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Abstract. The modern theory of condition measures for convex optimization problems was
initially developed for convex problems in the conic format

(CPd) z∗ := min
x

{ctx | Ax− b ∈ CY , x ∈ CX},
and several aspects of the theory have now been extended to handle nonconic formats as well. In this
theory, the (Renegar) condition measure C(d) for (CPd) has been shown to be connected to bounds
on a wide variety of behavioral and computational characteristics of (CPd), from sizes of optimal
solutions to the complexity of algorithms for solving (CPd). Herein we test the practical relevance
of the condition measure theory, as applied to linear optimization problems that one might typically
encounter in practice. Using the NETLIB suite of linear optimization problems as a test bed, we
found that 71% of the NETLIB suite problem instances have infinite condition measure. In order to
examine condition measures of the problems that are the actual input to a modern interior-point-
method (IPM) solver, we also computed condition measures for the NETLIB suite problems after
preprocessing by CPLEX 7.1. Here we found that 19% of the postprocessed problem instances in the
NETLIB suite have infinite condition measure, and that logC(d) of the postprocessed problems is
fairly nicely distributed. Furthermore, among those problem instances with finite condition measure
after preprocessing, there is a positive linear relationship between IPM iterations and logC(d) of the
postprocessed problem instances (significant at the 95% confidence level), and 42% of the variation
in IPM iterations among these NETLIB suite problem instances is accounted for by logC(d) of the
postprocessed problem instances.
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1. Introduction. The modern theory of condition measures for convex opti-
mization problems was initially developed in [24] for problems in the following conic
format:

(CPd)
z∗ := min ctx
s.t. Ax− b ∈ CY ,

x ∈ CX ,
(1.1)

where, for concreteness, we consider A to be an m × n real matrix; b ∈ R
m, c ∈ R

n;
CX ⊆ R

n, CY ⊆ R
m are closed convex cones; and the data of the problem is the

array d = (A, b, c). We assume that we are given norms ‖x‖ and ‖y‖ on R
n and R

m,
respectively, and let ‖A‖ denote the usual operator norm; let ‖v‖∗ denote the dual
norm associated with the norm ‖w‖ on R

n or R
m. We define the norm of the data

instance d = (A, b, c) by ‖d‖ := max{‖A‖, ‖b‖, ‖c‖∗}.
The theory of condition measures for (CPd) focuses on three measures, ρP (d),

ρD(d), and C(d), to bound various behavioral and computational quantities pertaining
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to (CPd). The quantity ρP (d) is called the “distance to primal infeasibility” and is
defined as

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅},
where Xd denotes the feasible region of (CPd):

Xd := {x ∈ R
n | Ax− b ∈ CY , x ∈ CX}.

The quantity ρD(d) is called the “distance to dual infeasibility” for the conic dual
(CDd) of (CPd),

(CDd)
z∗ := max bty

s.t. c−Aty ∈ C∗
X ,

y ∈ C∗
Y ,

(1.2)

and is defined similarly to ρP (d) but using the dual problem instead. The quantity
C(d) is called the “condition measure” or the “condition number” of the problem
instance d and is a (positively) scale-invariant reciprocal of the smallest data pertur-
bation ∆d that will render the perturbed data instance either primal or dual infeasible:

C(d) :=
‖d‖

min{ρP (d), ρD(d)} ;(1.3)

a problem is called “ill-posed” if min{ρP (d), ρD(d)} = 0, equivalently, C(d) = ∞.
These three condition measure quantities have been shown in theory to be connected
to a wide variety of bounds on behavioral characteristics of (CPd) and its dual, includ-
ing bounds on sizes of feasible solutions, bounds on sizes of optimal solutions, bounds
on optimal objective values, bounds on the sizes and aspect ratios of inscribed balls
in the feasible region, bounds on the rate of deformation of the feasible region under
perturbation, bounds on changes in optimal objective values under perturbation, and
numerical bounds related to the linear algebra computations of certain algorithms; see
[24], [5], [4], [8], [9], [10], [29], [27], [30], [28], [20], [22]. In the context of interior-point
methods for linear and semidefinite optimization, these same three condition mea-
sures have also been shown to be connected to various quantities of interest regarding
the central trajectory; see [16] and [17]. The connection of these condition measures
to the complexity of algorithms has been shown in [8], [9], [25], [2], [3], and some of
the references contained therein. While this literature has focused almost exclusively
on the conic format of (1.1), there have been some attempts to extend the theory
to convex problems in structured nonconic formats; see Filipowski [4], Peña [21] and
[19], and [18].

Given the theoretical importance of these many results, it is natural to ask what
typical values of these condition measures might arise in practice. Are such problems
typically well-posed or ill-posed? How are the condition measures of such problems
distributed? We begin to answer these questions in this paper, where we compute
and analyze these three condition measures for the NETLIB suite of industrial and
academic linear programming (LP) problems. We present computational results that
indicate that 71% of the NETLIB suite of linear optimization problem instances are
ill-posed, i.e., have infinite condition measure; see section 4.1.

In the case of modern interior-point-method (IPM) algorithms for linear optimiza-
tion, the number of IPM iterations needed to solve a linear optimization instance has
been observed to vary from 10 to 100, over a huge range of problem sizes; see [13], for
example. Using the condition-measure model for complexity analysis, one can bound
the IPM iterations by O(

√
n log(C(d)+ · · ·)) for linear optimization in standard form,

where the other terms in the bound are of a more technical nature; see [25] for details.
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(Of course, the IPM algorithms that are used in practice are different from the IPM
algorithms that are used in the development of the complexity theory.) A natural
question to ask then is to what extent the observed variation in the number of IPM
iterations (already small) can be accounted for by the condition measures of the LP
problems that are solved. In order to answer this question, first note that typical IPM
solvers perform routine preprocessing to modify the LP problem prior to solving. In
order to examine condition measures of the problems that are the actual input to a
modern IPM solver, we computed condition measures for the NETLIB suite prob-
lems after prepreprocessing by CPLEX 7.1. We found that 19% of the postprocessed
problem instances in the NETLIB suite have infinite condition measure, and that
logC(d) of the postprocessed problems is fairly nicely distributed; see section 4.2.
In section 4.3, we show that, among the 72 postprocessed problem instances in the
NETLIB suite with finite condition measure, the number of IPM iterations needed to
solve these problems varies roughly linearly (and monotonically) with logC(d) of the
postprocessed problem instances. A simple linear regression model of IPM iterations
as the dependent variable and logC(d) as the independent variable yields a positive
linear relationship between IPM iterations and logC(d) for the postprocessed problem
instances, significant at the 95% confidence level, with R2 = 0.4160. Therefore, in the
sample of 72 NETLIB suite problem instances whose postprocessed condition mea-
sure is finite, about 42% of the variation in IPM iterations among these problems is
accounted for by logC(d) of the problem instances after preprocessing. Additionally,
logC(d) correlates with IPM iterations better than any other problem measure; see
section 4.3.

The organization of this paper is as follows. In section 2, we lay the ground-
work for the computation of condition measures for the NETLIB suite. Section 3
describes our methodology for computing condition measures, and section 4 contains
the computational results. Section 5 contains some discussion and open questions.

2. Linear programming, conic format, and ground-set format. In or-
der to attempt to address the issues raised in the previous section about practical
computational experience and the relevance of condition measures, one can start by
computing the condition measures for a suitably representative set of linear opti-
mization instances that arise in practice, such as the NETLIB suite of industrial and
academic linear optimization problems; see [15]. Practical methods for computing
(or approximately computing) condition measures for convex optimization problems
in conic format (CPd) have been developed in [9] and [20], and such methods are
relatively easy to implement. It would then seem to be a simple task to compute con-
dition measures for the NETLIB suite. However, it turns out that there is a subtle
catch that gets in the way of this simple strategy and in fact necessitates using an
extension of the condition measure theory just a bit, as we now explain.

