

Motivati ●00	on Geometric Preliminaries		Asymptotic Analysis	Well-posedness 00000		
CITS	Motivation					
	Main Idea: use second order tools to derive efficient learning algorithms in games.					
	The second order exponential le	earning dynamics (Rid	a's talk) have many pleas	ant		

properties, but also various limitations:

- Cannot converge to interior equilibria (not a problem in many applications, desirable in others).
- Convex programming properties not clear no damping mechanism.
- Lack of a bona fide "heavy ball with friction" interpretation.

In this talk: use geometric ideas to derive a class of inertial (= admitting an energy function), second order dynamics for learning in games.

Motiva	ition Geo			Well-posedness
000				
CITS	Approach B	Breakdown		

The main steps of our approach will be as follows:

- I. Endow the simplex with a Hessian Riemannian geometric structure.
- 2. Derive the equations of motion for a learner under the forcing of his unilateral gradient (taken w.r.t. the HR geometry on the simplex).
- 3. Derive an isometric embedding of the problem into an ambient Euclidean space.
- 4. Establish the well-posedness of the dynamics.
- 5. Use the system's energy function to derive the dynamics' asymptotic properties.

Motiva	ition		Well-posedness
000			
CITS	Notation		

We will work with finite games $\mathfrak{G} \equiv \mathfrak{G}(\mathfrak{N}, \mathcal{A}, u)$ consisting of:

- A finite set of players: $\mathcal{N} = \{1, \dots, N\}$.
- The players' action sets $\mathcal{A}_k = \{\alpha_{k,0}, \alpha_{k,1}, \dots\}, k \in \mathbb{N}$.
- The players' payoff functions $u_k: \mathcal{A} \equiv \prod_k \mathcal{A}_k \to \mathbb{R}$, extended multilinearly to $X \equiv \prod_k \Delta(\mathcal{A}_k)$ if players use mixed strategies $x_k \in X_k \equiv \Delta(\mathcal{A}_k)$.

Note: indices will be suppressed when possible.

Special case: if $u_{k\alpha}(x) - u_{k\beta}(x) = -[V(\alpha; x_{-k}) - V(\beta; x_{-k})]$ for some $V: X \to \mathbb{R}$, the game is called a potential game.

Equilibrium: we will say that $q \in X$ is a Nash equilibrium of \mathfrak{G} if

 $u_{k\alpha}(q) \ge u_{k\beta}(q)$ for all $\alpha \in \operatorname{supp}(q_k)$, $\beta \in \mathcal{A}_k$, $k \in \mathbb{N}$.

Motiva 000	tion Geometric Preliminaries	Asymptotic Analysis	Well-posedness 00000
cnrs	Riemannian Metrics		

A Riemannian metric on an open set $U \subseteq \mathbb{R}^m$ is a smoothly varying scalar product on U

$$g(X,Y) \equiv \langle X,Y \rangle_g = \sum_{j,k} X_j g_{jk} Y_k, \qquad X,Y \in \mathbb{R}^m,$$

where $g \equiv g(x)$ is a smooth field of positive-definite matrices on U.

Motiv: 000	ation Geometric Preliminaries	Asymptotic Analysis	Well-posedness 00000
cnrs	Riemannian Metrics		

A Riemannian metric on an open set $U \subseteq \mathbb{R}^m$ is a smoothly varying scalar product on U

$$g(X,Y) \equiv \langle X,Y \rangle_g = \sum_{j,k} X_j g_{jk} Y_k, \qquad X,Y \in \mathbb{R}^m,$$

where $g \equiv g(x)$ is a smooth field of positive-definite matrices on U.

The gradient of a scalar function $V: U \to \mathbb{R}$ with respect to g is defined as:

 $\operatorname{grad}_{q} V = g^{-1}(\partial V)$ or, in components, $(\operatorname{grad}_{q} V)_{i} = \sum_{k} g_{jk}^{-1} \partial_{k} V$,

where $\partial V = (\partial_j V)_{j=1}^n$ is the array of partial derivatives of V.

Motiva 000	ition Geometric Preliminaries	Asymptotic Analysis	Well-posedness
cnrs	Riemannian Metrics		

A Riemannian metric on an open set $U \subseteq \mathbb{R}^m$ is a smoothly varying scalar product on U

$$g(X, Y) \equiv \langle X, Y \rangle_g = \sum_{j,k} X_j g_{jk} Y_k, \qquad X, Y \in \mathbb{R}^m,$$

where $g \equiv g(x)$ is a smooth field of positive-definite matrices on U.

