Scheduling on a machine with varying speed

N. Megow¹ J. Verschae²

¹TU Berlin ²Universidad de Chile

ADGO, October 16, 2013

Input

1 jobs:

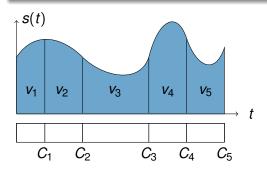
- work volume v_j.
- weight w_j.

2 Speed function $s : \mathbb{R}_+ \to \mathbb{R}_+$.

Input

1 jobs:

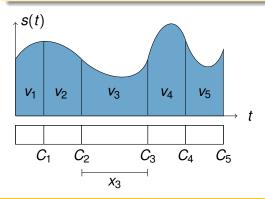
- work volume v_i.
- weight w_j.
- **2** Speed function $s : \mathbb{R}_+ \to \mathbb{R}_+$.



Input

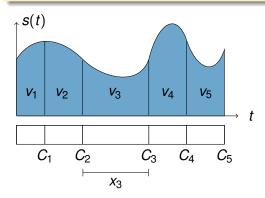
1 jobs:

- work volume v_i.
- weight w_j.
- **2** Speed function $s : \mathbb{R}_+ \to \mathbb{R}_+$.



Input

- 1 jobs:
 - work volume v_j.
 - weight w_j.
- **2** Speed function $s : \mathbb{R}_+ \to \mathbb{R}_+$.



$$\frac{\text{Objective}}{\min \sum_{j} w_{j} C_{j}}$$

Equivalent problem

- Unit speed machine ($s \equiv 1$).
- 2 Different Objective:

$$\min \sum_{j} w_{j} f(C'_{j}) = \sum_{j} w_{j} f(\sum_{k \leq j} v_{k}),$$

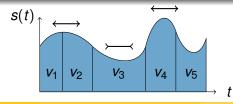
Equivalent problem

• Unit speed machine (
$$s \equiv 1$$
).

② Different Objective:

$$\min\sum_{j} w_{j}f(C_{j}') = \sum_{j} w_{j}f(\sum_{k\leq j} v_{k}),$$

where
$$f(t) := \inf\{b: \int_0^b s(\xi) d\xi \ge t\}$$



J. Verschae

Definition

For $\alpha \geq 1$, a solution *S* is α -approximate if

 $cost(S) \le \alpha cost(S_{OPT}).$

Known Results

- 4-approx. (for all speeds functions simultaneously) Epstein et al. 2012 (SICOMP 2012)
- PTAS for $\sum_{j} w_{j}f(C_{j})$ if *f* is concave (*s* non-decreasing). Stiller & Wiese (ISAAC 2010)
- $\sum_{j} w_{j} f(C_{j})$ strongly NP-hard for piece-wise linear *f* (*s* piece-wise constant).

Höhn & Jacobs (LATIN 2012)

- O(1)-approx. for min $\sum_j f_j(C_j)$. Bansal & Pruhs (FOCS 2010)
- $(2 + \varepsilon)$ -approx. for $\sum_{j} f_{j}(C_{j})$. Shmoys & Cheung (APPROX 2011)

Theorem

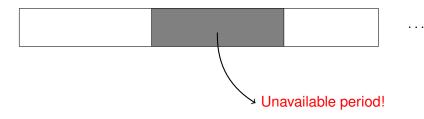
There exists a PTAS for any given function s, i.e., for any $\varepsilon > 0$ there exists a polynomial algorithm that returns a $(1 + \varepsilon)$ -approximate solution.

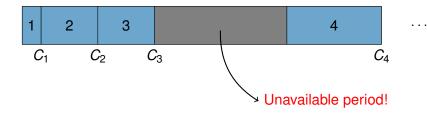
Theorem

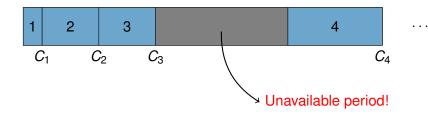
There exists a PTAS for any given function s, i.e., for any $\varepsilon > 0$ there exists a polynomial algorithm that returns a $(1 + \varepsilon)$ -approximate solution.

Energy

Several results for dynamic speed allocation.



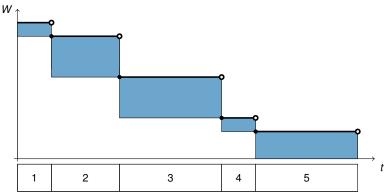




Observation

Rounding in the time axis might be problematic!

