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The purpose of this paper is to extend, as much as possible, the modern theory of condition numbers for conic
convex optimization:

z∗ �= min
x

ctx

s.t. Ax− b ∈CY 


x ∈CX


to the more general nonconic format:

z∗ �= min
x

ctx

�GPd� s.t. Ax− b ∈CY 


x ∈ P


where P is any closed convex set, not necessarily a cone, which we call the ground-set. Although any convex
problem can be transformed to conic form, such transformations are neither unique nor natural given the natural
description of many problems, thereby diminishing the relevance of data-based condition number theory. Herein
we extend the modern theory of condition numbers to the problem format �GPd�. As a byproduct, we are able to
state and prove natural extensions of many theorems from the conic-based theory of condition numbers to this
broader problem format.
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1. Introduction. The modern theory of condition numbers for convex optimization
problems was developed by Renegar [16, 17] for convex optimization problems in the fol-
lowing conic format:

z∗ �= min
x

ctx

�CPd� s.t. Ax− b ∈CY 


x ∈CX


(1)

where CX ⊆ � and CY ⊆ � are closed convex cones, A is a linear operator from the
n-dimensional vector space � to the m-dimensional vector space �, b ∈ �, and c ∈ �∗

(the space of linear functionals on �). The data d for �CPd� is defined as d �= �A
b
 c�.
The theory of condition numbers for �CPd� focuses on three measures—�P�d�
�D�d�,

and C�d�—to bound various behavioral and computational quantities pertaining to �CPd�.
The quantity �P�d� is called the “distance to primal infeasibility” and is the smallest data
perturbation �d for which �CPd+�d� is infeasible. The quantity �D�d� is called the “distance
to dual infeasibility” for the conic dual �CDd� of �CPd�:

z∗ �= max
y

bty

�CDd� s.t. c−Aty ∈C∗
X


y ∈C∗
Y 


(2)
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and is defined similarly to �P�d� but using the conic dual problem instead (which conve-
niently is of the same general conic format as the primal problem). The quantity C�d� is
called the “condition measure” or the “condition number” of the problem instance d and is
a (positively) scale-invariant reciprocal of the smallest data perturbation �d that will render
the perturbed data instance either primal or dual infeasible:

C�d� �= �d�
min��P �d�
�D�d��

(3)

for a suitably defined norm �·� on the space of data instances d. A problem is called “ill-
posed” if min��P �d�
�D�d��= 0, equivalently C�d�=
. These three condition measure
quantities have been shown in theory to be connected to a wide variety of bounds on
behavioral characteristics of �CPd� and its dual, including bounds on sizes of feasible
solutions, bounds on sizes of optimal solutions, bounds on optimal objective values, bounds
on the sizes and aspect ratios of inscribed balls in the feasible region, bounds on the rate
of deformation of the feasible region under perturbation, bounds on changes in optimal
objective values under perturbation, and numerical bounds related to the linear algebra
computations of certain algorithms (see Renegar [16], Filipowski [4, 5], Freund and Vera
[6, 7, 8], Vera [19, 20, 21, 22], Peña [14], Peña and Renegar [15]). In the context of interior-
point methods for linear and semidefinite optimization, these same three condition measures
have also been shown to be connected to various quantities of interest regarding the central
trajectory (see Nunez and Freund [10, 11]). The connection of these condition measures
to the complexity of algorithms has been shown in Freund and Vera [6, 7], Renegar [17],
Cucker and Peña [2], and Epelman and Freund [3], and some of the references contained
therein.
The conic format �CPd� covers a very general class of convex problems; indeed any

convex optimization problem can be transformed to an equivalent instance of �CPd�. How-
ever, such transformations are not necessarily unique and are sometimes rather unnatural
given the “natural” description and the natural data for the problem. The condition number
theory developed in the aforementioned literature pertains only to convex optimization prob-
lems in conic form, and the relevance of this theory is diminished to the extent that many
practical convex optimization problems are not conveyed in conic format. Furthermore, the
transformation of a problem to conic form can result in dramatically different condition
numbers depending on the choice of transformation (see the example in Ordóñez and Freund
[13, §2]).
Motivated to overcome these shortcomings, herein we extend the condition number theory

to nonconic convex optimization problems. We consider the more general format for convex
optimization:

z∗�d�= min ctx

�GPd� s.t. Ax− b ∈CY 


x ∈ P


(4)

where P is allowed to be any closed convex set, possibly unbounded, and possibly without
interior. For example, P could be the solution set of box constraints of the form l≤ x ≤ u
where some components of l and/or u might be unbounded, or P might be the solution of
network flow constraints of the form Nx = g
x ≥ 0. Of course, P might also be a closed
convex cone. We call P the “ground-set” and we refer to �GPd� as the “ground-set model”
(GSM) format.
We present the definition of the condition number for problem instances of the more

general GSM format in §2, where we also demonstrate some basic properties. A number
of results from condition number theory are extended to the GSM format in the subsequent



Freund and Ordóñez: On an Extension of Condition Number Theory
Mathematics of Operations Research 30(1), pp. 173–194, © 2005 INFORMS 175

sections of the paper. In §3, we prove that a problem instance with a finite condition number
has primal and dual Slater points, which in turn implies that strong duality holds for the
problem instance and its dual. In §4, we provide characterizations of the condition number
as the solution to associated optimization problems. In §5, we show that if the condition
number of a problem instance is finite, then there exist primal and dual interior solutions
that have good geometric properties. In §6, we show that the rate of deformation of primal
and dual feasible regions and optimal objective function values due to changes in the data
are bounded by functions of the condition number. Section 7 contains concluding remarks.
We now present the notation and general assumptions that we will use throughout the

paper.

Notation and general assumptions. We denote the variable space � by �n and the
constraint space � by �m. Therefore, P ⊆�n, CY ⊆�m, A is an m by n real matrix, b ∈�m,
and c ∈ �n. The spaces �∗ and �∗ of linear functionals on �n and �m can be identified
with �n and �m, respectively. For v
w ∈ �n or �m, we write vtw for the standard inner
product. We denote by � the vector space of all data instances d = �A
b
 c�. A particular
data instance is denoted equivalently by d or �A
b
 c�. We define the norm for a data
instance d by �d� �=max��A�
�b�
�c�∗�, where the norms �x� and �y� on �n and �m

are given, �A� denotes the usual operator norm, and �·�∗ denotes the dual norm associated
with the norm �·� on �n or �m, respectively. Let B�v
 r� denote the ball centered at v with
radius r , using the norm for the space of variables v. For a convex cone S, let S∗ denote the
(positive) dual cone, namely S∗ �= �s � stx≥ 0 for all x ∈ S�. Given a set Q⊂�n, we denote
the closure, relative interior, and complement of Q by clQ, relintQ, and QC , respectively.
We use the convention that if Q is the singleton Q= �q�, then relintQ=Q. We adopt the
standard conventions 1/0=
 and 1/
= 0.
We also make the following two general assumptions:

Assumption 1.1. P �= � and CY �= �.
Assumption 1.2. Either CY �=�m or P is not bounded (or both).

Clearly, if either P = � or CY = �, problem �GPd� is infeasible regardless of A, b,
and c. Therefore, Assumption 1.1 avoids settings wherein all problem instances are trivially
inherently infeasible. Assumption 1.2 is needed to avoid settings where �GPd� is feasible
for every d= �A
b
 c� ∈�. This will be explained further in §2.