Linear optimization problems arising in practice are typically conveyed in the
following format:

min
x

ctx

s.t. Aix ≤ bi, i ∈ L,
Aix = bi, i ∈ E,
Aix ≥ bi, i ∈ G,
xj ≥ lj , j ∈ LB ,
xj ≤ uj , j ∈ UB ,

(2.1)

where the first three sets of inequalities/equalities are the “constraints” and the last
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two sets of inequalities are the lower and upper bound conditions, and where LB , UB ⊂
{1, . . . , n}. (LP problems in practice might also contain range constraints of the form
“bi,l ≤ Aix ≤ bi,u.” We ignore this for now.) By defining CY to be an appropriate
Cartesian product of nonnegative halflines R+, nonpositive halflines −R+, and the
origin {0}, we can naturally consider the constraints to be in the conic format “Ax−b ∈
CY ,” where CY ⊂ R

m and m = |L| + |E| + |G|. However, for the lower and upper
bounds on the variables, there are different ways to convert the problem into the
required conic format for computation and analysis of condition measures. One way
is to convert the lower and upper bound constraints into ordinary constraints, whose
conversion of (2.1) to conic format is

P1 : min
x

ctx

s.t. Ax− b ∈ CY ,
Ix− l ≥ 0,
Ix− u ≤ 0,

whose data for this now-conic format is

Ā :=


AI
I


 , b̄ :=


 bl
u


 , c̄ := c,

with cones

C̄Y := CY × R
n
+ ×−R

n
+ and C̄X := R

n.

Another way to convert the problem to conic format is to replace the variables x
with nonnegative variables s := x− l and t := u− x, yielding

P2 : min
s,t

cts+ ctl

s.t. As− (b−Al) ∈ CY ,
Is+ It− (u− l) = 0,
s, t ≥ 0,

whose data for this now-conic format is

Ã :=

(
A 0
I I

)
, b̃ :=

(
b−Al
u− l

)
, c̃ := c,

with cones

C̃Y := CY × {0}n and C̃X := R
n
+ × R

n
+.

These two different conic versions of the same original problem have different data
and different cones, and so will generically have different condition measures. This is
illustrated on the following elementary example:

P : min
x1,x2

x1

s.t. x1 + x2 ≥ 1,
400x1 + x2 ≤ 420,
1 ≤ x1 ≤ 5,
−1 ≤ x2.
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Table 2.1
Condition measures for two different conic conversions of the same problem, using the L∞-

norm in the space of the variables and the L1-norm in the space of the right-hand-side vector.

P1 P2

‖d‖ 428 405
ρP (d) 0.24450 0.90909
ρD(d) 0.00250 1.00000
C(d) 171,200 445

Table 2.1 shows condition measures for problem P under the two different con-
version strategies of P1 and P2, using the L∞-norm in the space of the variables and
the L1-norm in the space of the right-hand-side vector. (The method for computing
these condition measures is described in Remark 6 of [10].) As Table 2.1 shows, the
choice of conversion strategy can have a very large impact on the resulting condition
measures, thereby calling into question the practical significance of performing such
conversions to conic format.

2.1. Structured formats for optimization. The analysis presented above
indicates a need for extending condition-measure concepts to problems with structured
nonconic formats, and indeed there has been some research along this line. Filipowski
[4] examines the efficiency of solving symmetric-form linear programs whose sparsity
pattern is not subject to modification, and Peña [21] develops condition measures for
conic problems where certain rows and columns of data are not subject to modification;
the latter can be used directly or indirectly to construct condition measures for many
types of structured nonconic problems. More recently, in [18], the theory of condition
measures and their properties has been extended from the conic format to handle
more general structured convex optimization in the following “ground-set” format:

(GPd)
z∗(d) = min ctx

s.t. Ax− b ∈ CY ,
x ∈ P,

(2.2)

where P is called the ground set; P is no longer required to be a cone, but instead
can be any closed convex set. In practical applications, P could be chosen to be the
solution of lower and upper bound constraints l ≤ x ≤ u, or P could be a convex
cone CX , or P could perhaps be the solution to network flow constraints of the form
Nx = b, x ≥ 0, etc. The set P (and the cone CY ) remains fixed as part of the definition
of the problem, and the description of P is not part of the data d = (A, b, c). Many
aspects of the theory of condition measures for conic convex optimization have been
extended to the more general ground-set model format (2.2); see [18]. We will use
this ground-set format in our computation and evaluation of condition measures for
linear programs that arise in practice.

In treating linear programs (2.1) as instances in the format (2.2), there is some
leeway as to what structure to place in the ground set P . One strategy is to define P
simply by the lower and upper bounds,

P := {x | xj ≥ lj for j ∈ LB , xj ≤ uj for j ∈ UB},(2.3)

and then rewrite the other constraints in conic format as described earlier. In this
approach the lower and upper bounds are handled conveniently, although the data
d does not then include the lower and upper bound data lj , j ∈ LB and uj , j ∈ UB .
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This is somewhat advantageous since in many settings of linear optimization the
lower and/or upper bounds on most variables are 0 or 1 or other scalars that are
not generally thought of as subject to data modification. Of course, there are other
settings where keeping the lower and upper bounds fixed independent of the other
constraints is not as natural.

Another strategy would be to try to examine the individual constraints of the
LP instance in order to identify specific structures to include in P . For example,
in addition to lower and upper bound constraints, a particular LP instance might
also have some network constraints, or might have generalized upper bound (GUB)
constraints of the form

∑
j∈J xj ≤M , variable upper bound constraints xj ≤ xk, etc.

Constraints of this type have no inherent data that one would think of as subject to
possible modification; therefore they could be included in the set P .

In order to develop some computational experience with condition measures for
the NETLIB suite, we chose the more straightforward strategy of defining P only by
the upper and lower bounds of the LP instance (2.3). We chose this approach because
(2.3) best reflects the types of LP structures that are explicitly treated algorithmically
in modern simplex and IPM software, and because we had minimal foreknowledge of
any explicit structures of individual linear prgrams in the NETLIB suite.

(In the related area of robust optimization, Ben-Tal and Nemirovski test robust
optimization methodologies on the NETLIB suite by attempting to identify individual
data entries of linear inequalities (but not equalities) in constraints of NETLIB suite
linear programs that might be subject to data modification or data error; see [1].)

2.2. Definition of C(d) for ground-set format. The general set-up for the
development of condition-measure theory for the ground-set model format is developed
in [18]. We review this material briefly here for completeness.

Let Xd denote the feasible region of (GPd),

Xd := {x ∈ R
n | Ax− b ∈ CY , x ∈ P},

and define the primal distance to infeasibility ρP (d) as

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅},

similar to the conic case. In order to state the Lagrange dual of (GPd) we use the
following definitions, which depend on the ground set P .

Let R denote the recession cone of P , namely,

R := {v | there exists x ∈ P for which x+ θv ∈ P for all θ ≥ 0}.(2.4)

Since P is a closed convex set, the recession cone R is a closed convex cone.
Define

CP := {(x, t) | x ∈ tP, t > 0},

and let C denote the closed convex cone

C := clCP ,

where “clS” denotes the closure of a set S. Then it is straightforward to show that

C = CP ∪ {(r, 0) | r ∈ R}
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and that

C∗ := {(s, v) | stx+ v ≥ 0 for any x ∈ P}
=

{
(s, v) | inf

x∈P
stx ≥ −v

}
.

The Lagrange dual of (GPd) is

(GDd)

z∗(d) = max
y,v

bty − v
s.t. (c−Aty, v) ∈ C∗,

y ∈ C∗
Y .

(2.5)

Let Yd denote the feasible region of the dual problem (GDd),

Yd := {(y, v) ∈ R
m × R | (c−Aty, v) ∈ C∗, y ∈ C∗

Y },

and define the dual distance to infeasibility ρD(d):

ρD(d) := inf{‖∆d‖ | Yd+∆d = ∅}.

The condition measures ρP (d), ρD(d) are shown in [18] to be connected to a variety of
behavioral characteristics of (GPd) and its dual, including sizes of feasible solutions,
sizes of optimal solutions, optimal objective values, aspect ratios of inscribed balls,
deformation of the feasible region under perturbation, and the complexity of interior-
point algorithms.

Let F denote the set of data instances d for which both (GPd) and (GDd) are
feasible:

F = {d | Xd �= ∅ and Yd �= ∅}.

For d ∈ F , the definition of the condition measure in the ground set model is identical
to the definition in the conic case,

C(d) :=
‖d‖

min{ρP (d), ρD(d)} ;

it is the (positive) scale invariant reciprocal of the distance to the set of data instances
that are either primal or dual infeasible, and ρ(d) := min{ρP (d), ρD(d)} is the distance
to ill-posedness.