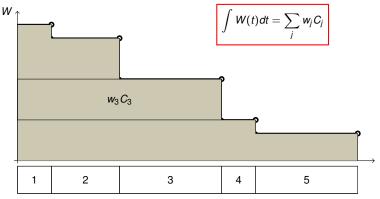
2D-Gantt Charts [Eastman et al. '64]



time-schedule

• W(t) := remaining weight after t= $\sum_{C_j > t} w_j$.

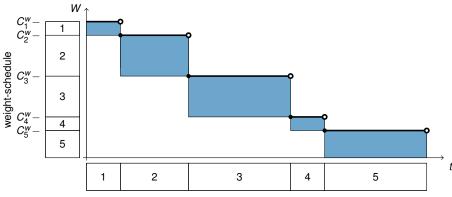
2D-Gantt Charts [Eastman et al. '64]



time-schedule

• W(t) := remaining weight after t= $\sum_{C_j > t} w_j$.

2D-Gantt Charts [Eastman et al. '64]



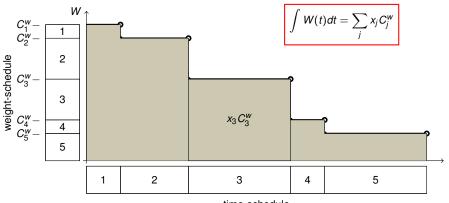
time-schedule

• W(t) := remaining weight after t

$$=\sum_{C_i>t} W_j.$$

• $C_i^w :=$ remaining weight when *j* starts.

2D-Gantt Charts [Eastman et al. '64]



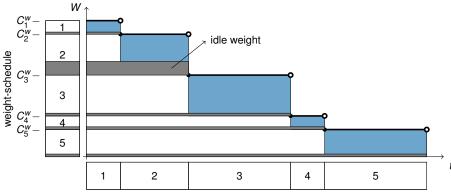
time-schedule

• W(t) := remaining weight after t

$$=\sum_{C_i>t} W_j.$$

• $C_i^w :=$ remaining weight when *j* starts.

2D-Gantt Charts [Eastman et al. '64]



time-schedule

• *W*(*t*) := remaining weight after *t*

$$=\sum_{C_i>t} W_j.$$

• $C_i^w :=$ remaining weight when *j* starts.

(exponential time)

Basics

- Round $w_j := (1 + \varepsilon)^k$ for $k \in \mathbb{Z}$.
- Weight intervals $I_u = ((1 + \varepsilon)^{u-1}, (1 + \varepsilon)^u].$
- *F_u* := collection of possible subsets of jobs to be processed before (1 + ε)^u.

(exponential time)

Basics

• Round
$$w_j := (1 + \varepsilon)^k$$
 for $k \in \mathbb{Z}$.

• Weight intervals
$$I_u = ((1 + \varepsilon)^{u-1}, (1 + \varepsilon)^u].$$

F_u := collection of possible subsets of jobs to be processed before (1 + ε)^u.

DP Table

For each *u* and $S \in \mathcal{F}_u$:

 $egin{aligned} \mathcal{T}(u,\mathcal{S}) &:= (1+arepsilon) ext{-approximation of scheduling } \mathcal{S} ext{ in } [0,(1+arepsilon)^u] \ &= \min\left\{\mathcal{T}(u-1,\mathcal{S}') + \sum_{j\in\mathcal{S}\setminus\mathcal{S}'}x_j(1+arepsilon)^u \,:\, \mathcal{S}'\in\mathcal{F}_{u-1}, \mathcal{S}'\subseteq\mathcal{S}
ight\}. \end{aligned}$

Reducing table's size

Key Ideas

• Light jobs: $w_j \le \varepsilon^2 S_j^w$, \rightsquigarrow greedily order jobs by w_j/v_j .

Reducing table's size

Key Ideas

- Light jobs: $w_j \le \varepsilon^2 S_j^w$, \rightsquigarrow greedily order jobs by w_j/v_j .
- Heavy jobs: otherwise,
 - \rightsquigarrow if $w_j = w_k$: shortest processing volume first.

Reducing table's size

Key Ideas

• Light jobs: $w_j \le \varepsilon^2 S_j^w$, \rightsquigarrow greedily order jobs by w_j/v_j .

Heavy jobs: otherwise, → if w_j = w_k: shortest processing volume first.

Lemma

We can construct sets \mathcal{F}_u of constant size.

Reducing table's size

Key Ideas

• Light jobs: $w_j \le \varepsilon^2 S_j^w$, \rightsquigarrow greedily order jobs by w_j/v_j .

Heavy jobs: otherwise, → if w_i = w_k: shortest processing volume first.

Lemma

We can construct sets \mathcal{F}_u of constant size.