2. Condition numbers for �GPd� and its dual.

2.1. Distance to primal infeasibility. We denote the feasible region of �GPd� by

Xd �= �x ∈�n �Ax− b ∈CY 
x ∈ P�% (5)

Let �P �= �d ∈ � � Xd �= ��, i.e., �P is the set of data instances for which �GPd� has a
feasible solution. Similar to the conic case, the primal distance to infeasibility, denoted by
�P�d�, is defined as

�P�d� �= inf���d� �Xd+�d =��= inf {��d� � d+�d ∈� C
P

}
% (6)

2.2. The dual problem and distance to dual infeasibility. In the case when P is
a cone, the conic dual problem (2) is of the same basic format as the primal problem.
However, when P is not a cone, we must first develop a suitable dual problem, which
we do in this subsection. Before doing so we introduce a dual pair of cones associated
with the ground-set P . Define the closed convex cone C by homogenizing P to one higher
dimension:

C �= cl ��x
 t� ∈�n ×� � x ∈ tP
 t > 0�
 (7)
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and note that C = ��x
 t� ∈ �n ×� � x ∈ tP
 t > 0�∪ �R× �0��, where R is the recession
cone of P , namely

R �= �v ∈�n � there exists x ∈ P for which x+ (v ∈ P for all ( ≥ 0�% (8)

It is straightforward to show that the (positive) dual cone C∗ of C is

C∗ �= ��s
 u� ∈�n ×� � stx+ u · t ≥ 0 for all �x
 t� ∈C�

= ��s
 u� ∈�n ×� � stx+ u≥ 0 for all x ∈ P�

=
{
�s
 u� ∈�n ×� � inf

x∈P
stx+ u≥ 0

}
%

(9)

The standard Lagrangian dual of �GPd� can be constructed as

max
y∈C∗

Y

inf
x∈P

�ctx+ �b−Ax�ty�


which we rewrite as
max
y∈C∗

Y

inf
x∈P

�bty+ �c−Aty�tx�% (10)

With the help of (9) we rewrite (10) as

z∗�d�= max
y
u

bty− u

�GDd� s.t. �c−Aty
u� ∈C∗


y ∈C∗
Y %

(11)

We consider the formulation (11) to be the dual problem of (4). The feasible region of
�GDd� is

Yd �= ��y
u� ∈�m ×� � �c−Aty
u� ∈C∗
 y ∈C∗
Y �% (12)

Let �D �= �d ∈� � Yd �= ��, i.e., �D is the set of data instances for which �GDd� has a
feasible solution. The dual distance to infeasibility, denoted by �D�d�, is defined as

�D�d� �= inf���d� � Yd+�d =��= inf {��d� � d+�d ∈� C
D

}
% (13)

We also present an alternate form of (11), which does not use the auxiliary variable u,
based on the function u�·� defined by

u�s� �=− inf
x∈P

stx% (14)

It follows from Rockafellar [18, Theorem 5.5] that u�·�, the support function of the set −P ,
is a convex function. The epigraph of u�·� is

epiu�·� �= ��s
 v� ∈�n ×� � v≥ u�s��


and the projection of the epigraph onto the space of the variables s is the effective domain
of u�·�:

effdom u�·� �= �s ∈�n � u�s� <
�%

It then follows from (9) that
C∗ = epiu�·�
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and so �GDd� can alternatively be written as

z∗�d�= max
y

bty− u�c−Aty�

s.t. c−Aty ∈ effdom u�·�

y ∈C∗

Y %

(15)

Evaluating the inclusion �y
u� ∈ Yd is not necessarily an easy task, as it involves checking
the inclusion �c−Aty
u� ∈C∗, and C∗ is an implicitly defined cone. A very useful tool for
evaluating the inclusion �y
u� ∈ Yd is given in the following proposition, where recall from
(8) that R is the recession cone of P .

Proposition 2.1. If y satisfies y ∈C∗
Y and c−Aty ∈ relintR∗, then u�c−Aty� is finite,

and for all u≥ u�c−Aty� it holds that �y
u� is feasible for �GDd�.

Proof. Note from Proposition A.3 in the appendix that cl effdom u�·� = R∗ and
from Proposition A.4 in the appendix that c − Aty ∈ relintR∗ = relint cl effdomu�·� =
relint effdomu�·� ⊆ effdom u�·�. This shows that u�c − Aty� is finite and �c − Aty

u�c−Aty�� ∈C∗. Therefore, �y
u� is feasible for �GDd� for all u≥ u�c−Aty�. �

2.3. Condition number. A data instance d = �A
b
 c� is consistent if both the primal
and dual problems have feasible solutions. Let � denote the set of consistent data instances,
namely � �= �P ∩�D = �d ∈� � Xd �= � and Yd �= ��. For d ∈ � , the distance to infeasi-
bility is defined as

��d� �= min��P �d�
�D�d��

= inf���d� �Xd+�d =� or Yd+�d =��
 (16)

the interpretation being that ��d� is the size of the smallest perturbation of d which will
render the perturbed problem instance either primal or dual infeasible. The condition number
of the instance d is defined as

C�d� �=




�d�
��d�


 ��d� > 0




 ��d�= 0

which is a (positive) scale-invariant reciprocal of the distance to infeasibility. This definition
of condition number for convex optimization problems was first introduced by Renegar for
problems in conic form (see Renegar [16, 17]).

2.4. Basic properties of �P�d�
�D�d�, and C�d� and alternative duality results. The
need for Assumptions 1.1 and 1.2 is demonstrated by the following:

Proposition 2.2. For any data instance d ∈�,
1. �P�d�=
 if and only if CY =�m, and
2. �D�d�=
 if and only if P is bounded.

The proof of this proposition relies on Lemmas 2.1 and 2.2, which are versions of “the-
orems of the alternative” for primal and dual feasibility of �GPd� and �GDd�. These two
lemmas are stated and proved at the end of this section.
Proof of Proposition 2.2. Clearly, CY = �m implies that �P�d� = 
. Also, if P is

bounded, then R= �0� and R∗ =�n, whereby from Proposition 2.1 we have that �GDd� is
feasible for any d, and so �D�d�=
. Therefore, for both items it only remains to prove
the converse implication. Recall that we denote d= �A
b
 c�.
Assume that �P�d� = 
 and suppose that CY �= �m. Then, C∗

Y �= �0�, and consider a
point ỹ ∈ C∗

Y , ỹ �= 0. Define the perturbation �d = ��A
�b
�c�= �−A
−b+ ỹ
−c� and
d̄ = d + �d. Then, the point �y
u� = �ỹ
 ỹt ỹ/2� satisfies the alternative system �A2d̄� of
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Lemma 2.1 for the data d̄ = �0
 ỹ
0�, whereby Xd̄ =�. Therefore, �d̄− d� ≥ �P�d�=
,
a contradiction, and so CY =�m.
Now assume that �D�d�=
 and suppose that P is not bounded, and so R �= �0�. Consider

x̃ ∈R, x̃ �= 0, and define the perturbation �d= �−A
−b
−c− x̃�. Then, the point x̃ satisfies
the alternative system �B2d̄� of Lemma 2.2 for the data d̄= d+�d= �0
0
−x̃�, whereby
Yd̄ =�. Therefore, �d̄−d� ≥ �D�d�=
, a contradiction, and so P is bounded. �

Remark 2.1. The set � �= �, and if d ∈� , then C�d�≥ 1.
Proof. If CY �= �m, consider b ∈ �m\CY (hence b �= 0), and for any + > 0 define the

instance d+ = �0
−+b
0�. This instance is such that for any + > 0, Xd+
=�, which means

that d+ ∈ � C
P and therefore �P�d� ≤ inf+>0 �d− d+� ≤ �d�. If CY = �m, then Assumption

1.2 implies that P is unbounded. This means that there exists a ray r ∈ R, r �= 0. For any
+ > 0 the instance d+ = �0
0
−+r� is such that Yd+ = �, which means that d+ ∈ � C

D and
therefore �D�d�≤ inf+>0 �d−d+� ≤ �d�.
In each case we have ��d�=min��P �d�
�P �d��≤ �d�, which implies the result. �

The following two lemmas present weak and strong alternative results for �GPd� and
�GDd�, and are used in the proofs of Proposition 2.2 and elsewhere.

Lemma 2.1. Consider the following systems with data d= �A
b
 c�:

�Xd�
Ax− b ∈CY

x ∈ P

�A1d�

�−Aty
u� ∈C∗

bty ≥ u

y �= 0
y ∈C∗

Y 


�A2d�

�−Aty
u� ∈C∗

bty > u

y ∈C∗
Y %

If system �Xd� is infeasible, then system �A1d� is feasible. Conversely, if system �A2d� is
feasible, then system �Xd� is infeasible.

Proof. Assume that system �Xd� is infeasible. This implies that

b �∈ S �= �Ax− v � x ∈ P
v ∈CY � 


which is a nonempty convex set. Using Proposition A.2 we can separate b from S and
therefore there exists y �= 0 such that

yt�Ax− v�≤ ytb for all x ∈ P
v ∈CY %

Setting u �= ytb, this inequality implies that y ∈ C∗
Y and that �−Aty�tx + u ≥ 0 for any

x ∈ P . Therefore, �−Aty
u� ∈C∗ and �y
u� satisfies system �A1d�.
Conversely, if both �A2d� and �Xd� are feasible, then there exist x ∈ P , u ∈�, and y ∈C∗

Y

such that
0≤ yt�Ax− b�= �Aty�tx− bty <−��−Aty�tx+ u�≤ 0% �

Lemma 2.2. Consider the following systems with data d= �A
b
 c�:

�Yd�
�c−Aty
u� ∈C∗

y ∈C∗
Y 


�B1d�

Ax ∈CY

ctx≤ 0
x �= 0
x ∈R


�B2d�

Ax ∈CY

ctx < 0

x ∈R%

If system �Yd� is infeasible, then system �B1d� is feasible. Conversely, if system �B2d� is
feasible. Then system �Yd� is infeasible.