3. Computation of ρP (d), ρD(d), and C(d) via convex optimization. In
this section we show how to compute ρP (d) and ρD(d) for linear optimization data
instances d = (A, b, c) of the ground-set model format, as well as how to estimate ‖d‖
and C(d). The methodology presented herein is an extension of the methodology for
computing ρP (d) and ρD(d) developed in [9]. We will make the following choice of
norms throughout this section and the rest of this paper.

Assumption 1. The norm on the space of the x variables in R
n is the L∞-norm,

and the norm on the space of the right-hand-side vector in R
m is the L1-norm.

Using this choice of norms, we will show in this section how to compute ρ(d) for
linear optimization problems by solving 2n+2m linear programs of size roughly that
of the original problem. As is discussed in [9], the complexity of computing ρ(d) very
much depends on the chosen norms, with the norms given in Assumption 1 being
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particularly appropriate for efficient computation of ρP (d) and ρD(d). We begin our
analysis with a seemingly innocuous proposition which will prove to be very useful.

Proposition 3.1. Consider the problem

z1 = min
v,w

f(v, w)

s.t. ‖v‖∞ = 1,
(v, w) ∈ K,

(3.1)

where v ∈ R
k, w ∈ R

l, K is a closed convex cone in R
k+l, and f(·) : R

k+l �→ R+

is positively homogeneous of degree one (f(α(v, w)) = |α|f(v, w) for any α ∈ R and
(v, w) ∈ R

k+l). Then problems (3.1) and (3.2) have the same optimal values, i.e.,
z1 = z2, where

z2 = min
i∈{1,...,n},j∈{−1,1}

min
v,w
f(v, w)

vi = j,
(v, w) ∈ K.

(3.2)

Proof. Let (v∗, w∗) be an optimal solution of (3.1). Since ‖v∗‖∞ = 1, there exist
i∗ ∈ {1, . . . , n} and j∗ ∈ {−1, 1} such that v∗i∗ = j∗. Therefore (v∗, w∗) is feasible for
the inner problem in (3.2) for i = i∗ and j = j∗, and so z2 ≤ z1.

If (v∗, w∗) is an optimal solution of (3.2) with i = i∗ and j = j∗, then ‖v∗‖∞ ≥ 1.
If ‖v∗‖∞ = 1, the point (v∗, w∗) is feasible for (3.1), which means that z1 ≤ z2,
completing the proof. Therefore, assume that ‖v∗‖∞ > 1, and consider the new
point (ṽ, w̃) := 1

‖v∗‖∞
(v∗, w∗) ∈ K. Then (ṽ, w̃) is feasible for an inner problem in

(3.2) for some i = î �= i∗ and j = ĵ, and so z2 ≤ f(ṽ, w̃) = f( 1
‖v∗‖∞

(v∗, w∗)) =
1

‖v∗‖∞
f(v∗, w∗) ≤ z2, which now implies that (ṽ, w̃) is also an optimal solution of

(3.2). Since ‖ṽ‖∞ = 1, the previous argument implies that z1 ≤ z2, completing the
proof.

3.1. Computing ρP (d) and ρD(d). The following theorem, which is proved
in [18], characterizes ρP (d) and ρD(d) as the optimal solution values of certain opti-
mization problems. In this theorem, recall from (2.4) that R denotes the recession
cone of the ground set P .

Theorem 3.2 (Theorems 5 and 6 of [18]). Suppose d ∈ F , and that the norms
are chosen as in Assumption 1. Then ρP (d) = jP (d) and ρD(d) = jD(d), where

jP (d) = min
y,s,v

max{‖Aty + s‖1, |bty − v|}
s.t. ‖y‖∞ = 1,

y ∈ C∗
Y ,

(s, v) ∈ C∗,

(3.3)

and

jD(d) = min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}
s.t. ‖x‖∞ = 1,

x ∈ R,
p ∈ CY ,
g ≥ 0.

(3.4)

Neither (3.3) nor (3.4) are convex problems. However, both (3.3) and (3.4) are of
the form (3.1), and so we can invoke Proposition 3.1 and solve (3.3) and (3.4) using
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problem (3.2). From Proposition 3.1, we have

ρP (d) = min
i∈{1,...,m},j∈{−1,1}

min
y,s,v

max{‖Aty + s‖1, |bty − v|}
s.t. yi = j,

y ∈ C∗
Y ,

(s, v) ∈ C∗,

(3.5)

and

ρD(d) = min
i∈{1,...,n},j∈{−1,1}

min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}
s.t. xi = j,

x ∈ R,
p ∈ CY ,
g ≥ 0.

(3.6)

Taken together, (3.5) and (3.6) show that we can compute ρP (d) by solving 2m
convex optimization problems, and we can compute ρD(d) by solving 2n convex op-
timization problems. In conclusion, we can compute ρ(d) by solving 2n+ 2m convex
optimization problems, where all of the optimization problems involved are of roughly
the same size as the original problem (GPd).

Of course, each of the 2n+2m convex problems in (3.5) and (3.6) will be compu-
tationally tractable only if we can conveniently work with the cones involved; we now
show that for the special case of linear optimization models (2.1) there are convenient
linear inequality characterizations of all of the cones involved in (3.5) and (3.6). The
cone CY is easily seen to be

CY = {p ∈ R
m | pi ≤ 0 for i ∈ L, pi = 0 for i ∈ E, pi ≥ 0 for i ∈ G},(3.7)

and so

C∗
Y = {y ∈ R

m | yi ≤ 0 for i ∈ L, yi ∈ R for i ∈ E, yi ≥ 0 for i ∈ G}.(3.8)

With the ground set P defined in (2.3), we have

R = {x ∈ R
n | xj ≥ 0 for j ∈ LB , xj ≤ 0 for j ∈ UB}(3.9)

and also

C = {(x, t) ∈ R
n × R | t ≥ 0, xj ≥ ljt for j ∈ LB , xj ≤ ujt for j ∈ UB}.(3.10)

The only cone whose characterization is less than obvious is C∗, which we now
characterize. Consider the following system of linear inequalities in the variables
(s, v, s+, s−) ∈ R

n × R × R
n × R

n:

s− s+ + s− = 0,
s+ ≥ 0,
s− ≥ 0,
s−j = 0 for j ∈ N \ UB ,

s+j = 0 for j ∈ N \ LB ,

v +
∑
j∈LB

ljs
+
j −

∑
j∈UB

ujs
−
j ≥ 0,

(3.11)
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where we use the notation N := {1, . . . , n} and S \ T is the set difference {k | k ∈ S,
k �∈ T}.

Proposition 3.3. For the ground set P defined in (2.3), the cone C∗ is charac-
terized by

C∗ = {(s, v) ∈ R
n × R | (s, v, s+, s−) satisfies (3.11) for some s+, s− ∈ R

n}.
Proof. Suppose first that (s, v) together with some s+, s− satisfies (3.11). Then

for all (x, t) ∈ C we have
(x, t)t(s, v) =

∑
j∈LB

s+j xj −
∑
j∈UB

s−j xj + tv

≥
∑
j∈LB

s+j ljt−
∑
j∈UB

s−j ujt+ tv

≥ 0,

(3.12)

and so (s, v) ∈ C∗. Conversely, suppose that (s, v) ∈ C∗. Then

−∞ < −v ≤ min
x∈P
stx = min

n∑
j=1

sjxj

s.t. xj ≥ lj for j ∈ LB ,
xj ≤ uj for j ∈ UB ,

(3.13)

and define s+ and s− to be the positive and negative parts of s, respectively. Then
s = s+ − s−, s+ ≥ 0, and s− ≥ 0, and (3.13) implies s+j = 0 for j ∈ N \ LB , s

−
j = 0

for j ∈ N \ UB , as well as the last inequality of (3.11), whereby (s, v, s
+, s−) satisfies

all inequalities of (3.11).
Taken together, we can use (3.7), (3.8), (3.9), (3.10), and Proposition 3.3 to

rewrite the right-most minimization problems of (3.5) and (3.6) and obtain

ρP (d) = min
i∈{1,...,m}
j∈{−1,1}

min
y,s+,s−,v

max{‖Aty + s+ − s−‖1, |bty − v|}

s.t. yi = j,
yl ≤ 0 for l ∈ L,
yl ≥ 0 for l ∈ G,
s−k = 0 for k ∈ N \ UB ,
s+k = 0 for k ∈ N \ LB ,

v +
∑
k∈LB

lks
+
k −

∑
k∈UB

uks
−
k ≥ 0,

s+, s− ≥ 0,

(3.14)

and

ρD(d) = min
i∈{1,...,n}
j∈{−1,1}

min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}

s.t. xi = j,
xk ≥ 0 if k ∈ LB ,
xk ≤ 0 for k ∈ UB ,
pl ≤ 0 for l ∈ L,
pl = 0 for l ∈ E,
pl ≥ 0 for l ∈ G,
g ≥ 0,

(3.15)
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whose right-most objective functions can then easily be converted to linear optimiza-
tion problems by standard techniques. This then shows that we can indeed compute
ρP (d), ρD(d), and ρ(d) by solving 2n+2m linear programs, under the choice of norms
given in Assumption 1.