The gradient of a scalar function $V: U \to \mathbb{R}$ with respect to g is defined as:

 $\operatorname{grad}_{q} V = g^{-1}(\partial V)$ or, in components, $(\operatorname{grad}_{q} V)_{i} = \sum_{k} g_{jk}^{-1} \partial_{k} V$,

where $\partial V = (\partial_j V)_{j=1}^n$ is the array of partial derivatives of V.

Fundamental property of the gradient: $\frac{d}{dt}V(x(t)) = \langle \operatorname{grad}_g V, \dot{x} \rangle_q$.

More generally, the derivative of V along a vector field X on U will be:

$$\nabla_X f \equiv \langle df | X \rangle = \langle \operatorname{grad} f, X \rangle.$$

Motiva 000	ation Geometric Preliminaries	Asymptotic Analysis	Well-posedness 00000
cnrs	Parallel Transport		

How can we differentiate a vector field along another in a Riemannian setting?

Definition

Let X, Y be vector fields on U. A connection on U will be a map $(X, Y) \mapsto \nabla_X Y$ s.t.:

- $I. \ \nabla_{f_1 X_1 + f_2 X_2} Y = f_1 \nabla_{X_1} Y + f_2 \nabla_{X_2} Y \ \forall \ f_1, f_2 \in C^{\infty}(U).$
- 2. $\nabla_X(aY_1 + bY_2) = a\nabla_X Y_1 + b\nabla_X Y_2$ for all $a, b \in \mathbb{R}$.
- 3. $\nabla_X(fY) = f \cdot \nabla_X Y + \nabla_X f \cdot Y$ for all $f \in C^{\infty}(U)$.

In components:

$$\left(\nabla_X Y\right)_k = \sum_i X_i \partial_i Y_k + \sum_{i,j} \Gamma_{ij}^k X_i Y_j,$$

where Γ_{ij}^k are the connection's Christoffel symbols.

Motiva 000	tion Geometric Preliminaries	Asymptotic Analysis	Well-posedness 00000
cnrs	Covariant Differentiation		

A Riemannian metric generates the so-called Levi-Civita connection with symbols

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell} g_{k\ell}^{-1} \left(\partial_{i} g_{\ell j} + \partial_{j} g_{\ell i} - \partial_{\ell} g_{i j} \right)$$

This leads to the notion of covariant differentiation along a curve x(t) of U:

$$\left(\nabla_{\dot{x}}X\right)_{k} \equiv \dot{X}_{k} + \sum_{i,j} \Gamma_{ij}^{k} X_{i} \dot{x}_{j}$$

If the field being differentiated is the velocity of x(t), we obtain the acceleration of x(t)

$$\frac{D^2 x_k}{Dt^2} = \ddot{x}_k + \sum_{i,j} \Gamma^k_{ij} \dot{x}_i \dot{x}_j.$$

Definition

A geodesic on U is a curve x(t) with zero acceleration: $\frac{D^2 x}{Dt^2} = 0$.

	on Geometric Preliminaries		Asymptotic Analysis	Well-posedness
	0000			
cnrs	Hessian Riemannian Met	rics		

We will be interested in a specific class of Riemannian metrics on the positive orthant $\mathbb{R}_{>0}^m$ of \mathbb{R}^m generated by a family of barrier functions.

Definition

Let $\theta: [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$ be a C^{∞} function such that

- I. $\theta(x) < \infty$ for all x > 0.
- $2. \quad \lim_{x\to 0^+} \theta'(x) = -\infty.$
- 3. $\theta''(x) > 0$ and $\theta'''(x) < 0$ for all x > 0.

The Hessian Riemannian metric generated by θ on $\mathbb{R}^{n+1}_{>0}$ will be

$$g(x) = \text{Hess}\left(\sum_{k} \theta(x_k)\right)$$
 or, in components, $g_{ij}(x) = \theta''(x_i)\delta_{ij}$.

The function θ will be called the kernel of g.

	ion Geometric Preliminaries		Asymptotic Analysis	Well-posedness
	0000			
cnrs				
	Hessian Riemannian Met	rics		

We will be interested in a specific class of Riemannian metrics on the positive orthant $\mathbb{R}_{>0}^m$ of \mathbb{R}^m generated by a family of barrier functions.

