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Problem Definition

Input
1 n jobs:

work volume vj .
weight wj .

2 Speed function s : R+ → R+.
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Problem Definition

Equivalent problem
1 Unit speed machine (s ≡ 1).
2 Different Objective:

min
∑

j

wj f (C′j ) =
∑

j

wj f (
∑
k≤j

vk )︸ ︷︷ ︸
=Cj

,

where f (t) := inf{b :

∫ b

0
s(ξ)dξ ≥ t}

v1 v2 v3 v4 v5

s(t)

t
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Approximation algorithms

Definition
For α ≥ 1, a solution S is α-approximate if

cost(S) ≤ α cost(SOPT).
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Known Results

4-approx. (for all speeds functions simultaneously)
Epstein et al. 2012 (SICOMP 2012)

PTAS for
∑

j wj f (Cj) if f is concave (s non-decreasing).

Stiller & Wiese (ISAAC 2010)∑
j wj f (Cj) strongly NP-hard for piece-wise linear f (s piece-wise

constant).
Höhn & Jacobs (LATIN 2012)

O(1)-approx. for min
∑

j fj(Cj).

Bansal & Pruhs (FOCS 2010)

(2 + ε)-approx. for
∑

j fj(Cj).

Shmoys & Cheung (APPROX 2011)
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Results Overview

Theorem
There exists a PTAS for any given function s, i.e., for any ε > 0 there
exists a polynomial algorithm that returns a (1 + ε)-approximate
solution.

Energy
Several results for dynamic speed allocation.
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Difficulty

1 2 3 4

C1 C2 C3 C4

. . .

Unavailable period!

Observation
Rounding in the time axis might be problematic!
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Dual Schedules
2D-Gantt Charts [Eastman et al. ’64]
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W (t) := remaining weight after t
=

∑
Cj>t wj .

Cw
j := remaining weight when j starts.
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Dynamic Program
(exponential time)

Basics
Round wj := (1 + ε)k for k ∈ Z.
Weight intervals Iu = ((1 + ε)u−1, (1 + ε)u].
Fu := collection of possible subsets of jobs to be processed
before (1 + ε)u.

DP Table
For each u and S ∈ Fu:

T (u,S) := (1 + ε)-approximation of scheduling S in [0, (1 + ε)u]

= min

T (u − 1,S′) +
∑

j∈S\S′
xj(1 + ε)u : S′ ∈ Fu−1,S′ ⊆ S

 .
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Dynamic Program
Reducing table’s size

Key Ideas

Light jobs: wj ≤ ε2Sw
j ,

 greedily order jobs by wj/vj .

Heavy jobs: otherwise,
 if wj = wk : shortest processing volume first.

...

Lemma
We can construct sets Fu of constant size.

Sets Fu are independent of the speed!
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Main result

Theorem
There exists an efficient PTAS for minimizing

∑
j wjCj on a machine

with variable speed.

Theorem
There exists an efficient PTAS for minimizing

∑
j wj f (Cj) for any

non-decreasing f on a unit speed machine.
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Energy Constraint Scheduling

Model Definition
Available set of speeds S ⊆ R+.
Speed s ∈ S ⇒ power = sα (α = 2,3 usually).
Total energy available E .
Obj: minj wjCj .
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Results

Theorem (Indep. by Vazquez ’12 and Carrasco et al. ’11)
If S = R+ then the optimal value is

min
permutation π

1

E
1

α−1

·

 n∑
j=1

vπ(j)

∑
k≥j

wπ(k)

α−1
α


α

α−1

.

Corollary
The optimal sequence is independent of the energy budget E.

Corollary

The optimum can be achieved by minimizing
∑

j wj f (Cj) for f (t) := t
α−1
α

on a unit speed machine.
⇒ PTAS (Wiese & Stiller 2010 and our previous result).

Complexity Open!
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Results
cont...

Theorem
If |S| = 2 then the problem is NP-hard.
There exists a PTAS if S is part of the input.

Similar ideas as previous PTAS for given speeds.
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