3.2. Computing ‖d‖. In order to compute the condition measure C(d) :=
‖d‖/ρ(d), we must also compute ‖d‖ = max{‖A‖, ‖b‖, ‖c‖∗}. Under Assumption 1
we have ‖b‖ = ‖b‖1 and ‖c‖∗ = ‖c‖1, which are both easy to compute. However,
‖A‖ is the operator norm, and so ‖A‖ := ‖A‖∞,1 := max{‖Ax‖1 | ‖x‖∞ = 1},
whose computation is NP-hard (one can easily pose MAXCUT as a special case). We
therefore will bound ‖A‖∞,1 and hence ‖d‖ from below and above, using the following
elementary norm inequalities:

max{‖A‖1,1, ‖A‖2,2, ‖A‖F , ‖Ae‖1, ‖Ax̂‖1} ≤ ‖A‖∞,1 ≤ min{‖A‖L1 ,
√
nm‖A‖2,2},

where

‖A‖1,1 = maxj=1,...,n ‖A•j‖1,

‖A‖2,2 =
√
λmax(AtA),

‖A‖F =
√∑m

i=1

∑n
j=1(Ai,j)2,

‖A‖L1 =
∑m

i=1

∑n
j=1 |Ai,j |,

e := (1, . . . , 1)t, and x̂ is defined using x̂j = sign(Ai∗,j), where i
∗ = argmaxi=1,...,m‖Ai•‖1.

4. Computational results on the NETLIB suite of linear optimization
problems.

4.1. Condition measures for the NETLIB suite prior to preprocessing.
We chose the NETLIB suite of linear optimization problem instances as a represen-
tative suite of LP problems encountered in practice, and we computed the condition
measures ρP (d), ρD(d), and C(d) for problem instances in this suite using the method-
ology developed in section 3. The NETLIB suite is comprised of 98 linear optimization
problems from diverse application areas, collected over a period of many years. While
this suite does not contain any truly large problems by today’s standards, it is arguably
the best publicly available collection of practical LP problems, and the sizes and diver-
sity of the problems contained therein seem to be representative of general practice.
The sizes of the problem instances in the NETLIB suite range from 32 variables and
28 constraints to problems with roughly 9,000 variables and 3,000 constraints. 44
of the 98 problems in the suite have nonzero lower bound constraints and/or upper
bound constraints on the variables, and five problems have range constraints. We
omitted the five problems with range constraints (boeing1, boeing2, forplan, nesm,
seba) for the purposes of our analysis (range constraints do not naturally fit into either
the conic model or the ground-set model format). On four of the remaining problems
(dfl001, qap12, qap15, stocfor3) our methodology has not yet exhibited convergence
to a solution, and these four problems were omitted as well, yielding a final sample
set of 89 linear optimization problems. The burden of computing the distances to
ill-posedness for the NETLIB suite via the solution of 2n+ 2m linear programs obvi-
ously grows with the dimensions of the problem instances. On afiro, which is a small
problem instance (n = 28, m = 32), the total computation time amounted to only
0.28 seconds of machine time, whereas for maros-r7 (n = 9, 408 and m = 3, 136), the
total computation time was 240, 627.59 seconds of machine time (66.84 hours).
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Table 4.1 shows the distances to ill-posedness and the condition measure estimates
for the 89 problems, using the methodology for computing ρP (d) and ρD(d) and for
estimating ‖d‖ presented in section 3. All LP computation was performed using
CPLEX 7.1 (function primopt).

Table 4.2 presents some summary statistics of the condition measure computations
from Table 4.1. As the table shows, 71% (63/89) of the problems in the NETLIB suite
are ill-posed due to either ρP (d) = 0 or ρD(d) = 0 or both. Furthermore, notice that,
among these 63 ill-posed problems, almost all (61 out of 63) have ρP (d) = 0. This
means that for 69% (61/89) of the problems in the NETLIB suite, arbitrarily small
changes in the data will render the primal problem infeasible.

Notice from Table 4.1 that there are three problems for which ρD(d) =∞, namely,
fit1d, fit2d, and sierra. This can happen only when the ground set P is bounded,
which for linear optimization means that all variables have finite lower and upper
bounds.

The computational results in Tables 4.1 and 4.2 have shown that 61 of the 89
linear programs in the NETLIB suite are primal ill-posed, i.e., ρP (d) = 0, and so
arbitrarily small changes in the data will render the primal problem infeasible. For
feasible linear programs, ρP (d) = 0 can happen only if (i) there are linear dependencies
among the equations of the problem instance (2.1), or (ii) there is an implied reverse
inequality among the inequalities and lower and upper bounds of the problem instance.
Furthermore, it is easy to show that if s = 0 in an optimal solution of (3.3), then there
are linear dependencies in the equations (and possibly implied reverse inequalities as
well), whereas if s �= 0 in an optimal solution of (3.3), then there is an implied
reverse inequality (and possibly linear dependencies as well). This then can be used
to evaluate the causes of the ill-posedness of the 61 primal ill-posed instances. We
examined the optimal solutions of (3.3) for the 61 primal ill-posed linear programs in
the NETLIB suite in order to evaluate the causes of the ill-posedness among these
problems. Table 4.3 summarizes our findings, which show that for at least 34% of the
primal ill-posed problem instances there are linear dependencies among the equations
of (2.1).

4.2. Condition measures for the NETLIB suite after preprocessing.
Most commercial software packages for solving linear optimization problems perform
preprocessing heuristics prior to solving a problem instance. These heuristics typically
include checks for eliminating linearly dependent equations, heuristics for identifying
and eliminating redundant variable lower and upper bounds, and rules for row and/or
column rescaling, etc. The purposes of the preprocessing are to reduce the size of the
problem instance by eliminating dependent equations and redundant inequalities, and
to improve numerical computation and enhance iteration performance by rescaling of
rows and/or columns. The original problem instance is converted to a postprocessed
instance by the processing heuristics, and it is this postprocessed instance that is
used as input to solution software. In CPLEX 7.1, the postprocessed problem can be
accessed using function prslvwrite. This function writes the postprocessed problem to
disk, whence it can be read.

In order to examine condition measures of the problems that are the actual in-
put to a modern IPM solver, we computed condition measures for the NETLIB suite
problems after preprocessing by CPLEX 7.1. The processing used was the default
CPLEX preprocessing with the linear dependency check option activated. Table 4.4
shows the condition measures in detail for the postprocessed versions of the problems,
and Table 4.5 presents some summary statistics of these condition measures. Notice
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Table 4.1
Condition measures for the NETLIB suite LP problem instances (prior to preprocessing by

CPLEX 7.1).

