4. Control measures for a disease outbreak in a city

In this section we present in detail the different control mea-
sures that are possible to address a smallpox outbreak in a single
city. We use ‘‘city’’ to represent a contiguous urban area that
may contain multiple cities that are highly connected and where
the disease can easily spread. Before the disease is detected and
control measures are executed, the uncontrolled disease evolves
with a constant transmission rate of qu. Therefore if the control
measures are implemented at the start of period t0, then the num-
ber of fatalities up to that moment is given by Eq. (3).

We follow closely the assumptions of Bozzette et al. (2003) for
the control measures and attack scenarios. The control measures
will reduce the transmission rate, but can also cause a small num-
ber of fatalities due to vaccination and change the number of sus-
ceptible people. We denote the disease transmission rates after
isolation, ring strategy vaccination, and mass vaccination by ql,
qr, and qm respectively. In addition we let a be the efficacy of iso-
lation, p the probability of identifying a contact, e the efficacy of
vaccination, and q the percentage of the population that is vacci-
nated in a mass vaccination. Note that not all people are willing
to be vaccinated (Bozzette et al., 2003). In terms of the relationship
among ql, qr, qm, according to (Bozzette et al., 2003), the ring strat-
egy includes the isolation strategy, and the mass vaccination strat-
egy includes both the ring and isolation strategies. Therefore we
have

ql ¼ quð1� aÞ;
qr ¼ qlð1� peÞ ¼ quð1� aÞð1� peÞ;
qm ¼ qrð1� qeÞ ¼ quð1� aÞð1� peÞð1� qeÞ:

The expressions mean that the number of infected cases is re-
duced by a factor of a due to isolation alone and is further reduced
by a factor of pe due to contact vaccination in ring strategy. After
mass vaccination is implemented, the rate of transmission is fur-
ther reduced by a factor of qe, because qe of the population be-
comes immunized. This model implies that ql > qr > qm.

We denote s the period where the first intervention is executed.
Thus Is = qs�2I0 is the number of newly infectious cases at the start
of period s. For simplicity, we assume that any intervention will be
executed instantaneously at the start of a period. The disease prop-
agation model considered is illustrated in Fig. 2. In this figure we
assume that s = 4 and qx is the transmission rate when a control
measure is implemented.

The decision problem for a policy maker is choosing a strategy
(isolation alone, ring strategy, or mass vaccination) to minimize
the total number of fatalities from the disease and the vaccination.
To quantify the fatalities due to vaccination we need to take into
account that every case involves v contacts for ring strategy and
c is the fatality rate due to vaccination.

Below we quantify the total number of fatalities when each of
the control measures is implemented. In the discussion below we
assume that ql < 1, which means that qr < 1 and qm < 1. This will al-
low us to obtain closed form solutions for the total number of fatal-
ities. The expressions when transmission rates are greater than one

are more cumbersome and therefore not insightful, as they depend
on the number of periods and are only valid if the total population
affected by the disease is small relative to Q.

4.1. Total fatalities estimates for different control measures

If there are an initial I0 cases and a control measure x is imple-
mented at the start of period s, then the total fatalities have the
form aI0

1�qs�2
u

1�qu
þ Dx þ Vx, where Dx represents the fatalities due to

the disease and Vx are the fatalities due to vaccination. Taking into
consideration the transmission rate after intervention and fatality
rates, the total fatalities are:

� Isolation strategy: aI0
1�qs�2

u
1�qu

þ aI0
qs�2

u
1�ql

.

� Ring strategy: aI0
1�qs�2

u
1�qu

þ aI0
qs�2

u
1�qr
þ vpcI0

qs�2
u

1�qr
.

� Mass vaccination: aI0
1�qs�2

u
1�qu

þ aI0
qs�2

u
1�qm

þ Qqcþ vpð1� qeÞcI0
qs�2

u
1�qm

.

We note that the number of fatalities after intervention have to
consider Is ¼ I0qs�2

u as the initial number of infected individuals.
The fatalities due to vaccination consider that p of the v contacts
of every patient are vaccinated. In the case of mass vaccination
the fatalities due to vaccination are separated into the one-time
vaccination of a fraction q of the whole population Q and imple-
menting a ring strategy on remaining susceptible individuals (Boz-
zette et al., 2003). Given that the vaccine has an efficacy of e, the
fraction of contacts v that would be vaccinated in a ring strategy
after mass vaccination is vp(1 � qe).

Comparing these total fatality expressions we can identify
when each control strategy is preferable, defining threshold
bounds, which we refer to as BNDrl, BNDmr and BNDml, respectively.
In particular ring strategy is more favorable than the isolation
strategy when

BNDrl :¼ ql � ð1� qlÞ
vpc
a

> qr : ð4Þ

Mass vaccination has less total fatalities than a ring strategy when

BNDmr :¼ Qqcq2�s
u

aþ vpc
1� qr

� aþ vpcð1� qeÞ
1� qm

� ��1

< I0: ð5Þ

Mass vaccination has less total fatalities than an isolation strategy
when:

BNDml :¼ Qqcq2�s
u

a
1� ql

� aþ vpcð1� qeÞ
1� qm

� ��1

< I0: ð6Þ

Condition (4) states that for the ring strategy to be preferable,
the transmission rate has to be smaller than ql by at least (1 � ql)-
vpc/a. Note that this decision is independent on the initial number
of infections I0 or the time to the intervention s. Conditions (5) and
(6) characterize a threshold for I0 to justify mass vaccination. Note
that the threshold for I0 increases with c, which means that riskier
vaccines require a higher initial infection to justify mass
vaccination.

4.2. Relations between different control measures

A key question is, given that there are three possible control
measures to contain the spread of the disease, when should we
use each strategy? We now show that, based on the pairwise con-
ditions (4)–(6), we can identify the best strategy as a function of
the problem parameters. We then consider the implications of
multiple periods and limited resources in the decision of selecting
the best strategy.

Number of 
infectious 
cases: 

Rate

Time: 

3ΔTρu ρx 

0 2Δ T 4 ΔT 5 ΔT 6 ΔTΔ T 

0 I0 I0ρu
Iτ=I0ρu

2
Iτρx Iτρx

2 Iτρx
3

Fig. 2. The disease propagation model.
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Proposition 1. Each strategy leads to fewer fatalities, and therefore is
preferred, in the following cases:

� Isolation – when condition (4) and condition (6) do not hold.
� Ring – when condition (4) holds, condition (5) does not hold.
� Mass – when condition (4) and condition (5) hold or condition (4)

does not hold, condition (6) holds.