Proof. Assume that system �Yd� is infeasible. This implies that

�0
0
0� �∈ S �= ��s
 v
 q� � ∃y
u s.t. �c−Aty
u�+ �s
 v� ∈C∗
 y+ q ∈C∗
Y �


which is a nonempty convex set. Using Proposition A.2 we separate the point �0
0
0� from
S and therefore there exists �x
,
 z� �= 0 such that xts+,v+ztq ≥ 0 for all �s
 v
 q� ∈ S. For
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any �y
u�, �s̃
 ṽ� ∈C∗ and q̃ ∈C∗
Y , define s =−�c−Aty�+ s̃, v=−u+ ṽ, and q =−y+ q̃.

By construction �s
 v
 q� ∈ S and therefore for any y, u, �s̃
 ṽ� ∈C∗, q̃ ∈C∗
Y , we have

−xtc+ �Ax− z�ty+ xts̃− ,u+ ,ṽ+ ztq̃ ≥ 0%
The above inequality implies that ,= 0, Ax= z ∈CY , x ∈R, and ctx≤ 0. In addition x �= 0,
because otherwise �x
,
 z�= �x
0
Ax�= 0. Therefore, �B1d� is feasible.
Conversely, if both �B2d� and �Yd� are feasible, then

0≤ xt�c−Aty�= ctx− ytAx <−ytAx≤ 0% �

3. Slater points, distance to infeasibility, and strong duality. In this section, we prove
that the existence of a Slater point in either �GPd� or �GDd� is sufficient to guarantee that
strong duality holds for these problems. We then show that a positive distance to infeasibility
implies the existence of Slater points, and use these results to show that strong duality holds
whenever �P�d� > 0 or �D�d� > 0. We first state a weak duality result.

Proposition 3.1. Weak duality holds between �GPd� and �GDd�, that is, z
∗�d�≤ z∗�d�.

Proof. Consider x and �y
u� feasible for �GPd� and �GDd�, respectively. Then,

0≤ �c−Aty�tx+ u= ctx− ytAx+ u≤ ctx− bty+ u


where the last inequality follows from yt�Ax− b�≥ 0. Therefore, z∗�d�≥ z∗�d�. �

A classic constraint qualification in the history of constrained optimization is the existence
of a Slater point in the feasible region (see, for example, Rockafellar [18, Theorem 30.4]
or Bazaraa et al. [1, Chapter 5]). We now define a Slater point for problems in the GSM
format.
Definition 3.1. A point x is a Slater point for problem �GPd� if

x ∈ relint P and Ax− b ∈ relintCY %

A point �y
u� is a Slater point for problem �GDd� if

y ∈ relintC∗
Y and �c−Aty
u� ∈ relintC∗%

We now present the statements of the main results of this section, deferring the proofs
to the end of the section. The following two theorems show that the existence of a Slater
point in the primal or dual is sufficient to guarantee strong duality as well as attainment in
the dual or the primal problem, respectively.

Theorem 3.1. If x′ is a Slater point for problem �GPd�, then z∗�d� = z∗�d�. If in
addition z∗�d� >−
, then Yd �= � and problem �GDd� attains its optimum.

Theorem 3.2. If �y′
 u′� is a Slater point for problem �GDd�, then z∗�d�= z∗�d�. If in
addition z∗�d� <
, then Xd �= � and problem �GPd� attains its optimum.

The next three results show that a positive distance to infeasibility is sufficient to guar-
antee the existence of Slater points for the primal and the dual problems, respectively, and
hence is sufficient to ensure that strong duality holds. The fact that a positive distance to
infeasibility implies the existence of an interior point in the feasible region is shown for the
conic case in Freund and Vera [8, Theorems 15, 17, and 19] and Renegar [17, Theorem 3.1].

Theorem 3.3. Suppose that �P�d� > 0. Then, there exists a Slater point for �GPd�.

Theorem 3.4. Suppose that �D�d� > 0. Then, there exists a Slater point for �GDd�.

Corollary 3.1 (Strong Duality). If �P�d� > 0 or �D�d� > 0, then z∗�d� = z∗�d�.
If ��d� > 0, then both the primal and the dual attain their respective optimal values.

Proof. This result is a straightforward consequence of Theorems 3.1, 3.2, 3.3, and
3.4. �
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Note that the contrapositive of Corollary 3.1 says that if d ∈ � and z∗�d� > z∗�d�, then
�P�d�= �D�d�= 0 and so ��d�= 0. In other words, if a data instance d is primal and dual
feasible but has a positive optimal duality gap, then d must necessarily be arbitrarily close
to being both primal infeasible and dual infeasible.
Proof of Theorem 3.1. For simplicity, let z∗ and z∗ denote the primal and dual optimal

objective values, respectively. The interesting case is when z∗ >−
, otherwise weak duality
implies that �GDd� is infeasible and z∗ = z∗ =−
. If z∗ >−
 the point �0
0
0� does not
belong to the nonempty convex set

S �= ��p
 q
.� � ∃x s.t. x+p ∈ P
Ax− b+ q ∈CY 
 c
tx−.< z∗�%

We use Proposition A.2 in the appendix to properly separate �0
0
0� from S, which implies
that there exists �/
 y
0� �= 0 such that /tp+ ytq+0.≥ 0 for all �p
 q
.� ∈ S. Note that
0 ≥ 0 because . is not upper bounded in the definition of S.
If 0 > 0, rescale �/
 y
0� such that 0 = 1. For any x ∈ �n, p̃ ∈ P , q̃ ∈ CY , and + > 0

define p = −x + p̃, q = −Ax + b + q̃, and . = ctx − z∗ + +. By construction the point
�p
 q
.� ∈ S and the proper separation implies that for all x, p̃ ∈ P , q̃ ∈CY , and +> 0,

0 ≤ /t�−x+ p̃�+ yt�−Ax+ b+ q̃�+ ctx− z∗ + +

= �−Aty+ c−/�tx+/tp̃+ ytq̃+ ytb− z∗ + +%

This expression implies that c−Aty = /, y ∈C∗
Y , and �c−Aty
u� ∈C∗ for u �= ytb−z∗.

Therefore, �y
u� is feasible for �GDd� and z∗ ≥ bty− u= bty− ytb+ z∗ = z∗ ≥ z∗, which
implies that z∗ = z∗ and the dual feasible point �y
u� attains the dual optimum.
If 0 = 0, the same construction used above and proper separation gives the following

inequality for all x, p̃ ∈ P , and q̃ ∈CY :

0 ≤ /t�−x+ p̃�+ yt�−Ax+ b+ q̃�

= �−Aty−/�tx+/tp̃+ ytq̃+ ytb%

This implies that −Aty = / and y ∈C∗
Y , which implies that −ytAp̃+ ytq̃+ ytb ≥ 0 for any

p̃ ∈ P , q̃ ∈ CY . Proper separation also guarantees that there exists �p̂
 q̂
 .̂� ∈ S such that
/tp̂+ ytq̂+0.̂=−ytAp̂+ ytq̂ > 0.
Let x′ be the Slater point of �GPd� and x̂ such that x̂ + p̂ ∈ P , Ax̂ − b + q̂ ∈ CY ,

and ctx̂ − .̂ < z∗. For all �1� sufficiently small, x′ + 1�x̂ + p̂ − x′� ∈ P and Ax′ − b +
1�Ax̂− b+ q̂− �Ax′ − b�� ∈CY . Therefore,

0 ≤ −ytA�x′ + 1�x̂+ p̂− x′��+ yt�Ax′ − b+ 1�Ax̂− b+ q̂− �Ax′ − b���+ ytb

= 1�−ytAx̂− ytAp̂+ ytAx′ + ytAx̂− ytb+ ytq̂− ytAx′ + ytb�

= 1�−ytAp̂+ ytq̂�


a contradiction, because 1 can be negative and −ytAp̂+ ytq̂ > 0. Therefore, 0 �= 0, com-
pleting the proof. �

The proof of Theorem 3.2 uses arguments that parallel those used in the proof of
Theorem 3.1, and so is omitted. We refer the interested reader to Ordóñez [12, Theorem 4].
Proof of Theorem 3.3. Equation (6) and �P�d� > 0 imply that Xd �= �. Assume that