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

25fv47 0.000000 0.000000 30,778 55,056 ∞ ∞
80bau3b 0.000000 0.000000 142,228 142,228 ∞ ∞
adlittle 0.000000 0.051651 68,721 68,721 ∞ ∞
afiro 0.397390 1.000000 1,814 1,814 3.7 3.7
agg 0.000000 0.771400 5.51E+07 5.51E+07 ∞ ∞
agg2 0.000000 0.771400 1.73E+07 1.73E+07 ∞ ∞
agg3 0.000000 0.771400 1.72E+07 1.72E+07 ∞ ∞
bandm 0.000000 0.000418 10,200 17,367 ∞ ∞
beaconfd 0.000000 0.000000 15,322 19,330 ∞ ∞
blend 0.003541 0.040726 1,020 1,255 5.5 5.5
bnl1 0.000000 0.106400 8,386 9,887 ∞ ∞
bnl2 0.000000 0.000000 36,729 36,729 ∞ ∞
bore3d 0.000000 0.003539 11,912 12,284 ∞ ∞
brandy 0.000000 0.000000 7,254 10,936 ∞ ∞
capri 0.000252 0.095510 33,326 33,326 8.1 8.1
cycle 0.000000 0.000000 365,572 391,214 ∞ ∞
czprob 0.000000 0.008807 328,374 328,374 ∞ ∞
d2q06c 0.000000 0.000000 171,033 381,438 ∞ ∞
d6cube 0.000000 2.000000 47,258 65,574 ∞ ∞
degen2 0.000000 1.000000 3,737 3,978 ∞ ∞
degen3 0.000000 1.000000 4,016 24,646 ∞ ∞
e226 0.000000 0.000000 22,743 37,344 ∞ ∞
etamacro 0.000000 0.200000 31,249 63,473 ∞ ∞
fffff800 0.000000 0.033046 1.55E+06 1.55E+06 ∞ ∞
finnis 0.000000 0.000000 31,978 31,978 ∞ ∞
fit1d 3.500000 ∞ 493,023 618,065 5.1 5.2
fit1p 1.271887 0.437500 218,080 384,121 5.7 5.9
fit2d 317.000000 ∞ 1.90E+06 2.25E+06 3.8 3.9
fit2p 1.057333 1.000000 621,470 658,700 5.8 5.8
ganges 0.000000 1.000000 1.29E+06 1.29E+06 ∞ ∞
gfrd-pnc 0.000000 0.347032 1.63E+07 1.63E+07 ∞ ∞
greenbea 0.000000 0.000000 21,295 26,452 ∞ ∞
greenbeb 0.000000 0.000000 21,295 26,452 ∞ ∞
grow15 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.027248 0.166850 2.22E+06 2.22E+06 7.9 7.9
kb2 0.000201 0.018802 10,999 11,544 7.7 7.8
lotfi 0.000306 0.000000 166,757 166,757 ∞ ∞
maros 0.000000 0.000000 2.51E+06 2.55E+06 ∞ ∞
maros-r7 1.000000 0.628096 1.02E+07 1.02E+07 7.2 7.2
modszk1 0.000000 0.108469 1.03E+06 1.03E+06 ∞ ∞
perold 0.000000 0.000943 703,824 2.64E+06 ∞ ∞
pilot 0.000000 0.000290 26,633 30,427 ∞ ∞
pilot.ja 0.000000 0.000750 2.67E+07 1.40E+08 ∞ ∞
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 ∞ ∞
pilot4 0.000000 0.000075 763,677 1.09E+06 ∞ ∞
pilot87 0.000000 0.000000 111,163 138,736 ∞ ∞
pilotnov 0.000000 0.000750 2.36E+07 1.35E+08 ∞ ∞
qap8 0.000000 4.000000 17,248 17,248 ∞ ∞
recipe 0.000000 0.000000 14,881 19,445 ∞ ∞
sc105 0.000000 0.133484 3,000 3,000 ∞ ∞
sc205 0.000000 0.010023 5,700 5,700 ∞ ∞
sc50a 0.000000 0.562500 1,500 1,500 ∞ ∞
sc50b 0.000000 0.421875 1,500 1,500 ∞ ∞
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Table 4.1 (cont.)

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

scagr25 0.021077 0.034646 430,977 430,977 7.3 7.3
scagr7 0.022644 0.034646 120,177 120,177 6.7 6.7
scfxm1 0.000000 0.000000 21,425 22,816 ∞ ∞
scfxm2 0.000000 0.000000 44,153 45,638 ∞ ∞
scfxm3 0.000000 0.000000 66,882 68,459 ∞ ∞
scorpion 0.000000 0.949393 5,622 5,622 ∞ ∞
scrs8 0.000000 0.000000 68,630 69,449 ∞ ∞
scsd1 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctap1 0.032258 1.000000 8,240 17,042 5.4 5.7
sctap2 0.586563 1.000000 32,982 72,870 4.7 5.1
sctap3 0.381250 1.000000 38,637 87,615 5.0 5.4
share1b 0.000015 0.000751 60,851 87,988 9.6 9.8
share2b 0.001747 0.287893 19,413 23,885 7.0 7.1
shell 0.000000 1.777778 253,434 253,434 ∞ ∞
ship04l 0.000000 13.146000 811,956 811,956 ∞ ∞
ship04s 0.000000 13.146000 515,186 515,186 ∞ ∞
ship08l 0.000000 21.210000 1.91E+06 1.91E+06 ∞ ∞
ship08s 0.000000 21.210000 1.05E+06 1.05E+06 ∞ ∞
ship12l 0.000000 7.434000 794,932 794,932 ∞ ∞
ship12s 0.000000 7.434000 381,506 381,506 ∞ ∞
sierra 0.000000 ∞ 6.60E+06 6.61E+06 ∞ ∞
stair 0.000580 0.000000 976 1,679 ∞ ∞
standata 0.000000 1.000000 21,428 23,176 ∞ ∞
standgub 0.000000 0.000000 21,487 23,235 ∞ ∞
standmps 0.000000 1.000000 22,074 23,824 ∞ ∞
stocfor1 0.001203 0.011936 23,212 23,441 7.3 7.3
stocfor2 0.000437 0.000064 462,821 467,413 9.9 9.9
truss 0.518928 10.000000 154,676 154,676 5.5 5.5
tuff 0.000000 0.017485 136,770 145,448 ∞ ∞
vtp.base 0.000000 0.500000 530,416 534,652 ∞ ∞
wood1p 0.000000 1.000000 3.66E+06 5.04E+06 ∞ ∞
woodw 0.000000 1.000000 9.86E+06 1.35E+07 ∞ ∞

Table 4.2
Summary statistics of distances to ill-posedness for the NETLIB suite (prior to preprocessing

by CPLEX 7.1).

ρD(d)
0 Finite ∞ Totals

0 19 41 1 61
ρP (d) Finite 2 24 2 28

∞ 0 0 0 0

Totals 21 65 3 89

Table 4.3
Evaluation of ill-posedness of the 61 primal ill-posed instances in the NETLIB suite (prior to

preprocessing by CPLEX 7.1).

Indication Number of instances

Dependent equations 21
Implied reverse inequalities 40

Total 61
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Table 4.4
Condition measures for the NETLIB suite after preprocessing by CPLEX 7.1.