Proof. If condition (4) holds, then a ring strategy is better than an
isolation strategy and a

1�ql
> aþvpc

1�qr
. We have that BNDml < BNDmr

from the expressions of conditions (5) and (6). If I0 > BNDmr (condi-
tion (5) holds), then a mass vaccination strategy is preferred over a
ring strategy and should be implemented; If I0 6 BNDmr , then a ring
strategy is better than mass vaccination and thus a ring strategy
should be implemented.

Similarly, if condition (4) is not satisfied, then an isolation
strategy is better than a ring strategy and a

1�ql
6

aþvpc
1�qr

. In this case,
BNDmr 6 BNDml. If I0 > BNDml (condition (6) holds), then a mass
vaccination strategy should be implemented; if I0 6 BNDml, then an
isolation strategy should be implemented. h

Since the problem in practice involves multiple periods, we can
make decisions on which control measure to adopt in each period.
In Proposition 2 we investigate whether delaying the implementa-
tion of mass vaccination would be beneficial. Here we compare the
ring strategy and mass vaccination, although a similar argument
applies in comparing isolation and mass vaccination.

Proposition 2. When there are enough resources, if mass vaccination
is implemented, then mass vaccination should be implemented in
period 1.

Proof. The number of fatalities from a mass vaccination is Qqc
whether the mass vaccination is implemented in period 1 or t
(t P 2). If we implement the mass vaccination earlier, the rate of
transmission decreases from qr to qm earlier, thus the number of
cases and the amount of vaccine used for a ring strategy (after
the mass vaccination) are both smaller. Therefore we should
implement the mass vaccination in period 1. h

4.3. Control measures with limited resources

Up to now we have assumed that there are sufficient resources
to implement the selected strategy at every time period. However,
this may not be possible in practice due to lack of supply or lack of
delivery capacity. For example, there may not be enough personnel
to perform a certain control measure or to deliver enough re-
sources to all the people in one time period. In this situation, the
resulting transmission rate will be higher.

Consider for example the problem of implementing a ring strat-
egy on multiple periods with limited resources, where we denote
the amount of vaccine used on the ring strategy in period t by xt.
If we assume that no mass vaccination has been previously exe-
cuted, we can determine the effect on the transmission rate of this
possibly limited ring strategy. Let It be the number of newly infec-
tious cases in period t. If there is enough vaccine, i.e. xt P Itvp, then
all identified contacts can be vaccinated using Itvp doses of vaccine.
As a result, we get a full ring strategy implementation, and the rate
is qr = ql(1 � pe). However, if 0 6 xt 6 Itvp then only a fraction xt/
(Itvp) of the contacts can be vaccinated, and we get qr = ql(1 � pext/
(Itvp)) = ql � qlext/(Itv). Letting b = qle/v we can express the trans-
mission rate of the ring strategy as

qr ¼ ql � bxt=It 0 6 xt 6 Itvp: ð7Þ

Note that using more than Itvp resources does not further decrease
qr (since there are no more identified contacts) and when xt = 0 an
isolation strategy is actually implemented, i.e. qr = ql. The following
result characterizes how limited resources should be distributed to
implement a ring strategy over a finite planning horizon.

Proposition 3. Given B doses of vaccine to implement ring strategy
over T periods to address an outbreak that starts with I1 newly
infectious patients in period 1. Then the optimal use of resources is to

set xt ¼
0 /ðtÞ 6 c
ft /ðtÞ > c

�
until B is exhausted (the last one can be

fractional), where /ðtÞ ¼ ab
1�qT�t

l
1�ql

and starting from t = 1, ft = Itvp.

Proof. Using expression (7) repeatedly we have that the number
of cases in period t is It ¼ It�1qt�1

l � b
Pt�1

k¼1qt�k�1
l xk, which implies

that the total number of newly infectious cases is

XT

t¼1

It ¼ I1
1� qT

l

1� ql
� b

1� qT�1
l

1� ql
x1 � b

1� qT�2
l

1� ql
x2 � � � � � bxT�1

¼ I1
1� qT

l

1� ql
� b
XT�1

t¼1

1� qT�t
l

1� ql
xt:

Thus, the total number of fatalities is

a I1
1� qT

l

1� ql
� b
XT�1

t¼1

1� qT�t
l

1� ql
xt

 !
þ c
XT�1

t¼1

xt

¼ aI1
1� qT

l

1� ql
�
XT�1

t¼1

ab
1� qT�t

l

1� ql
� c

� �
xt:

The coefficient multiplying xt in this previous sum is /(t) � c, there-
fore the total number of fatalities is reduced if we set xt = 0 when
/ðtÞ 6 c and set xt as large as possible when /(t) > c. Since /(t) is
decreasing in t, and xt is bounded by Itvp, we obtain the character-
ization of the optimal solution. h

We previously showed, in the case of unlimited resources, if
condition (4) holds then a ring strategy is preferable to an isolation
strategy. It turns out that condition (4) is equivalent to ab

1�ql
� c > 0,

and is therefore implied by Proposition 3, since ab
1�ql

> ab
1�qT�t

l
1�ql

. A

similar analysis is possible when mass vaccination is already
implemented. In this case the transmission rate qm equals
ql(1 � pe)(1 � qe) if there are enough resources to do a ring strat-
egy on the remaining susceptible individuals (which are It-

vp(1 � qe) of them). In this case the resource dependent
transmission rate is

qm ¼ qlð1� qeÞ � bxt=It 0 6 xt 6 Itvpð1� qeÞ: ð8Þ

This expression can then be used to characterize the optimal deci-
sions of how to assign limited resources for ring strategies after a
mass vaccination similar to Proposition 3 above.

5. The multi-city model

5.1. Formulation of the multi-city model

Suppose terrorists launch a smallpox attack and n cities are in-
fected by the disease. We reset time 0 as the intervention start
time, thus [0, Dt] is period 1, [Dt, 2Dt] is period 2, and so on. City
i has Ii1 infectious cases at time period 1. At time period t, the
replenishment of the vaccine is Ht. The decision for the government
is to allocate the vaccine to the n cities for every time period to
minimize the total number of fatalities in T time periods.