Sets \mathcal{F}_u are independent of the speed!

Theorem

There exists an efficient PTAS for minimizing $\sum_{j} w_{j}C_{j}$ on a machine with variable speed.

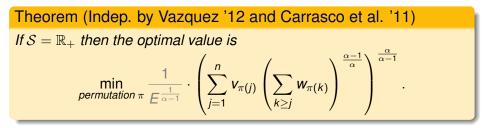
Theorem

There exists an efficient PTAS for minimizing $\sum_{j} w_{j}f(C_{j})$ for any non-decreasing f on a unit speed machine.

Model Definition

- Available set of speeds $\mathcal{S} \subseteq \mathbb{R}_+$.
- Speed $s \in S \Rightarrow$ power = s^{α} (α = 2, 3 usually).
- Total energy available E.
- Obj: $\min_j w_j C_j$.

Theorem (Indep. by Vazquez '12 and Carrasco et al. '11) If $S = \mathbb{R}_+$ then the optimal value is $\min_{permutation \pi} \frac{1}{E^{\frac{1}{\alpha-1}}} \cdot \left(\sum_{j=1}^n v_{\pi(j)} \left(\sum_{k \ge j} w_{\pi(k)}\right)^{\frac{\alpha-1}{\alpha}}\right)^{\frac{\alpha}{\alpha-1}}.$



Theorem (Indep. by Vazquez '12 and Carrasco et al. '11)

If $\mathcal{S} = \mathbb{R}_+$ then the optimal value is

$$\min_{\text{permutation }\pi} \frac{1}{E^{\frac{1}{\alpha-1}}} \cdot \left(\sum_{j=1}^{n} v_{\pi(j)} \left(\sum_{k \ge j} w_{\pi(k)} \right)^{\frac{\alpha-1}{\alpha}} \right)^{\frac{\alpha}{\alpha-1}}.$$

Corollary

The optimal sequence is independent of the energy budget E.

Theorem (Indep. by Vazquez '12 and Carrasco et al. '11)

If $\mathcal{S} = \mathbb{R}_+$ then the optimal value is

$$\min_{\text{permutation }\pi} \frac{1}{E^{\frac{1}{\alpha-1}}} \cdot \left(\sum_{j=1}^{n} \nu_{\pi(j)} \left(\sum_{k \ge j} w_{\pi(k)} \right)^{\frac{\alpha-1}{\alpha}} \right)^{\frac{\alpha}{\alpha-1}}.$$

Corollary

The optimal sequence is independent of the energy budget E.

Theorem (Indep. by Vazquez '12 and Carrasco et al. '11)

If $\mathcal{S} = \mathbb{R}_+$ then the optimal value is

$$\min_{\text{permutation }\pi} \frac{1}{E^{\frac{1}{\alpha-1}}} \cdot \left(\sum_{j=1}^{n} v_{\pi(j)} \left(\sum_{k \ge j} w_{\pi(k)} \right)^{\frac{\alpha-1}{\alpha}} \right)^{\frac{\alpha}{\alpha-1}}.$$

Corollary

The optimal sequence is independent of the energy budget E.

Corollary

The optimum can be achieved by minimizing $\sum_{j} w_{j}f(C_{j})$ for $f(t) := t^{\frac{\alpha-1}{\alpha}}$ on a unit speed machine.

 \Rightarrow PTAS (Wiese & Stiller 2010 and our previous result).

Theorem (Indep. by Vazquez '12 and Carrasco et al. '11)

If $\mathcal{S} = \mathbb{R}_+$ then the optimal value is

$$\min_{\text{permutation }\pi} \frac{1}{E^{\frac{1}{\alpha-1}}} \cdot \left(\sum_{j=1}^{n} v_{\pi(j)} \left(\sum_{k \ge j} w_{\pi(k)} \right)^{\frac{\alpha-1}{\alpha}} \right)^{\frac{\alpha}{\alpha-1}}.$$

Corollary

The optimal sequence is independent of the energy budget E.

Corollary

The optimum can be achieved by minimizing $\sum_{j} w_{j}f(C_{j})$ for $f(t) := t^{\frac{\alpha-1}{\alpha}}$ on a unit speed machine.

 \Rightarrow PTAS (Wiese & Stiller 2010 and our previous result).

Complexity Open!

J. Verschae

cont...

Theorem

- If |S| = 2 then the problem is NP-hard.
- There exists a PTAS if S is part of the input.

Theorem

- If |S| = 2 then the problem is NP-hard.
- There exists a PTAS if S is part of the input.

Similar ideas as previous PTAS for given speeds.