Xd contains no Slater point. Then, relintCY ∩�Ax−b � x ∈ relint P�=� and these nonempty
convex sets can be separated using Proposition A.2. Therefore, there exists y �= 0 such that
for any s ∈CY , x ∈ P , we have

yts ≥ yt�Ax− b�%

From the inequality above and setting u = ytb, we have that y ∈ C∗
Y and −ytAx + u ≥ 0

for any x ∈ P , which implies that �−Aty
u� ∈C∗. Define b+ = b+ �+/�y�∗�ŷ, with ŷ given
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by Proposition A.1 such that �ŷ� = 1 and ŷty = �y�∗. Then, the point �y
u� is feasible for
Problem �A2d+� of Lemma 2.1 with data d+ = �A
b+
 c� for any + > 0. This implies that
Xd+

=� and therefore �P�d�≤ inf+>0 �d−d+� = inf+>0 +/�y�∗ = 0, a contradiction. �

The proof of Theorem 3.4 uses arguments that parallel those used in the proof of
Theorem 3.3, and so is omitted. We refer the interested reader to Ordóñez [12, Theorem 8].
The contrapositives of Theorems 3.3 and 3.4 are not true. Consider, for example, the data

A=
[
0 0

0 0

]

 b=

(−1
0

)

 and c=

(
1

0

)



and the sets CY =�+ × �0� and P =CX =�+ ×�. Problem �GPd� for this example has a
Slater point at �1
0� and �P�d�= 0 (perturbing by �b= �0
 +� makes the problem infeasible
for any +). Problem �GDd� for the same example has a Slater point at �1
0� and �D�d�= 0
(perturbing by �c= �0
 +� makes the problem infeasible for any +).

4. Characterization of �P�d� and �D�d� via associated optimization problems.
Equation (16) shows that to characterize ��d� for consistent data instances d ∈ � , it is
sufficient to express �P�d� and �D�d� in a convenient form. Below we show that these
distances to infeasibility can be obtained as the solutions of certain associated optimization
problems. These results can be viewed as an extension to problems not in conic form of
Renegar [17, Theorem 3.5] and Freund and Vera [8, Theorems 1 and 2].

Theorem 4.1. Suppose that Xd �= �. Then, �P�d�= jP �d�= rP �d�, where

jP �d�= min
y
 s
 u

max��Aty+ s�∗
 �bty− u��
�y�∗ = 1
y ∈C∗

Y

�s
 u� ∈C∗

(17)

and

rP �d�= min
v

max
x
 t
 (

(

�v� ≤ 1 Ax− bt− v( ∈CY

v ∈�m �x�+ �t� ≤ 1
�x
 t� ∈C%

(18)

Theorem 4.2. Suppose that Yd �= �. Then, �D�d�= jD�d�= rD�d�, where

jD�d�= min
x
p
 g

max��Ax−p�
 �ctx+ g��
�x� = 1
x ∈R
p ∈CY

g ≥ 0

(19)

and

rD�d�= min
v

max
y
,
 (

(

�v�∗ ≤ 1 −Aty+ c,− (v ∈R∗

v ∈�n �y�∗ + �,� ≤ 1
y ∈C∗

Y

,≥ 0%

(20)

Proof of Theorem 4.1. Assume that jP �d� > �P�d�. Then, there exists a data instance
d̄= � �A
 b̄
 c̄� that is primal infeasible and �A− �A�< jP�d�, �b− b̄�< jP�d�, and �c− c̄�∗ <



Freund and Ordóñez: On an Extension of Condition Number Theory
182 Mathematics of Operations Research 30(1), pp. 173–194, © 2005 INFORMS

jP �d�. From Lemma 2.1 there is a point �ȳ
 ū� that satisfies the following:

�− �Atȳ
 ū� ∈C∗


b̄t ȳ ≥ ū


ȳ �= 0

ȳ ∈C∗

Y %

Scale ȳ such that �ȳ�∗ = 1. Then, �y
 s
 u�= �ȳ
− �Atȳ
 b̄t ȳ� is feasible for (17) and

�Aty+ s�∗ = �Atȳ− �Atȳ�∗ ≤ �A− �A��ȳ�∗ < jP�d�


�bty− u� = �btȳ− b̄t ȳ� ≤ �b− b̄��ȳ�∗ < jP�d�%

In the first inequality above we used the fact that �At�∗ = �A�. Therefore, jP �d� ≤
max��Aty+ s�∗
 �bty− u�� < jP �d�, a contradiction.
Let us now assume that jP �d� < / < �P�d� for some /. This means that there exists

�ȳ
 s̄
 ū� such that ȳ ∈C∗
Y , �ȳ�∗ = 1, �s̄
 ū� ∈C∗, and that

�Atȳ+ s̄�∗ </
 �btȳ− ū�</%

From Proposition A.1, consider ŷ such that �ŷ� = 1 and ŷt ȳ = �ȳ�∗ = 1, and define, for
+> 0,

�A = A− ŷ��Atȳ�t + s̄t�


b̄+ = b− ŷ�btȳ− ū− +�%

We have that ȳ ∈ C∗
Y , − �Atȳ = s̄, b̄t+ȳ = ū+ + > ū, and �− �Atȳ
 ū� ∈ C∗. This implies that

for any + > 0, Problem �A2d̄+ � in Lemma 2.1 is feasible with data d̄+ = � �A
 b̄+
 c�. Lemma
2.1 then implies that Xd̄+

= � and therefore �P�d� ≤ �d − d̄+�. To finish the proof we
compute the size of the perturbation:

�A− �A� = �ŷ��Atȳ�t + s̄t�� ≤ �Atȳ+ s̄�∗�ŷ�</


�b− b̄+� = �btȳ− ū− +��ŷ� ≤ �btȳ− ū� + +< /+ +


which implies �P�d�≤ �d− d̄+� =max��A− �A�
�b− b̄+�� < / + + < �P�d� for + small
enough. This is a contradiction, whereby jP �d�= �P�d�.
To prove the other characterization, note we can add ( ≥ 0 to (18) and then invoke

Lemma A.1 to rewrite it as

rP �d�= min
v

min
y
 s
 u

max��Aty+ s�∗
 � − bty+ u��
�v� ≤ 1 ytv≥ 1
v ∈�m y ∈C∗

Y

�s
 u� ∈C∗%

The above problem can be written as the following equivalent optimization problem:

rP �d�= min
y
 s
 u

max��Aty+ s�∗
 �−bty+ u��
�y�∗ ≥ 1
y ∈C∗

Y

�s
 u� ∈C∗%

The equivalence of these problems is verified by combining the minimization operations
in the first problem and using the Cauchy-Schwartz inequality. The converse makes use of
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Proposition A.1. To finish the proof, we note that if �y
 s
 u� is optimal for this last problem
then it also satisfies �y�∗ = 1, whereby making it equivalent to (17). Therefore,

rP �d�= min
y
 s
 u

max��Aty+ s�∗
 �−bty+ u��= jP �d�

�y�∗ = 1
y ∈C∗

Y

�s
 u� ∈C∗% �

The proof of Theorem 4.2 uses arguments that parallel those used in the proof of
Theorem 4.1, and so is omitted. We refer the interested reader to Ordóñez [12, Theorem 6].

5. Geometric properties of the primal and dual feasible regions. In §3, we showed
that a positive primal and/or dual distance to infeasibility implies the existence of a primal
and/or dual Slater point, respectively. We now show that a positive distance to infeasibility
also implies that the corresponding feasible region has a reliable solution. We consider a
solution in the relative interior of the feasible region to be a reliable solution if it has good
geometric properties: it is not too far from a given reference point, its distance to the relative
boundary of the feasible region is not too small, and the ratio of these two quantities is not
too large, where these quantities are bounded by appropriate condition numbers.