To model the disease propagation between different cities, it is
reasonable to assume a fraction of newly infected cases in one city
appear in another city. We let fij represent the percentage of the
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newly infected cases of city i that ‘‘flow’’ to city j. This parameter
depends on the traffic flow Fij between the two cities. In particular,
we can use a gravity model. For populations Qi and Qj and distance
dij we can take Fij to be

Fij ¼ k0Qk1
i Qk2

j =dk3
ij ;

where k0, k1, k2 and k3 are parameters. Then we set fij = Fij/Qi. The
gravity model is commonly used in transportation theory to esti-
mate traffic flows between origin and destination pairs (Erlander
& Stewart, 1990; Ortúzar & Willumsen, 2001). Balcan et al. (2009)
also used a gravity model to predict commuting flows for the spread
of an infectious disease, and the gravity model reproduced well the
real-world commuting flows.

We stress two key assumptions needed to simplify the model:

(1) The shipment of resources can be done instantly. This
assumption is reasonable since shipping takes only a few
days, which is small compared with a 15-day DT for
smallpox.

(2) Mass vaccination can be done instantly at the start of a
period. After deploying resources mass vaccination could
be implemented in 3–4 days, which is also small relative
to DT.

We let decision variables xit and mit be the amount of vaccine
allocated for a ring strategy and a mass vaccination for city i at per-
iod t, respectively. The number of infectious cases of city i at time t
is denoted Iit for t e {2, . . . ,T}, note that Ii1 is a parameter. Variable Bt

denotes the total amount of vaccine available at time period t, and
B1 = H1.

The binary variable zit equals 1 if mass vaccination strategy is
selected in city i at period t, and 0 otherwise. The binary variable
yit indicates whether mass vaccination has been implemented in
city i by period t. Clearly yit ¼

Pt
k¼1zik.

We introduce an auxiliary variable Jit, which represents the
number of infectious cases of city i at period t before considering
cross-city infection. In addition, we let qit be the transmission rate
of city i at time period t. According to (7), qit = qli � bixit/Iit if mass
vaccination has not been implemented (i.e., yit = 0). Using Jit =
Ii,t�1qi,t�1, we have

Jit ¼ qliIi;t�1 � bixi;t�1 0 6 xit 6 Iitv ipi: ð9Þ

Because xit is non-negative, we can rewrite the above expression as
two constraints:

Jit ¼ qliIi;t�1 � bixi;t�1 8i 2 f1; . . . ;ng; t 2 f2; . . . ; Tg; ð10Þ

xit 6 Iitv ipi 8i 2 f1; . . . ;ng; t 2 f1; . . . ; Tg: ð11Þ

If a mass vaccination is already implemented in city i, similarly from
(8), we get:

Jit ¼ qlið1� qeÞIi;t�1 � bixi;t�1 8i 2 f1; . . . ;ng; t

2 f2; . . . ; Tg; ð12Þ

xit 6 Iitv ið1� qeÞpi 8i 2 f1; . . . ;ng; t 2 f1; . . . ; Tg: ð13Þ

Note that after the mass vaccination although bi does not
change, xit has a smaller upper bound. This ensures that the effect
of a ring strategy is not the same as before the mass vaccination.
We summarize the parameters and decision variables for the mul-
ti-city model in Table 2. Note that qli and bi are expressions used to
simplify the model.

The objective is to minimize the total number of fatalities,
which is the sum of the fatalities from the disease and the

vaccination after the control measures are taken. We formulate
the problem as a mixed-integer program (MIP):

Minimize
Xn

i¼1

XT

t¼1

ðaIit þ cðxit þmitÞÞ;

Subject to : yit ¼
Xt

k¼1

zik 8i 2 f1; . . . ;ng; t 2 f1; . . . ; Tg;
ð14:1Þ

Jit P qliIi;t�1 � bixi;t�1 �Myi;t�1 8i 2 f1; . . . ;ng; t

2 f2; . . . ; Tg; ð14:2Þ

xit 6 Iitv ipi þMyit 8i 2 f1; . . . ;ng; t 2 f1; . . . ; Tg; ð14:3Þ

Jit P qlið1� qeÞIi;t�1 � bixi;t�1 �Mð1� yi;t�1Þ 8i

2 f1; . . . ;ng; t 2 f2; . . . ; Tg; ð14:4Þ

xit 6 Iitv ið1� qeÞpi þMð1� yitÞ 8i 2 f1; . . . ;ng; t

2 f1; . . . ; Tg; ð14:5Þ

Iit ¼
Xn

j¼1

fjiJjt 8i 2 f1; . . . ;ng; t 2 f2; . . . ; Tg; ð14:6Þ

mit P Q iqzit 8i 2 f1; . . . ;ng; t 2 f1; . . . ; Tg; ð14:7Þ

Xn

i¼1

ðxit þmitÞ 6 Bt 8t 2 f1; . . . ; Tg; ð14:8Þ

B1 ¼ H1; ð14:9Þ

Bt ¼ Bt�1 �
Xn

i¼1

ðxi;t�1 þmi;t�1Þ þ Ht 8t 2 f2; . . . ; Tg: ð14:10Þ

Constraints (14.1) determine the value of yit. Constraints (14.2)–
(14.5) update Jit depending on xi,t�1 and yi,t�1. Here the binary vari-
ables yit and a large constant M are used to formulate disjunctive
constraints that characterize the disease transmission rates with
or without mass vaccination in location i by time t from expres-
sions (10)–(13). If yit = 0, (14.2) and (14.3) are active; if yit = 1,
(14.4) and (14.5) are active. Constraints (14.6) model the cross-city
infection between different cities. Constraints (14.7) enforce mit =
Qiq if mass vaccination is implemented. Constraints (14.8) are total
resource constraints. Constraints (14.9) set B1 to H1, and con-
straints (14.10) update the amount of vaccine for periods 2 to T.
Note that we do not need to assume transmission rates are less
than one since the MIP considers a finite time horizon.

5.2. Heuristic solution for the multi-city model

When there are multiple cities, limited resources, and no cross-
city infections the decision of where to assign the resources is akin
to a knapsack problem. For example, a full implementation of a
ring strategy in a city provides a benefit in the number of lives
saved while consuming a certain amount of vaccines. The capacity
here would be the total available vaccine. Similar to the knapsack
problem, we want to determine whether or not to implement a
ring strategy in each city looking to maximize the number of lives
saved, under a total resource constraint.