Definition

Let $\theta: [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$ be a C^{∞} function such that

- I. $\theta(x) < \infty$ for all x > 0.
- $2. \quad \lim_{x\to 0^+} \theta'(x) = -\infty.$
- 3. $\theta''(x) > 0$ and $\theta'''(x) < 0$ for all x > 0.

The Hessian Riemannian metric generated by θ on $\mathbb{R}^{n+1}_{>0}$ will be

$$g(x) = \text{Hess}\left(\sum_{k} \theta(x_k)\right)$$
 or, in components, $g_{ij}(x) = \theta''(x_i)\delta_{ij}$.

The function θ will be called the kernel of g.

Examples

- The Shahshahani metric: $\theta(x) = x \log x \implies g_{ij}(x) = \delta_{ij}/x_j$.
- The log-barrier metric: $\theta(x) = -\log x \implies g_{ij}(x) = \delta_{ij}/x_j^2$.
- The Euclidean metric (non-example): $\theta(x) = \frac{1}{2}x^2 \implies g_{ij}(x) = \delta_{ij}$.

Motivati 000	on Geometric Preliminaries	The Dynamics ●00	Asymptotic Analysis	Well-posedness 00000
CITS	The Heavy Ball with Fric	tion		
	The heavy ball with friction dyna	mics (Attouch et al.)	on \mathbb{R}^m are:	
		$\ddot{x} = -\operatorname{grad} V - \eta \dot{x},$		(HBF)
	where $V: \mathbb{R}^m \to \mathbb{R}$ is a smooth p	otential function and	$\eta > 0$ is the friction co	efficient

which dissipates energy.

Theorem (Alvarez 2000)

If V is convex and $\arg \min V \neq \emptyset$, (HBF) converges to a minimizer of V.

Motivat 000	ion Geometric Preliminaries	The Dynamics	Asymptotic Analysis	Well-posedness
CITS	The Heavy Ball with Frid	ction		
	The heavy ball with friction dyna	amics (Attouch et al.)	on \mathbb{R}^m are:	
		$\ddot{x} = -\operatorname{grad} V - \eta \dot{x},$		(HBF)
	where $V: \mathbb{R}^m \to \mathbb{R}$ is a smooth which dissipates energy.	potential function and	$\eta > 0$ is the friction co	efficient

Theorem (Alvarez 2000)

If V is convex and $\arg \min V \neq \emptyset$, (HBF) converges to a minimizer of V.

We wish to apply the above method to the unit simplex Δ ; in the presence of inequality constraints however, (HBF) is no longer well-posed: it exits Δ in finite time.

We will take a two-step approach:

- I. Endow Δ with a Hessian Riemannian structure.
- 2. Derive the Riemannian analogue of (HBF).

Let g be a Hessian Riemannian metric on $\mathbb{R}^{n+1}_{>0}$ with kernel θ . Then (HBF) becomes:

$$\frac{D^2 x}{Dt^2} = -\operatorname{grad}_g V - \eta \dot{x},$$

or, in components:

$$\ddot{x}_k = \frac{1}{\theta''(x_k)} u_k - \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}_i \dot{x}_j - \eta \dot{x}_k,$$

with $u_k = -\partial_k V$ and $\Gamma_{ij}^k = \frac{1}{2} \frac{\theta^{\prime\prime\prime}(x_k)}{\theta^{\prime\prime}(x_k)} \delta_{ijk}$.

 Motivation
 Geometric Preliminaries
 The Dynamics
 Asymptotic Analysis
 Well-posedness

 000
 000
 000
 000
 000

Let g be a Hessian Riemannian metric on $\mathbb{R}^{n+1}_{>0}$ with kernel θ . Then (HBF) becomes:

$$\frac{D^2 x}{Dt^2} = -\operatorname{grad}_g V - \eta \dot{x},$$

or, in components:

$$\ddot{x}_k = \frac{1}{\theta''(x_k)} u_k - \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}_i \dot{x}_j - \eta \dot{x}_k,$$

with $u_k = -\partial_k V$ and $\Gamma_{ij}^k = \frac{1}{2} \frac{\theta^{\prime\prime\prime}(x_k)}{\theta^{\prime\prime}(x_k)} \delta_{ijk}$.