5.1. Distance to relative boundary and minimum width of cone. An affine set T is
the translation of a vector subspace L, i.e., T = a+L for some a. The minimal affine set
that contains a given set S is known as the affine hull of S. We denote the affine hull of S
by LS ; it is characterized as

LS =
{∑

i∈I
.ixi

∣∣∣∣ .i ∈�
 xi ∈ S

∑
i∈I

.i = 1
 I a finite set
}

(see Rockafellar [18, §1]). We denote by �LS the vector subspace obtained when the affine
hull LS is translated to contain the origin; i.e., for any x ∈ S, �LS = LS − x. Note that if
0 ∈ S, then LS is a subspace.
Many results in this section involve the distance of a point x ∈ S to the relative boundary

of the set S, denoted by dist�x
 rel 8S�, defined as follows:
Definition 5.1. Given a nonempty set S and a point x ∈ S, the distance from x to the

relative boundary of S is

dist�x
 rel 8S� �= inf
x̄

�x− x̄�
s.t. x̄ ∈ LS\S%

(21)

Note that if S is an affine set (and in particular if S is the singleton S = �s�), then
dist�x
 rel 8S�=
 for each x ∈ S.
We use the following definition of the min-width of a convex cone:
Definition 5.2. For a convex cone K, the min-width of K is defined by

:K �= sup
{
dist�y
 rel 8K�

�y�
∣∣∣∣ y ∈K
y �= 0

}
for K �= �0�, and :K �=
 if K = �0�.
The measure :K maximizes the ratio of the radius of a ball contained in the relative

interior of K and the norm of its center, and so it intuitively corresponds to half of the vertex
angle of the widest cylindrical cone contained in K. The quantity :K was called the “inner
measure” of K for Euclidean norms in Goffin [9], and has been used more recently for
general norms in analyzing condition measures for conic convex optimization (see Freund
and Vera [6]). Note that if K is not a subspace, then :K ∈ �0
1;, and :K is attained for some
y0 ∈ relintK satisfying �y0� = 1, as well as along the ray .y0 for all . > 0, and :K takes
on larger values to the extent that K has larger minimum width. If K is a subspace, then
:K =
.
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5.2. Geometric properties of the feasible region of GPd. In this subsection, we
present results concerning geometric properties of the feasible region Xd of �GPd�. We
defer all proofs to the end of the subsection.
The following proposition is an extension of Renegar [16, Lemma 3.2] to the ground-set

model format.

Proposition 5.1. Consider any x= x̂+ r feasible for �GPd� such that x̂ ∈ P and r ∈R.
If �D�d� > 0, then

�r� ≤ 1
�D�d�

max��Ax̂− b�
 ctr�%

The following result is an extension of Renegar [16, Theorem 1.1, Assertion 1] to the
ground-set model format of �GPd�:

Proposition 5.2. Consider any x0 ∈ P . If �P�d� > 0, then there exists x̄ ∈Xd satisfying

�x̄− x0� ≤ dist�Ax0− b
CY �

�P �d�
max�1
�x0��%

The following is the main result of this subsection, and can be viewed as an extension of
Freund and Vera [8, Theorems 15, 17, and 19] to the ground-set model format of �GPd�.
In Theorem 5.1 we assume for expository convenience that P is not an affine set and CY is
not a subspace. These assumptions are relaxed in Theorem 5.2.

Theorem 5.1. Suppose that P is not an affine set, CY is not a subspace, and consider
any x0 ∈ P . If �P�d� > 0, then there exists x̄ ∈Xd satisfying

1. (a) �x̄− x0� ≤ �Ax0− b�+�A�
�P�d�

max�1
�x0��,

(b) �x̄� ≤ �x0�+ �Ax0− b�+�A�
�P�d�

.

2. (a)
1

dist�x̄
 rel 8P�
≤ 1
dist�x0
 rel 8P�

(
1+ �Ax0− b�+�A�

�P�d�

)
,

(b)
1

dist�x̄
 rel 8Xd�
≤ 1
min�dist�x0
 rel 8P�
 :CY

�

(
1+ �Ax0− b�+�A�

�P�d�

)
.

3. (a)
�x̄− x0�

dist�x̄
 rel 8P�
≤ 1
dist�x0
 rel 8P�

(�Ax0− b�+�A�
�P�d�

max�1
�x0��
)



(b)
�x̄− x0�

dist�x̄
 rel 8Xd�
≤ 1
min�dist�x0
 rel 8P�
 :CY

�

(�Ax0− b�+�A�
�P�d�

max�1
�x0��
)



(c)
�x̄�

dist�x̄
 rel 8P�
≤ 1
dist�x0
 rel 8P�

(
�x0�+ �Ax0− b�+�A�

�P�d�

)



(d)
�x̄�

dist�x̄
 rel 8Xd�
≤ 1
min�dist�x0
 rel 8P�
 :CY

�

(
�x0�+ �Ax0− b�+�A�

�P�d�

)
%

The statement of Theorem 5.2 below relaxes the assumptions on P and CY not being
affine and/or linear spaces:

Theorem 5.2. Consider any x0 ∈ P . If �P�d� > 0, then there exists x̄ ∈ Xd with the
following properties:
• If P is not an affine set, x̄ satisfies all items of Theorem 5.1.
• If P is an affine set and CY is not a subspace, x̄ satisfies all items of Theorem 5.1,

where items 2(a), 3(a), and 3(c) are vacuously valid as both sides of these inequalities are
zero.
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• If P is an affine set and CY is a subspace, x̄ satisfies all items of Theorem 5.1, where
items 2(a), 2(b), 3(a), 3(b), 3(c), and 3(d) are vacuously valid as both sides of these inequal-
ities are zero.

We conclude this subsection by presenting a result which captures the thrust of Theo-
rems 5.1 and 5.2, emphasizing how the distance to infeasibility �P�d� and the geometric
properties of a given point x0 ∈ P bound various geometric properties of the feasible
region Xd. For x

0 ∈ P , define the following measure:

gP
CY
�x0� �= max��x0�
1�

min�1
dist�x0
 rel 8P�
 :CY
�
%

Also define the following geometric measure of the feasible region Xd:

gXd
�=min

x∈Xd

max
{
�x�
 �x�

dist�x
 rel 8Xd�



1
dist�x
 rel 8Xd�

}
%

The following is an immediate consequence of Theorems 5.1 and 5.2.

Corollary 5.1. Consider any x0 ∈ P . If �P�d� > 0, then

gXd
≤ gP
CY

�x0�

(
1+ �Ax0− b�+�A�

�P�d�

)
% �

We now proceed with the proofs of these results.
Proof of Proposition 5.1. If r = 0, the result is true. If r �= 0, then Proposition A.1

shows that there exists r̂ such that �r̂�∗ = 1 and r̂ tr = �r�. For any + > 0, define the
following perturbed problem instance:

�A=A+ 1
�r� �Ax̂− b�r̂ t
 b̄= b
 c̄= c+ −�ctr�+ − +

�r� r̂ %

Note that for the data d̄= � �A
 b̄
 c̄�, the point r satisfies �B2d̄� in Lemma 2.2, and therefore
�GDd̄� is infeasible. We conclude that �D�d�≤ �d− d̄�, which implies

�D�d�≤
max ��Ax̂− b�
 �ctr�+ + +�

�r�
and so

�D�d�≤
max ��Ax̂− b�
 ctr�

�r� % �

The following technical lemma, which concerns the optimization problem �PP� below,
is used in the subsequent proofs. Problem �PP� is parametrized by given points x0 ∈ P and
w0 ∈CY , and is defined by

�PP� max
x
 t
w
(

(

s.t. Ax− bt−w= (�b−Ax0+w0�

�x�+ �t� ≤ 1

�x
 t� ∈C

w ∈CY %

(22)

Lemma 5.1. Consider any x0 ∈ P and w0 ∈ CY such that Ax
0 −w0 �= b. If �P�d� > 0,

then there exists a point �x
 t
w
(� feasible for problem �PP� that satisfies

( ≥ �P�d�

�b−Ax0+w0� > 0% (23)

Proof. Note that problem �PP� is feasible for any x0 and w0 because �x
 t
w
(� =
�0
0
0
0� is always feasible; therefore, it can either be unbounded or have a finite optimal
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objective value. If �PP� is unbounded, we can find feasible points with an objective function
large enough such that (23) holds. If �PP� has a finite optimal value, say (∗, then it follows
from elementary arguments that it attains its optimal value. Because �P�d� > 0 implies
Xd �= �, Theorem 4.1 implies that the optimal solution �x∗
 t∗
w∗
 (∗� for �PP� satisfies
(23). �

Proof of Proposition 5.2. Assume that Ax0 − b �∈ CY , otherwise x̄ = x0 satisfies the
proposition. We consider problem �PP�, defined by (22), with w0 ∈ CY chosen such that
�Ax0 − b − w0� = dist�Ax0 − b
CY �. From Lemma 5.1 we have that there exists a point
�x
 t
w
(� feasible for �PP� that satisfies