We build a heuristic based on pairwise comparisons of control
measures that can be stated as 0–1 knapsacks. Using these pair-
wise decisions we aim to obtain decision rules for deciding at each
period which strategy to implement (similar to Proposition 1).
Note the following analysis assumes ql < 1, which implies that
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qr < 1 and qm < 1. Therefore the heuristic we propose below helps
to decide the use of resources among cities that have ql < 1. If a cer-
tain city has a ql > 1, then that city would have priority in receiving
resources. It means we first allocate resources to these cities, as
much as possible.

We first decide which strategy to use between isolation and full
ring strategies, assuming that the implemented strategy is main-
tained thereafter. This is a knapsack problem, where for each city
the benefit/capacity ratio is given in Proposition 4.

Proposition 4. The benefit/capacity ratio of doing a full ring strategy
over an isolation strategy is aqle

vð1�qlÞ
� c.

Proof. If we implement a ring strategy, then compared with an
isolation strategy, we use I1vp

1�qr
additional resources. The number

of lives saved from the disease is aI1ð 1
1�ql
� 1

1�qr
Þ, and the number

of additional fatalities caused by the vaccination is c I1vp
1�qr

. Therefore,

the benefit/capacity ratio is: aI1
1

1�ql
� 1

1�qr

� �
� c I1vp

1�qr

� �
I1vp
1�qr

� ��1

¼ aqle
vð1�qlÞ

� c. h

From Proposition 4, we can see that if aqle
vð1�qlÞ

6 c, then an isola-
tion strategy should be implemented because a ring strategy can
only increase the number of fatalities. If aqle

vð1�qlÞ
> c, then a ring

strategy should be implemented if there are resources available.
This condition is actually equivalent with condition (4). Thus, full
ring strategies should be carried out in the cities that satisfy

aqle
vð1�qlÞ

> c, and the cities with a higher value of aqle
vð1�qlÞ

� c are the

ones that would experience a greater benefit of implementing a
ring strategy. For this knapsack problem, according to Dantzig’s
greedy heuristic (Dantzig, 1957), resources should be allocated to
the cities that satisfy aqle

vð1�qlÞ
> c in decreasing order of this ratio un-

til resources are exhausted.
We can obtain analogous results characterizing the benefit/

capacity ratio of deciding whether to implement full mass vaccina-
tion over isolation strategy (Proposition 5) and deciding whether to
do full mass vaccination over a full ring strategy (Proposition 6).
Here full mass vaccination strategy means allocating enough re-
sources to vaccinate the general population and do full ring strat-
egy for remaining susceptible people for all periods. These results
assume that the decision made in a city is maintained thereafter
and are obtained by comparing the number of lives saved over
the resources consumed. We omit these poofs given the similarity
to Proposition 4.

Proposition 5. The benefit/capacity ratio of doing mass vaccination
over an isolation strategy is aI1ðql�qmÞ

Qqð1�qlÞð1�qmÞþI1vpð1�qlÞð1�qeÞ � c.

Proposition 6. The benefit/capacity ratio of doing a mass vaccination
over a full ring strategy is aI1qr e

Qð1�qr Þð1�qmÞ�I1vpe� c.
Similar to Proposition 4, these last two results imply that a

knapsack heuristic would allocate resources to do a mass vaccina-
tion instead of maintaining an isolation strategy (or a ring strategy)

if aI1ðql�qmÞ
Qqð1�qlÞð1�qmÞþI1vpð1�qlÞð1�qeÞ > c or aItqr e

Qð1�qr Þð1�qmÞ�Itvpe > c
� �

in decreas-

ing order of the ratio until resources are exhausted.
We propose a heuristic for the resource allocation problem

based on the decision rules suggested by the benefit/capacity ratios
from Propositions 4–6. This heuristic allows a fractional imple-
mentation of ring strategy before and after a mass vaccination. In
each period t, we define the ratios lit ¼ aqlie

v ið1�qliÞ
,

cit ¼ aIit ðqli�qmiÞ
Qiqð1�qliÞð1�qmiÞþIitv ipð1�qliÞð1�qeÞ, and sit ¼ aIitqr e

Qið1�qriÞð1�qmiÞ�Iitv ipie
. These

ratios are used to prioritize the cities and the strategies. The heu-
ristic is composed of two iterations over all cities each period to de-
cide whether to do mass vaccination over doing a full ring strategy.
We evaluate the performance of this heuristic in Section 6.

Pseudocode Multi-city Model Heuristic

Input: n, T, Ii1, Ht, qui, pi, vi, Qi, q, Bt=Ht

Set all cities to isolation strategy

for t=1 to T�1 do

for city i=1 to n do:
let hit = max(lit, cit) if i does isolation; hit = sit if i

does ring strategy; and hit =-1 otherwise

end for

Rank hit in decreasing order

repeat once (to decide ring strategy and then

mass vaccination)
for i=1 to n do

if Bt > 0 and ahit – c > 0, then
if city i does isolation and lit P cit , then
Do ring strategy in city i, xit = min(Iitvipi, Bt)

else if (city i does isolation and cit > lit and
Bt P Qiq)

or (city i does ring strategy and Bt P Qiq),
then

Do mass vaccination in city i, zit = 1, mit = Qiq
xit = min(Iitvipi(1 � qe), Bt � Qiq)

end if

else Keep same strategy for city i and set xit, mit

accordingly

end if

end for

Bt = Bt � xit � mit

end repeat

if yit = 0, then Ji,t+1 = qliIit - bixit else Ji,t+1 = qliIit(1 � qe) �
bixit end if

Iit ¼
Pn

j¼1Jjtfji, Bt = Bt + Ht

end for

Return: xit, mit, zit

6. Computational results

6.1. Computational results for the single city model

We use smallpox as an example to validate our model. We com-
pare our results with the results from the simulation model of Boz-
zette et al. (2003) for five scenarios: laboratory release, human

Table 1
Different types of approximate solutions to Eq. (2).