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

25fv47 0.000707 0.000111 35,101 54,700 8.5 8.7
80bau3b 0.000000 0.000058 126,355 126,355 ∞ ∞
adlittle 0.004202 1.000488 68,627 68,627 7.2 7.2
afiro 0.397390 1.000000 424 424 3.0 3.0
agg 0.000000 0.031728 3.04E+07 3.04E+07 ∞ ∞
agg2 0.000643 1.005710 1.57E+07 1.57E+07 10.4 10.4
agg3 0.000687 1.005734 1.56E+07 1.56E+07 10.4 10.4
bandm 0.001716 0.000418 7,283 12,364 7.2 7.5
beaconfd 0.004222 1.000000 6,632 6,632 6.2 6.2
blend 0.011327 0.041390 872 1,052 4.9 5.0
bnl1 0.000016 0.159015 8,140 9,544 8.7 8.8
bnl2 0.000021 0.000088 18,421 20,843 8.9 9.0
bore3d 0.000180 0.012354 8,306 8,306 7.7 7.7
brandy 0.000342 0.364322 4,342 7,553 7.1 7.3
capri 0.000375 0.314398 30,323 30,323 7.9 7.9
cycle 0.000021 0.009666 309,894 336,316 10.2 10.2
czprob 0.000000 0.001570 206,138 206,138 ∞ ∞
d2q06c 0.000000 0.003925 172,131 378,209 ∞ ∞
d6cube 0.945491 2.000000 43,629 60,623 4.7 4.8
degen2 0.000000 1.000000 2,613 3,839 ∞ ∞
degen3 0.000000 1.000000 4,526 24,090 ∞ ∞
e226 0.000737 0.021294 21,673 35,518 7.5 7.7
etamacro 0.001292 0.200000 55,527 87,767 7.6 7.8
fffff800 0.000000 0.033046 696,788 696,788 ∞ ∞
finnis 0.000000 0.000000 74,386 74,386 ∞ ∞
fit1d 3.500000 ∞ 493,023 617,867 5.1 5.2
fit1p 1.389864 1.000000 218,242 383,871 5.3 5.6
fit2d 317.000000 ∞ 1.90E+06 2.24E+06 3.8 3.8
fit2p 1.057333 1.000000 621,470 658,700 5.8 5.8
ganges 0.000310 1.000000 143,913 143,913 8.7 8.7
gfrd-pnc 0.015645 0.347032 1.22E+07 1.22E+07 8.9 8.9
greenbea 0.000033 0.000004 65,526 65,526 10.2 10.2
greenbeb 0.000034 0.000007 43,820 43,820 9.8 9.8
grow15 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.135433 0.166846 2.22E+06 2.22E+06 7.2 7.2
kb2 0.000201 0.026835 10,914 11,054 7.7 7.7
lotfi 0.000849 0.001590 170,422 170,422 8.3 8.3
maros 0.000000 0.006534 1.76E+06 1.80E+06 ∞ ∞
maros-r7 1.000131 0.846743 9.39E+06 9.39E+06 7.0 7.0
modszk1 0.016030 0.114866 1.03E+06 1.03E+06 7.8 7.8
perold 0.000000 0.002212 1.56E+06 2.35E+06 ∞ ∞
pilot 0.000002 0.000290 35,379 35,379 10.2 10.2
pilot.ja 0.000000 0.001100 2.36E+07 1.36E+08 ∞ ∞
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 ∞ ∞
pilot4 0.000399 0.002600 696,761 1.03E+06 9.2 9.4
pilot87 0.000000 0.000199 100,187 125,426 ∞ ∞
pilotnov 0.000000 0.001146 2.36E+07 1.32E+08 ∞ ∞
qap8 0.022222 2.000000 17,248 17,248 5.9 5.9
recipe 0.063414 0.000000 13,356 15,815 ∞ ∞
sc105 0.778739 0.400452 3,000 3,000 3.9 3.9
sc205 0.778739 0.030068 5,700 5,700 5.3 5.3
sc50a 0.780744 1.000000 1,500 1,500 3.3 3.3
sc50b 0.695364 1.000000 1,500 1,500 3.3 3.3
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Table 4.4 (cont.)

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

scagr25 0.021191 0.049075 199,859 199,859 7.0 7.0
scagr7 0.022786 0.049075 61,259 61,259 6.4 6.4
scfxm1 0.000010 0.002439 20,426 21,811 9.3 9.3
scfxm2 0.000010 0.002439 38,863 43,630 9.6 9.6
scfxm3 0.000010 0.002439 57,300 65,449 9.8 9.8
scorpion 0.059731 0.995879 123,769 123,769 6.3 6.3
scrs8 0.009005 0.004389 66,362 68,659 7.2 7.2
scsd1 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctap1 0.032258 1.000000 7,204 15,186 5.3 5.7
sctap2 0.669540 1.000000 27,738 64,662 4.6 5.0
sctap3 0.500000 1.000000 32,697 78,415 4.8 5.2
share1b 0.000015 0.000751 1.67E+06 1.67E+06 11.0 11.0
share2b 0.001747 0.287893 19,410 23,882 7.0 7.1
shell 0.000263 0.253968 874,800 874,800 9.5 9.5
ship04l 0.000386 25.746000 881,005 881,005 9.4 9.4
ship04s 0.000557 25.746000 545,306 545,306 9.0 9.0
ship08l 0.000000 22.890000 1.57E+06 1.57E+06 ∞ ∞
ship08s 0.000000 22.890000 816,531 816,531 ∞ ∞
ship12l 0.000124 7.434000 748,238 748,238 9.8 9.8
ship12s 0.000149 7.434000 340,238 340,238 9.4 9.4
sierra 0.001039 47.190000 6.60E+06 6.61E+06 9.8 9.8
stair 0.003800 0.163162 7,071 7,071 6.3 6.3
standata 0.090909 1.000000 4,931 5,368 4.7 4.8
standgub 0.090909 1.000000 4,931 5,368 4.7 4.8
standmps 0.020000 1.000000 12,831 12,831 5.8 5.8
stocfor1 0.002130 0.109062 10,833 29,388 6.7 7.1
stocfor2 0.000811 0.000141 45,458 616,980 8.5 9.6
truss 0.518928 10.000000 154,676 154,676 5.5 5.5
tuff 0.000025 0.047081 131,554 138,783 9.7 9.7
vtp.base 0.005287 3.698630 17,606 17,606 6.5 6.5
wood1p 0.059008 1.442564 2.11E+06 3.25E+06 7.6 7.7
woodw 0.009357 1.000000 5.68E+06 7.26E+06 8.8 8.9

Table 4.5
Summary statistics of distances to ill-posedness for the NETLIB suite after preprocessing by

CPLEX 7.1.

ρD(d)
0 Finite ∞ Totals

0 1 15 0 16
ρP (d) Finite 1 70 2 73

∞ 0 0 0 0

Totals 2 85 2 89

from Table 4.5 that 19% (17/89) of the postprocessed problems in the NETLIB suite
are ill-posed. In contrast to the original problems, the vast majority of postprocessed
problems have finite condition measures, as the preprocessing heuristics are very ef-
fective at identifying and correcting many instances of implied reverse inequalities in
addition to finding and eliminating linearly dependent equations. We also examined
the optimal solutions of (3.3) for the 16 primal ill-posed postprocessed problems in
the NETLIB suite in order to evaluate the causes of the ill-posedness among these
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Table 4.6
Evaluation of ill-posedness of the 16 primal ill-posed instances in the NETLIB suite after

preprocessing by CPLEX 7.1.

Indication Number of instances

Dependent equations 0
Implied reverse inequalities 16

Total 16
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Fig. 4.1. Histogram of condition measures for the NETLIB suite after preprocessing by CPLEX
7.1 (using the geometric mean of the lower and upper bound estimates of C(d)).

postprocessed problem instances. Table 4.6 summarizes our findings, which show that
all of the ill-posed postprocessed LP instances have implied reverse inequalities among
the inequalities and/or lower/upper bounds.

Figure 4.1 presents a histogram of the condition measures of the postprocessed
problems taken from Table 4.4. The condition measure of each problem is represented
by the geometric mean of the upper and lower bound estimates in this histogram.
The right-most column in the figure is used to tally the number of problems for which
C(d) =∞, and is shown to give a more complete picture of the data. This histogram
shows that of the problems with finite condition measure, logC(d) is fairly nicely
distributed between 2.6 and 11.0. Of course, when C(d) = 1011, it is increasingly
difficult to distinguish between a finite and nonfinite condition measure.

4.3. Condition measures and the observed performance of interior-
point methods on the NETLIB suite. In the case of modern IPM algorithms for
linear optimization, the number of IPM iterations needed to solve a linear optimiza-
tion instance has been observed to be fairly constant over a huge range of problem
sizes; for the NETLIB suite the number of iterations varies between 8 and 48 using
CPLEX 7.1 baropt ; for other codes the numbers are a bit different. Extensive compu-
tational experience over the past 15 years has shown that the IPM iterations needed
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to solve a linear optimization problem instance vary in the range between 10–100
iterations. There is some evidence that the number of IPM iterations grows roughly
as log n on a particular class of structured problem instances; see, for example, [12].

The observed performance of modern IPM algorithms is fortunately superior to
the worst-case bounds on IPM iterations that arise via theoretical complexity analysis.
Depending on the complexity model used, one can bound the number of IPM iterations
from above by

√
ϑL̃, where ϑ is the number of inequalities plus the number of variables

with at least one bound in the problem instance,

ϑ := |L|+ |G|+ |LB |+ |UB | − |LB ∩ UB |,(4.1)

and L̃ is the bit-size of a binary encoding of the problem instance data; see [23].
(Subtraction of the final term of (4.1) is shown in [7].) The bit-size model was a
motivating force for modern polynomial-time LP algorithms, but is viewed today
as somewhat outdated in the context of linear and nonlinear optimization. Using
instead the condition-measure model for complexity analysis, one can bound the IPM
iterations by O(

√
ϑ log(C(d)+ · · ·)), where the other terms in the bound are of a more

technical nature; see [25] for details. Of course, even here one must bear in mind that
the IPM algorithms that are used in practice are different from the IPM algorithms
that are used in the development of the complexity theory.