( ≥ �P�d�

�b−Ax0+w0� = �P�d�

dist�Ax0− b
CY �
%

Define

x̄= x+ (x0

t+ (
and w̄= w+ (w0

t+ (
%

By construction we have x̄ ∈ P and Ax̄− b= w̄ ∈CY ; therefore x̄ ∈Xd and

�x̄− x0� = �x− tx0�
t+ (

≤ ��x�+ t�max�1
�x0��
(

≤ dist�Ax0− b
CY �

�P �d�
max�1
�x0��% �

Proof of Theorem 5.1. Note that �P�d� > 0 implies Xd �= �; note also that �P�d�
is finite, otherwise Proposition 2.2 shows that CY = �m, which is a subspace. For con-
venience we suppose for now that A �= 0. Set w0 ∈ CY such that �w0� = �A� and :CY

=
dist�w0
 rel 8CY �/�w0�. We also assume that Ax0 − b �= w0, otherwise we can show that
x̄ = x0 satisfies the theorem. Let rw0 = dist�w0
 rel 8CY � = �A�:CY

and let also rx0 =
dist�x0
 rel 8P�. We invoke Lemma 5.1 with x0 and w0 above to obtain a point �x
 t
w
(�,
feasible for �PP�, and that from inequality (23) satisfies

0<
1
(
≤ �Ax0− b�+�A�

�P�d�
% (24)

Define the following:

x̄= x+ (x0

t+ (

 w̄= w+ (w0

t+ (

 rx̄ =

(rx0

t+ (

 rw̄ = (:CY

t+ (
%

By construction dist�x̄
 rel 8P� ≥ rx̄, dist�w̄
 rel 8CY � ≥ rw̄�A�, and Ax̄ − b = w̄ ∈ CY .
Therefore, the point x̄ ∈ Xd. We now bound its distance to the relative boundary of the
feasible region.
Consider any v ∈ �LP ∩ �y �Ay ∈ LCY

� such that �v� ≤ 1. Then,
x̄+.v ∈ P for any �.� ≤ rx̄

and
A�x̄+.v�− b= w̄+.�Av� ∈CY for any �.� ≤ rw̄%

Therefore, �x̄ + .v� ∈ Xd for any �.� ≤ min�rx̄
 rw̄�, which implies that the distance to
the relative boundary of Xd is dist�x̄
 rel 8Xd�≥min�rx̄
 rw̄�≥ (min�rx0
 :CY

�/�t+ (�.
To finish the proof, we just have to bound the different expressions from the statement

of the theorem; here we make use of inequality (24):

1. (a) �x̄− x0� = �x− tx0�
t+ (

≤ 1
(
max�1
�x0��≤ �Ax0− b�+�A�

�P�d�
max�1
�x0��,

(b) �x̄� ≤ 1
(
�x�+�x0� ≤ 1

(
+�x0� ≤ �x0�+ �Ax0− b�+�A�

�P�d�
.
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2. (a)
1

dist�x̄
 rel 8P�
≤ 1

rx̄
= t+ (

(rx0
≤ 1

rx0

(
1+ 1

(

)
≤ 1

rx0

(
1+ �Ax0− b�+�A�

�P�d�

)
,

(b)
1

dist�x̄
 rel 8Xd�
≤ 1
min�rx0
 :CY

�

t+ (

(
≤ 1
min�rx0
 :CY

�

(
1+ 1

(

)

≤ 1
min�rx0
 :CY

�

(
1+ �Ax0− b�+�A�

�P�d�

)
%

3. (a)
�x̄− x0�

dist�x̄
 rel 8P�
≤ �x− tx0�

(rx0
≤ 1

rx0

1
(
max�1
�x0��

≤ 1
rx0

�Ax0− b�+�A�
�P�d�

max�1
�x0��%

(b)
�x̄− x0�

dist�x̄
 rel 8Xd�
≤ �x− tx0�

(min�rx0
 :CY
�
≤ 1
min�rx0
 :CY

�

1
(
max�1
�x0��

≤ 1
min�rx0
 :CY

�

�Ax0− b�+�A�
�P�d�

max�1
�x0��%

(c)
�x̄�

dist�x̄
 rel 8P�
≤ �x+ (x0�

(rx0
≤ 1

rx0

(
�x0�+ 1

(

)

≤ 1
rx0

(
�x0�+ �Ax0− b�+�A�

�P�d�

)
%

(d)
�x̄�

dist�x̄
 rel 8Xd�
≤ �x+ (x0�

(min�rx0
 :CY
�
≤ 1
min�rx0
 :CY

�

(
�x0�+ 1

(

)

≤ 1
min�rx0
 :CY

�

(
�x0�+ �Ax0− b�+�A�

�P�d�

)
%

Finally, note that in the case when A= 0, the point x̄ = x0 is feasible and thus satisfies
the theorem. �

We note that Theorem 5.2 can be proved using almost identical arguments as in the proof
of Theorem 5.1, but with a careful analysis to handle the special cases when P is an affine
set or CY is a subspace (see Ordóñez [12] for exact details).

5.3. Solutions in the relative interior of Yd. In this subsection, we present results con-
cerning geometric properties of the dual feasible region Yd of �GDd�. Due to the similarity
to the primal case, we omit all proofs in this subsection and refer the reader to Ordóñez [12,
Chapter 4] for detailed proofs of these results. Before proceeding, we first discuss norms
that arise when studying the dual problem. Motivated quite naturally by (18), we define the
norm ��x
 t�� �= �x�+ �t� for points �x
 t� ∈C ⊂�n ×�. This then leads to the following
dual norm for points �s
 u� ∈C∗ ⊂�n ×�:

��s
 u��∗ �=max��s�∗
 �u��% (25)

Consistent with the characterization of �D�d� given by (20) in Theorem 4.2, we define
the following dual norm for points �y
,� ∈�m ×�:

��y
,��∗ �= �y�∗ + �,�% (26)

It is clear that the above defines a norm on the vector space �m ×� which contains Yd.
The following proposition bounds the norm of the y component of the dual feasible

solution �y
u� in terms of the objective function value bty− u; it corresponds to Renegar
[16, Lemma 3.1] for the ground-set model format.
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Proposition 5.3. Consider any �y
u� feasible for �GDd�. If �P�d� > 0, then

�y�∗ ≤
max ��c�∗
−�bty− u��

�P �d�
%

The following result corresponds to Renegar [16, Theorem 1.1, Assertion 1] for the
ground-set model format dual problem �GDd�:

Proposition 5.4. Consider any y0 ∈ C∗
Y . If �D�d� > 0, then for any + > 0 there exists

�ȳ
 ū� ∈ Yd satisfying

�ȳ− y0� ≤ dist�c−Aty0
R∗�+ +

�D�d�
max�1
�y0��%

The following is the main result of this subsection, and can be viewed as an extension of
Freund and Vera [8, Theorems 15, 17, and 19] to the dual problem �GDd�. In Theorem 5.3
we assume for expository convenience that CY is not a subspace and that R (the recession
cone of P ) is not a subspace. These assumptions are relaxed in Theorem 5.4.

Theorem 5.3. Suppose that R and CY are not subspaces and consider any y
0 ∈ C∗

Y . If
�D�d� > 0, then for any +> 0 there exists �ȳ
 ū� ∈ Yd satisfying

1. (a) �ȳ− y0�∗ ≤
�c−Aty0�∗ + �A�

�D�d�
max�1
�y0�∗�


(b) �ȳ�∗ ≤ �y0�∗ +
�c−Aty0�∗ + �A�

�D�d�
%

2. (a)
1

dist�ȳ
 rel 8C∗
Y �

≤ 1
dist�y0
 rel 8C∗

Y �

(
1+ �c−Aty0�∗ + �A�

�D�d�

)



(b)
1

dist��ȳ
 ū�
 rel 8Yd�
≤ �1+ +�max�1
�A��
min �dist�y0
 rel 8C∗

Y �
 :R∗�

(
1+ �c−Aty0�∗ + �A�

�D�d�

)
%

3. (a)
�ȳ− y0�∗

dist�ȳ
 rel 8C∗
Y �

≤ 1
dist�y0
 rel 8C∗

Y �

(�c−Aty0�∗ + �A�
�D�d�

max�1
�y0�∗�
)



(b)
�ȳ− y0�∗

dist��ȳ
 ū�
 rel 8Yd�

≤ �1+ +�max�1
�A��
min �dist�y0
 rel 8C∗

Y �
 :R∗�

(�c−Aty0�∗ + �A�
�D�d�

max�1
�y0�∗�
)



(c)
�ȳ�∗

dist�ȳ
 rel 8C∗
Y �

≤ 1
dist�y0
 rel 8C∗

Y �

(
�y0�∗ +

�c−Aty0�∗ + �A�
�D�d�

)