Using d'Alembert's principle to project on the simplex, we obtain the inertial dynamics:

$$\ddot{x}_{k} = \underbrace{\frac{1}{\theta_{k}''} \left[u_{k} - \sum_{\ell} \left(\Theta_{h}'' / \theta_{\ell}'' \right) u_{\ell} \right]}_{\text{Driving force}} - \underbrace{\frac{1}{2} \frac{1}{\theta_{k}''} \left[\theta_{k}''' \dot{x}_{k}^{2} - \sum_{\ell} \left(\Theta_{h}'' / \theta_{\ell}'' \right) \theta_{\ell}''' \dot{x}_{\ell}^{2} \right]}_{\text{Constraint force}} - \underbrace{\eta \dot{x}_{k}}_{\text{Friction}} \quad (\text{ID})$$
where $\theta_{k}'' = \theta''(x_{k})$ and Θ_{h}'' is the harmonic mean $\Theta_{h}'' = \left(\sum_{\ell} 1 / \theta_{\ell}'' \right)^{-1}$.

v

Motivat 000	tion Geometric Preliminaries	The Dynamics	Asymptotic Analysis	00000
CITS	Inertial Game Dynamics			
	Tensoring over players, we obtain	the inertial game dy	ynamics:	
	$\ddot{x}_{k\alpha} = \frac{1}{\theta''} \left[u_{k\alpha} - \right]$	$\sum_{eta} \left(\Theta_{k,h}^{\prime\prime} / \theta_{k\beta}^{\prime\prime} \right) u_{k\beta}$	ß]	
	$\kappa \alpha =$			(IGD)

$$-\frac{1}{2}\frac{1}{\theta_{k\alpha}^{\prime\prime}}\left[\theta_{k\alpha}^{\prime\prime\prime}\dot{x}_{k\alpha}^{2}-\sum_{\ell}\left(\Theta_{k,h}^{\prime\prime}/\theta_{k\beta}^{\prime\prime}\right)\theta_{k\beta}^{\prime\prime\prime}\dot{x}_{k\beta}^{2}\right]-\eta\dot{x}_{k\alpha},$$

where the players' payoffs $u_{k\alpha} = \frac{\partial u_k}{\partial x_{k\alpha}}$ are viewed as unilateral gradients.

Motivat 000	tion Geometric Preliminaries	OO OO	Asymptotic Analysis	VVell-posedness
cnrs	Inertial Game Dynamics			
	Tensoring over players, we obtain	the inertial game dy	ynamics:	
	$\ddot{x}_{k\alpha} = \frac{1}{\alpha u} \left[u_{k\alpha} - \frac{1}{\alpha u} \right]$	$\sum_{\alpha} \left(\Theta_{kh}^{\prime\prime} / \theta_{kh}^{\prime\prime} \right) u_{kh}$	3]	

$$\ddot{x}_{k\alpha} = \frac{\partial u_{k\alpha}}{\partial \theta_{k\alpha}} \left[u_{k\alpha} - \sum_{\beta} \left(\Theta_{k,h}^{\prime} / \theta_{k\beta}^{\prime} \right) u_{k\beta} \right] - \frac{1}{2} \frac{1}{\theta_{k\alpha}^{\prime\prime}} \left[\theta_{k\alpha}^{\prime\prime\prime} \dot{x}_{k\alpha}^{2} - \sum_{\ell} \left(\Theta_{k,h}^{\prime\prime} / \theta_{k\beta}^{\prime\prime} \right) \theta_{k\beta}^{\prime\prime\prime} \dot{x}_{k\beta}^{2} \right] - \eta \dot{x}_{k\alpha},$$
 (IGD)

where the players' payoffs $u_{k\alpha} = \frac{\partial u_k}{\partial x_{k\alpha}}$ are viewed as unilateral gradients.