Type Approximate Eq. (2) and solution Range/relative
error

q
Range

r1
Error
(%)

2nd order r1 � 1 � s0(1 � qr1 + (qr1)2/2) 0 0
Taylor at q = 0

r1 ¼ ðs0q�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0q�1Þ2�2s0q2ðs0�1Þ
p

s0q2

1.22 �12.42
Avg.
error

�1.27

2nd order r1 � 1 � s0e�1(1 + ( � r1q + 1) +
(�r1q + 1)2/2)

1.22 10.95

Taylor at
q = 1/r1

r1 ¼
ð2qs0 e�1�1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2qs0 e�1�1Þ2�s0 e�1q2ð5s0e�1�2Þ

p
s0e�1q2

2.24 �4.92
Avg.
error

�0.29

Large q r1 � 1 r1 ¼ 1� s0e�qr1 � 1� s0e�q 2.24 4.72
+1 0
Avg.
error

0.85
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vectors, building attack, low- and high-impact airport attack. For
the first three scenarios, a single city is considered. The last two
scenarios consider the whole population of the United States.
Table 3 shows the parameters and their sources. In (Bozzette
et al. (2003) different percentages of healthcare workers and the
public are vaccinated, we let q be the weighted average of the

two. The probability p is also the weighted average of identification
probabilities for different types of contacts.

Table 4 shows the comparison of our results and the results re-
ported in Bozzette et al. (2003). The columns ‘‘Ref’’ refer to the va-
lue reported in the reference, and the columns ‘‘AM’’ refer to the
results from our approximation model. We only compare the re-
sults of a ring strategy and a mass vaccination because a pure iso-
lation strategy is not considered in the reference. We report the
fatalities from smallpox and vaccination, and the total of the two.
We note that both models provide similar trends with (Bozzette
et al., 2003) providing slightly higher predicted deaths except in
the Human Vectors scenario. This difference does not increase sig-
nificantly with the size of the emergency, which makes the relative
accuracy increase when I0 increases. A possible reason for this is
that for large I0, the stochastic simulation used in Bozzette et al.
(2003) behaves closer to an expected outcome, which is used for
the AM analysis.

We present in Table 5 the threshold values of qr and I0 for the
same five scenarios based on conditions (4)–(6). We can make
decisions according to Proposition 1. For the high-impact airport
attack, since condition (4) is satisfied and I0 > BNDml, mass vaccina-
tion should be implemented. For other cases, since condition (4) is
satisfied and I0 < BNDml, ring strategy should be implemented. Our
decision is the same as in Bozzette et al. (2003) if we choose the
strategy with a smaller number of fatalities. Note that in the build-
ing attack scenario, BNDmr is very close to I0, meaning that the
choice is indifferent. In this case, we choose a less involved strategy
to reduce costs on all kinds of resources such as personnel and
vaccine.

Table 2
Parameters and variables for the multi-city model.

(1) Parameters

N Number of cities
T Number of time periods
fij Percentage of the newly infected cases of city i that is in city j
Ht Replenishment of vaccine in every period t, t e {1, . . . ,T}
Ii1 Initial number of infected cases of city i in period 1
qli qli = qui(1 � ai), i e {1, . . . ,n}
bi bi ¼ quið1� aiÞ e

v i
, i e {1, . . . ,n}

(2) Continuous decision variables
Iit Number of infected cases of city i in period t, t e {2, . . . ,T}, Iit P 0
Jit Initial number of infected cases of city i at time period t before

considering cross-city infection, t e {2, . . . ,T}, Jit P 0
Bt Total amount of vaccine available in period t, B1 = H1

xit Amount of vaccine allocated to city i for ring strategy in period t, xit P 0
mit Amount of vaccine allocated to city i for mass vaccination in period t,

mit P 0

(3) Binary decision variables
zit 1 if mass vaccination is chosen in city i in period t, and 0 otherwise
yit Whether mass vaccination has been implemented in i by period t,

yit ¼
Pt

k¼1zik

Table 3
The value of the parameters for the five smallpox scenarios.

Parameter Units Laboratory
release

Human
vectors

building
attack

Low impact airpt.
attack

High impact airpt.
attack

Source

Q People 4 � 106 4 � 106 6 � 106 290 � 106 290 � 106 Bozzette et al. (2003)
I0 People 2 15 350 5,000 100,000 Bozzette et al. (2003)
(s � 1)DT Days 26 48 26 26 26 Bozzette et al. (2003)
DT Days 15 15 15 15 15 Meltzer et al. (2001)
T Periods 2.73 4.20 2.73 2.73 2.73 Bozzette et al. (2003)
qu 15.4 1.8 3.4 1.8 1.8 Bozzette et al. (2003)
ql 0.370 0.212 0.235 0.212 0.212 Derived from Bozzette et al. (2003)
qr 0.1 0.1 0.1 0.1 0.1 Bozzette et al. (2003)
qm 0.053 0.053 0.053 0.053 0.053 qm = qr(1 � qe)
q 0.61 0.61 0.61 0.61 0.61 Derived from Bozzette et al. (2003)
e 0.764 0.764 0.764 0.764 0.764 Dick (1966), Dixon (1962), Bauer

(1974)
v People 50 50 50 50 50 Bozzette et al. (2003)
p 0.97 0.80 0.88 0.80 0.80 Derived from Bozzette et al. (2003)
a 0.20 0.20 0.20 0.20 0.20 Bozzette et al. (2003)
c 2.72 � 10�6 2.72 � 10�6 2.72 � 10�6 2.72 � 10�6 2.72 � 10�6 Bozzette et al. (2003)

Table 4
Predicted fatalities (AM) with those reported in Bozzette et al. (2003) (Ref).

Fatality Scenario

Laboratory release Human vectors Building attack Low impact airport attack High impact airport attack

Ref AM Ref AM Ref AM Ref AM Ref AM

Ring strategy Disease 7 4 19 30 300 261 2733 2710 54,691 54,197
Vaccination 0 0 0 0 0 0 2 1 37 19
Total 7 4 19 30 300 261 2735 2711 54,728 54,216

Mass vaccination Disease 6 4 18 27 298 251 2631 2626 52,541 52,512
Vaccination 7 7 8 7 10 10 482 482 496 491
Total 13 11 26 34 308 261 3113 3108 53,037 53,003
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We compare the prediction of our model with the model of
Legrand et al. (2004), which studied the implementation of a ring
strategy. Using the parameters’ values in Legrand et al. (2004)
(I0 = 100, qu = 3, (s � 1)DT = 25), we estimate the number of in-
fected cases as 650, while (Legrand et al., 2004) found 730. The dif-
ference is 10%. If (s � 1)Dt = 45, our prediction is 2807, and theirs
is 2800, yielding a difference of 0.3%. Eichner (2003) considered a
case of qu = 5 and I0 = 100, and only isolation and contact tracing
were implemented. The total estimated number of infections is
506 while our approximate model predicts 487. The difference is
3.7%. Although (Eichner, 2003) has a higher qu, the number of in-
fected cases is smaller than in Legrand et al. (2004) mainly because
s is smaller.