A natural question to ask is whether the observed variation in the number of
IPM iterations (already small) can be accounted for by the condition measures of
the problem instances that are the input to the IPM algorithm. The finite condition
measures of the 72 postprocessed problems from the NETLIB suite shown in Table
4.4 provide a rich set of data that can be used to address this question. Here the
goal is to assess whether or not condition measures are relevant for understanding the
practical performance of IPM algorithms (we do not aim at validating the complexity
theory).

In order to assess any relationship between condition measures and IPM iterations
for the NETLIB suite, we first solved and recorded the IPM iterations for the 89
problems from the NETLIB suite. The problems were preprocessed with the linear
dependency check option and solved with CPLEX 7.1 function baropt with default
parameters. The default settings use the standard barrier algorithm, include a starting
heuristic that sets the initial dual solution to zero, and a convergence criteria of a
relative complementarity smaller than 10−8. The iteration counts are shown in Table
4.7. Notice that these iteration counts vary between 8 and 48.

Figure 4.2 shows a scatter plot of the number of IPM iterations taken by CPLEX
7.1 to solve the 89 problems in the NETLIB suite after preprocessing (from Table
4.7) and logC(d) of the postprocessed problems (using the logC(d) estimates from
columns 6 and 7 of Table 4.4). In the figure, the horizontal lines represent the range
for logC(d) due to the lower and upper estimates of C(d) from the last two columns
of Table 4.4. Also, similarly to Figure 4.1, problems with infinite condition measure
are shown in the figure on the far right as a visual aid.

Figure 4.2 shows that as logC(d) increases, so does the number of IPM iterations
needed to solve the problem (with exceptions, of course). Perhaps a more accurate
summary of the figure is that if the number of IPM iterations is large, then the
problem will tend to have a large value of logC(d). The converse of this statement
is not supported by the scatter plot: if a problem has a large value of logC(d), one
cannot state in general that the problem will take a large number of IPM iterations
to solve.
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Table 4.7
IPM iterations for the NETLIB suite using CPLEX 7.1 function baropt.

Problem IPM iterations Problem IPM iterations Problem IPM iterations

25fv47 22 gfrd-pnc 18 scorpion 13
80bau3b 30 greenbea 38 scrs8 20
adlittle 12 greenbeb 33 scsd1 10
afiro 9 grow15 12 scsd6 11
agg 22 grow22 12 scsd8 9
agg2 18 grow7 10 sctap1 13
agg3 21 israel 23 sctap2 15
bandm 16 kb2 17 sctap3 15
beaconfd 8 lotfi 14 share1b 22
blend 11 maros 27 share2b 14
bnl1 25 maros-r7 9 shell 16
bnl2 28 modszk1 23 ship04l 13
bore3d 16 perold 42 ship04s 17
brandy 19 pilot 22 ship08l 14
capri 19 pilot.ja 46 ship08s 14
cycle 25 pilot.we 48 ship12l 19
czprob 32 pilot4 35 ship12s 17
d2q06c 28 pilot87 26 sierra 16
d6cube 22 pilotnov 19 stair 16
degen2 13 qap8 9 standata 9
degen3 19 recipe 9 standgub 9
e226 18 sc105 10 standmps 13
etamacro 24 sc205 11 stocfor1 10
fffff800 30 sc50a 10 stocfor2 16
finnis 19 sc50b 9 truss 17
fit1d 14 scagr25 14 tuff 21
fit1p 13 scagr7 13 vtp.base 10
fit2d 18 scfxm1 18 wood1p 13
fit2p 18 scfxm2 20 woodw 21
ganges 13 scfxm3 20

In order to be a bit more definitive, we ran a simple linear regression with the
IPM iterations of the postprocessed problem as the dependent variable and logC(d) as
the independent variable, for the 72 NETLIB problems which have a finite condition
measure after preprocessing. For the purposes of the regression computation we used
the geometric mean of the lower and upper estimates of the condition measure from
the last two columns of Table 4.4. The resulting linear regression equation is

IPM Iterations = 4.1223 + 1.7490 logC(d),

with R2 = 0.4160. This indicates that in the sample of 72 NETLIB suite problem
instances whose postprocessed condition measure is finite, about 42% of the variation
in IPM iterations among these problems is accounted for by logC(d) of the postpro-
cessed problem instance. A plot of this regression line is shown in Figure 4.3, where
once again the 17 problems that are ill-posed are shown in the figure on the far right
as a visual aid. Both coefficients of this simple linear regression are significant at the
95% confidence level; see the regression statistics shown in Table 4.8.

The above regression analysis indicates that logC(d) accounts for 42% of the
variation in IPM iteration counts among those NETLIB suite problem instances with
finite postprocessed condition measure. However, recall that the complexity theory of
interior-point methods bounds the number of IPM iterations by O(

√
ϑ log(C(d)+· · ·)).

The factor
√
ϑ in the complexity bound seems to be a fixture of the theory of self-

concordant barrier functions (see [14]), despite the belief that such dependence is not
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Fig. 4.2. Scatter plot of IPM iterations and logC(d) for 89 NETLIB problems after prepro-
cessing, using CPLEX 7.1.
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Fig. 4.3. Linear regression of IPM iterations and logC(d) for 72 NETLIB problems with finite
condition measure after preprocessing, using CPLEX 7.1 (using the geometric mean of the lower
and upper bound estimates of C(d)).
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Table 4.8
Statistics for the linear regression of IPM iterations and logC(d).

Coefficient Value t-statistic 95% Confidence interval

β0 4.1223 2.2480 [ 0.4650 , 7.7796 ]
β1 1.7490 7.0620 [ 1.2551 , 2.2430 ]
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Fig. 4.4. Scatter plot of IPM iterations and
√
ϑ logC(d) for 89 NETLIB problems after pre-

processing, using CPLEX 7.1.

borne out in practice. Nevertheless, one can also ask whether
√
ϑ logC(d) as opposed

to logC(d) might better account for the variation in IPM iteration counts among the
NETLIB suite problems. We now address this question. Figure 4.4 shows a scatter
plot of the number of IPM iterations taken by CPLEX 7.1 to solve the 89 problems in
the NETLIB suite after preprocessing and

√
ϑ logC(d) of the postprocessed problems.

(The horizontal lines refer to the range of the lower and upper estimates of C(d) from
the last two columns of Table 4.4; also, problems with infinite condition measure are
shown in the figure on the far right as a visual aid.) We also ran a simple linear
regression of IPM iterations of the postprocessed problem as the dependent variable
and

√
ϑ logC(d) as the independent variable, again for the 72 NETLIB problems which

have a finite condition measure after preprocessing. The resulting linear regression
equation is

IPM Iterations = 11.7903 + 0.0195
√
ϑ logC(d),

with R2 = 0.3021. A plot of this regression is shown in Figure 4.5, and Table 4.9
shows the regression statistics. Notice that R2 = 0.3021 for the

√
ϑ logC(d) regression

model, which is inferior to R2 = 0.4160 for the logC(d) regression model. These
results indicate that among the 72 NETLIB suite postprocessed problem instances
with finite condition measure, logC(d) is better than

√
ϑ logC(d) at accounting for

the variation in IPM iterations for these NETLIB suite problems.
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Fig. 4.5. Linear regression of IPM iterations and
√
ϑ logC(d) for 72 NETLIB problems with

finite condition measure after preprocessing, using CPLEX 7.1 (using the geometric mean of the
lower and upper bound estimates of C(d)).

Table 4.9
Statistics for the linear regression of IPM iterations and

√
ϑ logC(d).

Coefficient Value t-statistic 95% Confidence interval

β0 11.7903 11.2667 [ 9.7031 , 13.8774 ]
β1 0.0195 5.5046 [ 0.0124 , 0.0266 ]

Table 4.10
Sample correlations for 72 NETLIB suite problems after preprocessing by CPLEX 7.1 (using

the geometric mean of the lower and upper bound estimates of C(d)).

IPM iterations logC(d) logn logm log ϑ
√
ϑ

IPM iterations 1.000
logC(d) 0.645 1.000

logn 0.383 0.217 1.000
logm 0.432 0.371 0.777 1.000
log ϑ 0.398 0.224 0.991 0.808 1.000√

ϑ 0.311 0.093 0.909 0.669 0.918 1.000

We also computed the sample correlation coefficients of the IPM iterations from
Table 4.7 with the following dimensional measures for the 72 problems in the NETLIB
suite with finite condition measure of the postprocessed problem instance: logm,
log n, log ϑ, and

√
ϑ. The resulting sample correlations are shown in Table 4.10.