Examples

I. The Gibbs kernel $\theta(x) = x \log x$ generates the inertial replicator dynamics:

$$\ddot{x}_{k\alpha} = x_{k\alpha} \left(u_{k\alpha} - \sum_{\beta} x_{k\beta} u_{k\beta} \right) + \frac{1}{2} x_{k\alpha} \left(\dot{x}_{k\alpha}^2 / x_{k\alpha}^2 - \sum_{\beta} \dot{x}_{k\beta}^2 / x_{k\beta} \right) - \eta \dot{x}_{k\alpha}.$$
(I-RD)

2. The Burg kernel $\theta(x) = -\log x$ generates the inertial log-barrier dynamics:

$$\begin{split} \ddot{x}_{k\alpha} &= x_{k\alpha}^2 \left(u_{k\alpha} - r_k^{-2} \sum_{\beta} x_{k\beta}^2 u_{k\beta} \right) + x_{k\alpha}^2 \left(\dot{x}_{k\alpha}^2 / x_{k\alpha}^3 - r_k^{-2} \sum_{\beta} \dot{x}_{k\beta}^2 / x_{k\beta} \right) - \eta \dot{x}_{k\alpha}, \\ \text{(I-LD)} \\ \text{where } r_k^2 &= \sum_{\beta} x_{k\beta}^2. \end{split}$$

			Asymptotic Analysis	Well-posedness
			000	
CNTS	Energy Dambing and Co	nvorgonco		

Energy, Damping and Convergence

For a single player, the Riemannian structure on Δ gives rise to the energy functional:

$$E(x,v) = \frac{1}{2}\langle v,v \rangle + V(x)$$

Under the inertial dynamics, energy is dissipated:

$$\dot{E} = \left(\frac{D^2 x}{Dt^2}, \dot{x}\right) + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = \left\langle -\operatorname{grad} V - \eta \dot{x}, \dot{x} \right\rangle + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = -\eta \left\| \dot{x} \right\|^2 \le 0$$

		Asymptotic Analysis	Well-posedness
		000	
enrs			

Energy, Damping and Convergence

For a single player, the Riemannian structure on Δ gives rise to the energy functional:

$$E(x,v) = \frac{1}{2}\langle v,v \rangle + V(x)$$

Under the inertial dynamics, energy is dissipated:

$$\dot{E} = \left(\frac{D^2 x}{Dt^2}, \dot{x}\right) + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = \left\langle -\operatorname{grad} V - \eta \dot{x}, \dot{x} \right\rangle + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = -\eta \|\dot{x}\|^2 \le 0$$

As a result, inertial trajectories that exist for all time eventually slow down:

Proposition

If x(t) exists for all $t \ge 0$, then $\lim_{t\to\infty} \dot{x}(t) = 0$.

		Asymptotic Analysis	Well-posedness
		000	
enre			

Energy, Damping and Convergence

For a single player, the Riemannian structure on Δ gives rise to the energy functional:

$$E(x,v) = \frac{1}{2}\langle v,v \rangle + V(x)$$

Under the inertial dynamics, energy is dissipated:

$$\dot{E} = \left(\frac{D^2 x}{Dt^2}, \dot{x}\right) + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = \left\langle -\operatorname{grad} V - \eta \dot{x}, \dot{x} \right\rangle + \left\langle \operatorname{grad} V, \dot{x} \right\rangle = -\eta \|\dot{x}\|^2 \le 0$$

As a result, inertial trajectories that exist for all time eventually slow down:

Proposition

If x(t) exists for all $t \ge 0$, then $\lim_{t\to\infty} \dot{x}(t) = 0$.

Theorem

Assume that the dynamics (ID) are well-posed, and let q be a local minimizer of V with Hess(V) > 0 at q. If x(0) is sufficiently close to q and the system's initial kinetic energy $K(0) = \frac{1}{2} ||\dot{x}(0)||^2$ is low enough, then $\lim_{t\to\infty} x(t) = q$.

 Motivation
 Geometric Preliminaries
 The Dynamics
 Asymptotic Analysis
 Well-posedness

 000
 000
 000
 000
 0000

The Folk Theorem of Evolutionary Game Theory

First order gradient descent w.r.t. the Shahshahani metric $g_{ij}(x) = \delta_{ij}/x_j$ leads to the replicator equation:

$$\dot{x}_{k\alpha} = x_{k\alpha} \left[u_{k\alpha} - \sum_{\beta} x_{k\beta} u_{k\beta} \right]$$
(RD₁)

The most well known stability and convergence result is the folk theorem of evolutionary game theory which states that (RD_1) has the following properties:

- I. A state is stationary iff it is a restricted equilibrium i.e. $u_{k\alpha}(q) = u_{k\beta}(q)$ if $\alpha, \beta \in \text{supp}(q_k)$.
- II. If an interior solution orbit converges, its limit is Nash.
- III. If a point is Lyapunov stable, then it is also Nash.
- IV. A point is asymptotically stable if and only if it is a strict equilibrium.