We also compare the results from our model with those from
two other references. Our recommendation for high impact case
are consistent with Kaplan et al. (2002) that mass vaccination re-
sults in both far fewer fatalities and much faster epidemic eradica-
tion than ring strategy when I0 is large. This is consistent with
condition (4). Our model is also consistent with (Meltzer et al.,
2001) which found that ring strategy is more effective than isola-
tion alone or contact vaccination alone. We can see from condition
(4) that this is due to the small value for c. The above shows that
the proposed disease propagation model approximates existing re-
sults, especially for large I0.

To see the applicable range of our constant rate approximation
model, we compare it with an SIR model for realistic values of qu

and a. When there is a control measure, we adjust the basic SIR
model introduced in Section 3.1 to take into account the individu-
als who get immunity or die from vaccination. We consider a city
with a population of 10 million and 1000 initial cases. The results
are shown in Table 6. We report the ratio between the number of
fatalities of the two models at periods 4 and 8. We can see that the
difference is less than 1% in all cases for 4 periods. Therefore we
can re-estimate qu after every 4 periods. The column ‘‘Total’’

reports the ratios in the total number of fatalities between three
models and the SIR model. The three models are the constant rate
approximate model (CRAM), an approximation model with qu up-
dated every 4 periods (AM4), and the closed-form approximation
model (CFAM) in Table 1. For the CRAM model, when the resulting
q is above one, the error is infinite. A good fix is the AM4 model,
where the largest difference in total fatalities is 11.2% when ql is
2.1. The precision of AM4 is comparable to the CFAM model, and
if the resulting q is at the intersection of the segments of CFAM,
AM4 is better than CFAM. The CRAM model compares more favor-
ably to the SIR model than to the first three cases of Bozzette et al.
(2003) because I0 here is larger.

6.2. Computational results for the multi-city model

6.2.1. A hypothetical problem
We consider a worst-case smallpox attack in which terrorists

discharge the variola virus during busy periods throughout the
domestic terminals in a large airport. Exposed people would scat-
ter across the country and infect 50 largest cities in the United
States. The scenario is similar to the high-impact airport attack de-
scribed in Bozzette et al. (2003), and we fix the reference values
accordingly at qu = 1.8, a = 0.2, c = 0.00000272, e = 0.764, q = 0.61,
p = 0.8, a = 0.8, v = 50, DT = 15, and (s � 1)DT = 26. Due to a lack
of estimates for the parameters’ values in each city, we build an in-
stance based on literature following some generic principles as we
outline below. In a real outbreak, the parameters’ values can be re-
placed by real data or expert estimates.

Demographics such as population size, density and socioeco-
nomic factors influence the rate of transmission (Kiang &
Krathwohl, 2003). Historical data suggests that high population
densities are required to sustain transmission (Belongia & Nale-
way, 2003), and that lower population density contributed to the
elimination of transmission in many regions (Anderson & May,

Table 5
The threshold of ql and I0 for the five scenarios.

Scenario Laboratory release Human vectors Building attack Low impact airport attack High impact airport attack

BNDrl 0.37 0.21 0.23 0.21 0.21
BNDmr 81 166 369 28,425 28,425
BNDml 8 43 81 7367 7367

Table 6
Comparison of the current model with an SIR model.

Period 4 Period 8 Total

CRAM/SIR CRAM/SIR CRAM/SIR AM4/SIR CFAM/SIR

qu = 1.8 Iso. ql = 0.36 1.000 1.000 1.000 1.000 1.000
a = 0.8 Ring qr = 0.14 1.000 1.000 1.000 1.000 1.000

Mass qm = 0.08 1.000 1.000 1.000 1.000 1.000

qu = 1.8 Iso. ql = 0.63 1.000 1.001 1.001 1.001 1.000
a = 0.65 Ring qr = 0.25 1.000 1.001 1.001 1.001 1.001

Mass qm = 0.13 1.000 1.000 1.000 1.000 1.000

qu = 3 Iso. ql = 0.60 1.000 1.001 1.001 1.001 1.000
a = 0.8 Ring qr = 0.23 1.001 1.001 1.001 1.001 1.000

Mass qm = 0.13 1.000 1.000 1.000 1.000 1.000

qu = 3 Iso. ql = 1.05 1.001 1.003 +1 1.028 0.961
a = 0.65 Ring qr = 0.41 1.001 1.003 1.003 1.003 1.003

Mass qm = 0.22 1.001 1.001 1.001 1.001 1.001

qu = 6 Iso. ql = 1.20 1.001 1.009 +1 1.067 0.861
a = 0.8 Ring qr = 0.47 1.003 1.010 1.011 1.008 1.011

Mass qm = 0.25 1.001 1.002 1.002 1.002 1.001

qu = 6 Iso. ql = 2.10 1.002 1.059 +1 1.112 0.886
a = 0.65 Ring qr = 0.82 1.006 1.058 1.189 1.043 1.177

Mass qm = 0.44 1.003 1.008 1.008 1.008 1.007
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1992). Therefore we assume the rate of transmission qui of city i is
proportional to its population density Ei, and the reference value
corresponds to the average density of US urban areas (denoted
by E

�
). Accordingly, we set qui ¼ 1:8Ei= E

�
. The values of Qi, Ei, and

E
�

of the top 50 US urban areas are obtained from the US Census Bu-
reau (2000). Let I0 be the total number of initial infected individu-
als of all infected cities. We assume I0i is proportional to the
population of the city, i.e., I0i = I0Qi/

P
iQi. It is reasonable to assume

that the p decreases with population density. For each city we ad-
just the reference value by setting pi ¼ p� 0:02ðEi= E

�
�1Þ, where

0.02 is chosen such that pi 6 1. The efficacy of isolation ai should
also decrease with population density. For each city we also adjust
it by setting ai ¼ a� 0:02ðEi= E

�
�1Þ. We assume that vi is propor-

tional to the density, i.e., v i ¼ vEi= E
�

. We consider making decisions
for 8 periods, i.e., T = 8. The initial number of cases at each city at
the time of intervention is obtained using I0i, qui, and constraint
(14.6) for each period before the intervention. We set I0 = 10,000,
and Ht = 50,000,000, t = 1 � � �T. To estimate fij we use air traffic data
between two cities in Appendix 3 of Puentes and Tomer (2009) as
training data to estimate the parameters of the gravity model. The
mean absolute percentage error on the training data is less than 5%.