(d)
�ȳ�∗

dist��ȳ
 ū�
 rel 8Yd�

≤ �1+ +�max�1
�A��
min �dist�y0
 rel 8C∗

Y �
 :R∗�

(
�y0�∗ +

�c−Aty0�∗ + �A�
�D�d�

)
%

The statement of Theorem 5.4 below relaxes the assumptions on R and CY not being
linear subspaces:

Theorem 5.4. Consider any y0 ∈ C∗
Y . If �D�d� > 0, then for any + > 0 there exists

�ȳ
 ū� ∈ Yd with the following properties:
• If CY is not a subspace, �ȳ
 ū� satisfies all items of Theorem 5.3.
• If CY is a subspace and R is not a subspace, �ȳ
 ū� satisfies all items of Theorem 5.3,

where items 2(a), 3(a), and 3(c) are vacuously valid as both sides of these inequalities are
zero.
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• If CY and R are subspaces, �ȳ
 ū� satisfies items 1(a), 1(b), 2(a), 3(a), and 3(c) of
Theorem 5.3, where items 2(a), 3(a), and 3(c) are vacuously valid as both sides of these
inequalities are zero. The point �ȳ
 ū� also satisfies

2′. (b)
1

dist��ȳ
 ū�
 rel 8Yd�
≤ +%

3′. (b)
�ȳ− y0�∗

dist��ȳ
 ū�
 rel 8Yd�
≤ +%

3′. (d)
�ȳ�∗

dist��ȳ
 ū�
 rel 8Yd�
≤ +%

The next result captures the thrust of Theorems 5.3 and 5.4, emphasizing how the distance
to dual infeasibility �D�d� and the geometric properties of a given point y

0 ∈ C∗
Y bound

various geometric properties of the dual feasible region Yd. For y
0 ∈ relintC∗

Y , define

gC∗
Y 
R

∗�y0� �= max��y0�∗
1�
min�1
dist�y0
 rel 8C∗

Y �
 :R∗�
%

We now define a geometric measure for the dual feasible region. We do not consider the
whole set Yd; instead we consider only the projection onto the variables y. Let <Yd denote
the projection of Yd onto the space of the y variables:

<Yd �= �y ∈�m � there exists u ∈� for which �y
u� ∈ Yd�% (27)

Note that the set <Yd corresponds exactly to the feasible region in the alternate formulation
of the dual problem (15). We define the following geometric measure of the set <Yd:

gYd �= inf
�y
u�∈Yd

max
{
�y�∗


�y�∗
dist�y
 rel 8<Yd�



1

dist�y
 rel 8<Yd�

}
%

Corollary 5.2. Consider any y0 ∈C∗
Y . If �D�d� > 0, then

gYd ≤max�1
�A��gC∗
Y 
R

∗�y0�

(
1+ �c−Aty0�∗ + �A�

�D�d�

)
%

We conclude this subsection with a technical lemma that concerns the optimization prob-
lem �DP� below. Problem �DP� is parameterized by given points y0 ∈C∗

Y and s
0 ∈R∗, and

is defined by

�DP� max
y
,
 s
 (

(

s.t. −Aty+ ,c− s = (
(
Aty0− c+ s0

)



�y�∗ + �,� ≤ 1

y ∈C∗

Y 

,≥ 0

s ∈R∗%

(28)

Lemma 5.2. Consider any y0 ∈ C∗
Y and s0 ∈ R∗ such that Aty0 + s0 �= c. If �D�d� > 0,

then there exists a point �y
,
 s
 (� feasible for problem �DP� that satisfies

( ≥ �D�d�

�c−Aty0− s0�∗
> 0% (29)

6. Sensitivity under perturbation. In this section, we present several results that
bound the deformation of primal and dual feasible regions and objective function values
under data perturbation. All proofs are deferred to the end of the section.



Freund and Ordóñez: On an Extension of Condition Number Theory
190 Mathematics of Operations Research 30(1), pp. 173–194, © 2005 INFORMS

The following two theorems bound the deformation of the primal and dual feasible
regions under data perturbation. These results are essentially extensions of Renegar [16,
Theorem 1.1, Assertion 2] to the primal and dual problems in the GSM format.

Theorem 6.1. Suppose that �P�d� > 0. Let �d= ��A
�b
�c� be such that Xd+�d �= �
and consider any x′ ∈Xd+�d. Then, there exists x̄ ∈Xd satisfying

�x̄− x′� ≤ ���b�+��A��x′�� max�1
�x
′��

�P �d�
%

Theorem 6.2. Suppose that �D�d� > 0. Let �d= ��A
�b
�c� be such that Yd+�d �= �
and consider any �y′
 u′� ∈ Yd+�d. Then, for any +> 0, there exists �ȳ
 ū� ∈ Yd satisfying

�ȳ− y′�∗ ≤ ���c�∗ + ��A��y′�∗ + +�
max �1
�y′�∗�

�D�d�
%

The next two results bound changes in optimal objective function values under data
perturbation. Proposition 6.1 and Theorem 6.3 below extend, respectively, Renegar [16,
Lemma 3.9 and Theorem 1.1, Assertion 5] to the ground-set model format.

Proposition 6.1. Suppose that d ∈ � and ��d� > 0. Let �d = �0
�b
0� be such that
Xd+�d �= �. Then,

z∗�d+�d�− z∗�d�≥−��b�max��c�∗
−z∗�d��
�P �d�

%

Theorem 6.3. Suppose that d ∈ � and ��d� > 0. Let �d = ��A
�b
�c� satisfy
��d�<��d�. Then, if x∗ and x̂ are optimal solutions for �GPd� and �GPd+�d�, respectively,

�z∗�d+�d�− z∗�d�� ≤ ��b�max��c�∗ + ��c�∗
−z∗�d��
�P �d�−��d�

+
(
��c�∗ + ��A�max��c�∗ + ��c�∗
−z∗�d��

�P �d�−��d�
)
max��x∗�
�x̂��%

Proof of Theorem 6.1. The result is trivial if �A= 0 and �b= 0, so we presume that
�A �= 0 and/or �b �= 0. We consider problem �PP�, defined by (22), with x0 = x′ and w0

such that �A+�A�x′ − �b +�b�= w0 ∈ CY . Let us first suppose that b −Ax0 +w0 �= 0.
From Lemma 5.1 we have that there exists a point �x
 t
w
(� feasible for �PP� that satisfies

( ≥ �P�d�

�b−Ax0+w0� = �P�d�

��Ax′ −�b� ≥ �P�d�

��A��x′�+ ��b� %

On the other hand, if b−Ax0 +w0 = 0, then it is trivial to show that there exists a point
�x
 t
w
(� feasible for �PP� that satisfies

( ≥ �P�d�

��A��x′�+ ��b� %

We define

x̄= x+ (x′

t+ (

 w̄= w+ (w0

t+ (
%

By construction we have that x̄ ∈ P and Ax̄− b= w̄ ∈CY ; therefore x̄ ∈Xd and

�x̄− x′� = �x− tx′�
t+ (

≤ ��x�+ t�max�1
�x′��
(

≤ ��A��x′�+ ��b�
�P�d�

max�1
�x′��% �
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Proof of Theorem 6.2. From Proposition A.3 we have that for any +> 0 there exists
1 �=�Aty′ −�c such that �1�∗ ≤ + and c+�c+ 1− �A+�A�ty′ ∈ relintR∗. We consider
problem �DP� defined by (28), with y0 = y′ and s0 �= c+�c+1− �A+�A�ty′ ∈ relintR∗.
From Lemma 5.2 we have that there exists a point �y
,
 s
 (� feasible for �DP� that satisfies

( ≥ �D�d�

�c−Aty0− s0�∗
= �D�d�

��Aty′ −�c− 1�∗
≥ �D�d�

��c�∗ + ��A��y′�∗ + +
%

We define

ȳ = y+ (y′

,+ (

 s̄ = s+ (s0

,+ (
%

By construction we have that ȳ ∈ C∗
Y and c − Atȳ = s̄ ∈ relintR∗ ⊆ effdom u�·� from

Propositions A.3 and A.4. Therefore, from Proposition 2.1, �ȳ
 u�c−Atȳ�� ∈ Yd and

