
Sunday, October 7, 2012

. . .
Motivation

. . . .
Geometric Preliminaries

. . .
The Dynamics

. . .
Asymptotic Analysis

. . . . .
Well-posedness

Inertial Game Dynamics

R. Laraki§ P. Mertikopoulos∗

§CNRS – LAMSADE laboratory

∗CNRS – LIG laboratory

ADGO'13 – Playa Blanca, October 15, 2013

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble



Sunday, October 7, 2012

. . .
Motivation

. . . .
Geometric Preliminaries

. . .
The Dynamics

. . .
Asymptotic Analysis

. . . . .
Well-posedness

Motivation

Main Idea: use second order tools to derive efficient learning algorithms in games.

The second order exponential learning dynamics (Rida's talk) have many pleasant
properties, but also various limitations:

▸ Cannot converge to interior equilibria (not a problem in many applications,
desirable in others).

▸ Convex programming properties not clear – no damping mechanism.

▸ Lack of a bona fide "heavy ball with friction" interpretation.

In this talk: use geometric ideas to derive a class of inertial (= admitting an energy
function), second order dynamics for learning in games.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Approach Breakdown

The main steps of our approach will be as follows:

1. Endow the simplex with a Hessian Riemannian geometric structure.

2. Derive the equations of motion for a learner under the forcing of his unilateral
gradient (taken w.r.t. the HR geometry on the simplex).

3. Derive an isometric embedding of the problem into an ambient Euclidean space.

4. Establish the well-posedness of the dynamics.

5. Use the system's energy function to derive the dynamics' asymptotic properties.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Notation

We will work with finite games G ≡ G(N,A, u) consisting of:

▸ A finite set of players: N = {, . . . ,N}.
▸ The players' action sets Ak = {αk , , αk , , . . . }, k ∈ N.

▸ The players' payoff functions uk ∶A ≡∏k Ak → R, extended multilinearly to
X ≡∏k ∆(Ak) if players use mixed strategies xk ∈ Xk ≡ ∆(Ak).

Note: indices will be suppressed when possible.

Special case: if ukα(x)− ukβ(x) = − [V(α; x−k) − V(β; x−k)] for some V ∶ X → R, the
game is called a potential game.

Equilibrium: we will say that q ∈ X is a Nash equilibrium of G if

ukα(q) ≥ ukβ(q) for all α ∈ supp(qk), β ∈ Ak , k ∈ N.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Riemannian Metrics

A Riemannian metric on an open set U ⊆ Rm is a smoothly varying scalar product on U

(X ,Y) ≡ ⟨X ,Y⟩ =∑ j ,k X j jkYk , X ,Y ∈ Rm ,

where  ≡ (x) is a smooth field of positive-definite matrices on U .

The gradient of a scalar function V ∶U → R with respect to  is defined as:

grad V = −(∂V) or, in components, ( grad V) j =∑k 
−
jk ∂kV ,

where ∂V = (∂ jV)nj= is the array of partial derivatives of V .

Fundamental property of the gradient: d
dtV(x(t)) = ⟨ grad V , ẋ⟩


.

More generally, the derivative of V along a vector field X on U will be:

∇X f ≡ ⟨d f ∣X⟩ = ⟨grad f , X⟩.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Parallel Transport

How can we differentiate a vector field along another in a Riemannian setting?

Definition
Let X ,Y be vector fields on U . A connection on U will
be a map (X ,Y)↦ ∇XY s.t.:

1. ∇ fX+ fXY = f∇XY + f∇XY ∀ f , f ∈ C∞(U).
2. ∇X(aY + bY) = a∇XY + b∇XY for all a, b ∈ R.

3. ∇X( f Y) = f ⋅ ∇XY +∇X f ⋅ Y for all f ∈ C∞(U).
In components:

(∇XY)k =∑i X i∂ iYk +∑i , j Γ
k
i jX iYj ,

where Γk
i j are the connection's Christoffel symbols.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Covariant Differentiation

A Riemannian metric generates the so-called Levi-Civita connection with symbols

Γk
i j = 

∑ℓ 
−
kℓ (∂ i ℓ j + ∂ j ℓ i − ∂ℓ i j)

This leads to the notion of covariant differentiation along a curve x(t) of U :

(∇ẋX)k ≡ Ẋk +∑i , j Γ
k
i jX i ẋ j

If the field being differentiated is the velocity of x(t), we obtain the acceleration of
x(t)

Dxk
Dt

= ẍk +∑i , j Γ
k
i j ẋ i ẋ j .

Definition
A geodesic on U is a curve x(t) with zero acceleration: Dx

Dt = .