6.2.2. The solution of the base case
The MIP model is solved by ILOG CPLEX 9.0. All the computa-

tions are performed on a Dell Precision 670 computer with a
3.2 GHz Intel Xeon Processor and 2 GB RAM. The solution of the
base case is summarized in Table 7. The columns ‘‘Iso.’’, ‘‘Ring’’
and ‘‘Mass’’ are the number of cities that implement the corre-
sponding strategy in each period. ‘‘RingVac’’ and ‘‘MassVac’’ are

the total amount of vaccine used for the ring strategy (i.e.Pn
i¼1xit) and the mass vaccination strategy (i.e.

Pn
i¼1mit) for each

period, respectively. By definition, the total amount of vaccine used
for isolation strategy is 0 for each period. ‘‘NumCase’’ is the total
number of cases at the beginning of each period, i.e.

Pn
i¼1Iit . The

last column ‘‘Fatal.’’ is the total number of fatalities of each period.
The last row reports the sum of every item for all T periods. Note
that we update qu every 4 periods by multiplying it by the new
percentage of the susceptible people in the total population. It
means we solve two MIP models, one for periods 1–4 and another
for periods 5–8 with an updated qu. This introduces some sub opti-
mality, but it is not significant because the fatalities of the first 4
periods dominate that of the last 4 periods.

The base case considers limited resources. The total number of
fatalities is 5310. The disease is contained at the end of period 7. 22
cities implement mass vaccination and all other cities implement
the ring strategy in period 1. From then on, all cities implement
the ring strategy until the disease dies out. The isolation alone
strategy is not implemented, which can be explained by Proposi-
tions 4–6. Because c is small, the ratios are positive, so either the
ring strategy or the mass vaccination strategy is implemented
when there are resources available.

6.2.3. Sensitivity analysis
We did sensitivity analysis on four parameters: Ht, c, I0, and qu.

Each parameter has three values: low, medium and high, as shown
in Table 8. The base case takes medium values. When doing sensi-
tivity analysis for one parameter, we only change the value of that
parameter; all other parameters take the base value. Note that a
low c of 0.000001 is commonly used in the literature (Fenner
et al., 1988). The medium and high values of c are due to (Bozzette
et al., 2003).

The sensitivity analysis of the resource level is shown in Table 9.
We can see that the number of fatalities decreases with Ht, which is
intuitive. For the high Ht case, the isolation alone strategy is not
implemented as in the base case. When mass vaccination is imple-
mented, it is implemented in period 1, which means the earlier the
better. This is consistent with Proposition 2. Compared with the
base case, more cities implement mass vaccination because more
vaccine is available. The disease is under control, and the number
of fatalities is decreasing faster than the base case. For the low Ht

case, the disease is still under control. In period 1, the ring strategy
is only implemented in 8 cities, and the isolation alone strategy is
implemented in all other cities because of resource limitation. The
mass vaccination strategy is implemented in one city in period 4
when there is enough vaccine.

The sensitivity of the solution to the fatality rate of vaccination
is also shown in Table 9. We can see that the number of fatalities
increases with c. In both cases, the isolation alone strategy is not
implemented. As c increases, the mass vaccination strategy is
implemented in fewer cities, and the ring strategy is more

Table 7
The base case (Ht = 50,000,000; c = 0.00000272; I0 = 10,000; qu = 1.8).

Period Iso. Ring Mass RingVac MassVac NumCase Fatal.

1 0 28 22 906,366 49,068,676 21,353 4406
2 0 50 0 165,743 0 3666 733
3 0 50 0 32,857 0 689 137
4 0 50 0 6976 0 140 28
5 0 50 0 909 0 30 6
6 0 6 0 98 0 3 0
7 0 1 0 11 0 0 0
8 0 0 0 0 0 0 0

Total 0 235 22 1,112,960 49,068,676 25,881 5310

Table 8
The parameters’ values for the sensitivity analysis.

Level Ht c I0 qu

Low 1,000,000 0.000001 1000 0.9
Medium 50,000,000 0.00000272 10,000 1.8
High 100,000,000 0.000005 100,000 3.6

Table 9
Solution sensitivity to resource level (Ht) and fatality rate of vaccination (c).

Period High Ht (100,000,000) Low Ht (1,000,000) Low c (0.000001) High c (0.000005)

Iso. Ring Mass Fatal. Iso. Ring Mass Fatal. Iso. Ring Mass Fatal. Iso. Ring Mass Fatal.

1 0 8 42 4467 0 9 0 4273 0 29 21 4320 0 31 19 4500
2 0 50 0 666 0 50 0 1779 0 47 3 735 0 50 0 748
3 0 50 0 120 0 50 0 519 0 50 0 136 0 50 0 141
4 0 50 0 24 0 49 1 185 0 50 0 27 0 50 0 28
5 0 39 0 5 0 50 0 67 0 50 0 6 0 50 0 6
6 0 3 0 0 0 50 0 26 0 4 0 0 0 8 0 0
7 0 1 0 0 0 46 0 11 0 1 0 0 0 1 0 0
8 0 1 0 0 0 21 0 4 0 1 0 0 0 1 0 0

Total 0 202 42 5282 0 325 1 6864 0 232 24 5224 0 31 19 5423
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favorable and implemented in more cities. This can be explained by
condition (5) because BNDmr increases with c.

The sensitivity of the solution to I0 and qu is shown in Table 10.
We can see that the number of fatalities increases with I0. Consis-
tent with condition (5), the mass vaccination strategy is imple-
mented in more cities as I0 increases. For a high I0, the mass
vaccination strategy is implemented in period 2 in some cities
due to vaccine limitation in period 1. For this case, the best solution
the solver can get has a relative MIP gap of 0.52% due to memory
limitation. The effect of qu is similar as I0. The number of cities that
implement the mass vaccination strategy increases with qu. For a
high qu, the best solution the solver can get has a relative MIP
gap of 2.02% due to memory limitation.