�ȳ− y′�∗ =
�y− ,y′�∗

,+ (
≤ ��y�∗ + ,�max�1
�y′�∗�

(

≤ ��c�∗ + ��A��y′�∗ + +

�D�d�
max�1
�y′��% �

Proof of Proposition 6.1. The hypothesis that ��d� > 0 implies that the GSM format
problem with data d has zero duality gap and �GPd� and �GDd� attain their optimal values
(see Corollary 3.1). Also, because Yd+�d = Yd �= � has a Slater point (because �D�d� > 0)
and Xd+�d �= �, then �GPd+�d� and �GDd+�d� have no duality gap and �GPd+�d� attains
its optimal value (see Theorem 3.2). Let �y
u� ∈ Yd be an optimal solution of �GDd�, due
to the form of the perturbation, point �y
u� ∈ Yd+�d, and therefore

z∗�d+�d�≥ �b+�b�t y− u= z∗�d�+�bty ≥ z∗�d�−��b��y�∗%
The result now follows using the bound on the norm of dual feasible solutions from
Proposition 5.3 and the strong duality for data instances d and d+�d. �

Proof of Theorem 6.3. The hypothesis that ��d� > 0 and ��d+�d� > 0 imply that
the GSM format problems with data d and d + �d both have zero duality gap and all
problems attain their optimal values (see Corollary 3.1).
Let x̂ ∈ Xd+�d be an optimal solution for �GPd+�d�. Define the perturbation �d̃ =

�0
�b−�Ax̂
0�. Then, by construction the point x̂ ∈Xd+�d̃. Therefore,

z∗�d+�d�= �c+�c�t x̂≥−��c�∗�x̂�+ ctx̂≥−��c�∗�x̂�+ z∗�d+�d̃�%

Invoking Proposition 6.1, we bound the optimal objective function value for the problem
instance d+�d̃:

z∗�d+�d�+��c�∗�x̂� ≥ z∗�d+�d̃�≥ z∗�d�−��b−�Ax̂�max��c�∗
−z
∗�d��

�P �d�
%

Therefore,

z∗�d+�d�− z∗�d�≥−��c�∗�x̂�− ���b�+��A��x̂�� max��c�∗
−z
∗�d��

�P �d�
%

By changing the roles of d and d+�d we can construct the following upper bound:

z∗�d+�d�− z∗�d�≤ ��c�∗�x∗�+ ���b�+��A��x∗�� max��c+�c�∗
−z∗�d+�d��

�P �d+�d�
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where x∗ ∈ Xd is an optimal solution for �GPs�. The value −z∗�d+�d� can be replaced
by −z∗�d� on the right side of the previous bound. To see this consider two cases. If
−z∗�d+�d�≤−z∗�d�, then we can do the replacement because it yields a larger bound.
If −z∗�d + �d� > −z∗�d�, the inequality above has a negative left side and a positive
right side after the replacement. Note also that because of the hypothesis ��d� < ��d�,
the distance to infeasibility satisfies �P�d+�d�≥ �P�d�−��d�> 0. We finish the proof
combining the previous two bounds, incorporating the lower bound on �P�d + �d�, and
using strong duality of the data instances d and d+�d. �

7. Concluding remarks. We have shown herein that most of the essential results
regarding condition numbers for conic convex optimization problems can be extended to
the nonconic ground-set model format �GPd�. We have attempted herein to highlight the
most important and/or useful extensions; for other results see Ordóñez [12].
It is interesting to note the absence of results that directly bound z∗�d� or the norms

of optimal solutions �x∗�, �y∗� of �GPd� and �GDd� as in Renegar [16, Theorem 1.1,
Assertions 3, 4]. Such bounds are very important in relating the condition number theory to
the complexity of algorithms. However, we do not believe that such bounds can be demon-
strated for �GPd� without further assumptions. The reason for this is subtle yet simple.
Observe from Theorem 4.2 that �D�d� depends only on d= �A
b
 c�, CY , and the recession
cone R of P . That is, P only affects �D�d� through its recession cone, and so information
about the “bounded” portion of P is irrelevant to the value of �D�d�. For this reason it
is not possible to bound the norm of primal optimal solutions x directly, and hence one
cannot bound z∗�d� directly either. Curiously, this loss of information is not present in the
characterization of the primal distance to infeasibility; the characterization of �P�d� uses all
of the information about P through its conic extension C, as shown in Theorem 4.1. Under
rather mild additional assumptions, it is possible to analyze the complexity of algorithms
for solving �GPd� (see Ordóñez [12]).
Note that the characterization results for �P�d� and �D�d� presented herein in Theo-

rems 4.1 and 4.2 pertain only to the case when d ∈� . A characterization of ��d� for d ��
is the subject of future research.

Appendix. This appendix contains supporting mathematical results that are used in the
proofs of this paper. We point the reader to existing proofs for the more well-known results.

Proposition A.1 (Freund and Vera [8, Proposition 2]). Let X be an n-dimensional
normed vector space with dual space X∗. For every x ∈ X, there exists x̄ ∈ X∗ with the
property that �x̄�∗ = 1 and �x� = x̄tx.

Proposition A.2 (Rockafellar [18, Theorems 11.1 and 11.3]). Given two nonempty
convex sets S and T in �n, then relint S ∩ relint T = � if and only if S and T can be
properly separated, i.e., there exists y �= 0 such that

inf
x∈S

ytx ≥ sup
z∈T

ytz


sup
x∈S

ytx > inf
z∈T

ytz%

The following is a restatement of Rockafellar [18, Corollary 14.2.1] which relates the
effective domain of u�·� of (14) to the recession cone of P , where recall that R∗ denotes
the dual of the recession cone R defined in (8).

Proposition A.3 (Rockafellar [18, Corollary 14.2.1]). Let R denote the recession
cone of the nonempty convex set P and define u�·� by (14). Then, cl effdom u�·�=R∗.

Proposition A.4 (Rockafellar [18, Theorem 6.3]). For any convex set Q ⊆ �n,
cl relintQ= clQ and relint clQ= relintQ.
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The following lemma is central in relating the two alternative characterizations of the
distance to infeasibility and is used in the proofs in §4.

Lemma A.1. Consider two nonempty closed convex cones C ⊆ �n and CY ⊆ �m, and
data �M
v� ∈�m×n ×�m. Strong duality holds between

�P�� z∗ = min �Mty+ q�∗ and �D�� z∗ = max (

s.t. ytv≥ 1
 s.t. Mx− (v ∈CY 

y ∈C∗

Y 
 �x� ≤ 1

q ∈C∗
 ( ≥ 0


x ∈C%

Proof. The proof that weak duality holds between �P� and �D� is straightforward.
Therefore, z∗ ≤ z∗. Note that if z∗ =
, then −v ∈CY , and so z

∗ =
= z∗. Let us therefore
assume z∗ < z∗ < 
 and set + > 0 such that 0 ≤ z∗ < z∗ − +. Consider the following
nonempty convex set S:

S �= ��u
,
.� � ∃y
 q s.t. y+ u ∈C∗
Y 
 q+ , ∈C∗
 ytv≥ 1−.
�Mty+ q�∗ ≤ z∗ − +� %

Then, �0
0
0�� S, and from Proposition A.2 there exists �z
 x
 (� �= 0 such that ztu+xt,+
(. ≥ 0 for any �u
,
.� ∈ S. For any y ∈ �m, ũ ∈ C∗

Y , ,̃ ∈ C∗, 0 ≥ 0, and q̃ such that
�q̃�∗ ≤ z∗−+, define q =−Mty+ q̃, u=−y+ ũ, ,=−q+ ,̃, and .= 1−ytv+0. This con-
struction implies that the point �u
,
.� ∈ S, and that for all y, ũ ∈C∗

Y , ,̃ ∈C∗
0 ≥ 0,
and �q̃�∗ ≤ z∗ − + it holds that

0 ≤ zt�−y+ ũ�+ xt�Mty− q̃+ ,̃�+ (�1− ytv+0�

= yt�Mx− (v− z�+ ztũ+ xt,̃− xtq̃+ (+ (0%

This implies that Mx− (v= z ∈CY , x ∈C, ( ≥ 0, and ( ≥ xtq̃ for �q̃�∗ ≤ z∗ − +. If x �= 0,
rescale �z
 x
 (� such that �x� = 1 and then �x
 (� is feasible for �D�. Set q̃ = �z∗ − +�q̂,
where q̂ is given by Proposition A.1 and is such that �q̂�∗ = 1 and q̂tx = �x� = 1. It then
follows that z∗ ≥ ( ≥ xtq̃ = z∗ − +> z∗, which is a contradiction.
If x= 0, the above expression implies −(v= z ∈CY and ( ≥ 0. If ( > 0, then −v ∈CY ,

which means that the point �0
>� is feasible for �D� for any >≥ 0, implying that z∗ =
,
a contradiction because z∗ < z∗. If ( = 0, then z = 0, which is a contradiction because
�z
 x
 (� �= 0. �
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