Observe from Table 4.10 that IPM iterations are better correlated with logC(d) than
with any of the other measures. The closest other measure is logm, for which R =
0.432, and so a linear regression of IPM iterations as a function of logm would yield
R2 = (0.432)2 = 0.187, which is decidedly less than R2 = 0.4160 for logC(d). Also,
note from Table 4.10 that both log ϑ and

√
ϑ by themselves are significantly less

correlated with the IPM iterations than logC(d).
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4.4. Controlled perturbations of problems in the NETLIB suite. One
potential drawback of the analysis in subsection 4.3 is that in making comparisons of
problem instances with different condition measures one necessarily fails to keep the
problem size or structure invariant. Herein, we attempt to circumvent this drawback
by performing controlled perturbations of linear optimization problems, which allows
one to keep the problem size and structure intact.

Consider a problem instance d = (A, b, c) and the computation of the primal and
dual distances to ill-posedness ρP (d) and ρD(d). It is fairly straightforward to show
that if (i∗, j∗, y∗, (s+)∗, (s−)∗, v∗) is an optimal solution of (3.14), then the rank-1
data perturbation

∆d = (∆A,∆b,∆c) :=
(−j∗ei∗(Aty∗ + (s+)∗ − (s−)∗)t,−j∗ei∗(bty∗ − v∗), 0)(4.2)

is a minimum-norm perturbation for which ρP (d + ∆d) = 0 (where ei
∗
denotes the

(i∗)th unit vector in R
m). That is, ‖∆d‖ = ρP (d), and the data instance d̃ := d+∆d

is primal ill-posed.
The simple construction shown in (4.2) allows one to construct a controlled per-

turbation of the data instance d. Consider the family of data instances dα := d+α∆d
for α ∈ [0, 1]. Then if ρD(d) ≥ ρP (d) > 0, it follows that ρ(dα) = (1 − α)ρ(d) for
α ∈ [0, 1], and we can bound the condition measure of dα as follows:

C(dα) =
‖d+ α∆d‖
(1− α)ρ(d) ≥

‖d‖ − αρ(d)
(1− α)ρ(d) ,

where the numerator satisfies ‖d‖ − αρ(d) ≥ 0 for α ∈ [0, 1]. In the case when
‖d‖ > ρ(d) (satisfied by all problem instances in the NETLIB suite) we can create a
family of data instances for which C(dα) → ∞ as α → 1 by varying α in the range
[0, 1], all the while keeping the problem dimensions, the structure of the cone CY , and
the ground set P invariant.

To illustrate, consider the problem scagr25 from the NETLIB suite, and let d̄
denote the data for this problem instance after preprocessing. According to Table
4.4, ρD(d̄) = 0.049075 ≥ 0.021191 = ρP (d̄) > 0. Now let ∆d̄ be the perturbation
of this data instance according to (4.2). If we solve the resulting perturbed problem
instances d̄α for select values of α ∈ [0, 1] and record the number of IPM iterations,
we obtain the results portrayed in Figure 4.6. As the figure shows, the number of
IPM iterations grows as the perturbed problem instance becomes more ill-posed.

The pattern of growth in IPM iterations as the perturbed problem becomes more
ill-posed is not shared by all problem instances in the NETLIB suite. Figure 4.7
shows the plot of IPM iterations for problem e226 as the perturbed problem instance
becomes more ill-posed. For this problem instance the growth in IPM iterations is
not monotone.

Of the 72 postprocessed problems in the NETLIB suite with finite condition
measure, 59 of these problems satisfy ρD(d) ≥ ρP (d) > 0 and ‖d‖ > ρ(d), and so
are amenable to analysis via the construction described above. For a given problem
instance in the NETLIB suite, let kα denote the number of IPM iterations needed to
solve the perturbed postprocessed problem instance d̄α. Then

∆k := k1 − k0
is the difference between the IPM iterations needed to solve the unperturbed and
fully perturbed problem instances. Table 4.11 shows some summary statistics of the
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Fig. 4.6. The number of IPM iterations needed to solve the perturbed postprocessed problem
instance scagr25, as a function of the perturbation scalar α.
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Fig. 4.7. The number of IPM iterations needed to solve the perturbed postprocessed problem
instance e226, as a function of the perturbation scalar α.

distribution of ∆k for the 59 problems in the NETLIB suite that are readily amenable
to this analysis. As the table shows, the fully perturbed problem instance has a larger
IPM iteration count in 68% (40 out of 59) of the problem instances. Curiously, the
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Table 4.11
The distribution of the change in IPM iterations needed to solve the unperturbed problem in-

stance and the fully perturbed problem instance for 59 postprocessed problems in the NETLIB suite.

Change in IPM iterations Number of
(∆k) problem instances

−1 or less 11
0 8

1 to 5 13
6 to 10 9

11 or more 18

Total 59

number of IPM iterations is actually less for the fully perturbed problem instance in
19% (11 out of 59) problem instances amenable to this analysis. A rough summary of
the results in Table 4.11 is that the number of IPM iterations for the fully perturbed
problem increases dramatically (more than 10 iterations) on 31% of the problem
instances, increases modestly (1–10 iterations) on 37% of the problem instances, and
remains the same or decreases slightly on 32% of problem instances.

5. Discussion and open questions. The purpose of this paper has been to
study condition measures for linear optimization on problem instances that one might
encounter in practice. We used the NETLIB suite of linear optimization problems
as a test bed for condition measure computation and analysis, and we computed
condition measures for 89 original NETLIB suite problem instances, as well as for
the corresponding problem instances after preprocessing by CPLEX 7.1. We then
investigated the extent to which the condition measure provides some explanatory
value for the (already small) variance in the observed IPM iterations among problem
instances in the NETLIB suite.

Except for certain classes of structured LP problems (see [12]), there is not yet a
clear practical understanding (nor a theory) to explain the variation in the iteration
counts of IPM algorithms (either theoretical or practical) on different LP instances.
Herein we have explored the extent to which condition measures provide explanatory
value for this variation. The scatter-plot in Figure 4.2 indicates that problem instances
with large IPM iteration counts must have large condition measures. However, the
converse of this assertion is not supported by the data; there are problem instances
that have a high condition measure and low IPM iteration counts, for example, agg2,
recipe, and some of the controlled-perturbation instances of section 4.4 with large
condition measure.

It is easy to construct families of LP instances with ever-larger condition measures,
whose IPM iteration counts do not grow excessively (see section 4.4). However, despite
much effort, we have been unable to construct a family of problem instances with ever-
larger practical IPM iteration counts but whose condition measures remains bounded.
The existence of such a family is an open question.

The scatter-plot in Figure 4.2 indicates visually that there is a linear relationship
between logC(d) and IPM iterations, and such a relationship is borne out by simple
linear regression, with a resulting R2 = 0.4160. However, in performing the regression
analysis, there was no satisfactory way to include the 17 data instances with nonfinite
(postprocessed) condition measures, and so these were removed, arguably biasing
the results in favor of the explanatory value of the condition measure. A similar
criticism can be made for the sample correlation coefficients computed in Table 4.10.
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However, we feel that, at least on a relative basis, the results in Table 4.10 point to the
conclusion that the condition measure does a better job of explaining the variation in
IPM iteration counts than do any of the obvious reasonable alternative measures of
problem size: log n, logm, log ϑ, or

√
ϑ.

This work is a first attempt at explaining the observed performance of modern
IPM solvers using condition measures that arise in the worst-case complexity analysis
of interior-point methods. There are a variety of other instance-specific measures
that have been used to bound the theoretical complexity of interior-point methods
for linear optimization, including the bit-size L (see Karmarkar [11]), χ̄A (see Vavasis
and Ye [26]), σ (see Ye [31]), and g and Dε [6]. One natural question to ask is whether
these or perhaps other measures might further explain the observed performance of
IPM solvers.

Finally, the theory of condition measures referenced herein pertains to the very
general class of conic convex optimization problems (and some formats for nonconic
convex optimization problems as well), including semidefinite programming (SDP).
Given the importance of SDP and the continuing development of IPM software for
SDP, it is natural to ask to what extent condition measures (or other measures) might
explain the observed performance of IPM solvers for SDP.
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