6.2.4. The benefit of allowing different policies for different cities
One way to deal with the multi-city resource allocation is to

treat the total population of the 50 cities as a ‘‘super city’’ and as-
sume a uniform qu

�
for all cities. Under this assumption, it is rea-

sonable to allocate vaccine in proportion to the population of a
city for fairness. We compare the number of fatalities of our model
with a pro-rata allocation strategy for three cases: high Ht, medium
Ht, and low Ht. The results are shown in Table 11. It can be seen
that the number of lives saved increases when the resource level
decreases. For a high Ht, the number of lives saved is not signifi-
cant. However, when the resource level is medium, the number
of lives saved is significant. When the resource level is low, thou-
sands of lives can be saved using our model. Note I0i is proportional

to the population in current parameter setting. For an uneven dis-
tribution of I0, the saving in lives could be larger.

6.2.5. Validation of the heuristic
We compare the performance of the heuristic with the solution

from the CPLEX solver for all sensitivity analysis instances. The re-
sults are shown in Table 12. We can see that the solutions of the
heuristic are very close to the solutions from the solver. In the last
case, the solution of the heuristic is better than the solution from
the solver. For other cases, the largest difference is 0.25%. This val-
idates Propositions 4–6 indirectly. The heuristic can obtain a good
solution quickly. In two instances, CPLEX was not able to solve the
problems to optimality after more than 2 h and using up to 2 GB of
memory. It takes at most one second to get comparable solutions
using the heuristic. For larger problems such as 100 cities and 16
periods, it may be impossible to get an optimal solution by the sol-
ver. In addition, the heuristic is intuitive and provides insights on
how to allocate resources intelligently.

7. Conclusion and discussion

In this paper, we propose an optimization based model to deter-
mine efficient distribution strategies of limited resources over mul-
tiple locations to address a smallpox outbreak. In particular we
consider the effects of limited resources on transmission rates
when conditions in each city are different and there is cross-city
infection. The approach is based on introducing approximate

Table 10
Solution sensitivity to initial number of infections (I0) and initial transmission rate (qu).

Period Low I0 (1000) High I0 (100,000) Low qu (0.9) High qu (3.6)

Iso. Ring Mass Fatal. Iso. Ring Mass Fatal. Iso. Ring Mass Fatal. Iso. Ring Mass Fatal.

1 0 47 3 449 0 34 16 42,892 0 43 7 2637 0 29 21 7240
2 0 50 0 102 0 18 32 7780 0 50 0 257 0 44 6 2469
3 0 50 0 26 0 50 0 1300 0 50 0 26 0 50 0 898
4 0 50 0 7 0 50 0 255 0 40 0 2 0 50 0 362
5 0 44 0 2 0 50 0 55 0 8 0 0 0 50 0 157
6 0 11 0 0 0 8 0 2 0 2 0 0 0 50 0 38
7 0 4 0 0 0 2 0 0 0 0 0 0 0 50 0 9
8 0 1 0 0 0 0 0 0 0 0 0 0 0 36 0 2

Total 0 257 3 586 0 212 48 52,284 0 193 7 2922 0 359 27 11,175

Table 11
Comparison of the solution of the multi-city model and a pro-rata allocation.

Problem case Pro-rata allocation Multi-city model Number of lives saved Difference (%)

High Ht (100,000,000) 5287 5282 5 0.09
Medium Ht (50,000,000) 6186 5310 876 14.16
Low Ht (1,000,000) 9065 6864 2201 24.28

Table 12
Comparison of the heuristic and CPLEX solver solutions.

Problem case CPLEX Solver time (s) Heuristic Heuristic time (s) Difference in objective (%)

Base case 5310 7208.0 5313 1.0 0.06
Low Ht 6864 12.0 6874 0.2 0.15
High Ht 5282 690.0 5286 0.1 0.07
Low c 5224 7209.0 5968 0.2 0.06
High c 5423 7211.0 12,091 0.1 0.07
Low I0 586 543.0 587 0.1 0.25
High I0

a 52,284 0.52% 7217.0 52,300 0.2 0.03
Low qu 2922 24.0 2925 1.0 0.12
High qu

a 11,175 2.02% 9296.0 11,127 0.2 �0.43

a Optimal with a relative MIP gap; the second value is the gap in percentage.
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representations of disease propagation that are reasonable within
parameter ranges. These representations are then used to build a
tractable optimization problem that represents the large scale
multi-city problem. In building the multi-city model we obtain a
series of intermediate results: (1) we give a closed form approxi-
mation to the number of total infected of an SIR model; (2) we
present a constant rate disease propagation model that can include
limited resources and approximates an SIR model when the num-
ber of periods is small; (3) from pair-wise comparisons we obtain
threshold conditions to trigger more intense control measures; and
(4) these threshold conditions are the basis of a heuristic to solve
large multi-city resource allocation problems in seconds, yielding
solutions within a fraction of a percent of the optimal one.

Our computational results help identify the parameter ranges
where the approximate disease propagation models are reasonable
and analyze the sensitivity of the distribution strategy on a multi-
city example to key problem parameters (such as the total re-
sources, base transmission rate, and vaccine death rate). Not sur-
prisingly we observe that larger initial infection and transmission
rate makes mass vaccination more preferable and that a higher
vaccination fatality rate makes an isolation strategy preferable. Fi-
nally, we show that for a multi-city outbreak, the proposed assign-
ment of resources saves more lives than allocating medicine
proportional to population. The number of lives saved can be sig-
nificant when resources are limited.

The proposed model contributes to the literature by presenting
an optimization model that considers new realistic aspects of a
multi-city disease outbreak, such as different parameters in each
city, cross city infection, effect of limited resources on transmission
rate, and a vaccination fatality rate. The model nevertheless makes
some important assumptions, such as: the transmission rate qu is
constant, population in a city is homogeneous, contacts of each
infectious individual are independent, all infections occur at the
start of a period, etc. We believe that developing more realistic
models, capable of relaxing these assumptions, is an interesting to-
pic for further research. Of these assumptions, it is particularly se-
vere to consider a constant transmission rate qu. To address this
limitation in a finite horizon optimization problem, we update qu

every 4 periods, using the constant rate in each part of the model.
We believe that a model that considers the effect of both the num-
ber of susceptible individuals and having limited resources on the
transmission rate is challenging, as this would lead to a non-linear
representation of the transmission rate. Considering the uncer-
tainty present in such emergency situations is another challenging
area for future research. This work gives an efficient heuristic solu-
tion for simple deterministic disease propagation models that
could be used as the basis for a solution method for a multi-city
disease propagation model with uncertainty.
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