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Hessian Riemannian Metrics

We will be interested in a specific class of Riemannian metrics on the positive orthant
Rm
> of Rm generated by a family of barrier functions.

Definition
Let θ∶ [,+∞)→ R ∪ {+∞} be a C∞ function such that

1. θ(x) <∞ for all x > .

2. limx→+ θ′(x) = −∞.
3. θ′′(x) >  and θ′′′(x) <  for all x > .

The Hessian Riemannian metric generated by θ on Rn+
> will be

(x) = Hess (∑k θ(xk)) or, in components, i j(x) = θ′′(x i)δ i j .

The function θ will be called the kernel of .

Examples

▸ The Shahshahani metric: θ(x) = x log x Ô⇒ i j(x) = δ i j/x j .

▸ The log-barrier metric: θ(x) = − log x Ô⇒ i j(x) = δ i j/x
j .

▸ The Euclidean metric (non-example): θ(x) = 
 x

 Ô⇒ i j(x) = δ i j .

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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The Heavy Ball with Friction

The heavy ball with friction dynamics (Attouch et al.) on Rm are:

ẍ = − gradV − ηẋ , (HBF)

where V ∶Rm → R is a smooth potential function and η >  is the friction coefficient
which dissipates energy.

Theorem (Alvarez 2000)
If V is convex and argminV ≠ ∅, (HBF) converges to a minimizer of V .

We wish to apply the above method to the unit simplex ∆; in the presence of
inequality constraints however, (HBF) is no longer well-posed: it exits ∆ in finite time.

We will take a two-step approach:

1. Endow ∆ with a Hessian Riemannian structure.

2. Derive the Riemannian analogue of (HBF).

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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ẍ = − gradV − ηẋ , (HBF)
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The Heavy Ball with Friction on the Simplex

Let  be a Hessian Riemannian metric on Rn+
> with kernel θ. Then (HBF) becomes:

Dx
Dt
= − grad V − ηẋ ,

or, in components:

ẍk =


θ′′(xk)
uk −∑

n
i , j= Γ

k
i j ẋ i ẋ j − ηẋk ,

with uk = −∂kV and Γk
i j = 


θ′′′(xk)
θ′′(xk)

δ i jk .

Using d'Alembert's principle to project on the simplex, we obtain the inertial dynamics:

ẍk =

θ′′k
[uk −∑ℓ (Θ

′′
h/θ′′ℓ )uℓ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Driving force

− 



θ′′k
[θ′′′k ẋ

k −∑ℓ (Θ
′′
h/θ′′ℓ ) θ′′′ℓ ẋ

ℓ ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Constraint force

− ηẋk

°
Friction

(ID)

where θ′′k = θ′′(xk) and Θ′′h is the harmonic mean Θ′′h = (∑ℓ /θ′′ℓ )
− .

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Inertial Game Dynamics

Tensoring over players, we obtain the inertial game dynamics:

ẍkα =


θ′′kα
[ukα −∑β (Θ

′′
k ,h/θ′′kβ)ukβ]

− 



θ′′kα
[θ′′′kα ẋ

kα −∑ℓ (Θ
′′
k ,h/θ′′kβ) θ′′′kβ ẋ

kβ] − ηẋkα ,
(IGD)

where the players' payoffs ukα = ∂uk
∂xkα

are viewed as unilateral gradients.

Examples

1. The Gibbs kernel θ(x) = x log x generates the inertial replicator dynamics:

ẍkα = xkα (ukα −∑β xkβukβ) +


xkα (ẋ

kα/x
kα −∑β ẋ


kβ/xkβ) − ηẋkα . (I-RD)

2. The Burg kernel θ(x) = − log x generates the inertial log-barrier dynamics:

ẍkα = x
kα (ukα − r−k ∑β x


kβukβ) + x

kα (ẋ
kα/x

kα − r−k ∑β ẋ

kβ/xkβ) − ηẋkα ,

(I-LD)
where rk = ∑β x


kβ .

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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Energy, Damping and Convergence

For a single player, the Riemannian structure on ∆ gives rise to the energy functional:

E(x , v) = 
 ⟨v , v⟩ + V(x)

Under the inertial dynamics, energy is dissipated:

Ė = ⟨D
x

Dt
, ẋ⟩ + ⟨gradV , ẋ⟩ = ⟨− gradV − ηẋ , ẋ⟩ + ⟨gradV , ẋ⟩ = −η∥ẋ∥ ≤ 

As a result, inertial trajectories that exist for all time eventually slow down:

Proposition
If x(t) exists for all t ≥ , then limt→∞ ẋ(t) = .