Motiva 000	ion Geometric Preliminaries 0000	Asymptotic Analysis ○○●	Well-posedness
cnrs	An Inertial Folk Theorem		

In our inertial setting, we have the following folk-type theorem:

Theorem

Assume that the inertial dynamics (IGD) are well-posed, and let x(t) be a solution orbit of (IGD) for $\eta_k \ge 0$. Then:

- I. x(t) = q for all $t \ge 0$ if and only if q is a restricted equilibrium.
- II. If x(t) is interior and $\lim_{t\to\infty} x(t) = q$, then q is a restricted equilibrium of \mathfrak{G} .
- III. If every neighborhood U of q in X admits an interior orbit $x_U(t)$ such that $x_U(t) \in U$ for all $t \ge 0$, then q is a restricted equilibrium of \mathfrak{G} .
- IV. If q is a strict equilibrium of \mathfrak{G} and x(t) starts close enough to q with sufficiently low speed $||\dot{x}(0)||$, then x(t) remains close to q for all $t \ge 0$ and $\lim_{t\to\infty} x(t) = q$.

Motivation 000	Geometric Preliminaries	Asymptotic Analysis	Well-posedness •0000

An Isometric Embedding into Euclidean Space

The above results all rely on the inertial dynamics being well-posed – not obvious! We will study this by embedding the problem isometrically in an ambient Euclidean space.

Proposition (Nash embedding) Let $\xi_{\alpha} = \phi(x_{\alpha})$ with $\phi'(x) = \sqrt{\theta''(x)}$, and set

 $S = \{(\phi(x_0), \ldots, \phi(x_n)) : x \in \operatorname{relint}(\Delta)\}.$

Then *S* with the ambient metric of \mathbb{R}^n is isomorphic to relint(Δ) with the Hessian Riemannian metric generated by θ .

Examples

- 1. The open unit simplex $\Delta \subseteq \mathbb{R}^{n+1}$ with the Shahshahani metric $g_{ij} = \delta_{ij}/x_j$ is isometric to an open orthant of the radius-2 sphere in \mathbb{R}^{n+1} (Akin, 1979).
- 2. The open unit simplex $\Delta \subseteq \mathbb{R}^{n+1}$ with the log-barrier metric $g_{ij} = \delta_{ij}/x_j^2$ is isometric to the closed hypersurface $S = \{\xi \in \mathbb{R}^{n+1} : \xi_\alpha < 0 \text{ and } \sum_\beta e^{\xi_\beta} = 1\}.$

		Asymptotic Analysis	Well-posedness
			00000
Chirc			

Well-posedness of the Inertial Dynamics

In the Euclidean variables $\xi = \phi(x)$, the inertial dynamics become:

$$\ddot{\xi}_{\alpha} = \frac{1}{\sqrt{\theta_{\alpha}''}} \left(u_{\alpha} - \sum_{\beta} \left(\Theta_{h}'' / \theta_{\beta}'' \right) u_{\beta} \right) + \frac{1}{2} \frac{1}{\sqrt{\theta_{\alpha}''}} \sum_{\beta} \Theta_{h}'' \theta_{\beta}''' / (\theta_{\beta}'')^{2} \dot{\xi}_{\beta}^{2} - \eta \dot{\xi}_{\alpha}.$$

By the Euclidean isometry property, this is just Newton's ordinary second law of motion for particles constrained to move on the hypersurface

$$S = \{\xi \in \mathbb{R}^{n+1} : \sum_{\beta} \phi^{-1}(\xi_{\beta}) = 1\}.$$

Theorem

The dynamics (ID) are well-posed if and only if S is a closed hypersurface of \mathbb{R}^{n+1} .

Proof technical and hard, but intuition straightforward: if S is bounded in some direction, then orbits can escape from that part of S in finite time.

Motivati 000	on Geometric Preliminaries	The Dynamics	Asymptotic Analysis 000	Well-posedness
CITS	Future Directions			

Some open problems for the coffee break:

- What do the dynamics look like for more general domains?
- When are they well posed?

Conjecture: if the interior of the feasible set can be mapped isometrically to a closed submanifold of some ambient real space.

What are the dynamics' global convergence properties for special classes of functions (convex, analytic, etc.)?

▶ ...