Theorem
Assume that the dynamics (ID) are well-posed, and let q be a local minimizer of V with
Hess(V) ≻  at q. If x() is sufficiently close to q and the system's initial kinetic energy
K() = 

 ∥ẋ()∥
 is low enough, then limt→∞ x(t) = q.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble



Sunday, October 7, 2012

. . .
Motivation

. . . .
Geometric Preliminaries

. . .
The Dynamics

. . .
Asymptotic Analysis

. . . . .
Well-posedness

Energy, Damping and Convergence

For a single player, the Riemannian structure on ∆ gives rise to the energy functional:

E(x , v) = 
 ⟨v , v⟩ + V(x)

Under the inertial dynamics, energy is dissipated:
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The Folk Theorem of Evolutionary Game Theory

First order gradient descent w.r.t. the Shahshahani metric i j(x) = δ i j/x j leads to the
replicator equation:

ẋkα = xkα [ukα −∑β xkβukβ] (RD1)

The most well known stability and convergence result is the folk theorem of
evolutionary game theory which states that (RD1) has the following properties:

I. A state is stationary iff it is a restricted equilibrium – i.e.ukα(q) = ukβ(q) if
α, β ∈ supp(qk).

II. If an interior solution orbit converges, its limit is Nash.

III. If a point is Lyapunov stable, then it is also Nash.

IV. A point is asymptotically stable if and only if it is a strict equilibrium.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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An Inertial Folk Theorem

In our inertial setting, we have the following folk-type theorem:

Theorem
Assume that the inertial dynamics (IGD) are well-posed, and let x(t) be a solution orbit of
(IGD) for ηk ≥ . Then:

I. x(t) = q for all t ≥  if and only if q is a restricted equilibrium.

II. If x(t) is interior and limt→∞ x(t) = q, then q is a restricted equilibrium of G.

III. If every neighborhood U of q in X admits an interior orbit xU(t) such that xU(t) ∈ U
for all t ≥ , then q is a restricted equilibrium of G.

IV. If q is a strict equilibrium of G and x(t) starts close enough to q with sufficiently low
speed ∥ẋ()∥, then x(t) remains close to q for all t ≥  and limt→∞ x(t) = q.

P. Mertikopoulos CNRS – Laboratoire d'Informatique de Grenoble
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An Isometric Embedding into Euclidean Space

The above results all rely on the inertial dynamics being well-posed – not obvious! We
will study this by embedding the problem isometrically in an ambient Euclidean space.

Proposition (Nash embedding)
Let ξα = ϕ(xα) with ϕ′(x) =

√
θ′′(x), and set

S = {(ϕ(x), . . . , ϕ(xn)) ∶ x ∈ rel int(∆)}.

Then S with the ambient metric of Rn is isomorphic to rel int(∆) with the Hessian
Riemannian metric generated by θ .

Examples

1. The open unit simplex ∆ ⊆ Rn+ with the Shahshahani metric i j = δ i j/x j is
isometric to an open orthant of the radius- sphere in Rn+ (Akin, 1979).

2. The open unit simplex ∆ ⊆ Rn+ with the log-barrier metric i j = δ i j/x
j is

isometric to the closed hypersurface S = {ξ ∈ Rn+ ∶ ξα <  and ∑β e
ξβ = }.
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Well-posedness of the Inertial Dynamics

In the Euclidean variables ξ = ϕ(x), the inertial dynamics become:

ξ̈α =
√
θ′′α
(uα −∑β (Θ

′′
h/θ′′β )uβ) +




√
θ′′α
∑β Θ

′′
h θ
′′′
β /(θ′′β ) ξ̇β − ηξ̇α .

By the Euclidean isometry property, this is just Newton's ordinary second law of
motion for particles constrained to move on the hypersurface

S = {ξ ∈ Rn+ ∶∑β ϕ
−(ξβ) = }.

Theorem
The dynamics (ID) are well-posed if and only if S is a closed hypersurface of Rn+ .

Proof technical and hard, but intuition straightforward: if S is bounded in some
direction, then orbits can escape from that part of S in finite time.
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Examples

Nash embedding for the Shahshahani simplex: θ(x) = x log x, ξ = 
√
x.

The dynamics escape in finite time.
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Examples

Nash embedding for the Burg simplex: θ(x) = − log x, ξ = log x.

The dynamics are well-posed.
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Future Directions

Some open problems for the coffee break:

▸ What do the dynamics look like for more general domains?

▸ When are they well posed?
Conjecture: if the interior of the feasible set can be mapped isometrically to a
closed submanifold of some ambient real space.

▸ What are the dynamics' global convergence properties for special classes of
functions (convex, analytic, etc.)?

▸ …
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